The SymbolicData GEO Records —
A Public Repository of Geometry Theorem Proof Schemes

Hans-Gert Grabe, Univ. Leipzig, Germany

November 26, 2002

1 Introduction

Geometry is not only a part of mathematics with ancient roots but also a vivid area of modern
research. Especially the field of geometry called by some negligence “elementary” continues to
attract the attention also of the great community of leisure mathematicians. This is probably
due to the small set of prerequisites necessary to formulate the problems posed in this area
and the erudition and non formal approaches ubiquitously needed to solve them. Examples
from this area are also an indispensable component of high school mathematical competitions
of different levels upto the International Mathematics Olympiad (IMO) [10].

The great range of ideas being involved with elementary geometry theorem proving in-
spired mathematicians to search for a common framework that allows to discover such geo-
metric statements or, at least, to prove them in a more unified way. These attempts may be
traced back until ancient times, e.g., to Euclid and his axiomatic approach to geometry.

A special common framework for geometry theorem proving was known at least since
Descartes and his coordinate method: Translate geometric configurations into algebraic rela-
tions between coordinates and try to solve the algebraic counterpart of the geometric problem
by algebraic methods. It was this framework that inspired the young Gauss for his famous
solution to construct a regular 17-gon by ruler and compass.

With the increasing capabilities of modern computer equipment to do term rewriting
and symbolic algebraic manipulations this approach obtained new power. The surprising
observation that tedious but mostly straightforward algebraic manipulations allow to derive
(mathematically strong!) proofs for many theorems in geometry with even ingenious “true
geometric” proofs led many researchers to focus anew on questions of automated deduction
of geometric statements.

The attempts to algorithmize this part of mathematics found their first culmination in
the 80’s in the work of W.-T. Wu on “the Chinese Prover”, see, e.g., [20, 19] and the surveys
in [21] or [22]. In the following these ideas were largely extended by different people, among
them the “Chinese provers” in Wu’s school at MMRC. Let’s mention only the remarkable
book [2] of S.-C. Chou who proved 512 geometry theorems with this mechanization method.

There are two conclusions to be drawn from Chou’s book. First, the applicability of alge-
braic methods to geometry theorem proving is really convincing. A surprisingly great number
of examples fall into the class of constructive problems (explicitely constructive in [23]), where
the geometric configuration can be constructed step by step in such a way that new coordi-
nates depend rationally on (free parameters and) coordinates of already constructed objects

and the geometric conclusion translates into a rational expression in these coordinates that
should vanish. In this situation the solution of the algebraic problem reduces to a zero simpli-
fication problem of a rational expression in several (algebraically independent) variables. This
problem is well understood and admits an efficient solution that is implemented in the core
of all major (and minor) Computer Algebra Systems (CAS). Nevertheless real such simplifi-
cations may be very time and memory consuming, so that in some cases a non-constructive
algebraic translation has to be preferred.

The coordinate method yields mathematically strong proofs for geometric statements with
a serious drawback: Due to the algebraic nature of the intermediate steps these proofs cannot
be retranslated to geometric reasoning but for a small number of cases. Often the algebraic
statements “fit together” but the underlying geometry remains “invisible”. More geometric
approaches are discussed, e.g., in [3]. They still use polynomial computations, but take
geometric invariants like areas and Pythagoras differences instead of coordinates of points as
the basic quantities. Thus the geometric meaning for each step of the proof is clear.

Second, the proofs are not “automated” but “mechanized” in the following sense: A
partly informal human readable geometric statement requires a translation into a strong
computer readable syntax. In Chou’s book [2] these proof schemes or coordinatizations, i.e.,
descriptions of geometric configurations of points, lines, and circles in a syntactically strong
way, are composed by the author in a LISP like language and afterwards translated to their
algebraic counterparts by the computer. For some theorems the given coordinatization is
quite tricky, since the algebraic translation of the ad hoc solution is too hard to be handled
by the computer. Even though speaking about “automatic geometry problem-solving” ([22]),
also Wu emphasizes (on p. 12 of that paper and even in the title of [21]) on “mechanization
methods” rather than “automated deduction” in full accordance with modern concepts of
human-computer interaction. Such concepts consider computers not as automata but as
tools in a more complex human-computer environment that combines precision and speed of
computer equipment with human creativity and (informal) experience.

Mechanization of geometry theorem proving hence requires the creativity of diligent “proof
writers” to eliminate all informal elements from a geometric statement and to fix the result
in a (completely formalized) geometric proof scheme. These proof schemes are the starting
point for further automated translation to, e.g., algebraic statements.

For intercommunication purposes and to store proof schemes in a common publicly avail-
able repository it is necessary to develop a generic proof scheme language standard that can be
implemented with appropriate tools by all interested parties. In this paper we describe a first
approach to such a standard, the GeoCode. 1t is used to store proof schemes as GEO records
in a repository that is publicly available as part of the SymbolicData Project [13]. At the mo-
ment the SymbolicData GEO collection contains more than 250 such proof schemes, mainly
from [2]. Special SymbolicData tools are designed to support the syntactical translation of
GeoCode into proof scheme languages of special geometry theorem provers that support this
common interface. At the moment — as a first reference application — this interface is im-
plemented in the author’s GeoProver packages [7], that provide tools to run proof scheme
translations based on the coordinate method on one of the major CAS (Maple, Mathematica,
MuPAD, Reduce).

The GeoCode standard evolved in a tight interplay between the collection of proof schemes
and their evaluation with different versions of the GeoProver on different platforms. As a
result of the discussions at the conference ADG-02 the standard was revised once more in the
following directions:

1. The proof schemes collected so far used algebraic expressions to detect equality of an-
gles, segments, triangle areas etc. To serve also more geometric approaches (e.g., the
area method) these algebraic expressions were substituted by function calls with clear
geometric meaning like Equal, eqdist etc.

2. The GeoCode standard uses Point, Line and Circle as geometric types. Since most
of the geometry theorem provers take points as basic primitives and consider lines and
circles as derived objects, the constructors Linela;, as, ag] and Circle[cy, c1, 9, c3] were
removed from the standard.

Moreover, the definition of free points was singled out into a special attribute Points of
the GEO proof scheme record to separate them from true geometric construction steps.

3. The names of the GeoCode functions were adjusted once more.

Since the GeoCode description is fixed in the same SymbolicData format as the GEO records
themselves such adjustments are well supported by the SymbolicData action concept and the
Perl string manipulation facilities. This allows to write compact Perl scripts to execute the
required changes in the GEO proof scheme records.

This paper starts with some background on geometry theorem proving (section 2). Then
we describe the design of the GEO records, the syntax of the GeoCode standard and the Geo-
Prover packages as an implementation of that standard (section 3). In section 4 we discuss
by means of examples how to compile new (generic) proof schemes, to translate them into
GeoProver notion, to run this code on different CAS and to experiment with the resulting
algebraic problems.

For real usability of the GeoCode concept one has to estimate the efforts required to
implement this standard for other provers. Even though there is not yet practical experience
with already existing geometry theorem provers the semantic similarity of “foreign” special
geometric proof schemes suggests that such an interface should easily to be implemented. The
problem is discussed in more detail in section 5 on the special geometric language used in [17]
and, in a slightly revised form, also in D.Wang’s GEOTHER project [14], see also [16].

A main problem to translate GEO records into geometric proof schemes for special geome-
try theorem provers is posed by different programming paradigms followed by the underlying
geometry theorem provers. The GeoCode standard supports a functional programming style
and the GEO record attribute values heavily use nested function calls. Several provers and
dynamical geometry softwares (DGS) do not support nested function calls since they create
and address geometric objects through identifiers.

We studied that problem within the task to translate our (constructive) proof schemes
also to construction schemes that can be interpreted by DGS to draw a picture of the given
geometric configuration or to generate a human readable construction plan. Such facilities are
part of integrated geometry theorem provers as, e.g., D. Wang’s GEOTHER prover [14, 16] or
the Geometry Expert, [5]. We developed a first (Perl based) prototype interface of constructive
GEO proof schemes to the GEONEx T system [6] that really denests nested function calls.

2 Geometry Theorem Proving and the Coordinate Method

As already described in the introduction the main approach to mechanized geometry theorem
proving considered so far depends on Descartes-Wu'’s coordinate method, translates geometric

statements into their algebraic counterparts, i.e., statements about systems of polynomial or
rational functions, and tries to solve these algebraic problems by algebraic methods.

2.1 Geometry Theorems of Constructive Type

Usually geometric constructions can be compiled from a small number of elementary con-
structions, e.g., drawing a line through given points, constructing intersection points, circles
with given parameters etc. In the same way also the coordinate representation of geometric
statements can be produced cascading only a small number of elementary functions and data
types. Hence interpreting the function calls in a geometric proof scheme in such an algebraic
manner yields its algebraic translation as the starting point for the application of algebraic
methods.

Note that the same proof scheme can be interpreted in a completely different way, e.g., by
a drawing tool or geometry theorem prover based on a different method. This aspect will be
discussed below. In this section we identify proof schemes and their algebraic translations.

We use points, lines and circles as basic objects with symbolic or numerical coordinates:

(x,y) the point (z,y),

(91, 92.93) the line {(z,y) : g1+ g2y + g3 = 0}, and

(c1,c2,¢3,¢4) the circle {(z,y) : 1 (22 +y?) + cox +c3y +cq = 0}.
Let midpoint(X,Y’) be the midpoint of the segment XY, pp_line(X,Y) the line through X
and Y and is_concurrent(a, b, ¢) a polynomial condition (in fact, a determinantal expression)
that vanishes iff the lines a,b,c pass through a common point. The return values of all
these functions are (sequences of) rational expressions in the coordinates of the formal input
parameters.

With these functions at hand, e.g., the centroid intersection theorem can be proved in the
following way: Choose generic points

A :=Point(ui,u2); B :=Point(us,us); C :=Point(us,us);
compute coordinates for
Ay :=midpoint(B,C); Bj:=midpoint(A,C); C;:=midpoint(A4, B);
and evaluate the statement
is_concurrent(pp-line(A, A1), pp-line(B, By),pp-line(C, C})) (1)

To prove this theorem (and other theorems of this type) means to compose a nested rational
expression like (1) and to check if it simplifies to zero. If it does, it will simplify to zero
also for (almost) all special geometric configurations obtained from the generic configuration
plugging in special numerical values for uy, ..., ug.

In general, we say that a geometric configuration is of constructive type, if its generic
configuration can be constructed step by step in such a way, that the coordinates of each
successive geometric object can be expressed as rational functions in the coordinates of al-
ready constructed objects and algebraically independent variables, and the conclusion can be
expressed as vanishing of a rational function in these coordinates.

Such a theorem is generically true if and only if its configuration is not contradictory and
the conclusion expression simplifies to zero.

Note that due to Euclidean symmetry even for generic configurations some of the coordi-
nates can be chosen in a special way.

2.2 Geometry Theorems of Equational Type

Surprisingly many geometry theorems can be translated into statements of constructive type.
Problems cause geometric objects derived from non-linear geometric conditions (angles, cir-
cles) if they are not uniquely defined or their coordinates cannot be rationally expressed in
the given indeterminates. Geometric configurations with such objects require other proof
techniques.

For example, given generic points A = Point(aq, as), B = Point(by, by), C = Point(cy, ¢a),
a point P = Point(z1,z2) is on the bisector of the angle / ABC iff / ABP = / PBC, or, in
GeoProver notation, iff

12_angle(pp-line(A, B),pp-line(P, B)) = 12_angle(pp-line(P, B),pp-line(C, B))

In this formula 12_angle(g,h) denotes the tangens of the angle between the lines g =
(91,92,93) and h = (hy, ho, hg) that can be computed as

92 h1 — g1 h
grhi+gahy

Clearing denominators this condition on P translates into a polynomial of (total) degree
4 in the generic coordinates and quadratic in the coordinates of P. It describes the condition
on_bisector(P,A,B,C) for P to be on either the inner or the outer bisector of / ABC.
Note that in unordered geometry there is no way to distinguish between the inner and outer
bisectors.

To prove the bisector intersection theorem lets “compute” the coordinates of the intersec-
tion points P of the bisectors through A and B and show that they belong to (one of) the
bisectors through C. Due to Euclidean symmetry we can choose special coordinates for A
and B to simplify calculations.

A:=Point(0,0); B:=Point(1,0); C:=Point(ul,u2); P:=Point(x1,x2);

polys:={on_bisector(P,A,B,C), on_bisector(P,C,A,B)};

{—21‘24—2’&11‘24—21‘21‘1—21‘2’&11‘1—U2$22+UQ—2U2$1+UQ$12,

2x0U1 L1 — U 1'12 + u9 :E22}

polys is a system of two polynomial equations of degree 2 in (x1,x9) with coefficients in
Q(u1,us2). It has 4 solutions that correspond to the 4 intersection points of the bisector pairs
through A and B. They can be computed, e.g., with Maple:

solve(polys,{x1,x2});

—2%1 + 2u; %1
{xgz%l,x1=1/2u2 Al 4 2u % }

ug — %1
%1 = RootOf (4u2 ARE (—8u1? — 8ug? + 8uy) 73
+ (—4U1 U9 + 4U12U2 — 4U2 + 4U23) _Z2 + 4U22_Z — U23)

The solution involves algebraic RootOf-expressions that require a powerful algebraic engine
to cope with.

Another approach uses direct reformulation of the geometry theorem as a vanishing prob-
lem of the polynomial conclusion on the zero set of the system of polynomials that describe
the given geometric configuration.

For our example, consider the conclusion polynomial

con:=on_bisector(P,B,C,A);
2 2, _ 2, 2 2 2 _ 2 _
2U1°To X1 + 2u9 Lo UL — 2Ug T17UL — U Lo~ + U X1” + 2U9 T UL 2U9°x1 T
2zou1 X1 — 'LL12'LL2 + 2U22$2 — U23 + 2z9 U12 — 2u13x2 + QUQ?’:El —2u1 9 'LL22
and check if it vanishes on the variety of zeroes of polys regarded as zero dimensional poly-

nomial system in Q(uy,u2)[z1,x2]. This follows if the normal form of con with respect to a
Grobner basis of polys vanishes. Hence the following Maple computation verifies the theorem:

with(Groebner) :
TO:=plex(x1,x2): gb:=gbasis(polys,T0):
normalf (con,gb,T0) ;

0

In general, this kind of algebraization of geometry theorems by the coordinate method yields
a polynomial ring S = k[v] with variables v = (v1,...,v,), a polynomial system F' C S that
describes algebraic dependency relations in the given geometric configuration, a subdivision
v = xUu of the variables into dependent and independent ones, and the conclusion polynomial
g(x,u) € S.

A set of variables u is independent wrt. an ideal I = I(F) iff kju] NI = (0), i.e., if u is
algebraically independent on the variety Z(F') of zeroes of F. In most practical applications
such a subdivision is obvious. A strong verification can be derived from a Grébner basis of
F wrt. an appropriate term order.

Z(F) may be decomposed into irreducible components that correspond to prime compo-
nents P, of the ideal I = I(F') generated by F over the ring S = k[x,u]. Since P, D I the
variables u may become dependent wrt. P,. Prime components where u remains indepen-
dent are called generic, the other components are called special. By definition, every special
component contains a non zero polynomial in the independent variables u. Multiplying them
all together yields a non degeneracy condition h = h(u) € k[u] on the independent variables
such that a zero ¢ € Z(F) with h(c) # 0 necessarily belongs to one of the generic compo-
nents. Hence they are the “essential” components and we say that the geometry theorem is
generically true, when the conclusion polynomial g vanishes on all these generic components.

If we compute in the ring Sy = k(u)[x] as we did in the above example, i.e., consider
the independent variables as parameters, exactly the generic components of I remain visible.
Hence if the normal form of g wrt. a Grobner basis G of F' computed in Sy vanishes the
geometry theorem is generically true. More subtle examples can be analyzed with the Grobner
factorizer or more advanced techniques.

There are other algebraic techniques to analyze such polynomial systems, e.g., based on
pseudo division and triangular sets. See [11] or the monograph [18] for a more complete
survey.

2.3 Mechanized Geometry Theorem Proving

To really run mechanized geometry theorem proofs as described in the previous subsection
requires a target CAS and several ingredients:

(1) We need a “proof writer” that writes (realistic) proof schemes for given informal state-
ments of geometry theorems.

(2) We need tools to translate geometric statements into their algebraic counterparts as
input for the target CAS.

(3) The CAS should be capable of the required algebraic manipulations.

(4) The CAS should provide tools to analyze the algebraic situation (e.g., to solve systems
of equations, to compute Grobner bases and normal forms etc.)

For Descartes-Wu’s approach, topic (3) requires only facilities to compute with rational
expressions and is usually not the bottleneck for geometry theorem proving. For some proofs
topic (4) may be really challenging since it exploits the full compute power of the algebraic
engine of the target CAS. On the other hand different proof schemes for the same problem
can yield algebraic formulations of very different run time also within the same CAS.

In most cases topic (1) is straightforward, in particular if the informal geometric statement
is already highly constructive. But in some applications the “proof writers” had to develop
really ingenious and non trivial ideas to write reliable proofs that can be run automatically.
For example, Wu proposed in [21] the following constructive proof for the bisector intersection
theorem:

e Start with the vertices A, B and the (future) intersection point P of the bisectors through
A and B.

e Draw the lines ¢ through AB, d through AP and e through BP.
e Draw lines u,v derived from c¢ by reflection wrt. to the axes d, e.

These lines will meet in a point C' such that d and e are the bisectors of ABC through
A and B.

e Prove that P is also on the third bisector.

Geometry theorem prover usually provide tools for steps (2-4) to run proof schemes written
in a prover specific language automatically. With a general purpose CAS at hand it is enough
to have tools for (2). Such translation tools for Maple, MuPAD, Mathematica, and Reduce
are provided by the author’s GeoProver packages, [7], see below.

The main drawback of all these systems is the restricted interoperability of proof schemes.
To fix a proof scheme for automated processing by different provers requires a generic language
that can be mapped to all target systems. Below we report about our experience with the
GeoCode language that was invented to store generic proof schemes in the SymbolicData GEO
record collection.

Here is the notion of Wu’s constructive proof scheme of the bisector intersection theorem
in GeoCode notation:

<Points>
$A:=Point[0,0]; $B:=Point[1,0]; $P:=Point[ul,u2];
</Points>
<coordinates>
$11:=pp_line[$A,$B];
$12:=sym_line[$11,pp_line[$A,$P]1];
$13:=sym_line[$11,pp_line[$B,$P]1];

</coordinates>

<conclusion>
$result:=on_bisector[$P,$A,$B,intersection_point [$12,$13]];

</conclusion>

S.-C. Chou is probably one of the most diligent “proof writers” who collected in [2] more than
500 examples of geometric statements and appropriate algebraic translations.

During our work on the SymbolicData GEO collection we stored (and partly modified and
adapted) about 200 of them. We collected also solutions of geometry problems from other
sources, e.g., the IMO contests, see [10]. Much of this work was done by my “proof writers”,
the students Malte Witte and Ben Friedrich, who compiled first electronic versions for many
of these examples.

3 GeoCode and GEO Records

3.1 The SymbolicData Project

The SymbolicData project was set up to create and manage a publicly available repository of
digital test and benchmark data from different areas of symbolic computation and to develop
tools and concepts to manage such data both in the repository and at a local site. In a
first stage we concentrated on the development of practical concepts for a convenient data
exchange format, the collection of existing benchmark data from two main areas, polynomial
system solving and geometry theorem proving, and the development of appropriate tools to
process this data. A tight interplay between conceptual work, data collection, and tools
(re)engineering allowed continuously to evaluate the usefulness of each of the components.

For easy reuse we concentrated on free software tools and concepts. The data is stored
in a XML like ASCII format that can be edited with your favorite text editor. The tools are
completely written in Perl using Perl 5 modular technology.

Some of our ad hoc concepts of data representation changed several times and (although
meanwhile being quite elaborated) surely will partly change in the future (e.g., lists and
hashes will probably be stored in a more XML compliant form). Having data available in
electronic form (so far) it was very easy to translate it into the revised formats. Hence the
most complicated part of the project is the collection of benchmark data and its translation
from the foreign to the current format of the repository. Note that our concept of data
representation is very flexible. The data format can be specified by the user in an easy
manner and very broad range. I refer to [1, 8, 9] and the SymbolicData documentation for
more details.

The project is organized as a free software project. The CVS repository is equally open
to people joining the SymbolicData project Group. Tools and data are freely available also
as tar-files from our Web site under the terms of the GNU Public License.

The SymbolicData project is part of the benchmark activities of the German “Fachgruppe
Computeralgebra” who also sponsored the web site [13] as a host for presentation and down-
load of the tools and data developed and collected so far. We kindly acknowledge support
also from UMS MEDICIS of CNR/Ecole Polytechnique (France) who provides us with the
needed hard- and software to run this web site.

3.2 SymbolicData Files and SymbolicData Records

Records in the SymbolicData data base are stored as ASCII files (sd-files) in a (flat) XML
like syntax. A typical example of such a record, the record Parallelogram_2 in the GEO
table, is given on page 10. It contains information and a mechanized proof scheme for the
following geometry theorem:

The intersection point of the diagonals of a parallelogram is the midpoint of each
of the diagonals.

Some of the attributes of that record (Type, Key, CRef, ...) serve for identification or
store relational information. The other fields store the different parts of the proof scheme in
GeoCode syntax.

Note that the description of the internal structure of these attributes is given in the same
format in a META/GEOQ table. Hence new attributes can be added and existing attributes can
be modified in an easy manner.

The sd-files are tight to Perl hashes (sd-records) by the SymbolicData tools in a trans-
parent way. The SymbolicData tools deliver such a hash object to the application programmer
for further Perl manipulation. An elaborated actions concept reduces common programming
overhead to a minimum. Since the detailed requirements of different user driven tasks are
not known in advance to the SymbolicData developers it is difficult (and probably even not
worth) to design a more reliable interface.

3.3 SymbolicData Proof Schemes

SymbolicData GEO proof schemes are divided (roughly) into two types according to their
prooftype attribute: constructive and equational.
The generic variables are provided as values of two attributes:

parameters a list u of independent parameters
vars a list x of dependent variables (equational proofs only)

For equational proofs the variable lists x and u are chosen in such a way that u is a maximal
independent set of variables for the given algebraic variety over k[x, u] as defined above.
The basic attributes (with GeoCode values) are:

Points the free points of the proof scheme

coordinates assignments that compose step by step the generic geometric configura-
tion of the proof scheme

conclusion the conclusion of the proof scheme

This already completes the data required for a constructive proof scheme. For equational
proof schemes the following additional attributes are defined:

polynomials a list of GeoCode predicates that correspond to polynomial or rational
conditions describing algebraic dependency relations in the given geo-
metric configuration

constraints a list of GeoCode predicates that correspond to polynomial non degen-
eracy conditions

solution a way to solve the algebraic problem (given in extended GeoCode syntax)

HESHHAESHHAFHHAFH R HH AR HH RS HHASHH RS HRAR SRR SRR A SRR A RS
Record ’GEO0/Parallelogram_2’

<Id> GEO/Parallelogram_2 </1d>

<Type> GEO </Type>

<Key> Parallelogram_2 </Key>
<prooftype> constructive </prooftype>
<parameters> [ul, u2, u3] </parameters>
<Points>

$A:=Point[0,0]; $B:=Point[ul,0]; $D:=Point[u2,u3];
</Points>

<coordinates>

$C:=par_point [$D,$A,$B];

$P:=intersection_point [pp_line[$A,$C] ,pp_line[$B,$D]];
</coordinates>

<conclusion> $result:=eqdist[$A,$P,$C,$P]; </conclusion>
<CRef>

PROBLEMS/Geometry/Parallelogram => problem description
</CRef>

<Version> ... </Version>

<ChangeLog>

Sep 7 2002 graebe: Translated to GeoCode 1.3

Sep 6 2002 graebe: new tag ’Points’ created

Sep 2 2002 graebe: $C=par_point[..]

Feb 10 2002 graebe: translated to GeoProver 1.2 syntax

</ChangelLog>
<PERSON> graebe </PERSON>
<Date> Nov 1 1999 </Date>

End of record ’GE0/Parallelogram_2’
HESHHASH RS HHAFH AR R BB R R B A SR RS HHRBESH B R S B AR SR B RS H R AR

The GEO record ‘Parallelogram_2’

10

The proof idea can be sketched within the ProofIdea attribute as plain text if not yet
evident from the code. See [9] for a detailed description of the GEO record structure. Below
we concentrate on the GeoCode part.

3.4 The GeoCode Syntax

The design of the generic GeoCode language is mainly motivated by our aim to fix geometry
theorem proof schemes in such a way that they can easily be translated to different target
systems. A good but expensive idea would be to define an appropriate (context free) pro-
gramming language and to write cross compilers or to invent a reliable (full) XML markup
and to use style sheet translations. Since the syntaxes of the target languages are very similar
we decided to avoid these efforts and defined a generic language that can be cross compiled
using only regular patterns. Due to its elaborated pattern matching facilities Perl is best
suited to realize this approach.

We assume proof schemes to be composed by a sequence of assignments with nested
function calls as right hand sides that refer to previously defined geometric objects and scalars
as arguments. To be mapped to different target systems the GeoCode language should meet
the following requirements:

(1) Variable, symbol and function names can be identified.

(2) The generic GeoCode can be mapped to the syntax of the target system without name
clashes.

In this context the words ‘variable’ and ‘symbol’ are used in the following sense: the
former are ‘symbols with values’ (e.g., names for points, lines, circles), the latter ‘symbols
without values’ (i.e., names for parameters and variables in the previous sense). It is a
special peculiarity of symbolic computations that these name spaces usually overlap. For
geometry theorem proof schemes this overlap can be avoided. We use Perl like syntax (i.e.,
\$ [a-zA-z] [a-zA-z0-9] * in Perl regexp notation) for variable names and small letter / digit
combinations (i.e., [a-z] [a-z0-9]* in Perl regexp notation — we don’t allow capital letters
to avoid name clashes both in Reduce and Mathematica) for symbol names.

Most CAS use parentheses both to group arithmetic expressions and argument lists in
function calls. Since this cannot be distinguished within a regular language we use the Math-
ematica convention (i.e., brackets) for function call notation'.

Equational GEO records usually contain also a solution tag with a description how the
algebraic task can be solved. This description is fixed in an extended GeoCode syntax. Inter-
face packages for Maple, MuPAD, Mathematica, and Reduce to map these generic commands
to appropriate constructs are part of the SymbolicData distribution. For details see [9].

The names and signatures of all the GeoCode functions are stored in the SymbolicData
GeoCode table and can be extracted, extended and modified in the same way as other sd-
records. Two such GeoCode records are reproduced below. The first one corresponds to an
‘inline’ function that requires a special implementation, the second one to a 'macro’ with
a generic definition in GeoCode syntax as value of the code attribute that can be used to

"Note that most of the arithmetic expressions were replaced by new geometric predicates Equal, eqdist,
Normal etc. in the GEO records during preparation of version 1.3 (finished after the ADG-02 conference) to
emphasize the geometric nature of the proof schemes.

11

create an implementation automatically. For a complete description of all functions see the
SymbolicData GeoCode documentation.

3.5 The GeoProver Packages

Really to run proof schemes written in GeoCode syntax with a geometry theorem prover
requires to translate the GeoCode to equivalent code in the special language of the target
prover. We propose the following approach: First, write Perl tools to translate the generic
proof scheme into a syntactic form that is more appropriate for the target system (e.g.,
change square bracket, fix variable and function names, etc.). This is well supported by
the SymbolicData actions concept and sample implementations for such translators in the
bin/GEQ directory of the SymbolicData distribution.

Second, write an interface package in the language of the target prover that maps the Geo-
Code functions to the prover specific functions. The author’s GeoProver packages implement
such interfaces for Maple, MuPAD, Mathematica, and Reduce.

For each of these CAS the GeoProver (formerly Geometry) provides a small package
for mechanized (plane) geometry manipulations with non degeneracy tracing and a set of
functions to handle generic and special geometric configurations containing points, lines and
circles.

For a flavor of the usage resp. a formal description of all functions see the sample calcula-
tions in the previous section and the documentation [7]. For some target systems there is also
a plot extension that allows to draw graphics from scenes, i.e., (of course special) geometric
configurations.

A first prototype of the GeoProver grew out from a course of lectures for students of
computer science on this topic held by the author at the Univ. of Leipzig in fall 1996. It was
updated and completed to version 1.1 of a Reduce package after a similar lecture in spring
1998. Later on in cooperation with Malte Witte, at those times one of my students, the
package was translated to the other target systems.

Since version 1.2 there is a separate description of the GeoCode language that was fixed in
SymbolicData format and added as the GeoCode table to the SymbolicData Project later on.
Now the complete GeoProver source code is generated from a platform-specific 'inline’ code
part for the basic functions and generic GeoCode code values for advanced functions using
special SymbolicData tools. This facilitates a concise code management of the GeoProver
source code if the GeoCode standard changes during development.

4 Some Examples

To get a look and feel about the efforts required to compile new GeoCode proof schemes,
to translate them with SymbolicData tools to GeoProver applications and to run them on
different target CAS let’s consider some examples.

12

HEHBHHEH AR HEHBHHEHBHHEH AR HEHHBHBRH R HAFH AR B R B R HBHHRH RS H
Record ’GeoCode/pp_line’

<Id> GeoCode/pp_line </14d>
<Type> GeoCode </Type>
<Key> pp_line </Key>
<call> pp_line[$A: :Point,$B: :Point]::Line </call>
<verbose> 1line through A and B </verbose>
<description>

The line through A and B.
</description>

End of record ’GeoCode/pp_line’
HHAHBHEHEHGHHR BB BB HERGRRBHRBRRRHRR R BHBHBHBHEHEHEHEHEHEH

#Hit R R R R R R R R R SRR SRR SSRGS RS R S
Record ’GeoCode/altitude’

<Id> GeoCode/altitude </1d>

<Type> GeoCode </Type>

<Key> altitude </Key>

<call> altitude[$A::Point,$B: :Point,$C: :Point] : :Line </call>
<verbose> altitude from A onto g(BC) </verbose>

<code> ortho_line[$A,pp_line[$B,$C]] </code>

<description>

The altitude from A onto $g(BC)$.
</description>

End of record ’GeoCode/altitude’
#Hit iR R R R R R R R R SRR R SRS SRS S RS S RS g

The GeoCode records 'pp_line’ and ‘altidute’

13

1. The “cathedral example”, [11, 5.3]

P, Q) are centers of the arcs CB,AC, respec-
tively; arcs DE, DF are drawn with R, S as cen-
ters, respectively, and AQ as the radius. Fur-
ther, AQ = BP = %AB. The goal is to find the
radius of the circle tangent to arcs EA,ED, HM
(with center A) and KM (with center D) as a
function of AB.

A M D NQ B
Figure 1: The “cathedral example”

We take the problem formulation and notational conventions from [11] with s = [AB| = 1.
In that paper line AB is taken as z-axis with origin at M (written as $M in GeoCode syntax)
and the following coordinates are assigned to points (using the GeoCode point constructor):

$0:=Point[0,y3]; $A:=Point[-3/12,0]; $Q:=Point[7/12,0]; $M:=Point[0,0];

Kapur’s original proof scheme contains 6 algebraic conditions that arize from the tangency
conditions of two circle pairs. A circle tangency condition yields 3 polynomials: If T} = (1, 1)
is the point of tangency of the circles around A and O these conditions are "I} on the circle
around A’, "T} on the circle around O’, and T, A, O are collinear’.

Here is that statement in the formal GeoCode syntax:

<vars> [x1,y1,x2,y2,y3,r] </vars>
<Points>
$0:=Point [0,y3]; $A:=Point[-1/4,0]; $Q:=Point[7/12,0]1; $M:=Point[0,0];
$T1:=Point [x1,y1]; $T2:=Point[x2,y2];
</Points>
<coordinates>
$cl:=pc_circle[$A,$M]; $c2:=pc_circle[$Q,$A];
</coordinates>
<polynomials>
$polys:=List[
on_circle[$T1,$c1], is_collinear[$A,$T1,$0], r~2-sqrdist[$0,$T1],
on_circle[$T2,$c2], is_collinear[$Q,$T2,$0], r"2-sqrdist[$0,$T2]1];
</polynomials>

pc_circle is the point-center circle constructor that returns a circle object. GeoCode sup-
ports Point, Line and Circle as geometric types. Note that on_circle[$T1,$c1] and
sqrdist [$T1,$A]-sqrdist [$M,$A] yield the same algebraic translation. Hence a similar
proof scheme may be composed without references to circle objects?.

The solution of the algebraic problem may be obtained if all variables but r are eliminated
from $polys and the remaining equation is solved for r. This can be stored in the solution
attribute of the GEO record in extended GeoCode syntax in the following way:

2With GeoCode version 1.3 better use the geometric predicate eqdist [$T1,$A,$M,$A] instead of the alge-
braic expression sqrdist[$T1,$A]-sqrdist [$M, $A]

14

<solution>
$result:=geo_solve[geo_eliminate[$polys,$vars,List[x1,y1,x2,y2,y3]1],r];
</solution>

In the spirit of dynamical geometry software another proof scheme with less variables can
be given if T} and T5 are taken as ’circle sliders’ that correspond to rational parameterizations
of such points:

<vars> [x1,x2,y3,r] </vars>
<Points>
$0:=Point[0,y3]; $A:=Point[-1/4,0]; $Q:=Point[7/12,0]; $M:=Point[0,0];
</Points>
<coordinates>
$T1:=circle_slider[$A,$M,x1]; $T2:=circle_slider[$Q,$A,x2];
</coordinates>
<polynomials>
$polys:=List[
is_collinear[$A,$T1,$0], r"2-sqrdist [$0,$T1],
is_collinear[$Q,$T2,$0], r~2-sqrdist[$0,$T2]1];
</polynomials>

Note that in this case the algebraic translations of the geometric conditions yields in fact
rational functions since the coordinates of T and T are not polynomial but rational. A
special algebraic approach is required for such proof schemes. A brute force call to the
MuPAD command solve($polys,$vars) produces 24 solutions with 12 different values of r.

A third approach uses the explicit circle tangency condition, that corresponds to a poly-
nomial condition on the circle parameters. It requires only 3 variables and translates to
a polynomial system. Take center O and a circumfere point X on the y-axis with generic
y-coordinates

$0:=Point [0,x1]; $X:=Point[0,x2];
$A:=Point[-1/4,0]; $Q:=Point[7/12,0]; $M:=Point[0,0];

add variables for the arcs (circles) that should be tangent

$cil:=pc_circle[$A,$M]; $c2:=pc_circle[$Q,$A]; $c3:=pc_circle[$0,%$X];

and fix the tangency conditions and another one for the radius r = z; — x5 of the circle c3
$polys:=List[is_cc_tangent[$c1,$c3], is_cc_tangent[$c2,$c3], r-(x1-x2)];

The problem is of equational type and poses a deduction task. There are no independent
variables and an algebraic solution can be obtained if x1, x5 are eliminated from the polyno-
mials and the remaining equation is solved for r. The corresponding GEO record is given on
page 22.

To translate and run that code with MuPAD we call the SymbolicData MuPADCode action.
It maps GeoCode syntax to GeoProver MuPAD syntax, resolves name clashes and yields
(GeoProver package loading omitted)

15

//==> Example Cathedral_1

clear_ndg(Q):

delete ’x1°’,’x27,’8’;

_vars:=geoList (x1,x2,s);

//coordinates

0:=Point(0,x1); _X:=Point(0,x2);

_A:=Point(-3,0); _Q:=Point(7,0); _M:=Point(0,0);
_cl:=pc_circle(_A,_M); _c2:=pc_circle(_Q,_A); _c3:=pc_circle(_0,_X);
//polynomials
_polys:=geoList(is_cc_tangent(_cl,_c3),is_cc_tangent(_c2,_c3),12*s-(x1-x2));
//solution
_result:=geo_solve(geo_eliminate(_polys,_vars,geolList(x1,x2)),s);
quit;

The core of that action is a 3-line Perl script

sub MuPAD
{
local $_=shift;
s/List\[/geolList\[/gs; # since List is now a key word
tr/\NI\J/\N(\)/;
s/\$(\w+)/_8$1/gs;
return $_;

}

Since the circle tangency condition is implemented in the GeoProver we can run that script
with MuPAD to get the solution

=5l b=l [= 5] [= i

in good accordance with [11]. Note that r = —% corresponds to the position of X on the

'top’ of O since r = 21 — 3. 7 = i% is also a common solution of the system given in [11]

but not discussed there. It corresponds to imaginary coordinates of O and hence is virtual.

A similar computation yields the length of the radius of the circle in the top region of
figure 1: With origin at D, the center O; and a circumfere point X of that circle on the y-axis
we get the proof scheme

<vars> [x1,x2,r] </vars>
<Points>
$D:=Point[0,0]; $01:=Point[0,x1]; $X:=Point[0,x2];
$S:=Point[5/6,0]; $P:=Point[-1/3,0]; $B:=Point[1/2,0];
</Points>
<coordinates>
$cl:=pc_circle[$S,$D]; $c2:=pc_circle[$P,$B]; $c3:=pc_circle[$01,$X];
</coordinates>
<polynomials>
$polys:=List[is_cc_tangent[$cl,$c3], is_cc_tangent[$c2,$c3], r-(x1-x2)];
</polynomials>

16

Running the corresponding computation with MuPAD yields the result

=31 -]

2. The Generalized Steiner Theorem, [17, Ex. 7]

Take three points Ao, By, Cy respectively on the three perpendicular bisectors of
BC, AC, AB of any triangle ABC' such that

d(Ay, BC) =t -|BC|, d(By, AC) =t |AC|, d(Cy, AB) =t-|AB|,

where d(P,QR) denotes the distance of the point P from the line QR and t is an
arbitrary non-negative number.

Then the three lines AAyo, BBy, CCy are concurrent.

Note that the statement of a problem may
be included in a SymbolicData record as
value of a new attribute, say Text, since
each such record admits “undefined” at-
tributes that are handled by the Symbolic-
Data tools in the same way as “defined”
ones. In the SymbolicData data base prob-
lem statements are stored in a special ta-
ble PROBLEMS and cross referenced in GEQ
records since several proof schemes may
refer to the same problem.

Figure 2: The Generalized Steiner Theorem

D.Wang solves that problem in [17] with oriented areas using a Clifford algebra approach
that avoids the introduction of virtual solutions. A straightforward coordinatization with
independent variables u1, uo,t and dependent variables z1, z2, x5 goes as follows:

<vars> [x1,x2,x3] </vars>
<parameters> [ul, u2, t] </parameters>
<Points>

$A:=Point[0,0]; $B:=Point[0,1]; $C:=Point[ul,u?2];
</Points>
<coordinates>

$A1:=midpoint [$B,$C]; $B1l:=midpoint[$A,$C]; $C1:=midpoint[$A,$B];
$A2:=1line_slider[p_bisector[$B,$C] ,x1];
$B2:=1ine_slider [p_bisector[$A,$C],x2];
$C2:=1line_slider[p_bisector[$A,$B],x3];
</coordinates>
<polynomials>
$polys:=List[sqrdist [$A1,$A2] -t "2*sqrdist [$B,$C],
sqrdist [$B1,$B2] -t~ 2*sqrdist [$A,$C],
sqrdist[$C1,$C2] -t "2*sqrdist [$A,$B]];
</polynomials>
<conclusion>

17

$con:=is_concurrent [pp_line[$A,$A2], pp_line[$B,$B2], pp_line[$C,$C2]1];
</conclusion>

It yields a polynomial system with 8 solutions in (x1,x9,x3) in the rational function field
k(u1,u2,t) that correspond to the different combinations of orientations of the triangles
ABC9, BCAy,CABs. 1 checked this for Maple 7, MuPAD 2.0, and Reduce 3.7 with the
solution

<solution>
$sol:=geo_solve[$polys,$vars];
$result:=geo_simplify[geo_eval[$con,$sol]l];
</solution>

that was translated with SymbolicData tools to GeoProver code for the different CAS. All
three CAS found that for exactly two of the 8 solutions the theorem is valid (i.e., the $result
simplifies to zero). Note that with ¢? replaced by ¢ only the Reduce solve command found
the same answer. Maple and MuPAD? created expressions with several root symbols that
could not be completely simplified in the following computation.

3. The Miquel Circle, [12, Ex. 5]

If four circles are arranged in sequence, each two succesive circles intersecting,
and a circle pass through one pair of each such pair of intersections, then the
remaining intersections lie on another circle.

[12] quotes the problem as hard for the
Descartes-Wu approach and proposes a more
o geometric solution within the geometric frame-
work developed in that paper. The problem
has even a constructive solution: Take four
points Aq,...,A4 on a circle around the ori-
gin O, centers Ms,..., My for circles passing
through (A1, Ag),.... (A4, A1) and compute for
each consecutive pair of such circles the second
Figure 3: The Miquel Circle intersection point (it has rational coordinates in
the parameters uy,...,vy4).

Here is the GeoCode formulation:

<prooftype> constructive </prooftype>

<parameters> [ul, u2, u3, vi, v2, v3, v4] </parameters>
<Points> $0:=Point [0,0]; $A1:=Point[1,0]; </Points>
<coordinates>

$A2:=circle_slider[$0,$A1,ull;
$A3:=circle_slider[$0,$A1,u2];
$A4:=circle_slider[$0,$A1,u3];

30ur Linux version of Maple 8 yields an empty solution set for solve (z3 —t2, z3) if the GeoProver package
is loaded.

18

$M12:=1ine_slider[p_bisector[$A1,$A2],v1];
$M23:=1ine_slider[p_bisector[$A2,$A3],v2];
$M34:=1ine_slider[p_bisector[$A3,$A4],v3];
$M41:=1ine_slider[p_bisector[$A4,$A1],v4];

$ci12:=pc_circle[$M12,$A1];
$c23:=pc_circle[$M23,$A2];
$c34:=pc_circle[$M34,$A3];
$cd41l:=pc_circle[$M41,$A4];

$B1:=other_cc_point [$A1,$c12,$c41];
$B2:=other_cc_point [$A2,$c12,$c23];
$B3:=other_cc_point [$A3,$c23,$c34];
$B4:=other_cc_point [$A4,$c34,$c41];
</coordinates>

<conclusion>

$result:=is_concyclic[$B1, $B2, $B3, $B4];
</conclusion>

The simplification of the resulting rational expression in seven parameters indeed turned out
to be very hard and no one of the CAS (Maple, MuPAD, Reduce) mastered the task. The
situation completely changes if vq,...,v4 are assigned random integers (not too big, < 100).
Several runs with differrent settings always yield 0 (where Maple simplified the new expression
much faster than MuPAD or Reduce).

5 Implementing the GeoCode Standard

For real usability of the GeoCode concept one has to estimate the efforts required to imple-
ment this standard. Even though there is not yet practical experience with already existing
geometry theorem provers the semantic similarity of “foreign” special geometric proof schemes
suggests that such an interface could easily be implemented. We suggest to divide that imple-
mentation in two parts as described for the GeoProver packages for different target CAS: The
first part provides (e.g., Perl based) tools to translate GEO proof schemes into a CAS specific
form that fixes requirements of naming and syntax conventions. In a second part these trans-
lated proof schemes are passed to a special interface that maps the GeoCode functionality to
the target CAS.

In general, for the second part one has to implement the GeoCode functionality in the
target prover language. This requires extensibility of that language and access to the source
code or interaction with the system developers if such an interface cannot be added as a
supplementary package.

Note that the GeoCode syntax provides not only points but also line and circle objects
as geometric primitives. It is a special design decision of many geometry theorem provers,
e.g., D.Wang’s GEOTHER [14], not to introduce the latter objects as basic but to take
only point objects as primitives. A prover extension that respects this spirit can implement
lines and circles as derived objects and represent lines by two base points and circles by
point-center pairs. This is conceptually already present in Wang’s prover and merely should
be made explicit. To support such an approach we removed direct constructors for lines

19

and circles from their homogeneous coordinates (i.e., the constructors Line|ay, as,a3] and
Circlelay, a1, a9, as]) from the GeoCode standard in version 1.2.

A more serious problem arises with geometry theorem provers that do not support nested
function calls. This is typical for systems that contain a drawing tool, since all intermediate
construction steps leave their trace in a picture. Usually such systems represent and address
geometric objects through explicit identifiers. To fit generic GeoCode proof schemes with such
a prover nested function calls should be denested. We experimented with a GeoCode interface
to dynamical geometry software (DGS) that uses the Perl eval’ mechanism to evaluate nested
GeoCode function calls and collects these calls as a list of construction steps in a generic
format. Later on these construction steps can be mapped to a special DGS, e.g., the system
GEONExT, [6], developed at the University of Bayreuth.

Experiments with different kinds of tools that support implementations entailed changes
of the GeoCode standard in the past and will entail new requirements and changes also in
the future. So far the power of the Perl string manipulation facilities and the SymbolicData
actions concept were well suited to support such changes, to scan the GEO records for obsolete
proof scheme commands and to fix them accordingly.

References

[1] O. Bachmann and H.-G. Grabe. The SymbolicData Project: Towards an electronic
repository of tools and data for benchmarks of computer algebra software. Reports on
Computer Algebra 27, Jan 2000. Centre for Computer Algebra, University of Kaisers-
lautern. See http://www.mathematik.uni-k1.de/"zca.

[2] S.-C. Chou. Mechanical Geometry Theorem Proving. Reidel, Dortrecht, 1988.

[3] S.-C. Chou, X.-S. Gao, and J.-Z. Zhang. Machine proofs in geometry, volume 6 of Series
on Applied Mathematics. World Scientific Singapore, 1994.

[4] X.-S. Gao, D. Wang, and L. Yang, editors. Automated Deduction in Geometry, Beijing
1998, volume 1669 of Lect. Notes Comp. Sci. Springer, 1999.

[5] X.-S. Gao et al. Geometry Ezpert - a software for dynamic diagram drawing and au-
tomated geometry theorem proving and discovering, 2002. See http://www.mmrc.iss.
ac.cn/"xgao/gex.html.

[6) GEONExT - a dynamical geometry software, 1998-2002. Lehrstuhl fir Mathematik
und ihre Didaktik, Univ. Bayreuth. See http://wuw.geonext.de.

[7] H.-G. Grabe. GeoProver - a small package for mechanized plane geometry, 1998-2002.
With versions for Reduce, Maple, MuPAD and Mathematica. Some prototypes were
compiled in cooperation with M. Witte. See http://www.informatik.uni-leipzig.
de/"compalg/software.

[8] H.-G. Gribe. The SymbolicData benchmark problems collection of polynomial systems.
In Proceedings of the Workshop on Under- and Overdetermined Systems of Algebraic or
Differential Equations, Karlsruhe 2002, pages 57 — 75, 2002. Publ. by IAS Karlsruhe.
See also http://www.informatik.uni-leipzig.de/~graebe/publications.

20

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

H.-G. Grabe. The SymbolicData geometry collection and the GeoProver packages. In
Proceedings “8th Rhine Workshop on Computer Algebra” (RWCA-02), Mannheim 2002,
pages 173 — 194, 2002. Publ. by Univ. Mannheim. See also http://www.informatik.
uni-leipzig.de/“graebe/publications.

The International Mathematical Olympiads, since 1959. See, e.g., http://www.kalva.
demon.co.uk/imo.html.

D. Kapur. Automated geometric reasoning: Dixon resultants, Grobner bases, and char-
acteristic sets. In Wang [15], pages 1 — 36.

C.-Z. Li and J.-Z. Zhang. Readable machine solving in geometry and ICAI software
MSG. In Gao et al. [4], pages 67 — 85.

The SymbolicData Project, 2000-2002. See http://www.SymbolicData.org or the mir-
ror at http://symbolicdata.uni-leipzig.de.

D. Wang. GEOTHER - geometry theorem prover, 1990-2001. See http://calfor.
lip6.fr/"wang/GEQOTHER.

D. Wang, editor. Automated Deduction in Geometry, Toulouse 1996, volume 1360 of
Lect. Notes Comp. Sci. Springer, 1996.

D. Wang. GEOTHER: A geometry theorem prover. In M.A. McRobbie and J.K. Slaney,
editors, Automated deduction — CADE-13, volume 1104 of LNCS, pages 166 — 170, 1996.

D. Wang. Clifford algebraic calculus for geometric reasoning with applications to com-
puter vision. In Wang [15], pages 115 — 140.

D. Wang. Elimination Methods. Texts and Monographs in Symbolic Computation.
Springer, Wien, 2001.

W.-T. Wu. On the decision problem and the mechanization of theorem-proving in ele-
mentary geometry. In Contemp. Math., volume 19, pages 213 — 234. AMS, Providence,
Rhode Island, 1984.

W.-T. Wu. Some recent advances in mechanical theorem proving of geometry. In Con-
temp. Math., volume 19, pages 235 — 241. AMS, Providence, Rhode Island, 1984.

W.-T. Wu. Mechanical Theorem Proving in Geometries. Texts and Monographs in
Symbolic Computation. Springer, Wien, 1994.

W.-T. Wu. Automatic geometry theorem-proving and automatic geometry problem solv-
ing. In Gao et al. [4], pages 1 — 13.

W.-T. Wu. Mathematics Mechanization, volume 489 of Mathematics and its Applications.
Science Press, Beijing, and Kluwer Acad. Publ., Dordrecht, 2000.

21

HESHHAESHHAFHHAFHRAFH AR HH B RS HH AR HHBESH RS H R AR SRR AR HH R HH R AR R RS HBRSHHH

<Type> GEO </Type>
<Key> Cathedral_1 </Key>
<prooftype> equational, deduction </prooftype>
<vars> [x1,x2,r] </vars>
<Points>

$0:=Point[0,x1]; $X:=Point[0,x2];

$A:=Point[-1/4,0]; $Q:=Point[7/12,0]; $M:=Point[0,0];

</Points>

<coordinates>

$cl:=pc_circle[$A,$M]; $c2:=pc_circle[$Q,$A]; $c3:=pc_circle[$0,$X];
</coordinates>

<polynomials>
$polys:=List[is_cc_tangent[$cl,$c3],is_cc_tangent[$c2,$c3],r-(x1-x2)];
</polynomials>

<solution>
$result:=geo_solve[geo_eliminate[$polys,$vars,List[x1,x2]],r];
</solution>

HESHHAESHHASHHAFHHRHH AR HH RS HH AR HHBESH RS H R AR SRR AR HH R HH R AR R R AR SR BR S HH

A proof scheme for the Cathedral example [11, 5.3] as GEO record

22

