
The SymbolicData ProjectTowards an Electronic Repository of Tools and Datafor Benchmarks of Computer Algebra SoftwareOlaf BachmannDepartment of MathematicsUniversity of Kaiserslautern, Germanyobachman@mathematik.uni-kl.de Hans-Gert Gr�abeDepartment of Computer ScienceUniversity of Leipzig, Germanygraebe@informatik.uni-leipzig.dehttp://www.SymbolicData.org�AbstractThe SymbolicData project has the following three maingoals: 1. to systematically collect existing symbolic com-putation benchmark data and to produce tools to extendand maintain this collection; 2. to design and imple-ment concepts for trusted benchmarks computations onthe collected data; and 3. to provide tools for data ac-cess/selection/transformation using di�erent technologies.SymbolicData has developed from a \grass root initia-tive" of a small number of people to a stage where it shouldbe presented to, and evaluated and used by a wider commu-nity.In this paper we report about the current state of theproject, i.e., we describe the main design principles and toolswhich were developed to realize our goals.1 IntroductionFor di�erent purposes, computer hardware and software isoften tested on certain benchmarks. Although being some-times controversially discussed, such benchmarks set (atleast) well de�ned environments to compare otherwise in-comparable technologies, algorithms, and implementations.Benchmark suites for symbolic computations are not aswell established as for other areas of computer science. Thisis probably due to the fact that there are not yet well agreedupon aims and technologies of such a benchmarking. How-ever, during the last years e�orts towards systematic bench-mark collections for symbolic computations were intensi�ed.Following the trend of the development of Computer Al-gebra software, we can classify these e�orts roughly into twocategories:1. General benchmarks which cover almost all areas ofsymbolic computation and whose main intend is tocompare general-purpose Computer Algebra systems(CAS). The famous Wester suite [13, ch.3], is a typ-ical example of such an e�ort.2. Special benchmarks which concentrate only on a par-ticular problem and whose main intend is to compare�At the time of the submission of this paper, the registra-tion of this domain was not yet completed. In the mean-time,a mirror of what is to appear at this domain can be reached athttp://www.informatik.uni-leipzig.de/~graebe/SymbolicData

algorithms and implementations solving this problem.There are numerous special benchmarks for many par-ticular problems scattered through the literature. See,e.g., [1, 2, 4, 8, 11, 12] for benchmarks of polynomialsystems solving or [10, 14] for the polynomial factor-ization challenge.For further quali�cation of these e�orts it would be ofgreat bene�t to unify the di�erent benchmark approachesand to systematically collect the existing special and generalbenchmark data such that they are electronically availablein a more or less uniform way. This would provide the com-munity with an electronic repository of certi�ed inputs andresults that could be addressed and extended during fur-ther development. The SymbolicData project is set out torealize this.However, the aims mentioned above do not reach farenough: symbolic computations often lead to voluminousdata as input, output or intermediate results. Therefore,such a project has not only to collect benchmark data butalso to develop tools to generate, store, manipulate, presentand maintain it.Consequently, the SymbolicData project has the fol-lowing three goals:1. To systematically collect existing symbolic computa-tion benchmark data and to produce tools with whichthis data collection can conveniently be extended andmaintained.2. To design and implement concepts which facilitatetrusted benchmarks computations on the collecteddata.3. To provide tools that allow data access/selection usingdi�erent technologies (ASCII parser, SQL, WWW, etc)and data conversions into commonly used formats, e.g.,HTML, SQL data bases, ASCII, LaTeX, etc.In the �rst development stage of the project we concen-trated on the general design principles of the tools and thedata collection, thereby trying to achieve a balance betweenthe necessary exibility/extensibility on the one hand, andsimplicity/practicability on the other.A �rst application of our tools and concepts was realizedon collections of data from two areas of Computer Algebra:Polynomial System Solving and Geometry Theorem Prov-ing.1



Further applications of our tools and concepts to col-lect data from other areas of symbolic computation are in-tended. For this, we seek the cooperation of persons andgroups that have related data collections at their disposaland are willing to spend some e�ort to enter these data intothe SymbolicData data base and provide the respectiveadd-ons to already existing tools.The SymbolicData project grew out of the special ses-sion on benchmarking at the 1998 ISSAC conference inRostock which was organized by H. Kredel. Since then,the project has steadily developed from ideas to imple-mentations and data collections and back. At the begin-ning of 1999, the authors joint forces with the symboliccomputation groups of the University of Paris VI (J. C.Faugere, D. Lazard), of Ecole Polytechnique (J. Marchand,M. Giusti), and of the University of Saarbr�ucken (M. Dengel,W. Decker). Furthermore, the project was incooperated intothe benchmarking activities of the Fachgruppe Computer-algebra of the Deutsche Mathematiker Vereinigung.In this paper we report about the current state of theSymbolicData project. Based on the general design ofSymbolicData which is outlined in section 2, we describein section 3 how the above mentioned goals were realized.These concepts are illustrated in section 4 by two examplesof data collections from di�erent areas of Computer Alge-bra. Section 5 gives an overview of what deliverables theSymbolicData project has produced so far which is �nallyfollowed by some concluding remarks in section 6.2 The Design of SymbolicDataBased on the goals mentioned above and on the observationthat the data to be collected enjoys a lot of structure, wechoose an object-relational data base approach for the re-alization of SymbolicData. This approach does not onlyallow to systematically collect and store data, but also of-fers concepts to interrelate di�erent data, e.g., problem de-scriptions, computational results, background information,citations, and to design modular, object-oriented tools fordata access and manipulations.For exibility reasons, we do not use (at least at the mo-ment) one of the various data base programs as main enginebut keep the primary sources in an XML-like ASCII format.A �le stored in a at, XML-like syntax is well suited for di-rect editing and viewing, and for retrieving its informationas a record of tag/value pairs combined from the tag nameand the string enclosed between the (consecutive top level)start/end tags as value. We call such �les sd-�les and theirassociated records sd-records and use them as the basicunits to store all information.Furthermore, we use Perl as the programming languagein which almost all of the tools for accessing and manipu-lating sd-records are written. Perl with its powerful script-ing and string manipulation facilities, and its capability todesign and implement modular and object-oriented toolsturned out to be very adequate for this task.2.1 The structure of the data baseAs mentioned above, sd-records (or, records, for short) formthe informational units of the data base and contain, e.g.,problem descriptions, examples, references to the literatureetc. Similar records share a common structure and aregrouped into tables. Each sd-record must have a Type tag

whose value speci�es the table the record belongs to and aKey tag which uniquely identi�es the record within its table.There are two basic kinds of tables: data tables and metatables. Data tables are used to actually store the collecteddata whereas meta tables are used to specify and de�nethe syntax and semantics of the tags of data tables. Moreprecisely, for each known tag of a particular data table, thereis a sd-record in the corresponding meta table which speci�esa set of attributes of the considered tag. They de�ne a\data structure" in an object-oriented sense.Since we store the meta information about data tablesagain in the form of sd-records we can use the same toolsto retrieve and manipulate both, data and speci�cations.Even more importantly, such an approach allows exible,modular, and independent extension and modi�cation of thestructure of the data base, like adding a new data table typefor a di�erent kind of application, since the meta informationis a part of the data base, and not explicitly �xed in the toolsof SymbolicData.Tag attributes need to specify� the type of the tag which determines the syntax of itsvalue,� a level of the tag which determines its importance(level==1 characterizes mandatory tags),� and a description of the meaning/purpose of the tag.Further attributes may specify the name of a (Perl) pro-cedure that semantically validates (e.g., verifying that poly-nomials are in normal form) or even generates (e.g., deter-mines the number of variables occurring in a polynomial)the value of the tag, or de�nes how the tag value has to betransformed into a di�erent format (e.g., how polynomialsare represented in HTML).The type concept for tag values we have developed canloosely be described as follows:1. It de�nes (mostly by means of regular expressions) a setof basic tag types, e.g., Text, Integer, Float, URL, Ref(for references to records in other tables), Polynomial,BibTeXEntry, etc. These basic tag type speci�cationsare again stored in form of meta sd-records which allowsdynamic type extensions by simply adding a new sd-record specifying a new basic tag type.2. It de�nes how lists and hashes can recursively be con-structed from basic types. To have a list constructor isnecessary to express such concept as \list of (lists of)polynomials". A hash constructor, which constructssets of key/value pairs from the underlying type, isnecessary to express, e.g., one-to-many or many-to-onerelations between records and tags.Requiring that each tag value is of a certain type has theadvantage that many operations, like syntactic validation,HTML or SQL conversion, etc., on tag values can be realizedin a generic, \content independent" way.Interrelations between di�erent tables are speci�ed bymeans of the type Ref. A tag value of type Ref (or, reference,for short) is a hash of key/comment pairs where `key' is thename of a record, or even a regular expression matching sev-eral records, in the foreign table and `comment' is any text.The name of the foreign table is either speci�ed in the tag'smeta sd-�le or inherited from the tag name, if it coincides2



with a valid table name. Interrelations are used to attachto a record, for example, bibliography entries (from the BIBtable), problem descriptions (from the PROBLEMS table) etc.Each meta table contains a special sd-record (whose Keyis Meta) with \class attributes", i.e., information that spec-i�es properties of the entire data table. This may be a de-scription of the purpose of this data table, names of (Perl)modules required for processing records of this table, spec-i�cations of procedures which compare two records of thistable, etc.All sd-�les are stored in a directory hierarchy, where thestring concatenation of the Type and Key of a record yieldsthe location of its sd-�le within the directory hierarchy ofthe data base. A further sub-classi�cation of the records ofa table can be realized by means of the directory delimiter\/" in their Key values.2.2 The SymbolicData Perl toolsThe design of the SymbolicData tools has to take intoconsideration several circumstances. First, the operationsthey have to perform are of very di�erent natures and re-quirements: they range from the insertion and validation ofa single record, over the initiation, control and evaluationof benchmark computations on selected records, up to thetransformation of parts or the entire data base into otherrepresentations like HTML or SQL. Second, the usability ofthese tools has to be as simple and as exible as possible.And third, the tools need to be extendible at di�erent levels.With these circumstances in mind, the SymbolicDatatools are designed to provide1. a programming environment to be used for indepen-dent and rapid development of new components andspecialized applications which, on the one hand, allowsa maximum on code reusability and similarity of thelook-and-feel of di�erent components, and on the otherhand, a maximum on exibility and component inde-pendence.2. a well-documented, exible, and intuitive standard in-terface program which can initiate and control mostof the implemented operations in a standardized andextendible way.The SymbolicData Perl tools are the main vehicle foroperations on the data base. They are implemented as ahierarchy of Perl modules which we divide into four cate-gories:Basic modules : They implement primitive operations,like I/O and tag/value access of sd-records.Action modules : They implement the generic part of ac-tions like validate, insert, compute, transform, etc. tobe performed with the data base.Table modules : They implement those parts of actionsthat are speci�c for a given table, e.g., how to validatea bibliography entry.The symbolicdata program : It provides a standard in-terface that realizes command-line parsing, initializa-tion of global variables and required modules, and ex-ecution of the well de�ned actions inherited from thecommand line.

To give the reader a feeling of how these modulescooperate we describe the main steps executed by thesymbolicdata program. Its synopsis issymbolicdata [-req file] actions [options] [args]On start-up, symbolicdata loads all the basic modules,parses the command-line arguments up to the mandatory ac-tion argument(s), and loads the global action hash whichspeci�es, in a well-de�ned format, all known (or, \regis-tered") actions and their properties, e.g., the Perl modulesrequired for the action, a description of the action etc. Theaction hash can dynamically be extended at run-time usingthe �rst (optional) -req file argument, where file is thename of a Perl module which is loaded before the actionsare parsed. Next, for each action, the modules listed in therespective action hash entry are loaded.Then, symbolicdata initializes the global command-line hash which stores the recognized command-line op-tions, their properties (like syntax of the argument, docu-mentation, etc.) and (default) values. Each loaded module,including the basic modules, may add general, or action-speci�c entries to this global command-line hash. This way,the list of recognized command-line options is dynamicallybuilt up at run-time, and, hence, can independently be ex-tended by other modules and is kept as small as possible.Values for command-line options can also be given in so-called init-�les, which allow convenient editing and storingof these values.After the modules are loaded and the command-line hashis set up, all remaining command-line arguments are parsed,and their values are stored in the appropriate slots of thecommand-line hash.Finally, symbolicdata calls the speci�ed action(s) in theorder in which they are listed on the command-line: The�rst action gets the remaining command-line arguments asinput, subsequent actions get the output of their precedingaction as input, unless, of course, an error occurred.The Perl tools use a hierarchy of hashes as internal datarepresentation of the data base: the entire data base is ahash of Type/table pairs, a table is a hash of Key/recordpairs etc. Furthermore, these hashes are implemented asso-called tied hashes, i.e., the basic hash operations likecreation, value access, iteration, and destruction are over-loaded. This overloading enables transparent data manipu-lations on both, the internal sd-record hashes and the exter-nal (persistent) sd-�les. It also enables automatic loading,caching and storing of sd-records; read-only access of sd-records; automatic or explicit conversion of tag values intostrings/lists/hashes, etc1.To increase the usability of the implemented tools, it isnecessary to provide adequate and up-to-date documenta-tion of their various features. From our experience, this isbest realized by keeping the documentation and the sourcecode closely together. Therefore, each module, action, andcommand-line option speci�cation also has to provide well-de�ned hashes or hash entries which describe and illustratethe provided feature(s). This way, extensive documentationin various formats, e.g., a short ASCII description of rele-vant command-line options, or a detailed HTML table of allactions and their respective command-line options togetherwith relevant examples, can be generated directly from thesource code.1Most of these features can be controlled by command-line argu-ments.3



3 Realizing the Goals of SymbolicData3.1 Collecting and maintaining dataTo collect data from a certain application �eld one �rst hasto specify the structure of the records to be collected. Thisrequires to create one or several data tables via their metatables.As described above, a meta table consists of a set of tagdescriptions, i.e., sd-�les that can be created with any texteditor and inserted at the right place via the symbolicdataInsert action. Each such meta sd-�le contains the descrip-tion of the attributes of a tag of the table to be de�ned.Several such tag de�nitions (ChangeLog, Comment, Date,PERSON, Version) are prede�ned, i.e., inherited from a \mas-ter table" (which is an abstract class in object-oriented ter-minology). In particular, all records have a PERSON tag de-�ned which is to be used as a reference to the table PERSONthat collects information (a�liations, email addresses, etc.)of persons who contributed to SymbolicData. This guar-antees a fair authorship management of di�erent contribu-tions along the GNU Public License conditions which appliesto SymbolicData as a whole.Furthermore, depending on the domain of the applica-tion, tag and/or table speci�c Perl functions might have tobe implemented and speci�ed in the meta sd-records whichrealize semantical operations like validation, generation, andcomparison of tag values.After the new table is speci�ed, records of this table maybe inserted into the data base. Each record has to be sup-plied as sd-�le that either can be created by a text editorfrom a template or converted with appropriate Perl tools,possibly using the SymbolicData programming environ-ment, from other formats.New sd-records should be inserted into the data baseusingsymbolicdata Insert [options] sd-file(s)This action �rst validates the given record, secondly, checksfor uniqueness of the new record, and, thirdly, inserts therecord as sd-�le at the right place.Validation �rst checks for correct at XML syntax andpresence and plausible values of all mandatory tags. Then,level by level, tag values are checked syntactically and, ifa tag `validate' and/or `generate' function is de�ned in thecorresponding meta sd-�le, the tag value may also be se-mantically validated, or even generated.After validation, the record is checked for uniquenessw.r.t. the existing records of the same table in the database. This is either accomplished by a (semantical) `com-pare' function de�ned in the table's meta sd-�le or by thestandard compare function that compares tag values bystring comparisons modulo whitespaces. Note that a seman-tical comparison of two records may require certain elabora-tions since the same example may, e.g., occur with di�erentvariable names or in di�erent representations.In general, the evaluation of semantical aspects of recordsrequires to cooperate with software capable of symbolic ma-nipulations. For reasons of familiarity, personal preference,and suitability, we use, at the moment, only Singular [6]for such purposes. However, if it becomes necessary or con-venient, other CAS could supplement or replace Singularas the underlying Computer Algebra engine.

3.2 Running benchmark computationsSymbolicData's Compute environment is set out to realizethe following three goals:1. To facilitate automated and trusted benchmark compu-tations, that is, benchmark computations whose resultsw.r.t. time and correctness are repeatable, comparable,and trusted by the community.2. To serve as a test-bed for developers, that is, as a toolwith which developers of Computer Algebra softwarecan conveniently and reliably evaluate new algorithmsand implementation techniques.3. To provide a repository of computational results whichcan be used for further development, like computinginvariants of the original example, correctness veri�ca-tions and timing comparisons of other computations,etc.In this section, we present the main principles of therealization of these ambitious goals. See [9] for details, fur-ther explanations, examples and complete on-line documen-tation.Analyzing the general nature of benchmark computa-tions reveals dependencies on the following parameters2:Example: The example which is to be computed, i.e., ansd-record which provides the object of the computation.COMP: The actual computation to be performed, i.e., ansd-record of type COMP which describes the computationand serves as an interface to (Perl) routines, which ex-amine an example for suitability for this computation,and, where applicable, check the syntactical and se-mantical correctness of the result of the computation.CASCONFIG: A con�guration of a Computer Algebrasoftware which realizes the computation, i.e., an sd-record of type CASCONFIG which on the one hand, iden-ti�es the software, its version, and its implementedbenchmark capabilities, and, on the other hand, servesas an interface to (Perl) routines which generate theinput �le and shell command to run the computation,which check the output of the computation for run-time errors, like out of memory, segmentation viola-tions, syntax errors, and, if necessary, which perform(syntactic) transformations on the result such that it issuitable for further processing independent of the ex-amined Computer Algebra software.MACHINE: A description of the computer used for thecomputation. Such an sd-record of type MACHINE canautomatically be generated by means of the actionsymbolicdata ThisMachine and further be used tospecify the executables of particular CASCONFIGs.Dynamic parameters: This includes speci�cations of: in-tervals for the run-time of a computation; which error,resp. veri�cation, checks should be performed on theresult; what to do with the output of the computation.The benchmark computations of SymbolicData are fa-cilitated by the Perl module Compute and realized using2Where possible and reasonable, we encapsulate these dependen-cies into tables.4



symbolicdata Compute [options] sd-file(s)Parameter speci�cations are given either by command-lineoptions, or, often more suitably, by init-�les. A benchmarkrun consists of the following stages:1. Check of correctness and completeness of input param-eters.2. Set-up of the computation.3. Run of the computation.4. Evaluation of the computation.The set-up and evaluation stage require communicationsbetween the Compute module and the Perl routines speci-�ed by the input COMP and CASCONFIG records. The giveninput and expected output of these external routines is well-de�ned and documented. To ease the addition of new com-putations and systems to the available benchmark computa-tions, as much functionality is provided by �rst, the Computemodule; second, the routines of the COMP record, and, third,by the routines of the CASCONFIG record. For example, therun-time error check speci�cation of a CASCONFIG can be assimple as specifying a regular expression.Based on the input �le and shell command returned bythe CASCCONFIG routines, the actual run of the computationitself is fully controlled by the routines of the Compute mod-ule. For reliability reasons, timings are measured externallybased on the GNU time program. While the actual compu-tation is running, the symbolicdata program \sleeps" untileither the computation �nished, or the maximal (user plussystem) time allowed for a computation expired. In the lat-ter case, the running computation is unconditionally inter-rupted (killed) such that a following evaluation of the com-putation recognizes a \maxtime violation". Furthermore,if a run of the computation took less than a minimal (userplus system) time required, the computation is repeated un-til the sum of the times of all runs exceeds the bound, andthe reported time is then averaged. Notice that the mea-sured computation times include the times a system needsfor start-up, input parsing, and output of result. While onecould argue that these operations do not really contribute tothe time of the actual computations, we did not separate outthese timings (at least for the time being) for the followingreasons:� Mechanisms which isolate the pure computation timeand do not rely on a system's internal facilities to mea-sure timings are cumbersome to implement and wouldvery much complicate the control and set-up of bench-mark computations.� Time measurements for computations which are notdominated by the pure computation time are mostlymeaningless since start-up is a constant and I/O usu-ally a linear operation w.r.t. the size of the input andoutput data.The information about a particular benchmark compu-tation is collected into a record of the type COMPREPORTwhich stores all input parameters and results, i.e., errorand veri�cation status, timings, output, etc., of the com-putation. Where applicable and requested, records of theCOMPRESULT table are used to collect system independent,veri�ed, and \trusted" results of computations. TheseCOMPRESULT records may be extracted from one or more

COMPREPORTs and may be used for further veri�cations andcomputations of invariants.Running automated benchmark computations mayquickly produce voluminous amounts of output data3.Hence, we need mechanisms which e�ectively maintain andevaluate this data:First, note that this is a classical data base application.We are in the process of developing tools to translate bench-mark data to SQL and to store them in a classical data base.However, even as data base application, the management ofbenchmark data is still rather challenging since benchmarkdata combines records, software, machines, algorithms, im-plementations, etc. into a high dimensional \state space"which needs to be analyzed.Second, note that only tools to analyze benchmark dataare not enough. To e�ectively compare benchmark runs weneed standardized and widely accepted concepts and meth-ods to statistically evaluate this data under various aspects.The EvalComputation module provides a �rst solution at-tempt. Since a detailed discussion of the involved aspectswould go beyond the scope (and frame) of this paper we re-fer to www.SymbolicData.org/doc/EvalComputations/ fora starting point for further thoughts and discussions.3.3 Accessing and transforming the data baseOne of the main purposes of digital data collections is toexibly access, select, combine, sort, manipulate, etc. datafrom the underlying data base by varying principles, and topresent the output in various formats.Since standard data base programs allow much moreexible navigations through the underlying data pool,SymbolicData provides an interface to SQL which allowsto de�ne, create, and generate di�erent SQL tables derivedfrom tables of the primary data base. In particular, all in-terrelation information contained in the primary data basemay be extracted to SQL relation tables and stored in yourfavorite (SQL compliant) data base. This interface, solelyASCII based at the moment, is de�ned via attributes inmeta sd-�les.For presentation of data we use HTML and standardbrowser techniques. An HTML interface is best suited topresent and browse data, to create di�erent views, and trig-ger search. Interrelations can conveniently be realized byHTML links. As for today, we o�er a scratch implementa-tion (see www.SymbolicData.org/Data). A more elaboratedinterface is under development.4 Two ExamplesTo illustrate the design principles described above, we de-scribe in this section, by means of two examples, how tablesshould be designed and used. That is, we present and ex-plain the structure of the tables of the two application �eldswhere we started to collect data.4.1 INTPS { a collection of polynomial systemsAs a �rst application we tried to specify a framework to unifythe di�erent benchmark collections of systems of polynomi-3For example, running a Groebner basis benchmark on theappr. 500 polynomial systems and 10 CASCONFIGs we have col-lected/implemented so far, produces appr. 1GB of data, among it,5000 COMPREPORTs!5



als as, e.g., [1, 2, 4, 8, 11, 12]. Each such system of polyno-mials is de�ned through a �nite basis in a certain polynomialring R[x] in a list of variables x over a base domain R. Itoccurs that most examples may be reduced to systems ofpolynomial with integer coe�cients or with coe�cients inR = Z[p] where p is a list of parameters. We decided tofocus on such systems and to de�ne the corresponding tableINTPS accordingly.A system of polynomials in INTPS is de�ned through itsbasis, list of variables, and list of parameters. The tagsbasis, vars, and parameters correspond to these entries.They are the most important tags: basis and vars oflevel==1, hence, mandatory; parameters of level==2 sincefor R = Z there are no parameters.For uniformity reasons and to ease comparison, we re-quire of a \valid" INTPS record, that its basis polynomialsare stored in expanded form using the +, *, and ^ opera-tors, and that the monomials of a polynomial and the poly-nomials of the basis are ordered w.r.t. the degree reverselexicographical ordering. Based on Singular, the (Perl)INTPS::validate routine de�ned in the INTPS table modulevalidates, and, if requested, necessary, and possible, \�xes"these properties of an INTPS record.Further tags are de�ned to collect background informa-tion about the di�erent polynomial systems. Backgroundinformation may be of structural or relational type. Struc-tural information about a polynomial system concerns in-variant properties of the basis and the ideal generated by it,e.g., lists of the lengths and degrees of the basis polynomi-als, the dimension or degree of the ideal, a prime or primarydecomposition of the ideal, or certain parameters of such adescription. Several optional tags, like llist, dlist, dim,degree, isoPrimes, isoPrimeDims, etc., and Perl routinesare de�ned to collect or even generate such information.Relational information relates the polynomial systems toother tables. This might be a bibliography reference of theorigin of the example, bibliography references of papers thatconsidered the example, a problem description of where theexample came from or how it was generated from certain pa-rameters, etc. Since relational information relates two tableswe have to declare one of them as foreign and to attach theinformation to the other table. For INTPS, we de�ne optionaltags BIB containing a reference to the original bibliographysource described in the BIB table and PROBLEMS containinga reference to a problem description in the PROBLEMS table.For the bibliography references to papers that consider thegiven example we declare the INTPS table as foreign, i.e., wede�ne a corresponding INTPS tag in the BIB table. The mainreason for this decision is persistence in the sense that we donot need to change an INTPS record each time a new pub-lication refers to it. For similar reasons, the bibliographyreference of the origin is attached to the INTPS table, not toBIB. Note that it is not always as easy as here to make sucha judicious decision.For integrity reasons, we furthermore need to assurethat there are no \equal" records in our collection of INTPSrecords. The �rst problem we face here, is to decide what weactually mean by \equality" of INTPS records. Possible de�-nitions range from equality of the ideals generated by the ba-sis polynomials up to string equality of the basis tag values.With benchmark computations in mind, we decided on thefollowing de�nition: Let F = (f1; : : : ; fn) 2 R[x1; : : : ; xm]n,G = (g1; : : : ; gn) 2 R[y1; : : : ; ym]n be n-tuples of polyno-mials. Then we de�ne F to be equal to G i� there exist

permutations � 2 Sm; � 2 Sn such thatfi(y�(1); : : : ; y�(m)) = g�(i)for all 1 � i � n.Having this de�nition at hand, we still need e�ectivemethods to actually determine the equality of two INTPSrecords: a brute-force, trial-and-error method is certainlycomputationally infeasible, since already by now we haveINTPS records with polynomials in more than 40 variables.For this purpose, the �rst author has developed and imple-mented within Singular an algorithm which uses structuralinformation of the polynomials to signi�cantly cut-down thenumber of possible permutations. Tested with random per-mutations on about 500 examples from our collection, theimplementation needs at most a minute or so to recoverthe input permutations and hence, to decide the equalityof INTPS records in the above sense. Details of the algo-rithm and its implementation will be given in a forthcomingpublication.4.2 GEO { a collection of mechanized geometrytheorem proofsAs a second application of our general framework we col-lected examples from mechanized geometry theorem prov-ing scattered over several papers mainly of W.-T. Wu, D.Wang, and S.-C. Chou, but also from other sources. Thecorresponding GEO table contains about 250 records of ex-amples, most of them considered in Chou's elaborated book[3].The examples collected so far are related to the coor-dinate method as driving engine as described in [3]. Theautomated proofs may be classi�ed as constructive (yield-ing rational expressions to be checked for zero equivalence)or equational (yielding a system of polynomials as premiseand one or several polynomials as conclusion).To distinguish between the di�erent problem classes wede�ned a mandatory tag prooftype that must be one ofseveral alternations de�ned in the Syntax attribute in thecorresponding meta sd-�le. Extending/modifying this entrymodi�es the set of valid proof types. Hence the table is openalso for new or re�ned approaches.According to the general theory, see, e.g., [3], for a ge-ometry proof in the framework under consideration one hasto �x� lists of independent (tag parameters) and, for equa-tional proof type, dependent (tag vars) variables,� formulas for the coordinates (tag coordinates) of allintermediate points, lines etc.,� for equational problems, the polynomial conditionsde�ning the relations between the dependent variables(tag polynomials),� the conclusion polynomial(s) (tag conclusion),� and possibly polynomial inequalities (tag constraints)which are required to be satis�ed since the conclusionis invalid in general.Further, we collect some background information of rela-tional type and, for equational problems, also a \proof" (tagsolution)4.4For constructive problems, a normal form computation of therational expression obtained from the conclusion proves or disprovesthe theorem.6



At the moment the background information consists ofa reference to PROBLEMS as foreign table which points to astatement of the geometry theorem and, for equational type,a reference to the corresponding polynomial system in theINTPS table. References to bibliography entries are handledas above, i.e., GEO is considered as foreign table and thereferences are attached to BIB records.We follow the spirit of [3] and collect not only the cor-responding polynomial systems but also the way they arecreated from the underlying geometric con�guration, i.e.,the corresponding code of a suitable geometry software. Tostudy aspects of code reusability and generality we took theGeometry package [5] of the second author as base, thatmeanwhile exists in versions for Reduce, Maple, Mathe-matica, and MuPAD.Due to di�erent restrictions (case sensitivity, principalsyntax di�erences), the code which describes a geomet-ric statement in the Geometry package language (Geocode, for short) varies between di�erent CAS, but in away that can be handled automatically. The tag values ofcoordinates, polynomials etc. contain code in a genericlanguage that can be processed by Perl tools to generatecorrect Geo code for the di�erent CAS. The design of thisgeneric language may serve as a prototype also for other ta-bles that store CAS code. We will not embark into detailshere, since this part works well for the special applicationbut is yet under development.The solution tag value contains code that is generic ina more obvious way. In most cases it contains the linessol:=geo_solve(polys,vars);geo_eval(con,sol);orgb:=geo_gbasis(polys,vars);geo_normalf(con,gb,vars);where polys, vars, and con are assumed to be CAS vari-ables that contain the polynomial conditions, variables, andconclusion and geo solve, geo eval, etc., are appropriateprocedures for solving, evaluation, Groebner basis and nor-mal form computation, that are de�ned in special interfacepackages, one for each CAS, in terms of the respective func-tionality of the given CAS. To really prove one of the givengeometry theorems, the respective CAS must load the inter-face package as init-�le and the SymbolicData tools musttranslate the given tag value into syntactically correct inputfor the given CAS.5 The Current State of the ProjectThe SymbolicData project evolved as a permanent inter-play between its two facets: collecting data and extend-ing/improving concepts, design, and tools.As of today, the SymbolicData contributors collectedmore than 1100 sd-records, wrote 40 Perl modules with morethan 15 000 lines of code, and implemented 22 actions for thestandard interface program symbolicdata. The followingshort alphabetical overview of tables which currently existmay give the reader a feeling about the overall structure ofthe data that was collected so far.� Table BIB: Table for bibliography entries.Collects bibliographical information in BibTeX format,short abstracts, and relational information to the GEO,INTPS, and PROBLEMS tables.

� Table CAS: Table for general descriptions of Com-puter Algebra software.Collects information about the address, author, email,url etc. of the software, and also a short description.� Table CASCONFIG: Table for con�gurations ofComputer Algebra software to execute benchmarks, seesection 3.2.� Table COMP: Table for descriptions of computations,see section 3.2.� Table COMPREPORT: Table for reports of exe-cuted benchmark computations, see section 3.2.� Table COMPRESULTS: Table for the output of ex-ecuted benchmark computations, see section 3.2.� Table GEO: A collection of problems arising frommechanized geometry theorem proving, see section 4.2.� Table INTPS: A collection of polynomial systemswith integer coe�cients, see section 4.1.� Table MACHINE: Table of computers on whichbenchmark computations are performed, see section3.2.� Table PERSON: Table of developers/contributorswho are involved with SymbolicData.� Table PROBLEMS: More detailed background in-formation and comments about di�erent problems.This may be a problem description, a pointer to theorigin of the problem, related CAS code, and/or certainkey words.We started �rst benchmark computations on Groebnerbases, using various coe�cient domains and monomial or-derings. These benchmarks have been (and are) run onthe more than 500 INTPS records using 10 versions of dif-ferent Computer Algebra systems. Other benchmark com-putations on polynomial systems (like \solving", real rootisolation, syzygy/resolution computations) are in prepara-tion.www.SymbolicData.org will soon become the central siteof the SymbolicData project, containing its WWW-pages,and its CVS and FTP repositories. It will be related to theMedicis project [7] that \can be used by anybody to solvescienti�c calculations with the tools of computer algebra andsymbolic computation. It can, in e�ect, put at your disposalhardware resources, software and expertise." (from theirweb pages).6 Concluding RemarksSymbolicData grew out of a \grass root initiative" of asmall number of people. We think that this is the mostnatural and productive way to start up and realize such aproject. During the development we have striven for a goodbalance between far-reaching ideas and usable, deliverableresults. Most of the concepts and tools described in thispaper have undergone major revisions, as we gained furtherexperience with the subject. We thank all the developersof SymbolicData for their skill, patience, and vigor duringour collaboration, and present this paper on behalf of thiscommunity.7



SymbolicData has now reached a stage where its mainconcepts and tools are reasonably stable, general and ap-proved. In other words, SymbolicData is ready to beshared with a greater community for use, further develop-ment, and extension. For this, we seek cooperations for thedesign and implementation of data collections from otherareas of Computer Algebra.AcknowledgmentsWe would like to thank the UMS Medicis and its sta� (espe-cially J. Marchand) for providing the hardware and softwareto set up www.SymbolicData.org and for letting us use theirexcellent computing facilities.We also would like to thank the Fachgruppe Comput-eralgebra of the Deutsche Mathematiker Vereinigung, andespecially G.-M. Greuel and H.-M. Moeller, for their valu-able input and recommendations during the development ofSymbolicData and for sponsoring the www.SymbolicData.org domain.References[1] Bini, D., and Mourrain, B. Polynomial test suite,1996. See www-sop.inria.fr/saga/POL.[2] Boege, W., Gebauer, R., and Kredel, H. Someexamples for solving systems of algebraic equations bycalculating Gr�obner bases. J. Symb. Comp. 2 (1986),83 { 98.[3] Chou, S.-C. Mechanical geometry theorem proving.Reidel, Dortrecht, 1988.[4] Czapor, S., and Geddes, K. On implementing Buch-berger's algorithm for Gr�obner bases. In Proc. SYM-SAC'86 (1986), Waterloo, Canada, pp. 233 { 238.[5] Gr�abe, H.-G. Geometry - a small package for mecha-nized plane geometry manipulations, 1998. See www.informatik.uni-leipzig.de/~compalg/software.[6] Greuel, G.-M., Pfister, G., and Sch�onemann, H.Singular version 1.2 User Manual . In Reports OnComputer Algebra, no. 21. Centre for Computer Al-gebra, University of Kaiserslautern, June 1998. www.mathematik.uni-kl.de/~zca/Singular.[7] The Medicis project, 1998. See www.medicis.polytechnique.fr.[8] PoSSo: Polynomial System Solving, 1993 { 1995. Seeposso.dm.unipi.it.[9] The SymbolicData project, 2000. Soonly available atwww.SymbolicData.org. For the moment consult www.informatik.uni-leipzig.de/~graebe/SymbolicData.[10] von zur Gathen, J. A factorization challenge.SIGSAM Bulletin 26, 2 (1992), 22{24.[11] Wang, D. Irreducible decomposition of algebraic vari-eties via characteristic sets and Gr�obner bases. Com-puter Aided Geometric Design 9 (1992), 471 { 484.[12] Wang, D. Solving polynomial equations: characteris-tic sets and triangular systems. Math. and Comp. inSimulation 42 (1996), 339 { 351.

[13] Wester, M., Ed. Computer Algebra Systems: A Prac-tical Guide. Wiley, Chichester, 1999.[14] Zimmermann, P., Bernardin, L., and Monagan,M. Polynomial factorization challenges, 1996. Posterat ISSAC-96, see also www.inf.ethz.ch/personal/bernardi.

8


