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Abstract

In a preceding paper [9] we reported on some experience with a new version of the well
known Gröbner algorithm with factorization and constraint inequalities. Here we discuss,
how this approach may be refined to produce triangular systems in the sense of [12] and
[13]. Such a refinement guarantees, different to the usual Gröbner factorizer, to produce
a quasi prime decomposition, i.e. the resulting components are at least pure dimensional
radical ideals. As in [9] our method weakens the usual restriction to lexicographic term
orders.

Triangular systems are a very helpful tool between factorization at a heuristical level
and full decomposition into prime components.

Our approach grew up from a consequent interpretation of the algorithmic ideas in [5]
as a delayed quotient computation in favour of early use of (multivariate) factorization.
It is implemented in version 2.2 of the REDUCE package CALI [8].

1 Introduction

Solving systems of polynomial equations in an ultimate way means to find a decomposition
of the variety of solutions into irreducible components and to present them in a way that
is well suited for further computations. The only algorithms known nowadays for such a
prime decomposition are based on the ideas developed in the fundamental paper [5]. There
exist several implementations and reports about them, see e.g. [11] or the monograph [1].
The main tool is a reduction of the dimension of the underlying ideal either inverting one
of the variables or intersecting with appropriate hypersurfaces. This needs several stable
quotient computations to compute retractions etc. Only in the last part of the algorithm, in
dimension zero and after a general (or moderate, as suggested in [11]) change of coordinates
factorization (of univariate polynomials) is involved. Both the quotient computation and the
change of coordinates tend to make things expensive with regard to computation time.

In this paper we investigate the opposite approach, i.e. how far one can proceed towards a
prime decomposition, heavily using factorization (of multivariate polynomials), delaying the
computation of stable ideal quotients to the end of the algorithm.

Such a delayed quotient computation may be represented as a pair (B, c) with B ⊂ S
generating the ideal I and c ∈ S a polynomial non degeneracy condition. Since the zero set
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of the stable quotient I :< c > is the closure of Z(I) \Z(c), at a heuristic level this is exactly
the well known Gröbner algorithm with factorization (FGB), see section 2 below or [9].

Practically important results are obtained with respect to a pure lexicographic term order,
but such Gröbner bases are usually quite hard to compute. In [9] we stressed also an alter-
native approach and computed factorized Gröbner bases with respect to a “cheaper” term
order. If the problem really factors in such a frame, it is often easy to compute lexicographic
(factorized) Gröbner bases of each of these smaller pieces (either directly or by base change
techniques).

Another observations of [9] was the fact, that even for polynomial systems, comimg from
applications, and dimension zero FGB does not always split the corresponding zero set into
irreducible components. Lazard proposed in [12] and [13] to weaken the irreducibility con-
dition and to ask only for triangular systems. In dimension zero they generalize the notion
of prime ideals and are well suited for further numerical evaluation, since they don’t involve
a change of coordinates. In general, given a triangular system for the (quasi) prime (i.e. at
least radical and pure dimensional) ideal P in a polynomial ring S over the field k, one can
extract a presentation for the (quasi) field (S/P )P as a finite extension of a pure transcenden-
tal extension of k. This is another way to present such a (quasi) prime component. The ideal
basis may be recovered from this set by a (non zero dimensional) stable quotient computation
if requested, see prop. 2.

Below we present a quasi prime decomposition algorithm. It is a modification of the prime
decomposition algorithm in [5], but uses only factorized Gröbner bases with constraints and
delays the computation of stable quotients until the ideal is radical and of dimension zero.
The latter quotients are easier to compute than arbitrary stable quotients due to the linear
algebra approach suggested by Möller in [14].

A first topic of our paper concerns the impact of the term order to be chosen in Möller’s
approach. Explaining in [14] the underlying idea for arbitrary (admissible) term orders the
algorithm itself is formulated only for the pure lexicographic term order. As already for FGB,
such an approach should be preferred, if the corresponding Gröbner basis may be calculated
with reasonable effort. Otherwise multiple (factorized) Gröbner basis computations with
respect to “cheap” term orders should be involved. We show by means of examples, that such
a “slow turn to lex.” may have some advantage.

The main topic of our paper is devoted to another generalization of the notion of triangular
systems to positive dimension. It is different from both generalizations proposed in [13] and
[16], and best suited, from our point of view, to be applied in a polynomial system solver. For
a general problem (B,C) our algorithm computes a collection (Tk, Vk) of triangular systems Tk

with respect to maximal independent sets Vk, such that, if we denote by Ck := C(Tk, Vk) the
set of leading coefficients of Tk in a representation with parameter set Vk, the ideals I(Tk) :<∏

Ck > are pure dimensional radical ideals (and hence Z(Tk, Ck) quasi prime components),
such that

⋃
Z(Tk, Ck) = Z(B,C).

2 The Gröbner Algorithm with Factorization

Let S := k[x1, . . . , xn] be the polynomial ring in the variables x1, . . . , xn over the field k, k̄
the algebraic closure of k, and B := {f1, . . . , fm} ⊂ S a finite system of polynomials. Denote
by I(B) the ideal generated by these polynomials, for C := {g1, . . . , gk} the relative set of
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zeroes by
Z(B,C) := {a ∈ k̄n : ∀ f ∈ B f(a) = 0 and ∀g ∈ C g(a) 6= 0},

and its Zariski closure by Z(B,C). The latter is the zero set of I(B) :<
∏

C > where∏
C :=

∏
α∈C α.

In [9] we considered the following

General Problem

Given a system B = {f1, . . . , fm} ⊂ S of polynomials and a set of side conditions
C find a collection (Bα, Cα) of polynomial systems Bα in “triangular” form (here:
being a Gröbner basis) and side conditions Cα such that

Z(B,C) =
⋃
α

Z(Bα, Cα)

and discussed, how it may be solved with the well known Factorized Gröbner Bases
Algorithm FGB(B,C). Its major steps are the following:

Input : A polynomial system with constraints (B,C).

Output : A list of polynomial systems with constraints (Bk, Ck), such
that

– Bk are Gröbner bases and

–
⋃

Z(Bk, Ck) = Z(B,C).

• During a preprocessing interreduce B and try to factor each polynomial f ∈ B. If
f factors, replace B by a set of new problems, one for each factor of f . Update the
side conditions and apply the preprocessing recursively. This ends up with a list of
interreduced problems with non factoring base elements.

• For each basis in the problem list compute its list of critical pairs and start the corre-
sponding Gröbner basis calculations. Each such calculation then consists of a polynomial
list, a list of critical pairs not yet processed, and side conditions.

• Try each reduced (non zero) S-polynomial to factor before it will be added to the
polynomial list. If it factors, split up the problem into as many subproblems as there
are (different) factors, add each of the factors to the corresponding subproblem, and
update the pair list and the side conditions.

• If the pair list is exhausted, extract the minimal Gröbner basis of the subproblem. If
it is not yet interreduced (i.e. the reductum contains non standard terms), apply tail
reduction to compute the minimal reduced Gröbner basis. This may cause some of the
base elements to factor anew. Apply the preprocessing once more. If the result is stable
then return it. Otherwise put the subproblems produced during the preprocessing back
into the problem list.

Realizing this algorithm we used the following elementary operations:
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1. Updating after factorization

If (B,C) is a problem and f ∈ I(B) factors as f = ga1
1 . . . gam

m then replace the problem
by the problem list

NewCon(B,C, {g1, . . . , gm}) :=

{(B ∪ {gi}, C ∪ {g1, . . . , gi−1}) | i = 1, . . . ,m}

2. Inconsistency check

(B,C) is inconsistent, i.e. Z(B,C) = ∅, if the normal form NF (c,B) = 0 for some
c ∈ C.

3. Subproblem removal check

(B1, C1) can be removed if there is a problem (or partial result) (B2, C2) such that
Z(B1, C1) ⊂ Z(B2). This occurs if NF (f,B1) = 0 for all f ∈ B2. The second problem
has to be replaced by (B2, C1 ∩ C2).

3 Solving systems of polynomial equations

The algorithm presented so far may be applied to systems of polynomial equations with
respect to arbitrary term orders. Since it is a heuristic approach, it doesn’t guarantee to
split all components. Especially with respect to the degrevlex term order, a nice order from
a computational point of view, some or all components, even of different dimensions, usually
keep glueing together. Even if the components are irreducible, but of positive dimension,
their presentation through minimal ideal bases is quite difficult and not well suited for further
numerical evaluation or to obtain more structural insight.

Triangular systems as defined below play an intermediate role in both directions. First,
they present the (generalized) generic point of a component as a tower of (cyclic) algebraic
extensions of a pure transcendental extension of k in a very nice form, well suited for further
evaluation. Second, they form a decomposition of the zero set of the polynomial system,
where each component is not necessarily irreducible, but is known to be at least radical
and unmixed, i.e. quasi prime. Below we give an extension of the factorized Gröbner bases
algorithm that produces such a collection of triangular sets from a given system of polynomial
equations.

Our guide is the prime decomposition algorithm proposed in [5] and refined in [11]. It
uses several Gröbner basis computations to split the problem into smaller ones, recursively
reducing the dimension either by inverting variables or by cutting with hypersurfaces. Finally,
prime ideals are presented as recontractions from zero dimensional prime ideals, defined over
a localization of S, considering some of the variables as parameters.

We follow the same lines, but make extensive use of (multivariate) factorization to split
the problems as early as possible. On the other hand, we try to delay or even to skip (time
consuming) nonzero dimensional quotient computations. This is possible since for a numerical
evaluation along a prime ideal P one may use a zero dimensional parametric presentation of
the prime field (S/P )P rather than the (more complicated) basis of the recontracted ideal.
The recontraction can easily be obtained solely from the presentation of (S/P )P if requested.
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Moreover, the various Gröbner basis computations in the algorithm in [5] are substituted
by factorized Gröbner basis computations whenever possible. Third, we avoid another time
consuming step (splitting off different zero dimensional prime ideals using the general position
argument, see [11]) producing triangular systems instead of prime ideals.

4 Zero dimensional triangular systems

According to our general setting the input data are polynomial systems with constraints. If
(B,C) is such a pair then the closure Z(B,C) is the zero set of the stable quotient of I(B) by
c :=

∏
C. This closure is different from Z(B) iff Z(B) has components in the hypersurface

Z(c). For zero dimensional ideals I(B) all components are closed points and therefore either
completely contained in Z(c) or don’t meet the hypersurface. Hence for such problems all
constraints may be incorporated into the system of polynomial equations.

Lazard introduced in [12] the notion of triangular systems for zero dimensional ideals and
extended it in [13] to positive dimension. For zero dimensional ideals he proposed to apply
the D5 algorithm for their computation. We follow another approach, suggested in [14].

A set of polynomials {f1(x1), f2(x1, x2), . . . , fn(x1, . . . , xn)} is called a (zero dimensional)
triangular system (reduced triangular set in [12]) if, for k = 1, . . . , n, fk(x1, . . . , xk) is monic
(i.e. has an invertible leading coefficient) regarded as a polynomial in xk over k[x1, . . . , xk−1],
and the ideal I = I(f1, . . . , fn) is radical. For such a triangular system S/I is a finite sum
of algebraic field extensions of k. One can effectively compute in such extensions, as was
discussed in [12].

Proposition 1 Let (B,C) be a zero dimensional polynomial system with constraints. There
is an algorithm that computes a finite number of triangular systems T1, . . . , Tm, such that

Z(B,C) =
⋃
i

Z(Ti).

This result is due to Lazard [12] and was refined by Möller [14]. The algorithm Tri-
angSets(B,C) used in our experimental version with CALI is the following:

first step : Find by Buchberger’s approach, cf. [1, 9.6], univariate polynomials in each of
the variables.

Use a modification of FGB that incorporates these polynomials to compute a set
{(Bk, Ck)} of polynomial systems with Z(B,C) =

⋃
Z(Bk, Ck) such that I(Bk) is rad-

ical (by [1, 8.14.]).

second step : Substitute (Bk, Ck) by a basis of I(Bk) :<
∏

Ck >. This quotient can be
computed by the linear algebra approach described in [14].

third step : Compute recursively triangular systems as described in [14], but use FGB for
intermediate Gröbner basis computations.

Let’s add one more remark on the algorithm proposed in [14]. Its basics are formulated
for arbitrary elimination orders, whereas in the applications the author restricts himself to
the pure lexicographic term order. The advantage of that order is the fact that the Gröbner
basis computation in the main step immediately yields a Gröbner basis of each recursion
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step. On the other hand such a Gröbner basis is usually hard to compute. If we use another
(“cheaper”) elimination order each recursion step of the main algorithm requires a new (one
can use again factorized) Gröbner basis computation. Alternatively one can use the FGLM
linear algebra approach [4] to compute the new Gröbner basis from the old one.

In table 2 we collected some computational results, comparing such a “slow turn” to the
pure lexicographic term order with the unique “brute force” pure lexicographic Gröbner basis
computation. Here

ZS corresponds to the original TriangSets with respect to the pure lexicographic
term order as proposed in [14]. It often leads to computations with huge coeffi-
cients.

FGB corresponds to a sole FGB computation with respect to the degrevlex term
order as the initial part of our modification. In most cases it doesn’t split off the
components deep enough.

ZS1 corresponds to TriangSets with respect to the elimination order (lex. in the
variable to be eliminated, then degrevlex. in the remaining variables, this way
performing several intermediate FGB computations), starting with the degrevlex
term order,

whereas

ZS2 corresponds to TriangSets, starting with a degrevlex FGB computation, fol-
lowed by a repeated Gröbner basis computation as for ZS1, but using the FGLM
approach. (Since the FGLM approach does not split a splitting ideal, another
FGB call tries to factor the new base polynomials. Upon success it splits the new
Gröbner basis into several smaller ones)

example ZS FGB ZS1 ZS2
time comp. time comp. time comp. time comp.

K3 2.2 3 0.3 1 1.9 3 3.2 3
K4 > 10000 3.2 1 98.6 4 30.5 4
K5 > 10000 31.2 1 > 10000 367.5 3
A5 15.7 15 8.6 8 27.3 18 40.6 18
R7 > 10000 8.9 1 > 10000 15.5 3

Table 1 : Comparing different approaches to zero dimensional ideals

All computation times are CPU times on an IBM-RS/6000, obtained with version 2.2 of our
REDUCE package CALI [8] and with integer coefficients. The number of components comp
produced with the corresponding version of the algorithm gives a measure for the quality of
the result beyond CPU time.

The examples are the following:

K3 – The Katsura example, [2], with 4 variables and primes of degree (1 1 6).

K4 – The Katsura example, [2], with 5 variables and primes of degree (1 1 2 12).

K5 – The Katsura example, [2], with 6 variables and primes of degree (1 1 30).

A5 – The Arnborg example, [6, 3.2.], with 5 variables and 20 prime components.
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R7 – The rudimentary Arnborg example, [6, 3.3.]. It has prime components of degree (2 6
12).

We conclude that Möller’s approach ZS should be preferred for easy examples, whereas
the modifications ZS1 and ZS2 are worth to be tried if ZS fails.

5 Reduction to dimension zero

To describe the reduction to dimension zero we have to recall the notion of independent
sets: For a given ideal I ⊂ S the set of variables (xv, v ∈ V ) is an independent set iff
I ∩ k[xv, v ∈ V ] = (0). See [1] for the definition and also a guideline to the history of this
notion. [7] contains another explanation of this notion, its connection to strongly independent
sets, and discusses algorithms for an effective computation of strongly independent sets.

Let B = {f1, f2, . . . , fm} be a set of polynomials in S. We say that they form a triangular
system with respect to the maximal independent set (xv, v ∈ V ) of I, if the extension B̃ of
B to S̃ := k(xv, v ∈ V )[xv, v 6∈ V ] forms a triangular system for the (zero dimensional)
extension ideal Ĩ := I · S̃. Note that in this case B̃ is a Gröbner basis of Ĩ with respect to the
lexicographic term order.

This definition is, up to a reordering of the variables, essentially the same as in [13].
Reordering variables yields a better distinction between the algebraic and transcendental parts
of the extension, presenting the quotient ring Q(S̃/Ĩ) as a finite extension of k(xv : v ∈ V )
also on the level of data structures.

Note that our triangular systems are automatically perfect triangular forms and regular
chains with respect to the reordered variables, as defined in [16] resp. [10].

If I is prime then I = Ĩ ∩ S. In general, the retraction ideal can be found by a stable
quotient computation from a Gröbner basis (with respect to an arbitrary term order on S̃)
of Ĩ. For this purpose let’s remark, that one can compute denominator-free in S̃ using the
well known pseudo normal form algorithm PNF(p,B). It returns a denominator-free pseudo
S̃-normal form f ∈ S ⊂ S̃ of the polynomial p ∈ S with respect to the basis B ⊂ S, i.e.
satisfying z · f ≡ p (mod I(B)S̃) for a certain unit z ∈ S̃. z can be chosen to be a product of
leading coefficients of the elements in B.

In the following a denominator-free basis B of Ĩ is a set of polynomials in S such that
they generate Ĩ regarded as elements of S̃. Denote by I(B) as before the ideal generated by
B in the ring S. Note that B must not be contained in I if I 6= Ĩ

⋂
S.

Proposition 2 Let B be a denominator-free Gröbner basis of Ĩ over S̃ and c the product of
the leading coefficients of the elements of B. Then

Ĩ ∩ S = I(B) :< c > .

Especially, if dim(S̃/Ĩ) = 0 then I(B) :< c > is pure dimensional of dimension |V |.

Proof: Since c is invertible in S̃ we have only to show, that Ĩ ∩ S ⊂ I(B) :< c >. But
for a denominator-free element f ∈ Ĩ we get PNF (f,B) = 0 and hence f ∈ I(B) :< c >.
2

This is a slight modification of [5, 3.8.], where c is the product of all leading coefficients
in a Gröbner basis of I instead of Ĩ.
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By some abuse of notation we denote for a maximal independent set V of I and B, Ĩ, S̃
as above the set of leading coefficients of B considered as elements in S̃ (with respect to a
given term order on S̃) by C(B,V).

To find Ĩ ∩ S we have to remove all components of I that vanish in the localization S̃.
Hence, given a problem (B,C) and a maximal independent set V for the ideal I = I(B) we
ask for all components of I, that don’t pass through the generic point (xv, v ∈ V ). They can
be found as in [5, 8.2.], computing a (factorized) Gröbner basis of (B,C) with respect to an
elimination order for (xv, v 6∈ V ), i.e. where xv >> xw for v 6∈ V,w ∈ V :

Proposition 3 Let B be a Gröbner basis of I with respect to an elimination order for (xv, v 6∈
V ), C a set of polynomial constraints, S̃ = k(xv, v ∈ V )[xv, v 6∈ V ] the extension ring, B′ ⊂ B
a subset that is a minimal Gröbner basis of Ĩ = I · S̃, and D the set of leading coefficients of
elements of B′ regarded as polynomials in S̃ with respect to the induced term order. Then

Z(B,C) = Z(Ĩ ∩ S, C) ∪
⋃
{Z(Bi, Ci) : (Bi, Ci) ∈ NewCon(B,C,D)}.

This is a slight refinement of [5, 8.2.].
Proof: Indeed, the first component is a decomposition of Z(B,C ∪ D) and the second

collection covers all branches of Z(B,C) ∩ Z(d) for d ∈ D. 2

6 The Extended Gröbner Factorization Algorithm

Altogether we get the following algorithm for the decomposition of a polynomial system with
constraints into triangular systems, that define quasi prime ideals:

The Extended Gröbner Factorization Algorithm EFGB

Input : A problem (B,C).

Output : A list of sets (Tk, Ck, Vk), such that

– Tk is a triangular system with respect to the
maximal independent set Vk,

– Ck = C(Tk, Vk) and

– Z(B,C) =
⋃

Z(Tk, Ck)

• Compute a factorized Gröbner basis and initialize the postprocessing :

– results:=FGB(B,C),

– problems:=∅.

REPEAT

• If there are new problems, convert them with FGB into results

• else take a result (B′, C ′) of highest dimension,
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– compute a maximal independent set V for B′,

– compute a factorized Gröbner basis {(Bi, Ci)} of (B′, C ′) with respect to an elim-
ination order for the variables outside V.

– convert all results (Bi, Ci), for which V remains an independent set, into triangular
systems, i.e.

∗ extract from Bi a minimal Gröbner basis B′
i in

S̃ = k(xv : v ∈ V )[xv : v 6∈ V ],
∗ collect the leading coefficients of B′

i into the set Di.
∗ compute (denominator-free) in S̃ the collection TriangSets(B′

i, Ci), i.e. a
decomposition into triangular systems {Tij} for the zero dimensional extension
ideal (possibly empty, if ˜I(B′

i) :<
∏

Ci >= (1)).
∗ add the sets (Tij , C(Tij , V ), V ) to the output collection.
∗ join NewCon(Bi, Ci, Di) with the problem list, since these problems are cov-

ered by (Bi, Ci) but not by the quasi primes obtained from it. Their dimension
doesn’t exceed |V |.

– add all other results (that were obtained during the additional Gröbner basis com-
putation and are either of less or equal dimension or V failed to be an independent
set) to the problem list.1

UNTIL

all problems are treated and all results are converted into triangular systems.

• Return the list of triangular systems.

From the discussion above it follows easily, that this algorithm terminates and produces
a list of triangular systems with the desired property:

Proposition 4 Let (B,C) be a polynomial system with side conditions over S = k[x1, . . . , xn].
Then EFGB computes a decomposition (Tk, Ck, Vk), where

• Tk is a triangular system with respect to Vk,

• Ik := I(Tk) :<
∏

Ck > is a pure dimensional radical ideal with Vk as a maximal strongly
independent set,

• Z(B,C) =
⋃

Z(Ik).

There are some obvious improvements of the algorithm along the lines, explained for FGB.
E.g. one can apply the subproblem removal check and the inconsistency check to the problems,
obtained during the postprocessing, to keep this list as short as possible. On the other hand,
the subproblem removal check can not be applied to the triangular systems directly, since
their presentation does not support a direct comparison between sets attached to different
independent sets. Hence the result of EFGB may be non minimal.

1Note that they are Gröbner bases, but with respect to another term order.
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To compare different triangular systems one has to find their recontraction ideals Ik, a step
that we tried to avoid during our algorithm. Denote for further reference the corresponding
modification of EFGB, where for each triangular system a retraction is computed and used
for subproblem removal checks in the spirit of [9] to keep the list of problems and results as
short as possible, by EFGB1. Note that these computations may be done with respect to
an arbitrary term order in S.

6.1 Some Examples

Examle 1 : Consider the graph of the space curve C = {(x31−x6−x, x8, x10) : x ∈ C}, i.e.
the curve generated by B = {x31−x6−x−y, x8−z, x10− t}, but with respect to the variable
order x > y > z > t, see [15] or [6, 3.4.]. Wang used it in [16] to illustrate his approach to
triangular systems. Note that his aim was the construction of a full stratification Z(B) =⋃

Z(Bk, Ck) with (his) triangular systems (Bk, Ck), whereas we ask only for a decomposition
into (our) triangular systems, from which all (i.e. here : the only) components of Z(B) may
be reconstructed (by prop. 2). For practical purposes it seems to be sufficient to restrict the
effort to such a question.

Since I(B) is a prime ideal, it can be described by a single triangular system with respect
to the maximal independent set {t}. We get

B′ = {(t4 − t) x− t y − z2 ,
t3 y2 + 2 t2 y z2 − (t6 − 2 t3 − t + 1) z4 ,
z5 − t4}.

All variations of the Extended Gröbner Factorizer produce it as the essential part of the
answer. Note that, different to Wang’s representation T1 (p. 91) of that part of the solution,
the leading coefficients depend only on t.

With EFGB1 this is already the full output collection, since it detects superfluous com-
ponents. EFGB produces some auxiliary components, namely

{x , y , z , t},
{x + z2 , y − z2 (t + 1) , z4 − z3 (t + 1) + z2 t + z − t− 1 , t2 + t + 1},
{x− z2 , y − z2 (t + 1) , z4 − z3 (t + 1) + z2 t + z − t− 1 , t2 + t + 1},
{x + t , y + 1 , z + t + 1 , t2 + t + 1},
{x− t , y + 1 , z + t + 1 , t2 + t + 1},
{x− z2 , y + z2 , z4 + z3 + z2 + z + 1 , t− 1},
{x + z2 , y + z2 , z4 + z3 + z2 + z + 1 , t− 1},
{x + 1 , y + 1 , z − 1 , t− 1},
{x− 1 , y + 1 , z − 1 , t− 1}

for the combination with ZS and

{x , y , z , t}

for the combination with ZS1.

The following two examples come from the area of geometry theorem proving.

Example 2 : Apollonius’ Circle Theorem (cf. [10]):
The altitude pedal of the hypotenuse of a right-angled triangle and the midpoints of the three
sides of the triangle lie on a circle.
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With vertices O(0, 0), A(a, 0), B(0, b) and the pedal point P (c, d) the geometric situation
may be described by the following equations:

B := {− 4 a b + a d + b c , a c − b d}.

The conclusion of the theorem may be expressed as (a − c)2 + (b − d)2 − a2 − b2 = 0 on the
“geometrically relevant” part of Z(B).

We ask for formulas that express the coordinates of P in a, b. For this purpose we compute
triangular systems with respect to the variable order c > d > a > b. We obtain two essential
solutions

T1 := {(a2 + b2) c− 4 a b2, (a2 + b2) d− 4 a2 b} and T2 := { a, b },

where only the first one is geometrically relevant. The geometric non degeneracy condition
is C := C(T1, {a , b}) = {a2 + b2}. Since Z(B

⋃
C) = { a, b } this condition is equivalent

to a b 6= 0, the “expected” one. In general, it is not clear how to compare different non
degeneracy conditions and find a minimal or canonical one (in a sense to be made precise),
cf. [17].

Example 3 : The midpoint perpendicular’s intersection theorem, cf. [17].
With vertices A(0, 0), B(b1, 0), C(c1, c2) and M(m1,m2) as a candidate for the intersection

point the theorem can be formulated as the existence of (again geometrically meaningful)
solutions of the following polynomial system of equations:

B = {− 2 m1 c1 − 2 m2 c2 + c2
1 + c2

2 ,
2 m1 b1 − 2 m1 c1 − 2 m2 c2 − b2

1 + c2
1 + c2

2 ,
b1 (− 2 m1 + b1)}

.

with respect to the variable order m1 > m2 > b1 > c1 > c2. Computing triangular systems
we get

T1 := {(2 c1) m1 + 2 m2 c2 − (c2
1 + c2

2) , b1} and
T2 := {2 m1 − b1 , 2 c2 m2 + (b1 c1 − c2

1 − c2
2)},

where the second solution is the desired proof. We get also the geometric non degeneracy
condition c2 6= 0 as C(T2, {b1 , c1 , c2}).

The last example is a slight modification of example 2 in [16].

Example 4 :

B := {(x− u)2 + (y − v)2 − 1 , v2 − u3 , 2 v (x− u) + 3 u2 (y − v)}

As for the original example it is quite hard to compute the corresponding triangular systems
(for v > u > y > x) with respect to the pure lexicographic term order. As already mentioned,
our approach is not restricted to such an assumption. If we use the deglex. term order instead,
EFGB produces a component with {u , v , x2 + y2 − 1} and
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B′ := { 729 y6 + y4 (− 1458 x3 + 729 x2 − 4158 x − 1685) + y2 (729 x6 − 1458 x5 −
2619 x4 − 4892 x3 − 297 x2 + 5814 x + 427) + ( 729 x8 + 216 x7 − 2900 x6 −
2376 x5 + 3870 x4 + 4072 x3 − 1188 x2 − 1656 x + 529 ),

u (59049 x6 + 91854 x5− 45198 x4 + 145152 x3 + 63549 x2 + 60922 x + 21420) +
2187 y4 (18 x− 1) + 3 y2 (− 32805 x4 − 5832 x3 − 68283 x2 − 29520 x− 5848) +
(− 72171 x6 − 45198 x5− 128763 x4− 4452 x3 + 173411 x2 + 49194 x + 19731 ),

v (1594323 x10 + 2716254 x9 − 4041576 x8 − 3347568 x7 + 2788506 x6 −
2199348 x5 − 8874644 x4 − 2153376 x3 − 1888245 x2 + 630086 x + 492660) +
729 y5 (2187 x4 + 486 x3 − 1332 x2 − 1126 x − 711) + 2 y3 (− 1594323 x7 −
177147 x6 − 3588867 x5 − 1380726 x4 + 3478059 x3 + 2984211 x2 + 2461087 x +
523566) + y (− 2716254 x9 − 2158569 x8 − 5824710 x7 − 1845180 x6 +
14549238 x5 + 4733958 x4 − 3887082 x3 − 4986900 x2 − 4101320 x− 528813)

}
.

C := Z(B′, D) with D = C(B′, {x}) is a plane curve at distance 1 from the curve v2−u3 = 0.
B′ presents the quotient field of this curve as an algebraic extension of degree 6 over k(x).

The curve, originally considered in [16], is a twofold cover of C defined by another coor-
dinate with values w1 = 1

3u2 resp. w2 = 1
2v . We get by Lazard’s method for these inverses in

an algebraic extensions the presentation

w1 =

2187 y4 ( 2187 x4 − 972 x3 − 1746 x2 − 1004 x− 765) + 6 y2 (− 1594323 x7 +
708588 x6 − 3615111 x5 + 1678158 x4 + 4569615 x3 + 2921904 x2 +
2070347 x + 365670) + ( 4782969 x10 − 2125764 x9 − 16592769 x8 −
6403536 x7 + 35474598 x6 + 31452840 x5 + 4069914 x4 − 3931472 x3 −
3729375 x2 − 2207172 x + 1214055 )
48 x4 ( 59049 x6 + 91854 x5 − 45198 x4 + 145152 x3 + 63549 x2 + 60922 x +
21420 )

and a similar one for w2.

In table 2 we collected for different examples and variants of EFGB the same data as in
table 1. E1 - E4 are the examples discussed so far. The remaining examples we took from [2]:
G1 and G2 are two variants of Gonnet’s example, the original one (G1) and the homogenized
as considered in [9] (G2), and H1 is the example Hairer 1. We combined both EFGB and
EFGB1 with ZS (i.e. pure lexicographic intermediate computations) and ZS1 (degrevlex.
intermediate computations), as described in 3.1.

H1 demonstrates that it may be of real value not to compute the retraction ideals. On
the other hand, for examples that split into many triangular systems as e.g. Gonnet’s, the
computation of the retraction ideals helps to pick up the essential ones. It needs further study
to find the breakpoint between both approaches.

As already mentioned, EFGB must not start with the pure lexicographic term order. It
is of great value to have more freedom in choise, as demonstrates the second part of table 2.
Here we collected the results for the hard examples from the first part, when computed with
respect to the deglex. term order.
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example EFGB + ZS EFGB1 + ZS EFGB + ZS1 EFGB1 + ZS1
time comp. time comp. time comp. time comp.

E1 21.0 10 22.3 1 17.7 2 18.2 1
E2 0.20 3 0.25 2 0.39 3 0.32 2
E3 0.44 6 0.26 2 0.56 6 0.26 2
G1 10.8 5 9.3 3 23.1 7 12.9 3
G2 265 98 168 7 273 68 228 7
H1 4.33 2 > 20000 13.1 2 > 20000
E4 > 20000 > 20000 19.9 2 > 1000
H1 5.0 2 41.0 1 7.53 2 333 2

Table 2 : Comparing different versions of the Extended Gröbner Factorizer

We conclude, that both the modification of the definition of triangular systems in positive
dimension and the method for their computation proposed in this paper are well suited for
the application in polynomial system solvers. Of great value are both the stronger definition
of triangular systems, that is different from those proposed by other authors in connection
with the characteristic set method and their variations, and the greater freedom in the choise
of term orders to carry out the corresponding computations.
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