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Abstract

Let k be a field, S = k[xv : v ∈ V ] be the polynomial ring over the finite set of variables
(xv : v ∈ V ), and m = (xv : v ∈ V ) the ideal defining the origin of Spec S.

It is theoretically known (see e.g. Alonso et al. 1991) that the algorithmic ideas for the
computation of ideal (and module) intersections, quotients, deciding radical membership
etc. in S may be adopted not only for computations in the local ring Sm but also
for term orders of mixed type with standard bases replacing Gröbner bases. Using the
generalization of Mora’s tangent cone algorithm to arbitrary term orders we give a detailed
description of the necessary modifications and restrictions.

In a second part we discuss a generalization of the deformation argument for standard
bases and independent sets to term orders of mixed type. For local term orders these
questions were investigated in (Gräbe 1991).

The main algorithmic ideas described are implemented in the author’s REDUCE pack-
age CALI (Gräbe 1993a).

1 Introduction

Let S := k[xv : v ∈ V ] be a (finitely generated) polynomial ring over the field k and m :=
(xv, v ∈ V ) the defining ideal of the origin in Spec S.

Gröbner basis techniques proved to be useful for the solution of a wide range of algorithmic
problems concerning ideals and modules over the polynomial ring S as e.g.

• the ideal membership problem,
• the radical membership problem,
• the computation of dimension and degree of a (projective) variety,
• the computation of Hilbert series,
• the computation of elimination ideals,
• the computation of ideal intersections,
• the computation of quotients and stable quotients,
• primality testing,
• the computation of primary decompositions,

∗Appeared in J. Symb. Comp. 19 (1995), 545 - 557.
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cf. e.g. (Becker et al. 1993), (Buchberger 1988) or (Gianni et al. 1988) for a survey.
If we are interested in local properties of an ideal I ⊂ S (or module) at m, the origin

of Spec S, one should prefer direct computations over the localization Sm of S at m, since
an intermediate application of Gröbner basis techniques in S followed by localization at m
may produce many unnecessary components not passing through the origin. Moreover, the
intermediate ideal of leading terms of I, containing terms of highest degree, will reflect the
global behaviour of I rather than the local one.

For local computations in Sm one has to equip S with a non-noetherian term order and to
use standard sets instead of Gröbner bases. In general, standard sets in S are standard bases
in Loc(S), a certain localization of the polynomial ring, depending on the special kind of the
underlying term order (cf. Mora 1988). For local term orders, e.g. supported by negative
weights, we have Loc(S) = Sm .

There are two approaches to standard sets, Lazard’s approach, using homogenization
techniques (cf. Lazard 1983) and Mora’s tangent cone algorithm (cf. Mora 1982). Both
produce (polynomial) standard bases in Loc(S), such that the ideal of leading terms of I, in
this case containing terms of lowest degree, will reflect the local behaviour of I at the origin.

More advanced computations in families of singularities need even more complicated term
orders, where some of the parameters occur as global variables whereas other as local ones.
Such term orders are called of mixed type.

Lazard’s approach may be applied to arbitrary term orders, but adding a new variable
may (and often will) increase the computational amount. Moreover homogenized standard
bases produced this way usually contain many more elements than a minimal standard basis
does.

For Mora’s tangent cone algorithm several improvements were suggested, see (Mora et
al. 1992) for a summary, so that the experts commonly prefer the latter. In the same paper
the authors also give a generalization of the tangent cone algorithm that applies to certain
term orders of mixed type. Such a generalization makes available algorithmic approaches
using elimination techniques that are essential for good algorithms to compute quotients and
intersections. A first short description of a generalization of the basic algorithms described
e.g. in (Gianni et al. 1988) for Gröbner bases to Loc(S) appeared in (Alonso et al. 1991).

In (Gräbe 1994) we introduced another version of the tangent cone algorithm (with en-
coupled ecart vector), that applies to arbitrary term orders and seems to be a more practical
generalization than the one given in (Mora et al. 1992).1 Based on this version and its imple-
mentation in CALI we consider constructive approaches to the following problems in Loc(S)
in more detail :

• computation of ideal intersections,
• computation of the quotient of an ideal by a polynomial,
• computation of the stable quotient of an ideal by a polynomial, and
• deciding radical membership.

We discuss both the homogenization and the tangent cone approaches. The former one leads
to direct Gröbner basis computations and one has only to give a correct interpretation of
the dehomogenized results. For the latter one we describe in more detail how to modify the
algorithms, mainly based on elimination techniques, themselves.

1This generalization was independently found by the SINGULAR group, see (Grassmann et al. 1994)
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In (Alonso et al. 1989 and 1993) the authors discussed a computational approach to
algebraic power series rings R ⊂ k[[xv : v ∈ V ]]alg that are finitely generated extensions of Sm .
Their ideas can be embedded into the concept of computations in factor rings of local rings
(a facility available, e.g., in the computer algebra system MACAULAY for Gröbner bases
over polynomial rings) and hence used for a constructive solution over R of the problems
formulated above. This concept, already developed in (Alonso et al. 1991), thus becomes a
practical computational tool and will be available in a forthcoming version of CALI.

(Bayer 1982) introduced a flat deformation argument for Gröbner bases, that proved to be
useful many times. It can be exploited in two different manners, namely as a flat deformation
itself and through a homogenization argument, see e.g. (Gräbe 1993b) for the latter. In
the last part of the paper we discuss, how these arguments may be generalized to arbitrary
term orders. This was discussed so far mainly for local term orders, where Loc(S) admits
a completion, see e.g. (Gräbe 1991) for a spectral sequence argument. (Grassmann et al.
1994, prop. 5.3.) generalized the deformation argument to arbitrary term orders and drew
some conclusions about the dimension and, for zero dimensional ideals and modules, the
multiplicity.

Here we generalize the second approach, homogeneous local rings, to term orders of mixed
type. Using homogeneous instead of ordinary localization this leads to a different deformation
and allows to derive bounds for Betti numbers, depth and CM-type of Loc(S)/I in terms of
the initial ideal.

Further we show that the concept of independent sets, see (Kredel, Weispfenning 1988)
transfers to Loc(S) as well. This implies the validity of the unmixedness results in (Gräbe
1993b) also in the general case.

As usual most of the algorithms presented below have an easy extension to finitely gener-
ated modules over the rings considered so far (and are implemented in CALI in this generality).
For simplicity we restrict ourselves to the case of polynomial ideals.

2 Preliminaries

Let S, as before, be a polynomial ring in finitely many indeterminates over a field k. In the
following we assume the monoid of terms of S to be equipped with a linear semigroup order,
term order for short, that will be denoted TO(S).

Usually term orders are defined as refinements of linear quasiorders, i.e. linear, reflexive,
transitive, and monotone relations, to true orders. With such a quasiorder ≤ we associate in
a natural way two other relations, the equivalence relation a ≡ b iff a ≤ b and b ≤ a and the
partial (true) irreflexive order a < b iff a ≤ b and a 6≡ b. On the other hand, given ≡ and <
with obvious compatibility conditions, one can recover the quasiorder ≤ as a ≤ b iff b 6< a.
We will freely use both notations. For such a linear quasiorder ≤ and each pair of terms one
of the following alternatives holds : xa < xb or xb < xa or xa ≡ xb.

Given two (quasi)orders TO1 and TO2 on S, TO1 | TO2 denotes their lexicographical
product, i.e.

xa ≤ xb :⇔ (xa <1 xb) or (xa ≡1 xb and xa ≤2 xb)

Let LEX(x1, . . . , xk) resp. REV LEX(x1, . . . , xk) denote the lexicographic resp. reverse lex.
(quasi)orders with respect to the (ordered) variable set {x1, . . . , xk}, i.e.

xa < xb :⇔ ∃j : ∀(i < j) ai = bi and aj < bj (lex.) or aj > bj (revlex.)
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xa ≡ xb :⇔ ∀i ai = bi

For a given term order and a nonzero polynomial f =
∑

cαxα ∈ S we define as in (Gräbe
1994)

in(f) := cα0x
α0 with α0 = max{α : cα 6= 0},

deg f := α0,

red(f) := f − in(f) and

in(B) := {in(f) : f ∈ B} for any set B ⊂ S.

TO(S) is called noetherian iff it is well-founded or, equivalently, 1 < xa for all nontrivial
terms in S. For non-noetherian term orders the set

U = U(S) := {1 + f ∈ S : in(f) < 1 or f = 0}

plays an important role, as explained e.g in (Robbiano 1986) or (Mora 1988). If 1 > xa for
all nontrivial terms in S we refer to TO(S) as a local order. In this case U−1S = Sm . Term
orders that are neither noetherian nor local are called of mixed type.

Let I ⊂ S be an ideal and B ⊂ I a finite set. B is a standard set of I iff in(B) generates
the ideal in(I). Although not unique for a fixed term order we will denote such a standard
set by some abuse of notation STB(I).

In contrast to noetherian term orders, where standard sets automatically generate I, see
(Becker et al., prop 5.38.), the same does not hold for arbitrary term orders. But it turns out,
that standard sets always generate the extension of I to Loc(S) := U−1S. Moreover standard
sets are standard bases in Loc(S) in the sense of (Mora 1988). Here B = {bα} is a standard
basis of I in Loc(S) iff

∀f ∈ I · Loc(S)∃gα ∈ Loc(S) : f =
∑

bαgα and in(f) ≥ max{in(bαgα)}.

Clearing denominators, each ideal I ⊂ Loc(S) has a “denominator-free” basis B(I) ⊂ S.
We will assume this henceforth without further mention. Note that B(I) must not generate
I ∩ S.

Let w ∈ (RV )∗ be a linear functional on RV . Such w is called a weight vector and induces
a grading on NV . Denote by DO(w) the quasiorder pre-image on NV of the natural order
≤ on R under w. We refer to this quasiorder as the degree order associated with w. By
(Robbiano 1986) we know that every monotone linear order is a refinement of such a degree
order. If < is a refinement of DO(w) we say that < is supported by the weight vector w.

If w has only positive weights, every refinement of DO(w) is noetherian. If w has only
negative weights, every refinement of DO(w) is a local order. We call term orders, supported
by (−1, . . . ,−1), tangent cone term orders (since in this case the lowest degree parts of all
f ∈ STB(I) generate the tangent cone of I at the origin).

3 Lazard’s approach

3.1 Homogenization

Let S be as above and t be another variable. Given w ∈ (ZV )∗, an ecart vector, we define for
f =

∑
ca · xa ∈ S with d = max{w(a) : ca 6= 0}, F (t) ∈ S[t], and B = {f1, . . . , fr}
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the homogenization hf :=
∑

ca · td−w(a) · xa,
the (w-)ecart ew(f) := d− w(deg(f)),
the homogenization hB := { hf1, . . . ,

hfr},
the dehomogenization aF := F (1).

This yields applications h : S −→ S[t] and a : S[t] −→ S as in (Mora, Robbiano 1988).
Extending the definition of w by w(t) = 1 we equip S[t] with the term order TOw :=

DO(w) | TO(S), i.e.

ta · xα <′ tb · xβ :⇔ a + w(α) < b + w(β) or
a + w(α) = b + w(β) and xα < xβ

If w has only positive weights this term order is noetherian.

3.2 A “classical” solution for local problems

For an ideal I ⊂ R in a ring R and f ∈ R set

I : f∞ := {g ∈ R | ∃ n : fng ∈ I},

the stable quotient of I with respect to f .
The following proposition describes, how one can solve local problems through homoge-

nization (with respect to a positive ecart vector), Gröbner basis computations, and dehomog-
enization.

Proposition 1 Let S be a polynomial ring equipped with an arbitrary term order TO(S),
h and a as in the preceding paragraph homogenization and dehomogenization with respect
to a positive ecart vector and the homogenizing variable t, I, J ⊂ Loc(S) ideals, given by
denominator-free polynomial bases B(I), B(J) ⊂ S and f ∈ S another polynomial. Then in
Loc(S) we have

1. I
⋂

J = a(〈hB(I)〉
⋂
〈hB(J)〉),

2. I : f = a(〈hB(I)〉 : hf),

3. I : f∞ = a(〈hB(I)〉 : hf∞),

4. f ∈ Rad(I · Loc(S)) iff 1 ∈ a(〈hB(I)〉 : hf∞),
i.e. an arbitrary standard basis of 〈hB(I)〉 : hf∞ contains an element with a pure
t-power as leading term.

Proof: Let’s prove e.g. 1) :
Assume B(I) = {ia}, B(J) = {ja}. We have f ∈ I

⋂
J in Loc(S) iff there exists a unit e ∈ U

such that e · f =
∑

raia =
∑

saja with certain ra, sa ∈ S. Homogenizing this relation we get
for appropriate powers of t

tn he · hf =
∑

tma hra
hia =

∑
tna hsa

hja.

Dehomogenizing yields e · f ∈ a(〈hB(I)〉
⋂
〈hB(J)〉).

The other assertions are proved in a similar way. 2

Note that all these problems have well-known solutions for the noetherian term order TOw

that may be invoked with the homogenized basis hB(I).
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4 Direct methods

4.1 Reduction with bounded ecart

Recall (a slight modification of) the algorithm RME in (Gräbe 1994, thm. 1).
Let w ∈ (NV

+)∗ be a positive ecart vector. Then for arbitrary term orders TO(S) the
following normal form algorithm terminates after a finite number of steps:

RBE(f,B) – Reduction with bounded w-ecart

Input: A polynomial f ∈ S, a finite set B ⊂ S.
Output: A polynomial h ∈ S and a unit u ∈ U with h ≡ u · f (mod (B))

and either h = 0 or in(h) not divisible by any in(g), g ∈ B.
Local: A list L of simplifier-unit/zero pairs, updated during the algo-

rithm.
– L := {(g, ug := 0) : g ∈ B}, (h, uh) := (f, 1).
– While h 6= 0 and M := {(g, ug) ∈ L : in(g)|in(h)} 6= ∅ do

(1) M1 := {(g, ug) ∈ M : ew(g) ≤ ew(h)}
(2) If M1 6= ∅ then choose (g, ug) ∈ M1 else

(a) Choose (g, ug) ∈ M .
(b) L := L

⋃
{(h, uh)}.

(3) h′ := h−m · g with m := in(h)
in(g) .

(4) Set h := h′, uh := uh −m · ug.
– Return (h, uh).

This normal form algorithm yields a finite standard set algorithm for arbitrary term orders
TO(S) in the usual way. See (Gräbe 1994) for a discussion of this subject and also for some
improvements. It gives also an immediate algorithm to solve the ideal membership problem
in Loc(S), given a standard set B for the ideal I.

4.2 Supporting weights

Above we introduced the notion of the weight vector supporting a term order <. For Gröbner
bases Bayer observed in (Bayer 1982) that for a given ideal I ⊂ S the term order < may be
changed in such a way to <′, that a (totally interreduced) Gröbner basis of I with respect to
< remains a (totally interreduced) Gröbner basis also with respect to <′, but <′ is supported
by a positive integer weight vector. For arbitrary term orders a similar result can be proved2 :

Lemma 1 Given an ideal I ⊂ S with a fixed (finite) standard set STB(I) there is even an
integer weight vector w ∈ (ZV )∗ such that in(I) = in<′(I) with respect to every refinement
<′ of DO(w) to a term order and w(deg f) > w(deg red f) for f ∈ STB(I) (with nonzero
reductum). If < is a local order, w can be chosen to have only negative weights.

Proof: One cannot deduce this result as for the noetherian case, since in general we have
neither uniquely defined (finite polynomial reduced) standard bases nor finite total normal
forms with respect to B = STB(I). But since there is a finite algorithm to verify the standard
set property, involving only a finite number of (finite) polynomials, we get a finite number

2As pointed out to us by the referee, the corresponding fact for standard bases in power series rings was
established already in (Becker 1990) in the same way.
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of open conditions on w to guarantee that B is a standard set also with respect to <′ and
w(deg f) > w(deg red f) for f ∈ B. 2

We say, that under these conditions (I, <) is strongly supported by w (with respect to
STB(I)).

4.3 The elimination method

Let S be as above and t be another variable. Consider the following problem :

Given a finite ideal basis of I ⊂ Loc(S)[t]

find a finite ideal basis of I0 = I
⋂

Loc(S).

Based on RBE it may be solved for arbitrary term orders TO(S).

Lemma 2 (cf. Alonso et al. 1991) Let TO(S) be an arbitrary term order on S and I be
an ideal in Loc(S). Equipping S[t] with the term order LEX(t) | TO(S) we get Loc(S)[t] =
Loc(S[t]) and

STB(I0) = {f ∈ STB(I) : in(f) is free of t}.

Remark: TO(S[t]) is not inflimited if TO(S) is not noetherian and different from TOw

introduced in the preceding section.
Proof: By the choice of the term order in(f) being free of t implies f being free of t.

2

The elimination lemma allows to compute intersections and quotients (cf. Alonso et al.
1991) :

Proposition 2 With S and S[t] as in the lemma we get for ideals I, J ⊂ Loc(S) and f ∈ S

1. I
⋂

J = (t · I + (1− t) · J)
⋂

Loc(S),

2. I : (f) = (I
⋂
〈f〉) · 1

f ,

3. I : f∞ = (I + 〈1− f · t〉)
⋂

Loc(S)

and especially

4. f ∈ Rad(I) iff 1 ∈ (I + 〈1− f · t〉).

The proof is the same as in the noetherian case, given in (Gianni et al. 1988) or (Becker
et al. 1993). Note that the first assertion can be generalized as in (Becker et al. 1993, prop.
6.19).

In 2) one has to divide out the common factor f from all generators g ∈ I
⋂
〈f〉 in Loc(S).

For this purpose the usual division-remainder algorithm must be modified in a similar way
as RBE modifies the usual normal form algorithm :
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divmod(f,g) - (Local) division with remainder

Input: Polynomials f, g ∈ S.
Output: Polynomials h, q ∈ S and a unit u ∈ U with u · f = q · g + h

and either h = 0 or in(h) not divisible by in(g).
Local: A list L of triples (k, qk, uk), updated during the algorithm,

such that k = ukf − qkg.

– L := {(g, qg := −1, ug := 0)}, (h, qh, uh) := (f, 0, 1).
– While h 6= 0 and M := {(k, qk, uk) ∈ L : in(k)|in(h)} 6= ∅ do

(1) M1 := {(k, qk, uk) ∈ M : ew(k) ≤ ew(h)}
(2) If M1 6= ∅ then choose (k, qk, uk) ∈ M1 else

(a) Choose (k, qk, uk) ∈ M .
(b) L := L

⋃
{(h, qh, uh)}.

(3) h′ := h−m · k with m := in(h)
in(k) .

(4) Set h := h′, uh := uh −m · uk, qh := qh −m · qk.
– Return (h, qh, uh).

Correctness and termination (provided w has positive weights) follow immediately as for
RBE.

4.4 An alternative quotient algorithm

D. Bayer gave in (Bayer 1982) an alternative algorithm to compute the quotient of an homo-
geneous ideal by a homogeneous polynomial. In (Alonso et al. 1991) the authors sketched
its generalization to not necessarily homogeneous input with respect to a local term order on
S. Below we discuss this approach in more detail and show by means of examples its natural
restrictions.

So let’s assume that TO(S) is a local term order. Let t be another variable. Equip S[t]
with the term order REV LEX(t) | TO(S).

Proposition 3 For a local term order on S let I ⊂ Loc(S) be an ideal and f ∈ S a polyno-
mial, such that in(f) < 1. Under these assumptions we have

1. I : f = (I + 〈f − t〉) : t|t=f and

2. I : f∞ = (I + 〈f − t〉) : t∞|t=f ,

where the ideal quotients are computed in Loc(S) and Loc(S[t]) respectively and |t=f denotes
the map induced by the substitution t 7→ f .

Proof: Let’s prove the first assertion since the second one follows immediately from the
first one. Since

U := U(S) ⊂ Ut := U(S[t]) = {e + t · s(t) : e ∈ U, s(t) ∈ S[t]}

we have I : f ⊂ (I + 〈f − t〉) : t|t=f . For the other direction assume g(t) ∈ (I + 〈t− f〉) :
t
⋂

S[t], i.e. (e+ t ·s(t)) · t ·g(t) ∈ I + 〈t− f〉 for some unit e+ t ·s(t) ∈ Ut. By our assumption
e + f · s(f) ∈ U and hence g(f) ∈ I : f . 2

Remark: For f ∈ U the assertion is false, since in this case I : f = I whereas f − t ∈ Ut

and hence I + 〈f − t〉 = 〈1〉. In general it does not hold as well for term orders TO(S) that
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aren’t local. Indeed, e.g. for S = k[x] with TO(S) = LEX(x) we get 〈x− 1〉 : x = 〈x− 1〉,
but 〈x− 1, x− t〉 = 〈1〉 in Loc(S[t]) (with TO(S[t]) = REV LEX(t) | TO(S)). In general we
have

I : f = (I + 〈f − t〉) : t
⋂

Loc(S)

only for TO(S[t]) = LEX(t) | TO(S). But for this term order the second step of Bayer’s
approach doesn’t apply.

In the following TO(S) may be arbitrary. Let S[t] be as above equipped with TO(S[t]) =
REV LEX(t) | TO(S). By the definition of this term order for any f ∈ S[t] the t-power of
in(f) divides f . Thus we may define f : t as 1

t f if t divides in(f) and f otherwise and f : t∞

as 1
tm f , where tm is the greatest t-power dividing in(f).

Proposition 4 Under these assumptions we get for an ideal I ⊂ Loc(S[t])

1. {f : t | f ∈ STB(I)} is a standard basis of I : t in Loc(S[t]).

2. {f : t∞ | f ∈ STB(I)} is a standard basis of I : t∞ in Loc(S[t]).

Proof: For the first assertion assume g ∈ I : t. Hence there is e ∈ Ut and a standard
representation egt =

∑
f∈STB(I) rff . Since t divides in(egt) ≥ in(rff), t divides in(rf ) or

in(f). Hence eg has a standard representation

eg =
∑

(1)(rf : t)f +
∑

(2)rf (f : t),

where the first sum ranges over all f ∈ STB(I) such that t doesn’t divide in(f) and the
second sum ranges over the remaining f ∈ STB(I).

The second assertion follows similarly. 2

Remark: After the substitution t = f in the assertion of the proposition the basis
obtained need not to be a standard set with respect to TO(S) any more.

5 Locally smooth systems

Let J ⊂ Loc(S) be an ideal and R := Loc(S)/J . It is possible to do algebraic computations
also over R due to the following elementary observation :

Let Ī1, Ī2 ⊂ R be ideals, f̄ ∈ R and I1, I2, f their pre-images in Loc(S). Then

Ī1
⋂

Ī2 = (I1 + J)
⋂

(I2 + J)/J ,
Ī1 : f̄ = (I1 + J) : f/J and
Ī1 : f̄∞ = (I1 + J) : f∞/J .

Hence the algebraic questions considered above may be solved constructively also over R.
Using a standard basis of J one can moreover solve the zero decision problem (and hence the
equality problem) over R. It is also possible to compute Hilbert series and syzygies over R.

This technique can be applied to computational problems concerning algebraic power
series in k[[xv : v ∈ V ]]alg. In the remaining part of this paragraph we assume TO(S) to be
a local term order.

In (Alonso et al. 1989 and 1992) the authors introduced a concept that allows a con-
structive handling of systems of algebraic power series as elements of a finite extension
Loc(S) ⊂ R ⊂ k[[xv : v ∈ V ]]alg. For this purpose they consider polynomials F1, F2, . . . , Fr ∈
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S′ := S[Y1, . . . Yr], such that their Jacobian ‖ ∂Fi
∂Yj

‖ is a nonsingular (w.l.o.g.) lower triangular
matrix at the origin xv = Yi = 0 (v ∈ V, i = 1, . . . r). By the Implicit Function Theorem the
system of equations F1 = . . . = Fr = 0 has a unique solution f1, . . . , fr ∈ k[[xv : v ∈ V ]]alg

in algebraic power series vanishing at the origin. Such a system they call a locally smooth
system (LSS).

The map σ : Loc(S′) −→ k[[xv : v ∈ V ]]alg via Yi 7→ fi with kernel J := ker σ =
(F1, . . . , Fr) ·Loc(S′) defines a surjection on R = im σ, the extension of Loc(S) by f1, . . . , fr.
The authors give conditions on the term order TO(S′) to be satisfied to reformulate and solve
problems in R as problems in Loc(S′)/J . Such term orders they call uniform term-orderings.
See also (Mora et al. 1992) for a short explanation. As a natural uniform term-ordering may
serve TO(S) | TOY , where TOY is the tangent cone order

DO(−1, . . . ,−1) | REV LEX(Y1, . . . , Yr)

on Y1, . . . , Yr. If the algebraic power series f1, . . . , fr are defined recursively, i.e. Fi is free of
Yj , j > i, even TO(S) | REV LEX(Y1, . . . , Yr) may be used.

Proposition 5 (cf. Alonso et al. 1991) Let R be a finite algebraic extension of Loc(S) in
k[[xv : v ∈ V ]]alg defined by a LSS. Then one can

1. compute ideal intersections,

2. compute ideal quotients,

3. compute stable quotients,

4. decide radical membership problems.

constructively in R.

6 The deformation argument for term orders of mixed type

For Gröbner bases there exists a deformation over A1 connecting S/I as the general fiber
with S/in(I) as the special fiber, see (Bayer 1982). It proved to be useful many times.

There is a natural extension of this result, previously investigated mainly for local term
orders, see e.g. (Gräbe 1991). (Grassmann et al. 1994, prop 5.3.) generalize the flatness
argument to arbitrary term orders using a straightforward generalization of the original ideas
and draw some conclusions about the dimension and, for zero dimensional ideals and modules,
the multiplicity of Loc(S)/I in terms of Loc(S)/in(I).

Below we discuss the deformation argument from another point of view, using its connec-
tion to homogenizations of (local) rings. This approach also applies to arbitrary term orders
of mixed type. Different to (Grassmann et al. 1994) it uses homogeneous localization and
connects Loc(S)/I with S/in(I).

6.1 The deformation

Given I ⊂ S assume that (I,<) has a standard set B = STB(I), that is strongly supported
by w. Consider the homogenization h : S −→ S[t] with respect to w, i.e. TO(S[t]) = TOw.
By definition we get in(I) · S[t] = in(hI) = 〈in(B)〉 · S[t].
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In the spirit of (Goto,Watanabe 1978) one can develop a theory of homogeneous local-
izations over S[t] (wrt. w). More precisely, if U is the set of units U(S) for S then let
U(t) := {hu : u ∈ U} be the set of (w−)homogeneous units for S[t]. Define S(t) =
H-Loc(S[t]) := U(t)−1S[t]. This localization is w-homogeneous, too, assuming w(t) = 1. Set
I(t) := hI and R(t) := S(t)/I(t).

Proposition 6 Under these assumptions for B := STB(I) the set hB is a standard basis of
hI in H-Loc(S[t]), t and t − 1 (and more generally t − c for c ∈ k) are nonzero divisors on
R(t), and

R(c) := R(t)/(t− c) ∼=
{

Loc(S)/I for c 6= 0
S/in(I) for c = 0.

Proof: By the special choice of w we get for f =
∑

cax
a ∈ I that

max{w(a) : ca 6= 0} = w(deg f) and hence

hf =
∑

cax
a · tw(deg f)−w(a).

If ef =
∑

rkfk (e ∈ U, rk ∈ S, fk ∈ B) is a standard representation of f in Loc(S) this implies
immediately that

he hf =
∑

hrk
hfk tw(deg f)−w(deg rkfk)

is a standard representation of hf in H-Loc(S[t]).
The other assertions are obvious. 2

As in (Grassmann et al. 1994) this generalizes immediately the following well known fact
to arbitrary term orders of possibly mixed type :

Proposition 7 R(0) and R(1) have equal dimension, and, in the case of tangent cone or-
derings, their Hilbert series also coincide.

For local term orders R(1) is a local ring and w can be chosen to have only negative
weights. In (Gräbe 1991) we exploited a spectral sequence argument over the completion of
R(1) to prove even stronger results :

Proposition 8 For a local term order we conclude

1. The Betti numbers of R(1) are bounded above by the Betti numbers of R(0).

2. depth R(1) ≥ depth R(0),

3. If R(0) is Cohen-Macaulay, then R(1) is Cohen-Macaulay, and
type R(1) ≤ type R(0).

4. If R(0) is Gorenstein, then R(1) is Gorenstein.

5. If R(0) is a generalized Cohen-Macaulay ring, then R(1) is also.

6. grade I · Loc(S) ≥ grade in(I).

In particular this holds for ideals in k[[x]]alg given by a LSS.

For term orders of mixed type there is no obvious completion of R(1) with good properties
and R(1) is no more a local ring. As usual, in this situation we can ask for Betti numbers,
depth etc. for localizations of R(1) at maximal ideals instead.
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Proposition 9 Let < be an arbitrary term order and R a localization of R(1) at some k-
rational point. Then

1. The Betti numbers of R are bounded above by the Betti numbers of R(0).

2. depth R ≥ depth R(0),

3. If R(0) is Cohen-Macaulay, then R is Cohen-Macaulay, and type R ≤ type R(0).

4. If R(0) is Gorenstein, then R is Gorenstein.

Proof: S(t) and R(t) are H-local rings since (t, xv : v ∈ V ) is their unique maximal
homogeneous ideal.

Take a minimal homogeneous resolution F∗(t) of R(t) over S(t). Factoring out a nonzero
divisor (t− c), c ∈ k, we obtain a free resolution F∗(c) of R(c) over S(c). Moreover, factoring
out the homogeneous element t the resolution remains a minimal H-local resolution. Hence
R(t) and R(0) have equal Betti numbers. Localizing F∗(1) at a k-rational point we obtain a
(not necessarily minimal) free resolution of R over the localization of S(1). Since the residue
field is k this proves 1).

2) - 4) are then easy consequences. 2

6.2 Independent sets

Let I be an ideal in S. σ ⊂ V is an (locally) independent set mod I iff {xv : v ∈ σ} is an
algebraically independent set in R = Loc(S)/I, i.e.

I · Loc(S)
⋂

k[xv : v ∈ σ] = ∅.

If I ⊂ Loc(S) is prime the collection of all independent sets form a matroid and all maximal
independent sets are of equal size dim R.

In general, it is difficult to find all independent sets. (Kredel,Weispfenning 1988) therefore
introduced the notion of strongly independent sets. The following, as given in (Gräbe 1993b)
may serve as a general definition: σ ⊂ V is a strongly independent set mod I iff it is an
independent set mod in(I).

Strongly independent sets are independent sets also in our more general setting : If f ∈
I · Loc(S)

⋂
k[xv : v ∈ σ] is a nonzero polynomial then in(f) ∈ in(I)

⋂
k[xv : v ∈ σ] would be

a nonzero term. Since R and S/in(I) have equal dimension we obtain as in the noetherian
case:

Proposition 10 dim Loc(S)/I is the maximal possible size of a strongly independent set
mod I.

See (Gräbe 1993b) for a discussion of algorithms to find all maximal strongly independent
sets.

The deformation argument extended in the preceding section to our more general setting
is the main tool for proving connections between I and in(I) in (Gräbe 1993b). Hence these
results transfer to arbitrary term orders :
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Proposition 11 If I · Loc(S) is (radically) unmixed (e.g. Cohen-Macaulay) then in(I) is
radically unmixed and every maximal (with respect to inclusion) strongly independent set has
equal size.

In particular, under this assumption dim Loc(S)/I can be determined from in(I) in linear
time (w.r.t the embedding dimension).

The proof is the same as (Gräbe 1993b, thm.1).

Acknowledgment: The author thanks the anonymous referee for pointing out to him
a misunderstanding of the deformation argument in the final version of (Grassmann et al.
1994).

References

[1] Alonso M., Mora T., Raimondo M. (1989). Computing with algebraic series. In Proc.
ISSAC’89. ACM Press, 101–111.

[2] Alonso M., Mora T., Raimondo M. (1991). Local decomposition algorithms. In Proc.
AAECC Tokyo 1990, L.N.C.S. 508, 208–221.

[3] Alonso M., Mora T., Raimondo M. (1992). A computational model for algebraic power
series. J. Pure Applied Alg. 77, 1–38.

[4] Bayer D.A. (1982). The division algorithm and the Hilbert scheme. Thesis, Harvard Univ.

[5] Becker T. (1990). Stability and Buchberger criterion for standard bases in power series
rings. J. Pure Appl. Alg. 66, 219–227.

[6] Becker T., Weispfenning V., Kredel H. (1993). Gröbner bases. A computational approach
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[13] Gräbe H.-G. (1994). The tangent cone algorithm and homogenization. J. Pure Appl. Alg.
97, 303–312.

13



[14] Grassmann H., Greuel, G.-M., Martin, B., Neumann, W., Pfister, G., Pohl, W.,
Schönemann, H., Siebert, T. (1994). Standard bases, syzygies, and their implementation
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