
The SymboliData GEO Reords {A Publi Repository of Geometry Theorem Proof ShemesHans-Gert Gr�abe, Univ. Leipzig, GermanyNovember 26, 20021 IntrodutionGeometry is not only a part of mathematis with anient roots but also a vivid area of modernresearh. Espeially the �eld of geometry alled by some negligene \elementary" ontinues toattrat the attention also of the great ommunity of leisure mathematiians. This is probablydue to the small set of prerequisites neessary to formulate the problems posed in this areaand the erudition and non formal approahes ubiquitously needed to solve them. Examplesfrom this area are also an indispensable omponent of high shool mathematial ompetitionsof di�erent levels upto the International Mathematis Olympiad (IMO) [10℄.The great range of ideas being involved with elementary geometry theorem proving in-spired mathematiians to searh for a ommon framework that allows to disover suh geo-metri statements or, at least, to prove them in a more uni�ed way. These attempts may betraed bak until anient times, e.g., to Eulid and his axiomati approah to geometry.A speial ommon framework for geometry theorem proving was known at least sineDesartes and his oordinate method: Translate geometri on�gurations into algebrai rela-tions between oordinates and try to solve the algebrai ounterpart of the geometri problemby algebrai methods. It was this framework that inspired the young Gauss for his famoussolution to onstrut a regular 17-gon by ruler and ompass.With the inreasing apabilities of modern omputer equipment to do term rewritingand symboli algebrai manipulations this approah obtained new power. The surprisingobservation that tedious but mostly straightforward algebrai manipulations allow to derive(mathematially strong!) proofs for many theorems in geometry with even ingenious \truegeometri" proofs led many researhers to fous anew on questions of automated dedutionof geometri statements.The attempts to algorithmize this part of mathematis found their �rst ulmination inthe 80's in the work of W.-T. Wu on \the Chinese Prover", see, e.g., [20, 19℄ and the surveysin [21℄ or [22℄. In the following these ideas were largely extended by di�erent people, amongthem the \Chinese provers" in Wu's shool at MMRC. Let's mention only the remarkablebook [2℄ of S.-C. Chou who proved 512 geometry theorems with this mehanization method.There are two onlusions to be drawn from Chou's book. First, the appliability of alge-brai methods to geometry theorem proving is really onvining. A surprisingly great numberof examples fall into the lass of onstrutive problems (expliitely onstrutive in [23℄), wherethe geometri on�guration an be onstruted step by step in suh a way that new oordi-nates depend rationally on (free parameters and) oordinates of already onstruted objets1



and the geometri onlusion translates into a rational expression in these oordinates thatshould vanish. In this situation the solution of the algebrai problem redues to a zero simpli-�ation problem of a rational expression in several (algebraially independent) variables. Thisproblem is well understood and admits an eÆient solution that is implemented in the oreof all major (and minor) Computer Algebra Systems (CAS). Nevertheless real suh simpli�-ations may be very time and memory onsuming, so that in some ases a non-onstrutivealgebrai translation has to be preferred.The oordinate method yields mathematially strong proofs for geometri statements witha serious drawbak: Due to the algebrai nature of the intermediate steps these proofs annotbe retranslated to geometri reasoning but for a small number of ases. Often the algebraistatements \�t together" but the underlying geometry remains \invisible". More geometriapproahes are disussed, e.g., in [3℄. They still use polynomial omputations, but takegeometri invariants like areas and Pythagoras di�erenes instead of oordinates of points asthe basi quantities. Thus the geometri meaning for eah step of the proof is lear.Seond, the proofs are not \automated" but \mehanized" in the following sense: Apartly informal human readable geometri statement requires a translation into a strongomputer readable syntax. In Chou's book [2℄ these proof shemes or oordinatizations, i.e.,desriptions of geometri on�gurations of points, lines, and irles in a syntatially strongway, are omposed by the author in a LISP like language and afterwards translated to theiralgebrai ounterparts by the omputer. For some theorems the given oordinatization isquite triky, sine the algebrai translation of the ad ho solution is too hard to be handledby the omputer. Even though speaking about \automati geometry problem-solving" ([22℄),also Wu emphasizes (on p. 12 of that paper and even in the title of [21℄) on \mehanizationmethods" rather than \automated dedution" in full aordane with modern onepts ofhuman-omputer interation. Suh onepts onsider omputers not as automata but astools in a more omplex human-omputer environment that ombines preision and speed ofomputer equipment with human reativity and (informal) experiene.Mehanization of geometry theorem proving hene requires the reativity of diligent \proofwriters" to eliminate all informal elements from a geometri statement and to �x the resultin a (ompletely formalized) geometri proof sheme. These proof shemes are the startingpoint for further automated translation to, e.g., algebrai statements.For interommuniation purposes and to store proof shemes in a ommon publily avail-able repository it is neessary to develop a generi proof sheme language standard that an beimplemented with appropriate tools by all interested parties. In this paper we desribe a �rstapproah to suh a standard, the GeoCode. It is used to store proof shemes as GEO reordsin a repository that is publily available as part of the SymboliData Projet [13℄. At the mo-ment the SymboliData GEO olletion ontains more than 250 suh proof shemes, mainlyfrom [2℄. Speial SymboliData tools are designed to support the syntatial translation ofGeoCode into proof sheme languages of speial geometry theorem provers that support thisommon interfae. At the moment { as a �rst referene appliation { this interfae is im-plemented in the author's GeoProver pakages [7℄, that provide tools to run proof shemetranslations based on the oordinate method on one of the major CAS (Maple, Mathematia,MuPAD, Redue).The GeoCode standard evolved in a tight interplay between the olletion of proof shemesand their evaluation with di�erent versions of the GeoProver on di�erent platforms. As aresult of the disussions at the onferene ADG-02 the standard was revised one more in thefollowing diretions: 2



1. The proof shemes olleted so far used algebrai expressions to detet equality of an-gles, segments, triangle areas et. To serve also more geometri approahes (e.g., thearea method) these algebrai expressions were substituted by funtion alls with leargeometri meaning like Equal, eqdist et.2. The GeoCode standard uses Point, Line and Cirle as geometri types. Sine mostof the geometry theorem provers take points as basi primitives and onsider lines andirles as derived objets, the onstrutors Line[a1; a2; a3℄ and Cirle[0; 1; 2; 3℄ wereremoved from the standard.Moreover, the de�nition of free points was singled out into a speial attribute Points ofthe GEO proof sheme reord to separate them from true geometri onstrution steps.3. The names of the GeoCode funtions were adjusted one more.Sine the GeoCode desription is �xed in the same SymboliData format as the GEO reordsthemselves suh adjustments are well supported by the SymboliData ation onept and thePerl string manipulation failities. This allows to write ompat Perl sripts to exeute therequired hanges in the GEO proof sheme reords.This paper starts with some bakground on geometry theorem proving (setion 2). Thenwe desribe the design of the GEO reords, the syntax of the GeoCode standard and the Geo-Prover pakages as an implementation of that standard (setion 3). In setion 4 we disussby means of examples how to ompile new (generi) proof shemes, to translate them intoGeoProver notion, to run this ode on di�erent CAS and to experiment with the resultingalgebrai problems.For real usability of the GeoCode onept one has to estimate the e�orts required toimplement this standard for other provers. Even though there is not yet pratial experienewith already existing geometry theorem provers the semanti similarity of \foreign" speialgeometri proof shemes suggests that suh an interfae should easily to be implemented. Theproblem is disussed in more detail in setion 5 on the speial geometri language used in [17℄and, in a slightly revised form, also in D.Wang's GEOTHER projet [14℄, see also [16℄.A main problem to translate GEO reords into geometri proof shemes for speial geome-try theorem provers is posed by di�erent programming paradigms followed by the underlyinggeometry theorem provers. The GeoCode standard supports a funtional programming styleand the GEO reord attribute values heavily use nested funtion alls. Several provers anddynamial geometry softwares (DGS) do not support nested funtion alls sine they reateand address geometri objets through identi�ers.We studied that problem within the task to translate our (onstrutive) proof shemesalso to onstrution shemes that an be interpreted by DGS to draw a piture of the givengeometri on�guration or to generate a human readable onstrution plan. Suh failities arepart of integrated geometry theorem provers as, e.g., D. Wang's GEOTHER prover [14, 16℄ orthe Geometry Expert, [5℄. We developed a �rst (Perl based) prototype interfae of onstrutiveGEO proof shemes to the GEONEXT system [6℄ that really denests nested funtion alls.2 Geometry Theorem Proving and the Coordinate MethodAs already desribed in the introdution the main approah to mehanized geometry theoremproving onsidered so far depends on Desartes-Wu's oordinate method, translates geometri3



statements into their algebrai ounterparts, i.e., statements about systems of polynomial orrational funtions, and tries to solve these algebrai problems by algebrai methods.2.1 Geometry Theorems of Construtive TypeUsually geometri onstrutions an be ompiled from a small number of elementary on-strutions, e.g., drawing a line through given points, onstruting intersetion points, irleswith given parameters et. In the same way also the oordinate representation of geometristatements an be produed asading only a small number of elementary funtions and datatypes. Hene interpreting the funtion alls in a geometri proof sheme in suh an algebraimanner yields its algebrai translation as the starting point for the appliation of algebraimethods.Note that the same proof sheme an be interpreted in a ompletely di�erent way, e.g., bya drawing tool or geometry theorem prover based on a di�erent method. This aspet will bedisussed below. In this setion we identify proof shemes and their algebrai translations.We use points, lines and irles as basi objets with symboli or numerial oordinates:(x; y) the point (x; y),(g1; g2; g3) the line f(x; y) : g1 x+ g2 y + g3 = 0g, and(1; 2; 3; 4) the irle f(x; y) : 1 (x2 + y2) + 2 x+ 3 y + 4 = 0g.Let midpoint(X;Y ) be the midpoint of the segment XY , pp line(X;Y ) the line through Xand Y and is onurrent(a; b; ) a polynomial ondition (in fat, a determinantal expression)that vanishes i� the lines a; b;  pass through a ommon point. The return values of allthese funtions are (sequenes of) rational expressions in the oordinates of the formal inputparameters.With these funtions at hand, e.g., the entroid intersetion theorem an be proved in thefollowing way: Choose generi pointsA := Point(u1; u2); B := Point(u3; u4); C := Point(u5; u6);ompute oordinates forA1 := midpoint(B;C); B1 := midpoint(A;C); C1 := midpoint(A;B);and evaluate the statementis onurrent(pp line(A;A1); pp line(B;B1); pp line(C;C1)) (1)To prove this theorem (and other theorems of this type) means to ompose a nested rationalexpression like (1) and to hek if it simpli�es to zero. If it does, it will simplify to zeroalso for (almost) all speial geometri on�gurations obtained from the generi on�gurationplugging in speial numerial values for u1; : : : ; u6.In general, we say that a geometri on�guration is of onstrutive type, if its generion�guration an be onstruted step by step in suh a way, that the oordinates of eahsuessive geometri objet an be expressed as rational funtions in the oordinates of al-ready onstruted objets and algebraially independent variables, and the onlusion an beexpressed as vanishing of a rational funtion in these oordinates.Suh a theorem is generially true if and only if its on�guration is not ontraditory andthe onlusion expression simpli�es to zero.Note that due to Eulidean symmetry even for generi on�gurations some of the oordi-nates an be hosen in a speial way. 4



2.2 Geometry Theorems of Equational TypeSurprisingly many geometry theorems an be translated into statements of onstrutive type.Problems ause geometri objets derived from non-linear geometri onditions (angles, ir-les) if they are not uniquely de�ned or their oordinates annot be rationally expressed inthe given indeterminates. Geometri on�gurations with suh objets require other prooftehniques.For example, given generi pointsA = Point(a1; a2); B = Point(b1; b2); C = Point(1; 2);a point P = Point(x1; x2) is on the bisetor of the angle 6 ABC i� 6 ABP = 6 PBC, or, inGeoProver notation, i�l2 angle(pp line(A;B); pp line(P;B)) = l2 angle(pp line(P;B); pp line(C;B))In this formula l2 angle(g; h) denotes the tangens of the angle between the lines g =(g1; g2; g3) and h = (h1; h2; h3) that an be omputed asg2 h1 � g1 h2g1 h1 + g2 h2 :Clearing denominators this ondition on P translates into a polynomial of (total) degree4 in the generi oordinates and quadrati in the oordinates of P . It desribes the onditionon bisetor(P,A,B,C) for P to be on either the inner or the outer bisetor of 6 ABC.Note that in unordered geometry there is no way to distinguish between the inner and outerbisetors.To prove the bisetor intersetion theorem lets \ompute" the oordinates of the interse-tion points P of the bisetors through A and B and show that they belong to (one of) thebisetors through C. Due to Eulidean symmetry we an hoose speial oordinates for Aand B to simplify alulations.A:=Point(0,0); B:=Point(1,0); C:=Point(u1,u2); P:=Point(x1,x2);polys:={on_bisetor(P,A,B,C), on_bisetor(P,C,A,B)};f � 2x2 + 2u1 x2 + 2x2 x1 � 2x2 u1 x1 � u2 x22 + u2 � 2u2 x1 + u2 x12;2x2 u1 x1 � u2 x12 + u2 x22gpolys is a system of two polynomial equations of degree 2 in (x1; x2) with oeÆients inQ(u1; u2). It has 4 solutions that orrespond to the 4 intersetion points of the bisetor pairsthrough A and B. They an be omputed, e.g., with Maple:solve(polys,{x1,x2});�x2 = %1; x1 = 1=2 u2 � 2%1 + 2u1%1u2 �%1 �%1 = RootOf �4u2 Z 4 + ��8u12 � 8u22 + 8u1� Z 3+ ��4u1 u2 + 4u12u2 � 4u2 + 4u23� Z 2 + 4u22 Z � u23�The solution involves algebrai RootOf -expressions that require a powerful algebrai engineto ope with. 5



Another approah uses diret reformulation of the geometry theorem as a vanishing prob-lem of the polynomial onlusion on the zero set of the system of polynomials that desribethe given geometri on�guration.For our example, onsider the onlusion polynomialon:=on_bisetor(P,B,C,A);2u12x2 x1 + 2u2 x22u1 � 2u2 x12u1 � u2 x22 + u2 x12 + 2u2 x1 u12 � 2u22x1 x2 �2x2 u1 x1 � u12u2 + 2u22x2 � u23 + 2x2 u12 � 2u13x2 + 2u23x1 � 2u1 x2 u22and hek if it vanishes on the variety of zeroes of polys regarded as zero dimensional poly-nomial system in Q(u1; u2)[x1; x2℄: This follows if the normal form of on with respet to aGr�obner basis of polys vanishes. Hene the following Maple omputation veri�es the theorem:with(Groebner):TO:=plex(x1,x2): gb:=gbasis(polys,TO):normalf(on,gb,TO); 0In general, this kind of algebraization of geometry theorems by the oordinate method yieldsa polynomial ring S = k[v℄ with variables v = (v1; : : : ; vn), a polynomial system F � S thatdesribes algebrai dependeny relations in the given geometri on�guration, a subdivisionv = x[u of the variables into dependent and independent ones, and the onlusion polynomialg(x;u) 2 S.A set of variables u is independent wrt. an ideal I = I(F ) i� k[u℄ \ I = (0), i.e., if u isalgebraially independent on the variety Z(F ) of zeroes of F . In most pratial appliationssuh a subdivision is obvious. A strong veri�ation an be derived from a Gr�obner basis ofF wrt. an appropriate term order.Z(F ) may be deomposed into irreduible omponents that orrespond to prime ompo-nents P� of the ideal I = I(F ) generated by F over the ring S = k[x;u℄. Sine P� � I thevariables u may beome dependent wrt. P�. Prime omponents where u remains indepen-dent are alled generi, the other omponents are alled speial. By de�nition, every speialomponent ontains a non zero polynomial in the independent variables u. Multiplying themall together yields a non degeneray ondition h = h(u) 2 k[u℄ on the independent variablessuh that a zero  2 Z(F ) with h() 6= 0 neessarily belongs to one of the generi ompo-nents. Hene they are the \essential" omponents and we say that the geometry theorem isgenerially true, when the onlusion polynomial g vanishes on all these generi omponents.If we ompute in the ring S0 = k(u)[x℄ as we did in the above example, i.e., onsiderthe independent variables as parameters, exatly the generi omponents of I remain visible.Hene if the normal form of g wrt. a Gr�obner basis G of F omputed in S0 vanishes thegeometry theorem is generially true. More subtle examples an be analyzed with the Gr�obnerfatorizer or more advaned tehniques.There are other algebrai tehniques to analyze suh polynomial systems, e.g., based onpseudo division and triangular sets. See [11℄ or the monograph [18℄ for a more ompletesurvey.2.3 Mehanized Geometry Theorem ProvingTo really run mehanized geometry theorem proofs as desribed in the previous subsetionrequires a target CAS and several ingredients:6



(1) We need a \proof writer" that writes (realisti) proof shemes for given informal state-ments of geometry theorems.(2) We need tools to translate geometri statements into their algebrai ounterparts asinput for the target CAS.(3) The CAS should be apable of the required algebrai manipulations.(4) The CAS should provide tools to analyze the algebrai situation (e.g., to solve systemsof equations, to ompute Gr�obner bases and normal forms et.)For Desartes-Wu's approah, topi (3) requires only failities to ompute with rationalexpressions and is usually not the bottlenek for geometry theorem proving. For some proofstopi (4) may be really hallenging sine it exploits the full ompute power of the algebraiengine of the target CAS. On the other hand di�erent proof shemes for the same probleman yield algebrai formulations of very di�erent run time also within the same CAS.In most ases topi (1) is straightforward, in partiular if the informal geometri statementis already highly onstrutive. But in some appliations the \proof writers" had to developreally ingenious and non trivial ideas to write reliable proofs that an be run automatially.For example, Wu proposed in [21℄ the following onstrutive proof for the bisetor intersetiontheorem:� Start with the verties A;B and the (future) intersetion point P of the bisetors throughA and B.� Draw the lines  through AB, d through AP and e through BP .� Draw lines u; v derived from  by reetion wrt. to the axes d; e.These lines will meet in a point C suh that d and e are the bisetors of ABC throughA and B.� Prove that P is also on the third bisetor.Geometry theorem prover usually provide tools for steps (2{4) to run proof shemes writtenin a prover spei� language automatially. With a general purpose CAS at hand it is enoughto have tools for (2). Suh translation tools for Maple, MuPAD, Mathematia, and Redueare provided by the author's GeoProver pakages, [7℄, see below.The main drawbak of all these systems is the restrited interoperability of proof shemes.To �x a proof sheme for automated proessing by di�erent provers requires a generi languagethat an be mapped to all target systems. Below we report about our experiene with theGeoCode language that was invented to store generi proof shemes in the SymboliData GEOreord olletion.Here is the notion of Wu's onstrutive proof sheme of the bisetor intersetion theoremin GeoCode notation:<Points>$A:=Point[0,0℄; $B:=Point[1,0℄; $P:=Point[u1,u2℄;</Points><oordinates>$l1:=pp_line[$A,$B℄;$l2:=sym_line[$l1,pp_line[$A,$P℄℄;$l3:=sym_line[$l1,pp_line[$B,$P℄℄; 7



</oordinates><onlusion>$result:=on_bisetor[$P,$A,$B,intersetion_point[$l2,$l3℄℄;</onlusion>S.-C. Chou is probably one of the most diligent \proof writers" who olleted in [2℄ more than500 examples of geometri statements and appropriate algebrai translations.During our work on the SymboliData GEO olletion we stored (and partly modi�ed andadapted) about 200 of them. We olleted also solutions of geometry problems from othersoures, e.g., the IMO ontests, see [10℄. Muh of this work was done by my \proof writers",the students Malte Witte and Ben Friedrih, who ompiled �rst eletroni versions for manyof these examples.3 GeoCode and GEO Reords3.1 The SymboliData ProjetThe SymboliData projet was set up to reate and manage a publily available repository ofdigital test and benhmark data from di�erent areas of symboli omputation and to developtools and onepts to manage suh data both in the repository and at a loal site. In a�rst stage we onentrated on the development of pratial onepts for a onvenient dataexhange format, the olletion of existing benhmark data from two main areas, polynomialsystem solving and geometry theorem proving, and the development of appropriate tools toproess this data. A tight interplay between oneptual work, data olletion, and tools(re)engineering allowed ontinuously to evaluate the usefulness of eah of the omponents.For easy reuse we onentrated on free software tools and onepts. The data is storedin a XML like ASCII format that an be edited with your favorite text editor. The tools areompletely written in Perl using Perl 5 modular tehnology.Some of our ad ho onepts of data representation hanged several times and (althoughmeanwhile being quite elaborated) surely will partly hange in the future (e.g., lists andhashes will probably be stored in a more XML ompliant form). Having data available ineletroni form (so far) it was very easy to translate it into the revised formats. Hene themost ompliated part of the projet is the olletion of benhmark data and its translationfrom the foreign to the urrent format of the repository. Note that our onept of datarepresentation is very exible. The data format an be spei�ed by the user in an easymanner and very broad range. I refer to [1, 8, 9℄ and the SymboliData doumentation formore details.The projet is organized as a free software projet. The CVS repository is equally opento people joining the SymboliData projet Group. Tools and data are freely available alsoas tar-�les from our Web site under the terms of the GNU Publi Liense.The SymboliData projet is part of the benhmark ativities of the German \FahgruppeComputeralgebra" who also sponsored the web site [13℄ as a host for presentation and down-load of the tools and data developed and olleted so far. We kindly aknowledge supportalso from UMS MEDICIS of CNR/�Eole Polytehnique (Frane) who provides us with theneeded hard- and software to run this web site.8



3.2 SymboliData Files and SymboliData ReordsReords in the SymboliData data base are stored as ASCII �les (sd-�les) in a (at) XMLlike syntax. A typial example of suh a reord, the reord Parallelogram_2 in the GEOtable, is given on page 10. It ontains information and a mehanized proof sheme for thefollowing geometry theorem:The intersetion point of the diagonals of a parallelogram is the midpoint of eahof the diagonals.Some of the attributes of that reord (Type, Key, CRef, . . . ) serve for identi�ation orstore relational information. The other �elds store the di�erent parts of the proof sheme inGeoCode syntax.Note that the desription of the internal struture of these attributes is given in the sameformat in a META/GEO table. Hene new attributes an be added and existing attributes anbe modi�ed in an easy manner.The sd-�les are tight to Perl hashes (sd-reords) by the SymboliData tools in a trans-parent way. The SymboliData tools deliver suh a hash objet to the appliation programmerfor further Perl manipulation. An elaborated ations onept redues ommon programmingoverhead to a minimum. Sine the detailed requirements of di�erent user driven tasks arenot known in advane to the SymboliData developers it is diÆult (and probably even notworth) to design a more reliable interfae.3.3 SymboliData Proof ShemesSymboliData GEO proof shemes are divided (roughly) into two types aording to theirprooftype attribute: onstrutive and equational.The generi variables are provided as values of two attributes:parameters a list u of independent parametersvars a list x of dependent variables (equational proofs only)For equational proofs the variable lists x and u are hosen in suh a way that u is a maximalindependent set of variables for the given algebrai variety over k[x;u℄ as de�ned above.The basi attributes (with GeoCode values) are:Points the free points of the proof shemeoordinates assignments that ompose step by step the generi geometri on�gura-tion of the proof shemeonlusion the onlusion of the proof shemeThis already ompletes the data required for a onstrutive proof sheme. For equationalproof shemes the following additional attributes are de�ned:polynomials a list of GeoCode prediates that orrespond to polynomial or rationalonditions desribing algebrai dependeny relations in the given geo-metri on�gurationonstraints a list of GeoCode prediates that orrespond to polynomial non degen-eray onditionssolution a way to solve the algebrai problem (given in extendedGeoCode syntax)9



######################################################## Reord 'GEO/Parallelogram_2'<Id> GEO/Parallelogram_2 </Id><Type> GEO </Type><Key> Parallelogram_2 </Key><prooftype> onstrutive </prooftype><parameters> [u1, u2, u3℄ </parameters><Points>$A:=Point[0,0℄; $B:=Point[u1,0℄; $D:=Point[u2,u3℄;</Points><oordinates>$C:=par_point[$D,$A,$B℄;$P:=intersetion_point[pp_line[$A,$C℄,pp_line[$B,$D℄℄;</oordinates><onlusion> $result:=eqdist[$A,$P,$C,$P℄; </onlusion><CRef>PROBLEMS/Geometry/Parallelogram => problem desription</CRef><Version> ... </Version><ChangeLog>Sep 7 2002 graebe: Translated to GeoCode 1.3Sep 6 2002 graebe: new tag 'Points' reatedSep 2 2002 graebe: $C=par_point[..℄Feb 10 2002 graebe: translated to GeoProver 1.2 syntax</ChangeLog><PERSON> graebe </PERSON><Date> Nov 1 1999 </Date># End of reord 'GEO/Parallelogram_2'#######################################################The GEO reord `Parallelogram 2'
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The proof idea an be skethed within the ProofIdea attribute as plain text if not yetevident from the ode. See [9℄ for a detailed desription of the GEO reord struture. Belowwe onentrate on the GeoCode part.3.4 The GeoCode SyntaxThe design of the generi GeoCode language is mainly motivated by our aim to �x geometrytheorem proof shemes in suh a way that they an easily be translated to di�erent targetsystems. A good but expensive idea would be to de�ne an appropriate (ontext free) pro-gramming language and to write ross ompilers or to invent a reliable (full) XML markupand to use style sheet translations. Sine the syntaxes of the target languages are very similarwe deided to avoid these e�orts and de�ned a generi language that an be ross ompiledusing only regular patterns. Due to its elaborated pattern mathing failities Perl is bestsuited to realize this approah.We assume proof shemes to be omposed by a sequene of assignments with nestedfuntion alls as right hand sides that refer to previously de�ned geometri objets and salarsas arguments. To be mapped to di�erent target systems the GeoCode language should meetthe following requirements:(1) Variable, symbol and funtion names an be identi�ed.(2) The generi GeoCode an be mapped to the syntax of the target system without namelashes.In this ontext the words `variable' and `symbol' are used in the following sense: theformer are `symbols with values' (e.g., names for points, lines, irles), the latter `symbolswithout values' (i.e., names for parameters and variables in the previous sense). It is aspeial peuliarity of symboli omputations that these name spaes usually overlap. Forgeometry theorem proof shemes this overlap an be avoided. We use Perl like syntax (i.e.,\$[a-zA-z℄[a-zA-z0-9℄* in Perl regexp notation) for variable names and small letter / digitombinations (i.e., [a-z℄[a-z0-9℄* in Perl regexp notation { we don't allow apital lettersto avoid name lashes both in Redue and Mathematia) for symbol names.Most CAS use parentheses both to group arithmeti expressions and argument lists infuntion alls. Sine this annot be distinguished within a regular language we use the Math-ematia onvention (i.e., brakets) for funtion all notation1.Equational GEO reords usually ontain also a solution tag with a desription how thealgebrai task an be solved. This desription is �xed in an extended GeoCode syntax. Inter-fae pakages for Maple, MuPAD, Mathematia, and Redue to map these generi ommandsto appropriate onstruts are part of the SymboliData distribution. For details see [9℄.The names and signatures of all the GeoCode funtions are stored in the SymboliDataGeoCode table and an be extrated, extended and modi�ed in the same way as other sd-reords. Two suh GeoCode reords are reprodued below. The �rst one orresponds to an'inline' funtion that requires a speial implementation, the seond one to a 'maro' witha generi de�nition in GeoCode syntax as value of the ode attribute that an be used to1Note that most of the arithmeti expressions were replaed by new geometri prediates Equal, eqdist,Normal et. in the GEO reords during preparation of version 1.3 (�nished after the ADG-02 onferene) toemphasize the geometri nature of the proof shemes.11



reate an implementation automatially. For a omplete desription of all funtions see theSymboliData GeoCode doumentation.3.5 The GeoProver PakagesReally to run proof shemes written in GeoCode syntax with a geometry theorem proverrequires to translate the GeoCode to equivalent ode in the speial language of the targetprover. We propose the following approah: First, write Perl tools to translate the generiproof sheme into a syntati form that is more appropriate for the target system (e.g.,hange square braket, �x variable and funtion names, et.). This is well supported bythe SymboliData ations onept and sample implementations for suh translators in thebin/GEO diretory of the SymboliData distribution.Seond, write an interfae pakage in the language of the target prover that maps the Geo-Code funtions to the prover spei� funtions. The author's GeoProver pakages implementsuh interfaes for Maple, MuPAD, Mathematia, and Redue.For eah of these CAS the GeoProver (formerly Geometry) provides a small pakagefor mehanized (plane) geometry manipulations with non degeneray traing and a set offuntions to handle generi and speial geometri on�gurations ontaining points, lines andirles.For a avor of the usage resp. a formal desription of all funtions see the sample alula-tions in the previous setion and the doumentation [7℄. For some target systems there is alsoa plot extension that allows to draw graphis from senes, i.e., (of ourse speial) geometrion�gurations.A �rst prototype of the GeoProver grew out from a ourse of letures for students ofomputer siene on this topi held by the author at the Univ. of Leipzig in fall 1996. It wasupdated and ompleted to version 1.1 of a Redue pakage after a similar leture in spring1998. Later on in ooperation with Malte Witte, at those times one of my students, thepakage was translated to the other target systems.Sine version 1.2 there is a separate desription of the GeoCode language that was �xed inSymboliData format and added as the GeoCode table to the SymboliData Projet later on.Now the omplete GeoProver soure ode is generated from a platform-spei� 'inline' odepart for the basi funtions and generi GeoCode ode values for advaned funtions usingspeial SymboliData tools. This failitates a onise ode management of the GeoProversoure ode if the GeoCode standard hanges during development.4 Some ExamplesTo get a look and feel about the e�orts required to ompile new GeoCode proof shemes,to translate them with SymboliData tools to GeoProver appliations and to run them ondi�erent target CAS let's onsider some examples.
12



######################################################### Reord 'GeoCode/pp_line'<Id> GeoCode/pp_line </Id><Type> GeoCode </Type><Key> pp_line </Key><all> pp_line[$A::Point,$B::Point℄::Line </all><verbose> line through A and B </verbose><desription>The line through <math>A</math> and <math>B</math>.</desription>...# End of reord 'GeoCode/pp_line'################################################################################################################# Reord 'GeoCode/altitude'<Id> GeoCode/altitude </Id><Type> GeoCode </Type><Key> altitude </Key><all> altitude[$A::Point,$B::Point,$C::Point℄::Line </all><verbose> altitude from A onto g(BC) </verbose><ode> ortho_line[$A,pp_line[$B,$C℄℄ </ode><desription>The altitude from <math>A</math> onto <math>g(BC)</math>.</desription>...# End of reord 'GeoCode/altitude'########################################################The GeoCode reords 'pp line' and `altidute'
13



1. The \athedral example", [11, 5.3℄
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Figure 1: The \athedral example"
P;Q are enters of the ars CB;AC, respe-tively; ars DE;DF are drawn with R;S as en-ters, respetively, and AQ as the radius. Fur-ther, AQ = BP = 56AB. The goal is to �nd theradius of the irle tangent to ars EA;ED;HM(with enter A) and KM (with enter D) as afuntion of AB.We take the problem formulation and notational onventions from [11℄ with s = jABj = 1.In that paper line AB is taken as x-axis with origin at M (written as $M in GeoCode syntax)and the following oordinates are assigned to points (using the GeoCode point onstrutor):$O:=Point[0,y3℄; $A:=Point[-3/12,0℄; $Q:=Point[7/12,0℄; $M:=Point[0,0℄;Kapur's original proof sheme ontains 6 algebrai onditions that arize from the tangenyonditions of two irle pairs. A irle tangeny ondition yields 3 polynomials: If T1 = (x1; y1)is the point of tangeny of the irles around A and O these onditions are 'T1 on the irlearound A', 'T1 on the irle around O', and 'T1; A;O are ollinear'.Here is that statement in the formal GeoCode syntax:<vars> [x1,y1,x2,y2,y3,r℄ </vars><Points>$O:=Point[0,y3℄; $A:=Point[-1/4,0℄; $Q:=Point[7/12,0℄; $M:=Point[0,0℄;$T1:=Point[x1,y1℄; $T2:=Point[x2,y2℄;</Points><oordinates>$1:=p_irle[$A,$M℄; $2:=p_irle[$Q,$A℄;</oordinates><polynomials>$polys:=List[on_irle[$T1,$1℄, is_ollinear[$A,$T1,$O℄, r^2-sqrdist[$O,$T1℄,on_irle[$T2,$2℄, is_ollinear[$Q,$T2,$O℄, r^2-sqrdist[$O,$T2℄℄;</polynomials>p irle is the point-enter irle onstrutor that returns a irle objet. GeoCode sup-ports Point, Line and Cirle as geometri types. Note that on irle[$T1,$1℄ andsqrdist[$T1,$A℄-sqrdist[$M,$A℄ yield the same algebrai translation. Hene a similarproof sheme may be omposed without referenes to irle objets2.The solution of the algebrai problem may be obtained if all variables but r are eliminatedfrom $polys and the remaining equation is solved for r. This an be stored in the solutionattribute of the GEO reord in extended GeoCode syntax in the following way:2With GeoCode version 1.3 better use the geometri prediate eqdist[$T1,$A,$M,$A℄ instead of the alge-brai expression sqrdist[$T1,$A℄-sqrdist[$M,$A℄ 14



<solution>$result:=geo_solve[geo_eliminate[$polys,$vars,List[x1,y1,x2,y2,y3℄℄,r℄;</solution>In the spirit of dynamial geometry software another proof sheme with less variables anbe given if T1 and T2 are taken as 'irle sliders' that orrespond to rational parameterizationsof suh points:<vars> [x1,x2,y3,r℄ </vars><Points>$O:=Point[0,y3℄; $A:=Point[-1/4,0℄; $Q:=Point[7/12,0℄; $M:=Point[0,0℄;</Points><oordinates>$T1:=irle_slider[$A,$M,x1℄; $T2:=irle_slider[$Q,$A,x2℄;</oordinates><polynomials>$polys:=List[is_ollinear[$A,$T1,$O℄, r^2-sqrdist[$O,$T1℄,is_ollinear[$Q,$T2,$O℄, r^2-sqrdist[$O,$T2℄℄;</polynomials>Note that in this ase the algebrai translations of the geometri onditions yields in fatrational funtions sine the oordinates of T1 and T2 are not polynomial but rational. Aspeial algebrai approah is required for suh proof shemes. A brute fore all to theMuPAD ommand solve($polys,$vars) produes 24 solutions with 12 di�erent values of r.A third approah uses the expliit irle tangeny ondition, that orresponds to a poly-nomial ondition on the irle parameters. It requires only 3 variables and translates toa polynomial system. Take enter O and a irumfere point X on the y-axis with generiy-oordinates$O:=Point[0,x1℄; $X:=Point[0,x2℄;$A:=Point[-1/4,0℄; $Q:=Point[7/12,0℄; $M:=Point[0,0℄;add variables for the ars (irles) that should be tangent$1:=p_irle[$A,$M℄; $2:=p_irle[$Q,$A℄; $3:=p_irle[$O,$X℄;and �x the tangeny onditions and another one for the radius r = x1 � x2 of the irle 3$polys:=List[is__tangent[$1,$3℄, is__tangent[$2,$3℄, r-(x1-x2)℄;The problem is of equational type and poses a dedution task. There are no independentvariables and an algebrai solution an be obtained if x1; x2 are eliminated from the polyno-mials and the remaining equation is solved for r. The orresponding GEO reord is given onpage 22.To translate and run that ode with MuPAD we all the SymboliData MuPADCode ation.It maps GeoCode syntax to GeoProver MuPAD syntax, resolves name lashes and yields(GeoProver pakage loading omitted) 15



//==> Example Cathedral_1lear_ndg():delete 'x1','x2','s';_vars:=geoList(x1,x2,s);//oordinates_O:=Point(0,x1); _X:=Point(0,x2);_A:=Point(-3,0); _Q:=Point(7,0); _M:=Point(0,0);_1:=p_irle(_A,_M); _2:=p_irle(_Q,_A); _3:=p_irle(_O,_X);//polynomials_polys:=geoList(is__tangent(_1,_3),is__tangent(_2,_3),12*s-(x1-x2));//solution_result:=geo_solve(geo_eliminate(_polys,_vars,geoList(x1,x2)),s);quit;The ore of that ation is a 3-line Perl sriptsub MuPAD{ loal $_=shift;s/List\[/geoList\[/gs; # sine List is now a key wordtr/\[\℄/\(\)/;s/\$(\w+)/_$1/gs;return $_;}Sine the irle tangeny ondition is implemented in the GeoProver we an run that sriptwith MuPAD to get the solution��r = �1756� ; �r = � 17104� ; �r = 1756� ; �r = 17104��in good aordane with [11℄. Note that r = � 17104 orresponds to the position of X on the'top' of O sine r = x1 � x2. r = �1756 is also a ommon solution of the system given in [11℄but not disussed there. It orresponds to imaginary oordinates of O and hene is virtual.A similar omputation yields the length of the radius of the irle in the top region of�gure 1: With origin at D, the enter O1 and a irumfere point X of that irle on the y-axiswe get the proof sheme<vars> [x1,x2,r℄ </vars><Points>$D:=Point[0,0℄; $O1:=Point[0,x1℄; $X:=Point[0,x2℄;$S:=Point[5/6,0℄; $P:=Point[-1/3,0℄; $B:=Point[1/2,0℄;</Points><oordinates>$1:=p_irle[$S,$D℄; $2:=p_irle[$P,$B℄; $3:=p_irle[$O1,$X℄;</oordinates><polynomials>$polys:=List[is__tangent[$1,$3℄, is__tangent[$2,$3℄, r-(x1-x2)℄;</polynomials> 16



Running the orresponding omputation with MuPAD yields the result��r = � 740� ; �r = 740�� :2. The Generalized Steiner Theorem, [17, Ex. 7℄Take three points A2; B2; C2 respetively on the three perpendiular bisetors ofBC;AC;AB of any triangle ABC suh thatd(A2; BC) = t � jBCj; d(B2; AC) = t � jACj; d(C2; AB) = t � jABj;where d(P;QR) denotes the distane of the point P from the line QR and t is anarbitrary non-negative number.Then the three lines AA2; BB2; CC2 are onurrent.

Figure 2: The Generalized Steiner Theorem
Note that the statement of a problem maybe inluded in a SymboliData reord asvalue of a new attribute, say Text, sineeah suh reord admits \unde�ned" at-tributes that are handled by the Symboli-Data tools in the same way as \de�ned"ones. In the SymboliData data base prob-lem statements are stored in a speial ta-ble PROBLEMS and ross referened in GEOreords sine several proof shemes mayrefer to the same problem.D.Wang solves that problem in [17℄ with oriented areas using a Cli�ord algebra approahthat avoids the introdution of virtual solutions. A straightforward oordinatization withindependent variables u1; u2; t and dependent variables x1; x2; x3 goes as follows:<vars> [x1,x2,x3℄ </vars><parameters> [u1, u2, t℄ </parameters><Points>$A:=Point[0,0℄; $B:=Point[0,1℄; $C:=Point[u1,u2℄;</Points><oordinates>$A1:=midpoint[$B,$C℄; $B1:=midpoint[$A,$C℄; $C1:=midpoint[$A,$B℄;$A2:=line_slider[p_bisetor[$B,$C℄,x1℄;$B2:=line_slider[p_bisetor[$A,$C℄,x2℄;$C2:=line_slider[p_bisetor[$A,$B℄,x3℄;</oordinates><polynomials>$polys:=List[sqrdist[$A1,$A2℄-t^2*sqrdist[$B,$C℄,sqrdist[$B1,$B2℄-t^2*sqrdist[$A,$C℄,sqrdist[$C1,$C2℄-t^2*sqrdist[$A,$B℄℄;</polynomials><onlusion> 17



$on:=is_onurrent[pp_line[$A,$A2℄, pp_line[$B,$B2℄, pp_line[$C,$C2℄℄;</onlusion>It yields a polynomial system with 8 solutions in (x1; x2; x3) in the rational funtion �eldk(u1; u2; t) that orrespond to the di�erent ombinations of orientations of the trianglesABC2; BCA2; CAB2. I heked this for Maple 7, MuPAD 2.0, and Redue 3.7 with thesolution<solution>$sol:=geo_solve[$polys,$vars℄;$result:=geo_simplify[geo_eval[$on,$sol℄℄;</solution>that was translated with SymboliData tools to GeoProver ode for the di�erent CAS. Allthree CAS found that for exatly two of the 8 solutions the theorem is valid (i.e., the $resultsimpli�es to zero). Note that with t2 replaed by t only the Redue solve ommand foundthe same answer. Maple and MuPAD3 reated expressions with several root symbols thatould not be ompletely simpli�ed in the following omputation.3. The Miquel Cirle, [12, Ex. 5℄If four irles are arranged in sequene, eah two suesive irles interseting,and a irle pass through one pair of eah suh pair of intersetions, then theremaining intersetions lie on another irle.

Figure 3: The Miquel Cirle
[12℄ quotes the problem as hard for theDesartes-Wu approah and proposes a moregeometri solution within the geometri frame-work developed in that paper. The problemhas even a onstrutive solution: Take fourpoints A1; : : : ; A4 on a irle around the ori-gin O, enters M12; : : : ;M41 for irles passingthrough (A1; A2); : : : ; (A4; A1) and ompute foreah onseutive pair of suh irles the seondintersetion point (it has rational oordinates inthe parameters u1; : : : ; v4).Here is the GeoCode formulation:<prooftype> onstrutive </prooftype><parameters> [u1, u2, u3, v1, v2, v3, v4℄ </parameters><Points> $O:=Point[0,0℄; $A1:=Point[1,0℄; </Points><oordinates>$A2:=irle_slider[$O,$A1,u1℄;$A3:=irle_slider[$O,$A1,u2℄;$A4:=irle_slider[$O,$A1,u3℄;3Our Linux version of Maple 8 yields an empty solution set for solve(x23� t2; x3) if the GeoProver pakageis loaded. 18



$M12:=line_slider[p_bisetor[$A1,$A2℄,v1℄;$M23:=line_slider[p_bisetor[$A2,$A3℄,v2℄;$M34:=line_slider[p_bisetor[$A3,$A4℄,v3℄;$M41:=line_slider[p_bisetor[$A4,$A1℄,v4℄;$12:=p_irle[$M12,$A1℄;$23:=p_irle[$M23,$A2℄;$34:=p_irle[$M34,$A3℄;$41:=p_irle[$M41,$A4℄;$B1:=other__point[$A1,$12,$41℄;$B2:=other__point[$A2,$12,$23℄;$B3:=other__point[$A3,$23,$34℄;$B4:=other__point[$A4,$34,$41℄;</oordinates><onlusion>$result:=is_onyli[$B1, $B2, $B3, $B4℄;</onlusion>The simpli�ation of the resulting rational expression in seven parameters indeed turned outto be very hard and no one of the CAS (Maple, MuPAD, Redue) mastered the task. Thesituation ompletely hanges if v1; : : : ; v4 are assigned random integers (not too big, < 100).Several runs with di�errent settings always yield 0 (where Maple simpli�ed the new expressionmuh faster than MuPAD or Redue).5 Implementing the GeoCode StandardFor real usability of the GeoCode onept one has to estimate the e�orts required to imple-ment this standard. Even though there is not yet pratial experiene with already existinggeometry theorem provers the semanti similarity of \foreign" speial geometri proof shemessuggests that suh an interfae ould easily be implemented. We suggest to divide that imple-mentation in two parts as desribed for the GeoProver pakages for di�erent target CAS: The�rst part provides (e.g., Perl based) tools to translate GEO proof shemes into a CAS spei�form that �xes requirements of naming and syntax onventions. In a seond part these trans-lated proof shemes are passed to a speial interfae that maps the GeoCode funtionality tothe target CAS.In general, for the seond part one has to implement the GeoCode funtionality in thetarget prover language. This requires extensibility of that language and aess to the soureode or interation with the system developers if suh an interfae annot be added as asupplementary pakage.Note that the GeoCode syntax provides not only points but also line and irle objetsas geometri primitives. It is a speial design deision of many geometry theorem provers,e.g., D.Wang's GEOTHER [14℄, not to introdue the latter objets as basi but to takeonly point objets as primitives. A prover extension that respets this spirit an implementlines and irles as derived objets and represent lines by two base points and irles bypoint-enter pairs. This is oneptually already present in Wang's prover and merely shouldbe made expliit. To support suh an approah we removed diret onstrutors for lines19



and irles from their homogeneous oordinates (i.e., the onstrutors Line[a1; a2; a3℄ andCirle[a0; a1; a2; a3℄) from the GeoCode standard in version 1:2.A more serious problem arises with geometry theorem provers that do not support nestedfuntion alls. This is typial for systems that ontain a drawing tool, sine all intermediateonstrution steps leave their trae in a piture. Usually suh systems represent and addressgeometri objets through expliit identi�ers. To �t generi GeoCode proof shemes with suha prover nested funtion alls should be denested. We experimented with a GeoCode interfaeto dynamial geometry software (DGS) that uses the Perl 'eval' mehanism to evaluate nestedGeoCode funtion alls and ollets these alls as a list of onstrution steps in a generiformat. Later on these onstrution steps an be mapped to a speial DGS, e.g., the systemGEONEXT, [6℄, developed at the University of Bayreuth.Experiments with di�erent kinds of tools that support implementations entailed hangesof the GeoCode standard in the past and will entail new requirements and hanges also inthe future. So far the power of the Perl string manipulation failities and the SymboliDataations onept were well suited to support suh hanges, to san the GEO reords for obsoleteproof sheme ommands and to �x them aordingly.Referenes[1℄ O. Bahmann and H.-G. Gr�abe. The SymboliData Projet: Towards an eletronirepository of tools and data for benhmarks of omputer algebra software. Reports onComputer Algebra 27, Jan 2000. Centre for Computer Algebra, University of Kaisers-lautern. See http://www.mathematik.uni-kl.de/~za.[2℄ S.-C. Chou. Mehanial Geometry Theorem Proving. Reidel, Dortreht, 1988.[3℄ S.-C. Chou, X.-S. Gao, and J.-Z. Zhang. Mahine proofs in geometry, volume 6 of Serieson Applied Mathematis. World Sienti� Singapore, 1994.[4℄ X.-S. Gao, D. Wang, and L. Yang, editors. Automated Dedution in Geometry, Beijing1998, volume 1669 of Let. Notes Comp. Si. Springer, 1999.[5℄ X.-S. Gao et al. Geometry Expert - a software for dynami diagram drawing and au-tomated geometry theorem proving and disovering, 2002. See http://www.mmr.iss.a.n/~xgao/gex.html.[6℄ GEONEXT { a dynamial geometry software, 1998{2002. Lehrstuhl f�ur Mathematikund ihre Didaktik, Univ. Bayreuth. See http://www.geonext.de.[7℄ H.-G. Gr�abe. GeoProver - a small pakage for mehanized plane geometry, 1998{2002.With versions for Redue, Maple, MuPAD and Mathematia. Some prototypes wereompiled in ooperation with M. Witte. See http://www.informatik.uni-leipzig.de/~ompalg/software.[8℄ H.-G. Gr�abe. The SymboliData benhmark problems olletion of polynomial systems.In Proeedings of the Workshop on Under- and Overdetermined Systems of Algebrai orDi�erential Equations, Karlsruhe 2002, pages 57 { 75, 2002. Publ. by IAS Karlsruhe.See also http://www.informatik.uni-leipzig.de/~graebe/publiations.20
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######################################################################<Type> GEO </Type><Key> Cathedral_1 </Key><prooftype> equational, dedution </prooftype><vars> [x1,x2,r℄ </vars><Points>$O:=Point[0,x1℄; $X:=Point[0,x2℄;$A:=Point[-1/4,0℄; $Q:=Point[7/12,0℄; $M:=Point[0,0℄;</Points><oordinates>$1:=p_irle[$A,$M℄; $2:=p_irle[$Q,$A℄; $3:=p_irle[$O,$X℄;</oordinates><polynomials>$polys:=List[is__tangent[$1,$3℄,is__tangent[$2,$3℄,r-(x1-x2)℄;</polynomials><solution>$result:=geo_solve[geo_eliminate[$polys,$vars,List[x1,x2℄℄,r℄;</solution>######################################################################A proof sheme for the Cathedral example [11, 5.3℄ as GEO reord
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