On Factorized Grobner Bases®

Hans-Gert Gréabe
Institut fir Informatik, Universitat Leipzig, Germany

October 11, 1994

Abstract
We report on some experience with a new version of the well known Grobner algo-
rithm with factorization and constraint inequalities, implemented in our REDUCE pack-
age CALI, [12]. We discuss some of its details and present run time comparisons with
other existing implementations on well splitting examples.

1 Introduction

Let S := k[z1,...,x,] be the polynomial ring in the variables z1, ..., z, over the field k£ and
B :={f1,...,fm} C S a finite system of polynomials. Denote by I(B) the ideal generated
by these polynomials. One of the major tasks of constructive commutative algebra is the
derivation of information about the structure of Z(B) C k", the set of common zeroes of the
system B over the algebraic closure k of k. For C' := {g1,...,gx} denote the relative set of
zeroes by

Z(B,C):={a€k™:V fe€B f(a) =0and Vg € C g(a) # 0}.

The set C' of inequalities can, of course, be replaced by a single inequality [[C := (HpEC p) #
0, but for efficiency reasons we will keep them separated.

The introduction of such constraint conditions is not only motivated by our special aim,
but also induced from applications, that often ask for solutions satisfying certain non de-
generacy conditions as e.g. non vanishing determinants etc. Moreover, even starting with a
”clean” problem, constraints come in during the Grébner factorization algorithm in a natural
way.

Splitting the system into smaller ones, solving them separately, and patching all solutions
together is often a good guess for a quick solution of even highly nontrivial problems. As
far as we know, such an approach was analysed first in greater detail by Czapor ([2], [3]),
Davenport ([4]) and Melenk, Moller and Neun ([18], [19]). Of course, such a strategy makes
sense only for problems that really will split, i.e. for reducible varieties of solutions. Problems
coming from “real life” often fulfill this condition. So [18] presents an application of factor-
ization and arithmetic restrictions to Grobner bases of polynomial systems arising from large
stationary chemical kinematics problems. This approach is also part of most of the general
type Computer Algebra Systems. Below we discuss some new ideas included in the Grébner
factorizer implementation distributed with CALI, [12], and compare it with other existing
implementations.

*Appeared in Computer algebra in science and engineering, ed. J.Fleischer, J.Grabmeier, F.W.Hehl,
W .Kiichlin. World Scientific, Singapore 1995, S. 77 - 89.

2 The Grobner Algorithm with Factorization
As described in the introduction we consider the following

General Problem

Given a system B = {f1,..., fm} C S of polynomials and a set of side conditions
C' find a collection (B, Cy) of polynomial systems By, in “triangular” form (here :
being a Grébner basis) and side conditions Co, such that

Z(B,C) =] Z(Ba,Ca).

Using factorization this problem may be solved with the following well known algorithm,
see e.g. [19] :

Factorized Grobner Bases FGB(B,C)

e During a preprocessing interreduce B and try to factor each polynomial f € B. If
f factors, replace B by a set of new problems, one for each factor of f. Update the
side conditions and apply the preprocessing recursively. This ends up with a list of
interreduced problems with non factoring base elements.

e For each basis in the problem list compute its list of critical pairs and start the cor-
responding Grobner basis calculations. Each such calculation consists of a polynomial
list, a list of critical pairs not yet processed, and side conditions.

e Try each reduced (non zero) S-polynomial to factor before it will be added to the
polynomial list. If it factors, split up the problem into as many subproblems as there
are (different) factors, add each of the factors to the corresponding subproblem, and
update the pair list and the side conditions.

e If the pair list is exhausted, extract the minimal Grébner basis of the subproblem. If
it is not yet interreduced (i.e. the reductum contains non standard terms), apply tail
reduction to compute the minimal reduced Grébner basis. This may cause some of the
base elements to factor anew. Apply the preprocessing once more. If the result is stable
then return it. Otherwise put the subproblems produced during the preprocessing back
into the problem list.

Obviously this algorithm terminates and returns a list of Grébner bases and constraints
with the desired properties. Moreover, this approach may be parallelized in an easy mas-
ter/slaves frame. In [14] we report on our experiences with such a parallelization based on
the PVM-REDUCE version of Melenk and Neun.

Realizing the above general approach we use the following elementary operations :

1. Updating after factorization

If (B,C) is a problem and f € I(B) factors as f = gi* ... g% then replace the problem
by the problem list

NewCon(B,C,{g1,...,9m}) = {(BU{g:},CU{g1,...,9i—1}) | i=1,...,m}

2. Inconsistency check

(B, C) is inconsistent, i.e. Z(B,C) = (), if the normal form NF(c, B) = 0 for some
ceC.

3. Subproblem removal check

(B1,C1) can be removed if there is a problem (or partial result) (Bg,C2) such that
Z(B1,C1) C Z(Bs). This occurs if NF(f,B;) =0 for all f € By. The second problem
has to be replaced by (Bg,C1 N Cy).

Both checks use not the full power of information but only sufficient conditions. Indeed,
the side condition C; N Cy in (3) is weaker than the (logical) disjunction of C; and Cs. But
the latter may not correspond to a main open set in the Zariski topology. Since C7 D C
and Cy D C we obtain nevertheless Ch N Cy D C. Hence the total set of solutions is not
enlarged. For (2), we remark that e.g. the full inconsistency check would need a radical
membership test, i.e. another (full) Grobner basis calculation. This is impossible in the given
frame since all checks must be easy enough not to influence the performance of the main
algorithm to heavily. If B is the Grébner basis of a prime ideal, NF(c, B) = 0 for some
¢ € C is also necessary for Z(B,C) = (). Since our connection of factorization and Grébner
basis computation leads often to such bases, one should force to progress with a subproblem
as deep as possible to take best advantage of the side conditions (and the removal check).

Splitting problems recursively in sets of subproblems yields a tree structure as described
in [18] and conceptually used in both the REDUCE and the AXIOM implementations. With
the desired parallelization in mind we will consider a master/slave frame instead. A master
manages the set of problems and the set of results and distributes subtasks to one (or several)
slaves to be treated by them. This has the following advantages :

e The data structures are one-dimensional lists of problems resp. results. Such data
structures are best suited for the management by LISP-like languages.

e One can easily keep them sorted by appropriate sort criteria, this way forcing special
selection strategies for the next problem(s) to be sent to the slave(s). Especially, splitting
one of the leaves of the tree into subproblems one can queue up all these problems and
continue with a different subproblem. Compared to the recursive approach as e.g.
implemented in AXIOM this may lead to a significant speedup, although by the above
theoretical remark and empirical observations a depth first strategy has to be preferred.

e One can easily apply the subproblem removal check not only to the current problem, but
to all problems (and results) queued up. This may lead to significant savings cancelling
unnecessary branches in an early stage of the computation.

As explained above we should force a problem sort strategy that mimics a depth first
recursion on the corresponding tree. We approximate this strategy sorting the problems by
their virtual dimension. This is the dimension of the current lead term ideal I¢t(B). Comput-
ing new S-polynomials the lead term ideal grows and hence its dimension eventually drops.
Thus our strategy forces the slaves to treat partial Grobner bases in greatest progress first.!

!This is not the whole story since we use the easy linear time dimension algorithm, that works properly
only for unmixed ideals, see [13]

Updating the global problem list with newly produced subproblems the master applies the
removal check on both the new and the old problems (and results).

For details of the implementation we refer the reader to the source code of CALI, available
through [12].

3 The Preprocessing

We organized the preprocessing in a recursive way factoring each time a single basis element
and then interreducing and updating the corresponding subproblems before the preprocessor
is called on them anew. This has some advantage against the complete factorization of all
base elements in one step. To see this we restrict our considerations to ideals generated
by monomials, this way discussing the influence of common factors occuring in several base
elements on the preprocessing, but not the tail reduction effects derived from them.

To compare our recursive approach with a complete factorization of all base elements,
note that e.g. Reisner’s example, [21], an ideal generated by 10 square-free monomials of
degree 3, would split into 3'° subproblems with the latter approach, whereas it splits into
10 prime monomial ideals with 46 intermediate subproblems with the former one. This is
true for almost all examples containing many splitting basis elements. The following general
example illustrates the situation once more :

EXAMPLE :
Iy = I(xop—129: 1 <k <m,1<1<n)

As easily seen, Iy, p, = I(xop—1: 1 <k <m)NI(xy :1<1<n)decomposes finally into two
subproblems. Factoring all the mn generators at once and combining them to subsystems
yields 2" different ideals (of coordinate hyper-spaces). Two of them are the above minimal
ones with respect to inclusion.

Using a recursive splitting argument we produce I(x2,4,...,22,) on the main branch
and successively Iy, I, ..., I,_1 in the problem list with

Io = I(zoam—1) + Im—1n

and
Iy = I(zam—1,T2n; - - s To(n—k)) T Im—1,n—k for k> 0.

Since Iy C ... C I,—1 only one problem survives and I,,, splits recursively generating only
mn intermediate subproblems.

4 Comparison with other Grobner factorizer implementations

Like the original Buchberger algorithm the Grobner factorization method may be combined
with different term orders. As a main ingredient of the polynomial systems’ solver of almost all
major general purpose Computer Algebra Systems its combination with a pure lexicographic
term order plays an important role. In such a setting the resulting Grobner bases are often
in a “triangular form” convenient for further processing, see e.g. [20, ch. 4].

Although (or better : since) factorized Grobner bases with respect to a pure lex. term
order carry important information usually they are hard to compute. Intermediate coefficient

swell and high degrees in the output polynomials are common (and upto now not well under-
stood) phenomena to be expected in advanced applications. Hence FGB computations with
respect to “cheaper” term orders (especially the degrevlex one) should be involved to extract
at least some information about the underlying polynomial system, if a direct attack via a
pure lex. term order does not succeed.

Below we collected some examples known nowadays as benchmark tests for the original
Buchberger algorithm and applied to them the FGB algorithm combined with the pure lex.
term order with respect to the given list of variables (in decreasing order) as far as it was
possible, then switching to the degrevlex term order.

The examples are the following :

G1: [8, eq. (4)], see also [9, ex. 1], [11, 3.1] or [1].

G6 : [8, eq. (8)], see also [9, ex. 2].

G7: [7, eq. (6)], see also [9, ex. 3] (note that the system is homogeneous).
K4 : The Katsura example with 4 variables, [1].

A5 : The cyclic roots example with 5 variables, [11, 3.2].

Go : The (quasi)homogenized version of Gonnet’s example from [1]
(with deg a; = deg b; = 1,deg ¢; = 2).

Sk + Schwarz’ examples (communicated to us by G. Pfister) :

vars == {x1,...,x}

s5:={ 2% + 21 + 21075 + 273714,
2x1x0 + 22 + 22325 + x?l,
2x1 13 + x% + x3 + 22425 ,
2x1x4 + 22923 + T4 + a:g,
2125 + 22074 + T3 + x5}

se:=1{x? + 21 + 22026 + 22375 + 27,
2x1T2 + 9 + 22326 + 224 T35,
2x1x3 + x% + x3 + 22426 + x%,
2x1my + 22223 + T4 + 2576,
2125 + 22024 + x§ + x5 + x%,
2x126 + 22225 + 22374 + X6}

spi={x? + o1 + 22027 + 22326 + 27475,
2x129 + o + 22327 + 2246 + 3:?,,
2x1x3 + x% 4+ x3 + 22427 + 22526,
2x1 14 + 22273 + 14 + 27577 + 22,
2125 + 22024 + x% + x5 + 2x6 27,
22176 + 22275 + 22374 + T6 + T2,
2r1 w7 + 22076 + 22375 + T3 + 27}

sg = {z? + 1 + 22978 + 22377 + 22476 + 72,
2x1x0 + 29 + 22328 + 22427 + 22526
2x1x3 + ZL‘% + x3 + 22428 + 22527 + x%,
22124 + 22023 + 4 + 22528 + 22627
2x1x5 + 21024 + :r:?,, + x5 + 22628 + x%,
2x1x6 + 22025 + 22324 + 6 + 22728,
2x1x7 + 22026 + 22375 + a:?l + x7 + x%,
2x128 + 2wy + 22326 + 245 + T8}

We compared our implementation with other existing ones (REDUCE 3.4.1, AXIOM 1.0,
MAPLE V.2) on an IBM/RS 6000.> In table 1 we collected the results of these experi-
ments with the several Grébner factorizer implementations. The first column contains the
corresponding computation (CPU-)time in sec. as reported from the system, the second the
number # SP of final subproblems returned by the corresponding Grébner factorizer. Since
AXIOM and MAPLE produce in general subsystem lists that are not reduced with respect
to subideal relationship we report both the number of subproblems returned by the system
and the number of essential subproblems among them.

Table 1 is divided into three parts. The first part contains easy examples, the second
and third part more difficult ones. The first two parts are computed with respect to the pure
lexicographic term order, the latter with respect to the degree-wise reverse lexicographic term
order (gsolve in our MAPLE version can be combined only with plex, so no comparison was
possible in the latter examples).

2MATHEMATICA 2.1. doesn’t offer explicit access to a Grébner factorizer. Its SOLVE-function invokes a
certain factorization strategy, but without user’s influence to choose the underlying term order. For the lex.
examples we’ve got the following behavior (on an HP 735) :

e A5 and S5 it was unable to crack.

e For G1 it reports after 1025 s. a list of about 10000 solutions with many repetitions of dimension < 1,
that we did not try to analyze.

e For K4 it reports after 1.0 s. the two linear solutions and another one with nested roots of multiplicity
12. In the original ideal (being already radical) this component has degree 6.

e For Gonnet’s example it reports after 58.2 s. 20 solutions, all of dimension 4, containing only two really
different ones (The ideal has dimension 7).

e The same applies to G6 : After 23.6 s. there were returned 6 one-dimensional solutions, missing
{)\3 =)\4 = 0} and {)\4 =)\5 = 07)\1 = 1}.

ex. CALI REDUCE AXIOM MAPLE

time | # SP time | # SP || time | # SP time | # SP
G1 3.5 9 1.7 o 7.5 16/9 32.7 22/12
G6 1.2 8 0.75 8| 13.5 12/8 7.9 13/11
K4 1.8 3 1.6 3 6.8 3 6.7 3
A5 16.1 15 7.9 15 | 45.4 | 16/15 9730 18/13
Go 15.33 7 46.0 9% || 2022 | 192/7 430° | 32...40/7
S5 80.1 12 21.8 12 39.6 | 13/12 233 14/12
S6 || > 90000 > 90000 182 | 35/32 || > 38000
G7 211 20 15.7 20 || 1350 | 266/22 || > 17000
S5 1.8 6 0.9 6| 11.4 6 - -
S6 7.7 22 4.6 20 || 81.1 | 21/20 - -
G7 1092 21 3428 21 || 2281 | 200/20 - -
S7 32.0 8 24.3 8| 267 9/8 - -
S8 710 63 3073 59 || 2190 | 64/63 - -

Table 1 : Run time experiments with different Grobner factorizers

Let’s add some remarks about the quality of the output beyond CPU time. The occurrence
of superfluous (embedded) solutions in both the MAPLE and AXIOM outputs is due to the
recursive implementation suggested by the inherent tree structure and self-similarity of the
algorithm. The elimination of such subproblems by the user later on, although easy from an
algorithmic point of view, is difficult in practise, since for the necessary subideal test one has
to go into deep system’s details.

On the examples of part 1 the MAPLE answer differs from the other ones (that are
nearly optimal in the sense explained below). This is due to an inaccurate implementation
that often returns not completely factorized solutions. E.g. the output of G1 contains 3
components with base elements A\? and A} among the (factorized) generators, whereas G6
gives solutions containing A3(\; — 1), A} etc. Another surprising fact we observed with Go :
The (conceptually deterministic) serial implementation led in different runs to solution lists
of different length !

Solving systems of polynomial equations in an ultimate way means to find the isolated
primes of the associated variety and to present them in a way that is well suited for fur-
ther computations. Good presentations of prime ideals are e.g. a regular (polynomial)
parametrization (reg. par.)

B ={zp —pr(z1,....2q) | k=d+1,...,n}, pp € klz1,...,24]
or a zero-dimensional prime in general position (g.p.) [10, prop. 7.1]
B=Axr —pr(x,) | k=1,...,n =1} U{pn(xn)}, pr € klzn].

Generalizations include zero-dimensional triangular sets ([15], strong triangular sets in [20,
ch. 4]), different generalizations to positive dimension ([16], [22]), rational parametrizations,

SWith a better ecart (giving ¢; weights 2) only 8.3 s.
4Two of them are not Grébner bases due to a code bug.
Saverage value

characteristic sets etc. For a full decomposition into prime components the only known general
algorithmic approach is that of [10].

Since the FGB algorithm is a heuristic approach, one cannot expect to get such a full
decomposition. Nevertheless for small examples and a pure lexicographic term order, it often
ends up with a list of primes in a convenient presentation. This is very important, since it
is not easy to extract all solutions of a system of polynomial equations even from a pure lex.
Grobner basis. E. g. in [8] the authors found for both G1 and G6 not all solutions : For G1
they missed the two-dimensional component

M=M= =X=)\=0}
and two one-dimensional parts and for G6 the one-dimensional components
1
{)\1 = /\3 = /\5 = 0} and {)\1 = 5,/\3 = 0,)\4 = —/\5}.

In table 2 we collected some of the output characteristics of our sample computations.

’ example ‘ # SP ‘ Dimensions ‘ Structure
Gl 9 | 1x3 3x2 5x1 all reg. par.
G6 8 | 1x2 7x1 all reg. par.
K4 3| 3x0 primes, all in g.p.
A5 15 | 15x0 all strong triangular, but 20 primes
Go 7 | 1x7 1x6 2x5 3x4 | all prime, but of difficult structure
S5 12 | 12x0 primes, all in g.p.
S6 32 | 32x0 28 primes in g.p. and 4 strong triangular

systems, decomposing into (4 4 2 2) comp.
40 primes in total

G7 20 | 4x6 4x5 12x4 see below

S5 6 | 6x0 2 primes and 4 subsystems, decomposing
into (3 3 2 2) comp.

S6 22 | 22x0 6 primes and 16 subsystems, decomposing
into (2x3 14x2) comp.

G7 21 | 3x6 4x5 12x4 2x3 | see below

S7 8 | 8x0 not easy, 28 primes

S8 63 | 63x0 not easy, 96 primes

Table 2 : Output characteristics

For larger examples and especially with respect to the degrevlex term order output sub-
problems may consist of several prime components, which the system was not able to split.
Due to different pair selection strategies this may apply to some or all of the implementations
thus explaining differing numbers of subsolutions.

The relations between different outputs may be even more difficult. For the G7 example
e.g. we obtained the following characteristics :

The system decomposes minimally into 20 primes of dimension (4x6 4x5 11x4
1x3).

The (quick) pure lex. decomposition of both CALI and REDUCE yields 17 prime
components with quite difficult structure and 3 four-dimensional subsystems of

A good guess for examples with many composite subsystems in the output collection, aris-
ing e.g. in combination with the degrevlex term order, is a pure lexicographic postprocessing
of the results obtained so far. For this purpose one has to interreduce the base polynomials
in the output list with respect to a pure lexicographic term order and to restart another FGB
computation for each of them. One can apply the same shortcuts as discussed above to the
whole list of these problems instead of processing each of the problems individually. Table 3
contains the results of the corresponding computations in our experimental implementation

degree 4, 5, 5. CALI’s isolatedprimes decomposes the latter two subsystems into
four-dimensional primes of degree 4 and 1 each, whereas the former decomposes
into a four-dimensional component of degree 4 and the three-dimensional com-
ponent of degree 6. In a second minimization step some of the old and some of
the new four-dimensional components turn out to be superfluous for a minimal
decomposition.

AXIOM’s output for the pure lex. term order contains 20 primes and two com-
posite subsystems. One of them, of dimension 2, contains a generator a2 (?) and
is radically embedded. The other composite subsystem is of dimension 4 and de-
composes into three components of dimension (4 3 3). Again some of the old and
some of the new components turn out to be superfluous.

For the degrevlex term order CALI’s decomposition contains 3 composite subsys-
tems that split into components of dimension (6 6), (3 3) and (3 4).

REDUCE’s decomposition contains 4 composite subsystems with almost the same
properties, whereas

AXIOM produces 17 primes and 3 composite systems (of dimension (6 4 3)).

Note that Gerdt et al. report in [9] with ASYS (and another method) that they
obtained a complete list of 76 subsolutions.

for the examples of part 3 in table 1.

’ example ‘ FGB-D ‘ # SP ‘ Inter \ FGB-L \ # SP \ Structure

S5 1.8 6 0.6 1.9 12 | all prime and in g.p.

S6 7.7 22 0.3 5.7 38 | 2 of them are composite
G76 1092 21 0.2 2.9 22 | all but 2 are prime

S7 32.0 8 | > 29007 see below

S8 710 63 10.7 46.0 90 | 6 of them are composite

Here

Table 3 : Combining degrevlex. and lex. FGB computations

FGB-D denotes the CPU time (in sec.) for the degrevlex FGB computation,

Inter denotes the time spent for the interreduction of these results wrt. a pure
lexicographic term order, and

FGB-L denotes the time spent for the lex. FGB computation on the list of the
interreduced results.

5Since the system is homogeneous, this is merely a turn from degrevlex to deglex.
"Heap space low.

SP counts the number of subproblems, into which the original problem splitted
so far

and the last column reports about the quality of the final result obtained this way.

Some words about S7 : The 8 subsystems, produced by the degrevlex term order are of
degree (11772121 35 35). The former 6 subsystems decompose with the approach discussed
so far into 14 primes (in g.p.) of degree 1, 3 and 6. The really hard part are the components
of degree 35. We even failed to interreduce these components wrt. the pure lexicographic
term order. Using the FGLM linear algebra approach of [5] with precomputed borderbasis as
described in [17] the degrevlex Grobner bases of these components can be converted into the
lexicographic ones in 6.5 s. each. Since both are in g.p. another application of the Grébner
factorizer yields their prime decompositions. This way we obtain 2x7 new prime components.
Since none of them turns out to be superfluous, the polynomial system S7 decomposes finally
into 28 zerodimensional primes.

This approach is in general a good additional guess for zero-dimensional ideals. It allows
to find solutions of systems that are otherwise untractable (without special tricks). So e.g. for
the Caprasse/Demaret examples in dimension 4...6, C4...C6, see [6], we get even without
the special factoring elements constructed in [6] the following results :

’ example ‘ FGB-D ‘ # SP ‘ Change ‘ FGB-L ‘ # SP ‘ Structure ‘

C4 23.6 8 2.2 2.3 13 | all prime and in g.p.

C5 196 19 116 17.4 35 | all but 2 are prime

C6 27160 44 3953 186 109 | all but 5 are prime of de-
gree 1...12.

Table 4 : Combining degrevlex. FGB, FGLM, and lex. FGB computations

Here, in addition to the notion introduced above, Change denotes the time spent for the
FGLM term order change.

We conclude, that these approaches are good candidates to be tried, if a direct lexico-
graphic FGB attack fails. Of course, it makes sense only for such problems that really admit
a factorization with respect to a “cheaper” term order. Since these pieces are of smaller size
than the original problem, the lexicographic FGB algorithm hopefully goes through on them.

In a forthcoming paper we will discuss less obvious strategies to split problems, where
components keep glueing together.
References

[1] W. Boege, R. Gebauer, H. Kredel : Some examples for solving systems of algebraic equa-
tions by calculating Grébner bases. J. Symb. Comp. 2 (1986), 83 - 98.

[2] S. R. Czapor : Solving algebraic equations via Buchberger’s algorithm. In : Proc. EURO-
CAL’87, LNCS 378 (1987), 260 - 269.

[3] S. R. Czapor : Solving algebraic equations : Combining Buchberger’s algorithm with
multivariate factorization. J. Symb. Comp. 7 (1989), 49 - 53.

10

[4] J. H. Davenport : Looking at a set of equations. Bath Comp. Sci. Technical Report 87-06
(1987).

[5] Faugere, Gianni, Lazard, Mora : Efficient computations of zerodimensional Grébner bases
by change of ordering. Technical Report, 1989. To appear in J. Symb. Comp..

[6] K. Gatermann : Symbolic solution of polynomial equation systems with symmetry. In :
Proc. ISSAC’90, Addison Wesley 1990, 112 - 119.

[7] V. P. Gerdt, A. Yu. Zharkov : Computer classification of integrable coupled KdV-like
systems. J. Symb. Comp. 10 (1990), 203 - 207.

[8] V. P. Gerdt, N. V. Khutornoy, A. Yu. Zharkov : Solving algebraic systems which arise
as necessary integrability conditions for polynomial nonlinear evolution equations. In :
Computer algebra in physical research (ed. Shirkov, Rostovtsev, Gerdt), World Scientific,
Singapore 1991, 321 - 328.

[9] V. P. Gerdt, N. V. Khutornoy, A. Yu. Zharkov : Grébner basis technique, homogeneity,
and solving polynomial equations. Preprint, JINR E11-92-157, Dubna 1992.

[10] P. Gianni, B. Trager, G. Zacharias : Grobner bases and primary decomposition of poly-
nomial ideals. J. Symb. Comp. 6 (1988), 149 - 167.

[11] A. Giovini et al. : “One sugar cube, please” or selection strategies in the Buchberger
algorithm. In Proc. ISSAC’91, ACM Press, 1991, 49 - 54.

[12] H.-G. Grébe : CALI - A REDUCE package for commutative algebra. Version 2.1., Oct.
1993. Available through the REDUCE library e.g. at redlib@rand.org.

[13] H.-G. Grébe : Two remarks on independent set. J. Alg. Comb. 2 (1993), 137 - 145.

[14] H.-G. Grébe, W. Lassner : A parallel Grobner factorizer. In : Proc. PASCO’94 Linz,
World Scientific, Singapore 1994, 174 - 180.

[15] D. Lazard : Solving zerodimensional algebraic systems. J. Symb. Comp. 13 (1992), 117
- 131.

[16] D. Lazard : A new method for solving algebraic systems of positive dimension. Discr.
Appl. Math. 33 (1991), 147 - 160.

[17] M. Marinari, H.-M. Méller, T. Mora : Grobner bases of ideals given by dual bases. In :
Proc. ISSAC’91, ACM Press 1991, 55 - 63.

. Melenk, H.-M. Moller, W. Neun : Symbolic solution of large chemical kinematics
18] H. Melenk, H.-M. Moller, W. N Symboli luti fl hemical ki i
problems. Impact of Computing in Science and Engineering 1 (1989), 138 - 167.

[19] H. Melenk : Practical applications of Grobner bases for the solution of polynomial equa-
tion systems. In : Computer algebra in physical research (ed. Shirkov, Rostovtsev, Gerdt),
World Scientific, Singapore 1991, 230 - 235.

[20] B. Mishra : Algorithmic Algebra. Springer, New York 1993.

11

[21] G. Reisner : Cohen Macaulay quotients of polynomial rings. Adv. math. 21 (1976), 30 -
49.

[22] D. Wang : An elimination method for solving polynomial systems. J. Symb. Comp. 16
(1993), 83 - 114.

12

