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tionGeometry is not only a part of mathemati
s with an
ient roots but also a vivid area of modernresear
h. Espe
ially the �eld of geometry 
alled by some negligen
e \elementary" 
ontinues toattra
t the attention also of the great 
ommunity of leisure mathemati
ians. This is probablydue to the small set of prerequisites ne
essary to formulate the problems posed in this areaand the erudition and non formal approa
hes ubiquitously needed to solve them. Examplesfrom this area are also an indispensable 
omponent of high s
hool mathemati
al 
ompetitionsof di�erent levels upto the International Mathemati
s Olympiad (IMO) [10℄.The great range of ideas being involved with elementary geometry theorem proving in-spired mathemati
ians to sear
h for a 
ommon framework that allows to dis
over su
h geo-metri
 statements or, at least, to prove them in a more uni�ed way. These attempts may betra
ed ba
k until an
ient times, e.g., to Eu
lid and his axiomati
 approa
h to geometry.A spe
ial 
ommon framework for geometry theorem proving was known at least sin
eDes
artes and his 
oordinate method: Translate geometri
 
on�gurations into algebrai
 rela-tions between 
oordinates and try to solve the algebrai
 
ounterpart of the geometri
 problemby algebrai
 methods. It was this framework that inspired the young Gauss for his famoussolution to 
onstru
t a regular 17-gon by ruler and 
ompass.With the in
reasing 
apabilities of modern 
omputer equipment to do term rewritingand symboli
 algebrai
 manipulations this approa
h obtained new power. The surprisingobservation that tedious but mostly straightforward algebrai
 manipulations allow to derive(mathemati
ally strong!) proofs for many theorems in geometry with even ingenious \truegeometri
" proofs led many resear
hers to fo
us anew on questions of automated dedu
tionof geometri
 statements.The attempts to algorithmize this part of mathemati
s found their �rst 
ulmination inthe 80's in the work of W.-T. Wu on \the Chinese Prover", see, e.g., [20, 19℄ and the surveysin [21℄ or [22℄. In the following these ideas were largely extended by di�erent people, amongthem the \Chinese provers" in Wu's s
hool at MMRC. Let's mention only the remarkablebook [2℄ of S.-C. Chou who proved 512 geometry theorems with this me
hanization method.There are two 
on
lusions to be drawn from Chou's book. First, the appli
ability of alge-brai
 methods to geometry theorem proving is really 
onvin
ing. A surprisingly great numberof examples fall into the 
lass of 
onstru
tive problems (expli
itely 
onstru
tive in [23℄), wherethe geometri
 
on�guration 
an be 
onstru
ted step by step in su
h a way that new 
oordi-nates depend rationally on (free parameters and) 
oordinates of already 
onstru
ted obje
ts1



and the geometri
 
on
lusion translates into a rational expression in these 
oordinates thatshould vanish. In this situation the solution of the algebrai
 problem redu
es to a zero simpli-�
ation problem of a rational expression in several (algebrai
ally independent) variables. Thisproblem is well understood and admits an eÆ
ient solution that is implemented in the 
oreof all major (and minor) Computer Algebra Systems (CAS). Nevertheless real su
h simpli�-
ations may be very time and memory 
onsuming, so that in some 
ases a non-
onstru
tivealgebrai
 translation has to be preferred.The 
oordinate method yields mathemati
ally strong proofs for geometri
 statements witha serious drawba
k: Due to the algebrai
 nature of the intermediate steps these proofs 
annotbe retranslated to geometri
 reasoning but for a small number of 
ases. Often the algebrai
statements \�t together" but the underlying geometry remains \invisible". More geometri
approa
hes are dis
ussed, e.g., in [3℄. They still use polynomial 
omputations, but takegeometri
 invariants like areas and Pythagoras di�eren
es instead of 
oordinates of points asthe basi
 quantities. Thus the geometri
 meaning for ea
h step of the proof is 
lear.Se
ond, the proofs are not \automated" but \me
hanized" in the following sense: Apartly informal human readable geometri
 statement requires a translation into a strong
omputer readable syntax. In Chou's book [2℄ these proof s
hemes or 
oordinatizations, i.e.,des
riptions of geometri
 
on�gurations of points, lines, and 
ir
les in a synta
ti
ally strongway, are 
omposed by the author in a LISP like language and afterwards translated to theiralgebrai
 
ounterparts by the 
omputer. For some theorems the given 
oordinatization isquite tri
ky, sin
e the algebrai
 translation of the ad ho
 solution is too hard to be handledby the 
omputer. Even though speaking about \automati
 geometry problem-solving" ([22℄),also Wu emphasizes (on p. 12 of that paper and even in the title of [21℄) on \me
hanizationmethods" rather than \automated dedu
tion" in full a

ordan
e with modern 
on
epts ofhuman-
omputer intera
tion. Su
h 
on
epts 
onsider 
omputers not as automata but astools in a more 
omplex human-
omputer environment that 
ombines pre
ision and speed of
omputer equipment with human 
reativity and (informal) experien
e.Me
hanization of geometry theorem proving hen
e requires the 
reativity of diligent \proofwriters" to eliminate all informal elements from a geometri
 statement and to �x the resultin a (
ompletely formalized) geometri
 proof s
heme. These proof s
hemes are the startingpoint for further automated translation to, e.g., algebrai
 statements.For inter
ommuni
ation purposes and to store proof s
hemes in a 
ommon publi
ly avail-able repository it is ne
essary to develop a generi
 proof s
heme language standard that 
an beimplemented with appropriate tools by all interested parties. In this paper we des
ribe a �rstapproa
h to su
h a standard, the GeoCode. It is used to store proof s
hemes as GEO re
ordsin a repository that is publi
ly available as part of the Symboli
Data Proje
t [13℄. At the mo-ment the Symboli
Data GEO 
olle
tion 
ontains more than 250 su
h proof s
hemes, mainlyfrom [2℄. Spe
ial Symboli
Data tools are designed to support the synta
ti
al translation ofGeoCode into proof s
heme languages of spe
ial geometry theorem provers that support this
ommon interfa
e. At the moment { as a �rst referen
e appli
ation { this interfa
e is im-plemented in the author's GeoProver pa
kages [7℄, that provide tools to run proof s
hemetranslations based on the 
oordinate method on one of the major CAS (Maple, Mathemati
a,MuPAD, Redu
e).The GeoCode standard evolved in a tight interplay between the 
olle
tion of proof s
hemesand their evaluation with di�erent versions of the GeoProver on di�erent platforms. As aresult of the dis
ussions at the 
onferen
e ADG-02 the standard was revised on
e more in thefollowing dire
tions: 2



1. The proof s
hemes 
olle
ted so far used algebrai
 expressions to dete
t equality of an-gles, segments, triangle areas et
. To serve also more geometri
 approa
hes (e.g., thearea method) these algebrai
 expressions were substituted by fun
tion 
alls with 
leargeometri
 meaning like Equal, eqdist et
.2. The GeoCode standard uses Point, Line and Cir
le as geometri
 types. Sin
e mostof the geometry theorem provers take points as basi
 primitives and 
onsider lines and
ir
les as derived obje
ts, the 
onstru
tors Line[a1; a2; a3℄ and Cir
le[
0; 
1; 
2; 
3℄ wereremoved from the standard.Moreover, the de�nition of free points was singled out into a spe
ial attribute Points ofthe GEO proof s
heme re
ord to separate them from true geometri
 
onstru
tion steps.3. The names of the GeoCode fun
tions were adjusted on
e more.Sin
e the GeoCode des
ription is �xed in the same Symboli
Data format as the GEO re
ordsthemselves su
h adjustments are well supported by the Symboli
Data a
tion 
on
ept and thePerl string manipulation fa
ilities. This allows to write 
ompa
t Perl s
ripts to exe
ute therequired 
hanges in the GEO proof s
heme re
ords.This paper starts with some ba
kground on geometry theorem proving (se
tion 2). Thenwe des
ribe the design of the GEO re
ords, the syntax of the GeoCode standard and the Geo-Prover pa
kages as an implementation of that standard (se
tion 3). In se
tion 4 we dis
ussby means of examples how to 
ompile new (generi
) proof s
hemes, to translate them intoGeoProver notion, to run this 
ode on di�erent CAS and to experiment with the resultingalgebrai
 problems.For real usability of the GeoCode 
on
ept one has to estimate the e�orts required toimplement this standard for other provers. Even though there is not yet pra
ti
al experien
ewith already existing geometry theorem provers the semanti
 similarity of \foreign" spe
ialgeometri
 proof s
hemes suggests that su
h an interfa
e should easily to be implemented. Theproblem is dis
ussed in more detail in se
tion 5 on the spe
ial geometri
 language used in [17℄and, in a slightly revised form, also in D.Wang's GEOTHER proje
t [14℄, see also [16℄.A main problem to translate GEO re
ords into geometri
 proof s
hemes for spe
ial geome-try theorem provers is posed by di�erent programming paradigms followed by the underlyinggeometry theorem provers. The GeoCode standard supports a fun
tional programming styleand the GEO re
ord attribute values heavily use nested fun
tion 
alls. Several provers anddynami
al geometry softwares (DGS) do not support nested fun
tion 
alls sin
e they 
reateand address geometri
 obje
ts through identi�ers.We studied that problem within the task to translate our (
onstru
tive) proof s
hemesalso to 
onstru
tion s
hemes that 
an be interpreted by DGS to draw a pi
ture of the givengeometri
 
on�guration or to generate a human readable 
onstru
tion plan. Su
h fa
ilities arepart of integrated geometry theorem provers as, e.g., D. Wang's GEOTHER prover [14, 16℄ orthe Geometry Expert, [5℄. We developed a �rst (Perl based) prototype interfa
e of 
onstru
tiveGEO proof s
hemes to the GEONEXT system [6℄ that really denests nested fun
tion 
alls.2 Geometry Theorem Proving and the Coordinate MethodAs already des
ribed in the introdu
tion the main approa
h to me
hanized geometry theoremproving 
onsidered so far depends on Des
artes-Wu's 
oordinate method, translates geometri
3



statements into their algebrai
 
ounterparts, i.e., statements about systems of polynomial orrational fun
tions, and tries to solve these algebrai
 problems by algebrai
 methods.2.1 Geometry Theorems of Constru
tive TypeUsually geometri
 
onstru
tions 
an be 
ompiled from a small number of elementary 
on-stru
tions, e.g., drawing a line through given points, 
onstru
ting interse
tion points, 
ir
leswith given parameters et
. In the same way also the 
oordinate representation of geometri
statements 
an be produ
ed 
as
ading only a small number of elementary fun
tions and datatypes. Hen
e interpreting the fun
tion 
alls in a geometri
 proof s
heme in su
h an algebrai
manner yields its algebrai
 translation as the starting point for the appli
ation of algebrai
methods.Note that the same proof s
heme 
an be interpreted in a 
ompletely di�erent way, e.g., bya drawing tool or geometry theorem prover based on a di�erent method. This aspe
t will bedis
ussed below. In this se
tion we identify proof s
hemes and their algebrai
 translations.We use points, lines and 
ir
les as basi
 obje
ts with symboli
 or numeri
al 
oordinates:(x; y) the point (x; y),(g1; g2; g3) the line f(x; y) : g1 x+ g2 y + g3 = 0g, and(
1; 
2; 
3; 
4) the 
ir
le f(x; y) : 
1 (x2 + y2) + 
2 x+ 
3 y + 
4 = 0g.Let midpoint(X;Y ) be the midpoint of the segment XY , pp line(X;Y ) the line through Xand Y and is 
on
urrent(a; b; 
) a polynomial 
ondition (in fa
t, a determinantal expression)that vanishes i� the lines a; b; 
 pass through a 
ommon point. The return values of allthese fun
tions are (sequen
es of) rational expressions in the 
oordinates of the formal inputparameters.With these fun
tions at hand, e.g., the 
entroid interse
tion theorem 
an be proved in thefollowing way: Choose generi
 pointsA := Point(u1; u2); B := Point(u3; u4); C := Point(u5; u6);
ompute 
oordinates forA1 := midpoint(B;C); B1 := midpoint(A;C); C1 := midpoint(A;B);and evaluate the statementis 
on
urrent(pp line(A;A1); pp line(B;B1); pp line(C;C1)) (1)To prove this theorem (and other theorems of this type) means to 
ompose a nested rationalexpression like (1) and to 
he
k if it simpli�es to zero. If it does, it will simplify to zeroalso for (almost) all spe
ial geometri
 
on�gurations obtained from the generi
 
on�gurationplugging in spe
ial numeri
al values for u1; : : : ; u6.In general, we say that a geometri
 
on�guration is of 
onstru
tive type, if its generi

on�guration 
an be 
onstru
ted step by step in su
h a way, that the 
oordinates of ea
hsu

essive geometri
 obje
t 
an be expressed as rational fun
tions in the 
oordinates of al-ready 
onstru
ted obje
ts and algebrai
ally independent variables, and the 
on
lusion 
an beexpressed as vanishing of a rational fun
tion in these 
oordinates.Su
h a theorem is generi
ally true if and only if its 
on�guration is not 
ontradi
tory andthe 
on
lusion expression simpli�es to zero.Note that due to Eu
lidean symmetry even for generi
 
on�gurations some of the 
oordi-nates 
an be 
hosen in a spe
ial way. 4



2.2 Geometry Theorems of Equational TypeSurprisingly many geometry theorems 
an be translated into statements of 
onstru
tive type.Problems 
ause geometri
 obje
ts derived from non-linear geometri
 
onditions (angles, 
ir-
les) if they are not uniquely de�ned or their 
oordinates 
annot be rationally expressed inthe given indeterminates. Geometri
 
on�gurations with su
h obje
ts require other proofte
hniques.For example, given generi
 pointsA = Point(a1; a2); B = Point(b1; b2); C = Point(
1; 
2);a point P = Point(x1; x2) is on the bise
tor of the angle 6 ABC i� 6 ABP = 6 PBC, or, inGeoProver notation, i�l2 angle(pp line(A;B); pp line(P;B)) = l2 angle(pp line(P;B); pp line(C;B))In this formula l2 angle(g; h) denotes the tangens of the angle between the lines g =(g1; g2; g3) and h = (h1; h2; h3) that 
an be 
omputed asg2 h1 � g1 h2g1 h1 + g2 h2 :Clearing denominators this 
ondition on P translates into a polynomial of (total) degree4 in the generi
 
oordinates and quadrati
 in the 
oordinates of P . It des
ribes the 
onditionon bise
tor(P,A,B,C) for P to be on either the inner or the outer bise
tor of 6 ABC.Note that in unordered geometry there is no way to distinguish between the inner and outerbise
tors.To prove the bise
tor interse
tion theorem lets \
ompute" the 
oordinates of the interse
-tion points P of the bise
tors through A and B and show that they belong to (one of) thebise
tors through C. Due to Eu
lidean symmetry we 
an 
hoose spe
ial 
oordinates for Aand B to simplify 
al
ulations.A:=Point(0,0); B:=Point(1,0); C:=Point(u1,u2); P:=Point(x1,x2);polys:={on_bise
tor(P,A,B,C), on_bise
tor(P,C,A,B)};f � 2x2 + 2u1 x2 + 2x2 x1 � 2x2 u1 x1 � u2 x22 + u2 � 2u2 x1 + u2 x12;2x2 u1 x1 � u2 x12 + u2 x22gpolys is a system of two polynomial equations of degree 2 in (x1; x2) with 
oeÆ
ients inQ(u1; u2). It has 4 solutions that 
orrespond to the 4 interse
tion points of the bise
tor pairsthrough A and B. They 
an be 
omputed, e.g., with Maple:solve(polys,{x1,x2});�x2 = %1; x1 = 1=2 u2 � 2%1 + 2u1%1u2 �%1 �%1 = RootOf �4u2 Z 4 + ��8u12 � 8u22 + 8u1� Z 3+ ��4u1 u2 + 4u12u2 � 4u2 + 4u23� Z 2 + 4u22 Z � u23�The solution involves algebrai
 RootOf -expressions that require a powerful algebrai
 engineto 
ope with. 5



Another approa
h uses dire
t reformulation of the geometry theorem as a vanishing prob-lem of the polynomial 
on
lusion on the zero set of the system of polynomials that des
ribethe given geometri
 
on�guration.For our example, 
onsider the 
on
lusion polynomial
on:=on_bise
tor(P,B,C,A);2u12x2 x1 + 2u2 x22u1 � 2u2 x12u1 � u2 x22 + u2 x12 + 2u2 x1 u12 � 2u22x1 x2 �2x2 u1 x1 � u12u2 + 2u22x2 � u23 + 2x2 u12 � 2u13x2 + 2u23x1 � 2u1 x2 u22and 
he
k if it vanishes on the variety of zeroes of polys regarded as zero dimensional poly-nomial system in Q(u1; u2)[x1; x2℄: This follows if the normal form of 
on with respe
t to aGr�obner basis of polys vanishes. Hen
e the following Maple 
omputation veri�es the theorem:with(Groebner):TO:=plex(x1,x2): gb:=gbasis(polys,TO):normalf(
on,gb,TO); 0In general, this kind of algebraization of geometry theorems by the 
oordinate method yieldsa polynomial ring S = k[v℄ with variables v = (v1; : : : ; vn), a polynomial system F � S thatdes
ribes algebrai
 dependen
y relations in the given geometri
 
on�guration, a subdivisionv = x[u of the variables into dependent and independent ones, and the 
on
lusion polynomialg(x;u) 2 S.A set of variables u is independent wrt. an ideal I = I(F ) i� k[u℄ \ I = (0), i.e., if u isalgebrai
ally independent on the variety Z(F ) of zeroes of F . In most pra
ti
al appli
ationssu
h a subdivision is obvious. A strong veri�
ation 
an be derived from a Gr�obner basis ofF wrt. an appropriate term order.Z(F ) may be de
omposed into irredu
ible 
omponents that 
orrespond to prime 
ompo-nents P� of the ideal I = I(F ) generated by F over the ring S = k[x;u℄. Sin
e P� � I thevariables u may be
ome dependent wrt. P�. Prime 
omponents where u remains indepen-dent are 
alled generi
, the other 
omponents are 
alled spe
ial. By de�nition, every spe
ial
omponent 
ontains a non zero polynomial in the independent variables u. Multiplying themall together yields a non degenera
y 
ondition h = h(u) 2 k[u℄ on the independent variablessu
h that a zero 
 2 Z(F ) with h(
) 6= 0 ne
essarily belongs to one of the generi
 
ompo-nents. Hen
e they are the \essential" 
omponents and we say that the geometry theorem isgeneri
ally true, when the 
on
lusion polynomial g vanishes on all these generi
 
omponents.If we 
ompute in the ring S0 = k(u)[x℄ as we did in the above example, i.e., 
onsiderthe independent variables as parameters, exa
tly the generi
 
omponents of I remain visible.Hen
e if the normal form of g wrt. a Gr�obner basis G of F 
omputed in S0 vanishes thegeometry theorem is generi
ally true. More subtle examples 
an be analyzed with the Gr�obnerfa
torizer or more advan
ed te
hniques.There are other algebrai
 te
hniques to analyze su
h polynomial systems, e.g., based onpseudo division and triangular sets. See [11℄ or the monograph [18℄ for a more 
ompletesurvey.2.3 Me
hanized Geometry Theorem ProvingTo really run me
hanized geometry theorem proofs as des
ribed in the previous subse
tionrequires a target CAS and several ingredients:6



(1) We need a \proof writer" that writes (realisti
) proof s
hemes for given informal state-ments of geometry theorems.(2) We need tools to translate geometri
 statements into their algebrai
 
ounterparts asinput for the target CAS.(3) The CAS should be 
apable of the required algebrai
 manipulations.(4) The CAS should provide tools to analyze the algebrai
 situation (e.g., to solve systemsof equations, to 
ompute Gr�obner bases and normal forms et
.)For Des
artes-Wu's approa
h, topi
 (3) requires only fa
ilities to 
ompute with rationalexpressions and is usually not the bottlene
k for geometry theorem proving. For some proofstopi
 (4) may be really 
hallenging sin
e it exploits the full 
ompute power of the algebrai
engine of the target CAS. On the other hand di�erent proof s
hemes for the same problem
an yield algebrai
 formulations of very di�erent run time also within the same CAS.In most 
ases topi
 (1) is straightforward, in parti
ular if the informal geometri
 statementis already highly 
onstru
tive. But in some appli
ations the \proof writers" had to developreally ingenious and non trivial ideas to write reliable proofs that 
an be run automati
ally.For example, Wu proposed in [21℄ the following 
onstru
tive proof for the bise
tor interse
tiontheorem:� Start with the verti
es A;B and the (future) interse
tion point P of the bise
tors throughA and B.� Draw the lines 
 through AB, d through AP and e through BP .� Draw lines u; v derived from 
 by re
e
tion wrt. to the axes d; e.These lines will meet in a point C su
h that d and e are the bise
tors of ABC throughA and B.� Prove that P is also on the third bise
tor.Geometry theorem prover usually provide tools for steps (2{4) to run proof s
hemes writtenin a prover spe
i�
 language automati
ally. With a general purpose CAS at hand it is enoughto have tools for (2). Su
h translation tools for Maple, MuPAD, Mathemati
a, and Redu
eare provided by the author's GeoProver pa
kages, [7℄, see below.The main drawba
k of all these systems is the restri
ted interoperability of proof s
hemes.To �x a proof s
heme for automated pro
essing by di�erent provers requires a generi
 languagethat 
an be mapped to all target systems. Below we report about our experien
e with theGeoCode language that was invented to store generi
 proof s
hemes in the Symboli
Data GEOre
ord 
olle
tion.Here is the notion of Wu's 
onstru
tive proof s
heme of the bise
tor interse
tion theoremin GeoCode notation:<Points>$A:=Point[0,0℄; $B:=Point[1,0℄; $P:=Point[u1,u2℄;</Points><
oordinates>$l1:=pp_line[$A,$B℄;$l2:=sym_line[$l1,pp_line[$A,$P℄℄;$l3:=sym_line[$l1,pp_line[$B,$P℄℄; 7



</
oordinates><
on
lusion>$result:=on_bise
tor[$P,$A,$B,interse
tion_point[$l2,$l3℄℄;</
on
lusion>S.-C. Chou is probably one of the most diligent \proof writers" who 
olle
ted in [2℄ more than500 examples of geometri
 statements and appropriate algebrai
 translations.During our work on the Symboli
Data GEO 
olle
tion we stored (and partly modi�ed andadapted) about 200 of them. We 
olle
ted also solutions of geometry problems from othersour
es, e.g., the IMO 
ontests, see [10℄. Mu
h of this work was done by my \proof writers",the students Malte Witte and Ben Friedri
h, who 
ompiled �rst ele
troni
 versions for manyof these examples.3 GeoCode and GEO Re
ords3.1 The Symboli
Data Proje
tThe Symboli
Data proje
t was set up to 
reate and manage a publi
ly available repository ofdigital test and ben
hmark data from di�erent areas of symboli
 
omputation and to developtools and 
on
epts to manage su
h data both in the repository and at a lo
al site. In a�rst stage we 
on
entrated on the development of pra
ti
al 
on
epts for a 
onvenient dataex
hange format, the 
olle
tion of existing ben
hmark data from two main areas, polynomialsystem solving and geometry theorem proving, and the development of appropriate tools topro
ess this data. A tight interplay between 
on
eptual work, data 
olle
tion, and tools(re)engineering allowed 
ontinuously to evaluate the usefulness of ea
h of the 
omponents.For easy reuse we 
on
entrated on free software tools and 
on
epts. The data is storedin a XML like ASCII format that 
an be edited with your favorite text editor. The tools are
ompletely written in Perl using Perl 5 modular te
hnology.Some of our ad ho
 
on
epts of data representation 
hanged several times and (althoughmeanwhile being quite elaborated) surely will partly 
hange in the future (e.g., lists andhashes will probably be stored in a more XML 
ompliant form). Having data available inele
troni
 form (so far) it was very easy to translate it into the revised formats. Hen
e themost 
ompli
ated part of the proje
t is the 
olle
tion of ben
hmark data and its translationfrom the foreign to the 
urrent format of the repository. Note that our 
on
ept of datarepresentation is very 
exible. The data format 
an be spe
i�ed by the user in an easymanner and very broad range. I refer to [1, 8, 9℄ and the Symboli
Data do
umentation formore details.The proje
t is organized as a free software proje
t. The CVS repository is equally opento people joining the Symboli
Data proje
t Group. Tools and data are freely available alsoas tar-�les from our Web site under the terms of the GNU Publi
 Li
ense.The Symboli
Data proje
t is part of the ben
hmark a
tivities of the German \Fa
hgruppeComputeralgebra" who also sponsored the web site [13℄ as a host for presentation and down-load of the tools and data developed and 
olle
ted so far. We kindly a
knowledge supportalso from UMS MEDICIS of CNR/�E
ole Polyte
hnique (Fran
e) who provides us with theneeded hard- and software to run this web site.8



3.2 Symboli
Data Files and Symboli
Data Re
ordsRe
ords in the Symboli
Data data base are stored as ASCII �les (sd-�les) in a (
at) XMLlike syntax. A typi
al example of su
h a re
ord, the re
ord Parallelogram_2 in the GEOtable, is given on page 10. It 
ontains information and a me
hanized proof s
heme for thefollowing geometry theorem:The interse
tion point of the diagonals of a parallelogram is the midpoint of ea
hof the diagonals.Some of the attributes of that re
ord (Type, Key, CRef, . . . ) serve for identi�
ation orstore relational information. The other �elds store the di�erent parts of the proof s
heme inGeoCode syntax.Note that the des
ription of the internal stru
ture of these attributes is given in the sameformat in a META/GEO table. Hen
e new attributes 
an be added and existing attributes 
anbe modi�ed in an easy manner.The sd-�les are tight to Perl hashes (sd-re
ords) by the Symboli
Data tools in a trans-parent way. The Symboli
Data tools deliver su
h a hash obje
t to the appli
ation programmerfor further Perl manipulation. An elaborated a
tions 
on
ept redu
es 
ommon programmingoverhead to a minimum. Sin
e the detailed requirements of di�erent user driven tasks arenot known in advan
e to the Symboli
Data developers it is diÆ
ult (and probably even notworth) to design a more reliable interfa
e.3.3 Symboli
Data Proof S
hemesSymboli
Data GEO proof s
hemes are divided (roughly) into two types a

ording to theirprooftype attribute: 
onstru
tive and equational.The generi
 variables are provided as values of two attributes:parameters a list u of independent parametersvars a list x of dependent variables (equational proofs only)For equational proofs the variable lists x and u are 
hosen in su
h a way that u is a maximalindependent set of variables for the given algebrai
 variety over k[x;u℄ as de�ned above.The basi
 attributes (with GeoCode values) are:Points the free points of the proof s
heme
oordinates assignments that 
ompose step by step the generi
 geometri
 
on�gura-tion of the proof s
heme
on
lusion the 
on
lusion of the proof s
hemeThis already 
ompletes the data required for a 
onstru
tive proof s
heme. For equationalproof s
hemes the following additional attributes are de�ned:polynomials a list of GeoCode predi
ates that 
orrespond to polynomial or rational
onditions des
ribing algebrai
 dependen
y relations in the given geo-metri
 
on�guration
onstraints a list of GeoCode predi
ates that 
orrespond to polynomial non degen-era
y 
onditionssolution a way to solve the algebrai
 problem (given in extendedGeoCode syntax)9



######################################################## Re
ord 'GEO/Parallelogram_2'<Id> GEO/Parallelogram_2 </Id><Type> GEO </Type><Key> Parallelogram_2 </Key><prooftype> 
onstru
tive </prooftype><parameters> [u1, u2, u3℄ </parameters><Points>$A:=Point[0,0℄; $B:=Point[u1,0℄; $D:=Point[u2,u3℄;</Points><
oordinates>$C:=par_point[$D,$A,$B℄;$P:=interse
tion_point[pp_line[$A,$C℄,pp_line[$B,$D℄℄;</
oordinates><
on
lusion> $result:=eqdist[$A,$P,$C,$P℄; </
on
lusion><CRef>PROBLEMS/Geometry/Parallelogram => problem des
ription</CRef><Version> ... </Version><ChangeLog>Sep 7 2002 graebe: Translated to GeoCode 1.3Sep 6 2002 graebe: new tag 'Points' 
reatedSep 2 2002 graebe: $C=par_point[..℄Feb 10 2002 graebe: translated to GeoProver 1.2 syntax</ChangeLog><PERSON> graebe </PERSON><Date> Nov 1 1999 </Date># End of re
ord 'GEO/Parallelogram_2'#######################################################The GEO re
ord `Parallelogram 2'
10



The proof idea 
an be sket
hed within the ProofIdea attribute as plain text if not yetevident from the 
ode. See [9℄ for a detailed des
ription of the GEO re
ord stru
ture. Belowwe 
on
entrate on the GeoCode part.3.4 The GeoCode SyntaxThe design of the generi
 GeoCode language is mainly motivated by our aim to �x geometrytheorem proof s
hemes in su
h a way that they 
an easily be translated to di�erent targetsystems. A good but expensive idea would be to de�ne an appropriate (
ontext free) pro-gramming language and to write 
ross 
ompilers or to invent a reliable (full) XML markupand to use style sheet translations. Sin
e the syntaxes of the target languages are very similarwe de
ided to avoid these e�orts and de�ned a generi
 language that 
an be 
ross 
ompiledusing only regular patterns. Due to its elaborated pattern mat
hing fa
ilities Perl is bestsuited to realize this approa
h.We assume proof s
hemes to be 
omposed by a sequen
e of assignments with nestedfun
tion 
alls as right hand sides that refer to previously de�ned geometri
 obje
ts and s
alarsas arguments. To be mapped to di�erent target systems the GeoCode language should meetthe following requirements:(1) Variable, symbol and fun
tion names 
an be identi�ed.(2) The generi
 GeoCode 
an be mapped to the syntax of the target system without name
lashes.In this 
ontext the words `variable' and `symbol' are used in the following sense: theformer are `symbols with values' (e.g., names for points, lines, 
ir
les), the latter `symbolswithout values' (i.e., names for parameters and variables in the previous sense). It is aspe
ial pe
uliarity of symboli
 
omputations that these name spa
es usually overlap. Forgeometry theorem proof s
hemes this overlap 
an be avoided. We use Perl like syntax (i.e.,\$[a-zA-z℄[a-zA-z0-9℄* in Perl regexp notation) for variable names and small letter / digit
ombinations (i.e., [a-z℄[a-z0-9℄* in Perl regexp notation { we don't allow 
apital lettersto avoid name 
lashes both in Redu
e and Mathemati
a) for symbol names.Most CAS use parentheses both to group arithmeti
 expressions and argument lists infun
tion 
alls. Sin
e this 
annot be distinguished within a regular language we use the Math-emati
a 
onvention (i.e., bra
kets) for fun
tion 
all notation1.Equational GEO re
ords usually 
ontain also a solution tag with a des
ription how thealgebrai
 task 
an be solved. This des
ription is �xed in an extended GeoCode syntax. Inter-fa
e pa
kages for Maple, MuPAD, Mathemati
a, and Redu
e to map these generi
 
ommandsto appropriate 
onstru
ts are part of the Symboli
Data distribution. For details see [9℄.The names and signatures of all the GeoCode fun
tions are stored in the Symboli
DataGeoCode table and 
an be extra
ted, extended and modi�ed in the same way as other sd-re
ords. Two su
h GeoCode re
ords are reprodu
ed below. The �rst one 
orresponds to an'inline' fun
tion that requires a spe
ial implementation, the se
ond one to a 'ma
ro' witha generi
 de�nition in GeoCode syntax as value of the 
ode attribute that 
an be used to1Note that most of the arithmeti
 expressions were repla
ed by new geometri
 predi
ates Equal, eqdist,Normal et
. in the GEO re
ords during preparation of version 1.3 (�nished after the ADG-02 
onferen
e) toemphasize the geometri
 nature of the proof s
hemes.11




reate an implementation automati
ally. For a 
omplete des
ription of all fun
tions see theSymboli
Data GeoCode do
umentation.3.5 The GeoProver Pa
kagesReally to run proof s
hemes written in GeoCode syntax with a geometry theorem proverrequires to translate the GeoCode to equivalent 
ode in the spe
ial language of the targetprover. We propose the following approa
h: First, write Perl tools to translate the generi
proof s
heme into a synta
ti
 form that is more appropriate for the target system (e.g.,
hange square bra
ket, �x variable and fun
tion names, et
.). This is well supported bythe Symboli
Data a
tions 
on
ept and sample implementations for su
h translators in thebin/GEO dire
tory of the Symboli
Data distribution.Se
ond, write an interfa
e pa
kage in the language of the target prover that maps the Geo-Code fun
tions to the prover spe
i�
 fun
tions. The author's GeoProver pa
kages implementsu
h interfa
es for Maple, MuPAD, Mathemati
a, and Redu
e.For ea
h of these CAS the GeoProver (formerly Geometry) provides a small pa
kagefor me
hanized (plane) geometry manipulations with non degenera
y tra
ing and a set offun
tions to handle generi
 and spe
ial geometri
 
on�gurations 
ontaining points, lines and
ir
les.For a 
avor of the usage resp. a formal des
ription of all fun
tions see the sample 
al
ula-tions in the previous se
tion and the do
umentation [7℄. For some target systems there is alsoa plot extension that allows to draw graphi
s from s
enes, i.e., (of 
ourse spe
ial) geometri

on�gurations.A �rst prototype of the GeoProver grew out from a 
ourse of le
tures for students of
omputer s
ien
e on this topi
 held by the author at the Univ. of Leipzig in fall 1996. It wasupdated and 
ompleted to version 1.1 of a Redu
e pa
kage after a similar le
ture in spring1998. Later on in 
ooperation with Malte Witte, at those times one of my students, thepa
kage was translated to the other target systems.Sin
e version 1.2 there is a separate des
ription of the GeoCode language that was �xed inSymboli
Data format and added as the GeoCode table to the Symboli
Data Proje
t later on.Now the 
omplete GeoProver sour
e 
ode is generated from a platform-spe
i�
 'inline' 
odepart for the basi
 fun
tions and generi
 GeoCode 
ode values for advan
ed fun
tions usingspe
ial Symboli
Data tools. This fa
ilitates a 
on
ise 
ode management of the GeoProversour
e 
ode if the GeoCode standard 
hanges during development.4 Some ExamplesTo get a look and feel about the e�orts required to 
ompile new GeoCode proof s
hemes,to translate them with Symboli
Data tools to GeoProver appli
ations and to run them ondi�erent target CAS let's 
onsider some examples.
12



######################################################### Re
ord 'GeoCode/pp_line'<Id> GeoCode/pp_line </Id><Type> GeoCode </Type><Key> pp_line </Key><
all> pp_line[$A::Point,$B::Point℄::Line </
all><verbose> line through A and B </verbose><des
ription>The line through <math>A</math> and <math>B</math>.</des
ription>...# End of re
ord 'GeoCode/pp_line'################################################################################################################# Re
ord 'GeoCode/altitude'<Id> GeoCode/altitude </Id><Type> GeoCode </Type><Key> altitude </Key><
all> altitude[$A::Point,$B::Point,$C::Point℄::Line </
all><verbose> altitude from A onto g(BC) </verbose><
ode> ortho_line[$A,pp_line[$B,$C℄℄ </
ode><des
ription>The altitude from <math>A</math> onto <math>g(BC)</math>.</des
ription>...# End of re
ord 'GeoCode/altitude'########################################################The GeoCode re
ords 'pp line' and `altidute'
13



1. The \
athedral example", [11, 5.3℄
A M D N Q B

O

H

E F

C

Figure 1: The \
athedral example"
P;Q are 
enters of the ar
s CB;AC, respe
-tively; ar
s DE;DF are drawn with R;S as 
en-ters, respe
tively, and AQ as the radius. Fur-ther, AQ = BP = 56AB. The goal is to �nd theradius of the 
ir
le tangent to ar
s EA;ED;HM(with 
enter A) and KM (with 
enter D) as afun
tion of AB.We take the problem formulation and notational 
onventions from [11℄ with s = jABj = 1.In that paper line AB is taken as x-axis with origin at M (written as $M in GeoCode syntax)and the following 
oordinates are assigned to points (using the GeoCode point 
onstru
tor):$O:=Point[0,y3℄; $A:=Point[-3/12,0℄; $Q:=Point[7/12,0℄; $M:=Point[0,0℄;Kapur's original proof s
heme 
ontains 6 algebrai
 
onditions that arize from the tangen
y
onditions of two 
ir
le pairs. A 
ir
le tangen
y 
ondition yields 3 polynomials: If T1 = (x1; y1)is the point of tangen
y of the 
ir
les around A and O these 
onditions are 'T1 on the 
ir
learound A', 'T1 on the 
ir
le around O', and 'T1; A;O are 
ollinear'.Here is that statement in the formal GeoCode syntax:<vars> [x1,y1,x2,y2,y3,r℄ </vars><Points>$O:=Point[0,y3℄; $A:=Point[-1/4,0℄; $Q:=Point[7/12,0℄; $M:=Point[0,0℄;$T1:=Point[x1,y1℄; $T2:=Point[x2,y2℄;</Points><
oordinates>$
1:=p
_
ir
le[$A,$M℄; $
2:=p
_
ir
le[$Q,$A℄;</
oordinates><polynomials>$polys:=List[on_
ir
le[$T1,$
1℄, is_
ollinear[$A,$T1,$O℄, r^2-sqrdist[$O,$T1℄,on_
ir
le[$T2,$
2℄, is_
ollinear[$Q,$T2,$O℄, r^2-sqrdist[$O,$T2℄℄;</polynomials>p
 
ir
le is the point-
enter 
ir
le 
onstru
tor that returns a 
ir
le obje
t. GeoCode sup-ports Point, Line and Cir
le as geometri
 types. Note that on 
ir
le[$T1,$
1℄ andsqrdist[$T1,$A℄-sqrdist[$M,$A℄ yield the same algebrai
 translation. Hen
e a similarproof s
heme may be 
omposed without referen
es to 
ir
le obje
ts2.The solution of the algebrai
 problem may be obtained if all variables but r are eliminatedfrom $polys and the remaining equation is solved for r. This 
an be stored in the solutionattribute of the GEO re
ord in extended GeoCode syntax in the following way:2With GeoCode version 1.3 better use the geometri
 predi
ate eqdist[$T1,$A,$M,$A℄ instead of the alge-brai
 expression sqrdist[$T1,$A℄-sqrdist[$M,$A℄ 14



<solution>$result:=geo_solve[geo_eliminate[$polys,$vars,List[x1,y1,x2,y2,y3℄℄,r℄;</solution>In the spirit of dynami
al geometry software another proof s
heme with less variables 
anbe given if T1 and T2 are taken as '
ir
le sliders' that 
orrespond to rational parameterizationsof su
h points:<vars> [x1,x2,y3,r℄ </vars><Points>$O:=Point[0,y3℄; $A:=Point[-1/4,0℄; $Q:=Point[7/12,0℄; $M:=Point[0,0℄;</Points><
oordinates>$T1:=
ir
le_slider[$A,$M,x1℄; $T2:=
ir
le_slider[$Q,$A,x2℄;</
oordinates><polynomials>$polys:=List[is_
ollinear[$A,$T1,$O℄, r^2-sqrdist[$O,$T1℄,is_
ollinear[$Q,$T2,$O℄, r^2-sqrdist[$O,$T2℄℄;</polynomials>Note that in this 
ase the algebrai
 translations of the geometri
 
onditions yields in fa
trational fun
tions sin
e the 
oordinates of T1 and T2 are not polynomial but rational. Aspe
ial algebrai
 approa
h is required for su
h proof s
hemes. A brute for
e 
all to theMuPAD 
ommand solve($polys,$vars) produ
es 24 solutions with 12 di�erent values of r.A third approa
h uses the expli
it 
ir
le tangen
y 
ondition, that 
orresponds to a poly-nomial 
ondition on the 
ir
le parameters. It requires only 3 variables and translates toa polynomial system. Take 
enter O and a 
ir
umfere point X on the y-axis with generi
y-
oordinates$O:=Point[0,x1℄; $X:=Point[0,x2℄;$A:=Point[-1/4,0℄; $Q:=Point[7/12,0℄; $M:=Point[0,0℄;add variables for the ar
s (
ir
les) that should be tangent$
1:=p
_
ir
le[$A,$M℄; $
2:=p
_
ir
le[$Q,$A℄; $
3:=p
_
ir
le[$O,$X℄;and �x the tangen
y 
onditions and another one for the radius r = x1 � x2 of the 
ir
le 
3$polys:=List[is_

_tangent[$
1,$
3℄, is_

_tangent[$
2,$
3℄, r-(x1-x2)℄;The problem is of equational type and poses a dedu
tion task. There are no independentvariables and an algebrai
 solution 
an be obtained if x1; x2 are eliminated from the polyno-mials and the remaining equation is solved for r. The 
orresponding GEO re
ord is given onpage 22.To translate and run that 
ode with MuPAD we 
all the Symboli
Data MuPADCode a
tion.It maps GeoCode syntax to GeoProver MuPAD syntax, resolves name 
lashes and yields(GeoProver pa
kage loading omitted) 15



//==> Example Cathedral_1
lear_ndg():delete 'x1','x2','s';_vars:=geoList(x1,x2,s);//
oordinates_O:=Point(0,x1); _X:=Point(0,x2);_A:=Point(-3,0); _Q:=Point(7,0); _M:=Point(0,0);_
1:=p
_
ir
le(_A,_M); _
2:=p
_
ir
le(_Q,_A); _
3:=p
_
ir
le(_O,_X);//polynomials_polys:=geoList(is_

_tangent(_
1,_
3),is_

_tangent(_
2,_
3),12*s-(x1-x2));//solution_result:=geo_solve(geo_eliminate(_polys,_vars,geoList(x1,x2)),s);quit;The 
ore of that a
tion is a 3-line Perl s
riptsub MuPAD{ lo
al $_=shift;s/List\[/geoList\[/gs; # sin
e List is now a key wordtr/\[\℄/\(\)/;s/\$(\w+)/_$1/gs;return $_;}Sin
e the 
ir
le tangen
y 
ondition is implemented in the GeoProver we 
an run that s
riptwith MuPAD to get the solution��r = �1756� ; �r = � 17104� ; �r = 1756� ; �r = 17104��in good a

ordan
e with [11℄. Note that r = � 17104 
orresponds to the position of X on the'top' of O sin
e r = x1 � x2. r = �1756 is also a 
ommon solution of the system given in [11℄but not dis
ussed there. It 
orresponds to imaginary 
oordinates of O and hen
e is virtual.A similar 
omputation yields the length of the radius of the 
ir
le in the top region of�gure 1: With origin at D, the 
enter O1 and a 
ir
umfere point X of that 
ir
le on the y-axiswe get the proof s
heme<vars> [x1,x2,r℄ </vars><Points>$D:=Point[0,0℄; $O1:=Point[0,x1℄; $X:=Point[0,x2℄;$S:=Point[5/6,0℄; $P:=Point[-1/3,0℄; $B:=Point[1/2,0℄;</Points><
oordinates>$
1:=p
_
ir
le[$S,$D℄; $
2:=p
_
ir
le[$P,$B℄; $
3:=p
_
ir
le[$O1,$X℄;</
oordinates><polynomials>$polys:=List[is_

_tangent[$
1,$
3℄, is_

_tangent[$
2,$
3℄, r-(x1-x2)℄;</polynomials> 16



Running the 
orresponding 
omputation with MuPAD yields the result��r = � 740� ; �r = 740�� :2. The Generalized Steiner Theorem, [17, Ex. 7℄Take three points A2; B2; C2 respe
tively on the three perpendi
ular bise
tors ofBC;AC;AB of any triangle ABC su
h thatd(A2; BC) = t � jBCj; d(B2; AC) = t � jACj; d(C2; AB) = t � jABj;where d(P;QR) denotes the distan
e of the point P from the line QR and t is anarbitrary non-negative number.Then the three lines AA2; BB2; CC2 are 
on
urrent.

Figure 2: The Generalized Steiner Theorem
Note that the statement of a problem maybe in
luded in a Symboli
Data re
ord asvalue of a new attribute, say Text, sin
eea
h su
h re
ord admits \unde�ned" at-tributes that are handled by the Symboli
-Data tools in the same way as \de�ned"ones. In the Symboli
Data data base prob-lem statements are stored in a spe
ial ta-ble PROBLEMS and 
ross referen
ed in GEOre
ords sin
e several proof s
hemes mayrefer to the same problem.D.Wang solves that problem in [17℄ with oriented areas using a Cli�ord algebra approa
hthat avoids the introdu
tion of virtual solutions. A straightforward 
oordinatization withindependent variables u1; u2; t and dependent variables x1; x2; x3 goes as follows:<vars> [x1,x2,x3℄ </vars><parameters> [u1, u2, t℄ </parameters><Points>$A:=Point[0,0℄; $B:=Point[0,1℄; $C:=Point[u1,u2℄;</Points><
oordinates>$A1:=midpoint[$B,$C℄; $B1:=midpoint[$A,$C℄; $C1:=midpoint[$A,$B℄;$A2:=line_slider[p_bise
tor[$B,$C℄,x1℄;$B2:=line_slider[p_bise
tor[$A,$C℄,x2℄;$C2:=line_slider[p_bise
tor[$A,$B℄,x3℄;</
oordinates><polynomials>$polys:=List[sqrdist[$A1,$A2℄-t^2*sqrdist[$B,$C℄,sqrdist[$B1,$B2℄-t^2*sqrdist[$A,$C℄,sqrdist[$C1,$C2℄-t^2*sqrdist[$A,$B℄℄;</polynomials><
on
lusion> 17



$
on:=is_
on
urrent[pp_line[$A,$A2℄, pp_line[$B,$B2℄, pp_line[$C,$C2℄℄;</
on
lusion>It yields a polynomial system with 8 solutions in (x1; x2; x3) in the rational fun
tion �eldk(u1; u2; t) that 
orrespond to the di�erent 
ombinations of orientations of the trianglesABC2; BCA2; CAB2. I 
he
ked this for Maple 7, MuPAD 2.0, and Redu
e 3.7 with thesolution<solution>$sol:=geo_solve[$polys,$vars℄;$result:=geo_simplify[geo_eval[$
on,$sol℄℄;</solution>that was translated with Symboli
Data tools to GeoProver 
ode for the di�erent CAS. Allthree CAS found that for exa
tly two of the 8 solutions the theorem is valid (i.e., the $resultsimpli�es to zero). Note that with t2 repla
ed by t only the Redu
e solve 
ommand foundthe same answer. Maple and MuPAD3 
reated expressions with several root symbols that
ould not be 
ompletely simpli�ed in the following 
omputation.3. The Miquel Cir
le, [12, Ex. 5℄If four 
ir
les are arranged in sequen
e, ea
h two su

esive 
ir
les interse
ting,and a 
ir
le pass through one pair of ea
h su
h pair of interse
tions, then theremaining interse
tions lie on another 
ir
le.

Figure 3: The Miquel Cir
le
[12℄ quotes the problem as hard for theDes
artes-Wu approa
h and proposes a moregeometri
 solution within the geometri
 frame-work developed in that paper. The problemhas even a 
onstru
tive solution: Take fourpoints A1; : : : ; A4 on a 
ir
le around the ori-gin O, 
enters M12; : : : ;M41 for 
ir
les passingthrough (A1; A2); : : : ; (A4; A1) and 
ompute forea
h 
onse
utive pair of su
h 
ir
les the se
ondinterse
tion point (it has rational 
oordinates inthe parameters u1; : : : ; v4).Here is the GeoCode formulation:<prooftype> 
onstru
tive </prooftype><parameters> [u1, u2, u3, v1, v2, v3, v4℄ </parameters><Points> $O:=Point[0,0℄; $A1:=Point[1,0℄; </Points><
oordinates>$A2:=
ir
le_slider[$O,$A1,u1℄;$A3:=
ir
le_slider[$O,$A1,u2℄;$A4:=
ir
le_slider[$O,$A1,u3℄;3Our Linux version of Maple 8 yields an empty solution set for solve(x23� t2; x3) if the GeoProver pa
kageis loaded. 18



$M12:=line_slider[p_bise
tor[$A1,$A2℄,v1℄;$M23:=line_slider[p_bise
tor[$A2,$A3℄,v2℄;$M34:=line_slider[p_bise
tor[$A3,$A4℄,v3℄;$M41:=line_slider[p_bise
tor[$A4,$A1℄,v4℄;$
12:=p
_
ir
le[$M12,$A1℄;$
23:=p
_
ir
le[$M23,$A2℄;$
34:=p
_
ir
le[$M34,$A3℄;$
41:=p
_
ir
le[$M41,$A4℄;$B1:=other_

_point[$A1,$
12,$
41℄;$B2:=other_

_point[$A2,$
12,$
23℄;$B3:=other_

_point[$A3,$
23,$
34℄;$B4:=other_

_point[$A4,$
34,$
41℄;</
oordinates><
on
lusion>$result:=is_
on
y
li
[$B1, $B2, $B3, $B4℄;</
on
lusion>The simpli�
ation of the resulting rational expression in seven parameters indeed turned outto be very hard and no one of the CAS (Maple, MuPAD, Redu
e) mastered the task. Thesituation 
ompletely 
hanges if v1; : : : ; v4 are assigned random integers (not too big, < 100).Several runs with di�errent settings always yield 0 (where Maple simpli�ed the new expressionmu
h faster than MuPAD or Redu
e).5 Implementing the GeoCode StandardFor real usability of the GeoCode 
on
ept one has to estimate the e�orts required to imple-ment this standard. Even though there is not yet pra
ti
al experien
e with already existinggeometry theorem provers the semanti
 similarity of \foreign" spe
ial geometri
 proof s
hemessuggests that su
h an interfa
e 
ould easily be implemented. We suggest to divide that imple-mentation in two parts as des
ribed for the GeoProver pa
kages for di�erent target CAS: The�rst part provides (e.g., Perl based) tools to translate GEO proof s
hemes into a CAS spe
i�
form that �xes requirements of naming and syntax 
onventions. In a se
ond part these trans-lated proof s
hemes are passed to a spe
ial interfa
e that maps the GeoCode fun
tionality tothe target CAS.In general, for the se
ond part one has to implement the GeoCode fun
tionality in thetarget prover language. This requires extensibility of that language and a

ess to the sour
e
ode or intera
tion with the system developers if su
h an interfa
e 
annot be added as asupplementary pa
kage.Note that the GeoCode syntax provides not only points but also line and 
ir
le obje
tsas geometri
 primitives. It is a spe
ial design de
ision of many geometry theorem provers,e.g., D.Wang's GEOTHER [14℄, not to introdu
e the latter obje
ts as basi
 but to takeonly point obje
ts as primitives. A prover extension that respe
ts this spirit 
an implementlines and 
ir
les as derived obje
ts and represent lines by two base points and 
ir
les bypoint-
enter pairs. This is 
on
eptually already present in Wang's prover and merely shouldbe made expli
it. To support su
h an approa
h we removed dire
t 
onstru
tors for lines19



and 
ir
les from their homogeneous 
oordinates (i.e., the 
onstru
tors Line[a1; a2; a3℄ andCir
le[a0; a1; a2; a3℄) from the GeoCode standard in version 1:2.A more serious problem arises with geometry theorem provers that do not support nestedfun
tion 
alls. This is typi
al for systems that 
ontain a drawing tool, sin
e all intermediate
onstru
tion steps leave their tra
e in a pi
ture. Usually su
h systems represent and addressgeometri
 obje
ts through expli
it identi�ers. To �t generi
 GeoCode proof s
hemes with su
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######################################################################<Type> GEO </Type><Key> Cathedral_1 </Key><prooftype> equational, dedu
tion </prooftype><vars> [x1,x2,r℄ </vars><Points>$O:=Point[0,x1℄; $X:=Point[0,x2℄;$A:=Point[-1/4,0℄; $Q:=Point[7/12,0℄; $M:=Point[0,0℄;</Points><
oordinates>$
1:=p
_
ir
le[$A,$M℄; $
2:=p
_
ir
le[$Q,$A℄; $
3:=p
_
ir
le[$O,$X℄;</
oordinates><polynomials>$polys:=List[is_

_tangent[$
1,$
3℄,is_

_tangent[$
2,$
3℄,r-(x1-x2)℄;</polynomials><solution>$result:=geo_solve[geo_eliminate[$polys,$vars,List[x1,x2℄℄,r℄;</solution>######################################################################A proof s
heme for the Cathedral example [11, 5.3℄ as GEO re
ord
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