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Abstract

There are many good reasons to teach a course on a systematic introduction to sym-
bolic methods not only to students of mathematics but also to those of technical sciences.
The design of such a course meets an essential difficulty since the principles to be demon-
strated appear only in nontrivial applications in a convincing way, but there is usually no
time to teach the necessary contexts to a large extent. Hence the material intended to
demonstrate different aspects has to be chosen with great care.

The goal of this paper is to show that for such a purpose algebraic numbers are not
only interesting for their mathematical content. Since even a small tour through algebraic
numbers passes many important concepts of symbolic computation in an essential way
this subject is also well suited for a final summary part of such a course.

1 Introduction

With increasing computing power desktop computers become more and more indispensable
tools for the intellectual work not only of scientists but also of engineers and even technical
staff. Computer programs replace more and more tables and handbooks that accompanied
scientific and technical activities for a long time.

Computers can not only access precompiled information as before in a more rapid and
flexible way but can also generate it from a generic knowledge base in an algorithmic way.
This makes available customized information for specific applications far beyond standard
solutions. It largely extends the possibilities of computer based approaches compared to
print based tools where all useful information had to be compiled in advance.

The influence of such tools on the professional demands of engineers and even technical
staff hardly can be overestimated. Indeed, they allow for nonstandard solutions of complex
tasks where nowadays only very rigidly standardized solutions are used in practice. They will
play an important role also in simulation, planning and quality management, see e.g., (Braun,
1997).

Systems that can perform symbolic computations are central for this development, since
formal calculi are at the heart of any of the advanced natural and technical sciences. In
the following we will concentrate on modern general purpose systems of that kind. They are
also known as Computer Algebra Systems due to the origin and nature of the implemented
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algorithms, see (Loos, 1983a), and will be at the core also of more specialized professional
systems.

Due to the central role of symbolic methods in such knowledge representation the fu-
ture scientific and technical staff must be prepared to apply these techniques intelligently to
its everyday problems. Thus the demand grows to include a corresponding component of
instruction in university and even possibly high school courses.

Today we observe growing efforts to incorporate computer algebra tools into regular pro-
fessional courses, e.g., lectures of mathematics, physics or different engineering courses. But
even if such regular instructions are (yet) missing students may access a fast growing lit-
erature to acquire these skills by themselves, and they do so more and more. Hence we
may assume that in the near future students finishing their undergraduate studies will have
practical experience using symbolic computer based methods.

Due to the central role of such experience for the future professional life of students grad-
uating not only in mathematics but also in technical sciences it is desirable to continue with
a systematic introduction into basic concepts, notions and principles behind these methods.
Such a course should not concentrate on the more qualified exploitation of a particular Com-
puter Algebra System but, as courses “Algorithms and Data Structures” do for classical
computer applications, on the basic instruments and notations common to all or most of the
different Computer Algebra Systems. Such knowledge will increase the student’s expertise to
exploit the full power of similar systems.

Since these students usually have a good understanding of the same questions for classical
(numerical) computer applications such a course may concentrate on the main notations
and principles where symbolic computations differ from numerical ones. These differences
constitute a quite complex topic that starts with special design questions resulting from
overlapping name and value spaces (as in the evaluation of expressions, see, e.g., (Wolfram,
1998, ch. 2.5.)), continues with differing notions of functions (see, e.g., (Wolfram, 1998, ch.
2.2.)), the unknown to classical imperative computer languages notion of simplification and
ends up with subtle mathematical questions on simplifications that are allowed and those
that are not (see, e.g., (Fateman, 1996) or (Aslaksen, 1996)). A better understanding of
these basics usually leads also to a better understanding of the special, in some places quite
unexpected, behavior of Computer Algebra Systems, and whether such a behavior may be
avoided or why not.

The design of such a course meets an essential difficulty. On the one side, Computer
Algebra Systems are multipurpose tools capable of very complicated symbolic computations
in very complex mathematical contexts, and the principles to be demonstrated appear only
in nontrivial applications in a convincing way. Such applications can’t be well understood
without some knowledge of their context. On the other hand, students coming from technical
or computer science departments usually do not have very advanced mathematical knowledge.
Thus the material intended to demonstrate different effects has to be chosen with great care.

The author teaches such a course “Introduction to Symbolic Computation” (Gräbe, 1998)
to students of computer science for several years. After introductory examples it covers the
following topics:

• the role of symbolic computations in science and engineering
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• structure and concepts of second generation (i.e., without strong type system) Computer
Algebra Systems

– the evaluation concepts

– lists and list manipulation

– functions, functional symbols, and functional expressions

– functional and rule based transformation concepts

• simplification of expressions

– simplification, normal forms, and canonical forms

– simplification and mathematical correctness

– simplification of polynomial and rational expressions

– rule based simplification of trigonometric expressions

– the general simplification problem

The final part of the course, as a complex application, is devoted to a small tour through
the basics of algebraic numbers in symbolic computations. Several notions and concepts
developed earlier in the course interact on this topic in a nontrivial way. The aim of this
paper is a short outline of the main stations visited during this tour.

We start with an intuitive notion of algebraic numbers as radical expressions and examine
the computational strength and weakness of such an approach. It turns out that it is much
harder to compute with radicals than with “ordinary” numbers. Mathematical correctness
is an additional issue if we try to simplify nested radicals. All this suggests that radical
expressions are closer to functional expressions than to integers or fractions. More compli-
cated expressions containing algebraic numbers of degree 3 allow to recognize their internal
structure as multivariate polynomials in various kernels and follow up the effect of different
simplification operations. The general theory of roots of polynomials of degree 3 suggests
that there are also algebraic numbers with a trigonometric origin. Simplification rules for
trigonometric functions are involved to reduce the number of different kernels in such expres-
sions and to identify cos(π

n) as a root of a certain polynomial. This leads to the (usual from
a mathematical point of view) definition of algebraic numbers as RootOf expressions that are
symbolic expressions with a certain algebraic rewriting rule. Based on this observation we
exploit the power of computer algebra to prove constructively the ring property of algebraic
extensions. The proof yields additionally a simplifier for such RootOf expressions that turns
out to be a canonical simplifier for single algebraic extensions. This proves the computational
efficiency of RootOf expressions compared to radical expressions. We end up with a short
outlook on iterated algebraic extensions.

Of course, one could imagine also other topics to be studied as the complex final subject
of such a course. Why just algebraic numbers? A strong argument for such a choice is
their ubiquity in symbolic computations and especially in symbolic output. Since it is often
not obvious how to handle such expressions students tend to leave the symbolic context at
this point. Hence a systematic introduction to symbolic computation should not avoid these
questions.

But the question is central also for another reason: There is a great difference between
the point of view of numerical computation, to which students are accustomed, and that
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of symbolic computation. These differences just start with a different view on numbers
other than rationals. And whereas one may be willing to accept the symbolic nature of
transcendental numbers as e or π it is hard to recognize the difference between the “numbers”√

2 and 2/3 both containing ciphers and a certain additional symbol. But the difference is
essential: symbolically the first number is a functional expression, the second one (at most)
a rational expression. And the difference is well hidden: Computer Algebra Systems usually
know much about square roots as, e.g.,√

−6
√

2 + 11 +
√

6
√

2 + 11 = 6 (1)√
−2

√
6 + 5 +

√
2
√

6 + 5 = 2
√

3 (2)

(6
√

3− 10)
1
3 + (6

√
3 + 10)

1
3 = 2

√
3 (3)

thus conveying the impression that the arithmetic of algebraic numbers given as nested radi-
cals is easy and completely covered by the system.

Hence a systematic introduction also to the philosophy of “symbolic numbers” is a topic
beyond structure and concepts of Computer Algebra Systems but in the spirit of the concern
of the course.

2 The intuitive notion of algebraic numbers

Mathematically algebraic numbers are defined as the roots of univariate polynomials and
there are many reasons to define them even in such a way also in Computer Algebra Systems.
But this is not the form in which such numbers appeared first historically nor in the students’
perception. They know algebraic numbers mainly as radical expressions and one of the goals
of our small tour through algebraic numbers will be the explanation of the limitations of such
an understanding.

We start with such an intuitive notion of algebraic numbers and first try to understand
to what extent algebraic numbers differ from usual ones, i.e., integers and fractions. This is
a reasonable question since expressions like “52” or “1/4” are also merely symbolic represen-
tations. But different from integers and fractions where the Computer Algebra System (and
the students) know how to obtain automatically a canonical form of the result of any arith-
metic expression containing such entities, expressions like

√
2 are only simplified according to

obvious rules as, e.g.,
x := 2

√
2 + 3

√
3

y := 3
√

2− 2
√

3
x + y = 5

√
2 +

√
3

x− y = −
√

2 + 5
√

3

For more complicated expressions as, e.g.,

√
2 +

√
3 +

1√
2−

√
3

(4)

we need additional effort to see that the expression is zero (even Maple and Derive don’t find
out that automatically). We conclude that algebraic numbers given as radical expressions
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System (1) (2) (3)

Axiom — — —

Derive automatically automatically automatically

Macsyma denest sqrt denest sqrt —

Maple automatically automatically —

Mathematica RootReduce RootReduce RootReduce

MuPAD
radsimp or

simplify( ,sqrt)
radsimp or

simplify( ,sqrt)
radsimp or

simplify( ,sqrt)

Reduce — — —

Table 1: Simplification of nested roots

are, for some not yet visible reason, not well suited for computations, since even the zero
decision problem is not (always) solved automatically.

With such a first inspection in mind it is very surprising that Computer Algebra Systems
nevertheless seem to know much even about nested roots as pointed out in the introduction.
Let’s consider the identities (1) – (3) in more detail. Knowing the relations

11± 6
√

2 = (3±
√

2)2,

5± 2
√

6 = (
√

3±
√

2)2,

6
√

3± 10 = (
√

3± 1)3

they are evident, but the systems don’t know them in advance. Table 1 collects for different
Computer Algebra Systems the commands that yield the desired simplifications.

We see that most of the systems are strong in this area but don’t invoke that knowledge
automatically. With regard to (4) the automatic simplification of nested roots in Derive and
Maple is rather obscure. But even for Axiom and Reduce, that have no such facilities built
in, it is not hard to design rules to perform these simplifications (at least for expressions√

a +
√

b +
√

a−
√

b = c and
√

a + 2
√

b =
√

c +
√

d and integers a, b, c, d).

One may wonder about the third result in table 1 returned by Maple and Macsyma. Do
they know only how to simplify square roots? The reason is another one – mathematical
correctness. Recall that over the complex numbers the function x 7→ 3

√
x is a many-valued

function, and there is no canonical way to choose one of the branches. Here starts a first leap
towards the algebraic understanding of algebraic numbers: Symbolic expressions may not
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identify the underlying algebraic objects uniquely. This ambiguity may be resolved for real
numbers through branch cuts (just another long story, see, e.g., (Corless, 1996)) but there are
many reasons to assume the argument and return type of radical expressions to be complex
numbers. It would be nice to restrict the domain of definition by the user if possible, e.g.,
choosing the real branch of the root only, but I found no possibility to convince any of the
systems under consideration to do that in this case. (Note that, e.g., Maple’s assume facility
does not apply to variables with “symbolic numbers” as value, but only to (true) symbols.)

3 Algebraic numbers, variables, and kernels

Let’s have a closer look, how the different systems compute with algebraic numbers. Despite
(4) simple square roots are not very interesting since any root of a polynomial of degree 2 may
be expressed arithmetically through the polynomial’s coefficients and a single root expression√

D in a well known way. So let us examine the possible ways in which the different Computer
Algebra Systems compute with algebraic numbers of degree 3.

To be fair, we will use algebraic numbers produced by the systems themselves and perform
some computations on these numbers. We prepared the following task:

Take a polynomial
f(x) = x3 + p x + q

of degree 3 with integer coefficients, compute its zeroes x1, x2, x3 and subsequently
compose and expand the expression

(x− x1)(x− x2)(x− x3)

(that should simplify to the original polynomial f(x)).

If this task is executed successfully then test whether the system can sum up
powers of the roots

sk := xk
1 + xk

2 + xk
3

that are known to yield again integers.

It’s a nice small programming exercise to collect appropriate commands to produce these
roots, extract and recombine the correct parts from these expressions in the desired way, and
test different simplification routines on these or related expressions (e.g., (x−x2

1)(x−x2
2)(x−

x2
3)).

Derive (version 3.04) returns as the result of the first part of this task the following answer:

1: x^3+x+1

2: factor complex #1: (0.4 s)
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√
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√
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√
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√
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√
93
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√
93− 1
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√
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3

128

√
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3
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√
93
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))
3: expand #2 (1.3 s)

x3 + x
(

1
1152

√
93 + 29

3456

)1/3
+ x

(
29

3456 −
1

1152

√
93
)1/3

+ x
(

3
128

√
93 + 29

128

)1/3

+x
(

29
128 −

3
128

√
93
)1/3

− x
(

1
18

√
93 + 29

54

)1/3
− x

(
29
54 −

1
18

√
93
)1/3

+x +
(

7
7776

√
93 + 5

576

)1/3
+
(

1
31104

√
93− 1

3456

)1/3
+
(

7
288

√
93 + 15

64

)1/3

+
(

1
1152

√
93− 1

128

)1/3
+
(

1
486

√
93 + 1

54

)1/3
−
(

1
31104

√
93 + 1

3456

)1/3

−
(

7
7776

√
93− 5

576

)1/3
−
(

1
1152

√
93 + 1

128

)1/3
−
(

7
288

√
93− 15

64

)1/3

−
(

1
486

√
93− 1

54

)1/3

Even another call to simplify doesn’t change the result. One may wonder about this, but
there is a simple explanation that the students may guess with their knowledge about the
simplification mechanism of Computer Algebra Systems obtained in an earlier part of the
course. Nested radical expressions, such as (U)1/3, are (conceptually) internally represented
as Power(U,1/3) and thus much closer to functional expressions like sin(2 x−y) or cos(x2+y2)
than to numbers. Hence the general simplification mechanism for functional expressions
applies to them (and may be studied on this target in more detail).

For efficiency reasons this general simplification mechanism usually consists of a (efficiently
decidable) polynomial or rational simplifier combined with a (in full generality not decidable)
rule based simplification system associated with functional symbols. A functional expression
is simplified at three layers: The outer layer is a polynomial simplification of the context that
regards the expression as a generalized variable, called kernel, the inner layer a polynomial
simplification of the arguments of the expression and the middle one a rule based simplification
combining the inner and the outer world otherwise separated by the function name as by a
“wall”.

Hence expression #3, which contains several root symbols, is internally not represented
as a polynomial in x with number coefficients, but as a (multivariate) polynomial in several
kernels. Different to polynomials in indeterminates, these kernels are algebraically (and here
even linearly) dependent. Indeed, a more detailed inspection “by hand” shows that all these
kernels are merely different multiples of two different third roots. Probably Derive “forgot”
this common origin and considers all the roots as independent. Note that, once forgotten,
these dependencies can’t be recovered if radical expressions are considered as multi-valued.
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We conclude that it is very important to keep the number of different but algebraically
dependent kernels as small as possible, e.g., keeping track of common subexpressions.

The common origin of all these summands is also evident from Cardano’s formula for the
zeroes of the reduced cubic polynomial x3 + p x + q

x = 3

√
−q

2
+
√

D + 3

√
−q

2
−
√

D with D =
(

q

2

)2

+
(

p

3

)3

The other systems take into consideration this rule. Consider, for example, Maple (version
V.5):

s:=[solve(x^3+x+1,x)];

[−1/6 %1 + 2 %2, 1/12 %1− 1
%1 + 1/2 I

√
3 (−1/6 %1− 2 %2) ,

1/12 %1− 1
%1 − 1/2 I

√
3 (−1/6 %1− 2 %2)]

%1 := 3
√

108 + 12
√

93
%2 := 1

3
√

108 + 12
√

93

The result was formulated using new variables %1 and %2 that refer to a common subexpres-
sion (and its inverse) occuring in different places of the formula. Now we apply selectors and
constructors of the Computer Algebra System language to express the next step of our task:

product(x-op(i,s),i=1..3);

(x + 1/6 %1− 2 %2)
(
x− 1/12 %1 + %2− 1/2 I

√
3 (−1/6 %1− 2 %2)

)(
x− 1/12 %1 + %2 + 1/2 I

√
3 (−1/6 %1− 2 %2)

)
p:=expand(%);

1/2 + x + x3 +
1
18

√
93− 8

108 + 12
√

93

At this point we may remember that expand is a polynomial normal form operator of the
outer simplification layer, not involving simplifications of algebraic numbers that are part
of the middle simplification layer. The result is the same for an expression in independent
variables x and u = %1. We may prove this:

s1:=subs(%1=u,%2=1/u,s);

s1 := [−1/6 u + 2 u−1, 1/12 u− u−1 + 1/2 I
√

3
(
−1/6 u− 2 u−1

)
,

1/12 u− u−1 − 1/2 I
√

3
(
−1/6 u− 2 u−1

)
]

expand(product(x-op(i,s1),i=1..3));
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x + x3 +
1

216
u3 − 8 u−3

A subsequent call of simplify finally involves the middle simplification layer and yields the
original polynomial:

simplify(p);

x3 + x + 1

For the sums of powers we get

a:=[seq(simplify(sum(s[i]^k,i=1 .. 3)),k=2 .. 9)];

[−2,−3, 2, 5, 6 29+3
√

3
√

31

(9+
√

3
√

31)2 ,−7,−36 29+3
√

3
√

31

(9+
√

3
√

31)2 , 144 135+14
√

3
√

31

(9+
√

3
√

31)3 ]

For some reason not all expressions are fully simplified. Note that Maple, as most of the other
Computer Algebra Systems, does not incorporate the full power of algebraic simplifications
into simplify but has a special algebraic evaluation operator evala that involves stronger
and in some cases computationally more expensive knowledge about algebraic numbers.

map(evala,a);
[-2, -3, 2, 5, 1, -7, -6, 6]

MuPAD (version 1.3.1) works in a similar fashion:

s:=solve(x^3+x+1,x);
s1:=_mult(x-op(s,i) $i=1..3);
expand(s1);

x3 + 3x 3

√√√√(√31
√

108
108

+ 1/2

)
3

√√√√(√31
√

108
108

− 1/2

)
+ 1

simplify(%);

x3 + 3x 3

√√√√(√93
18

+ 1/2

)
3

√√√√(√93
18

− 1/2

)
+ 1

One may wonder that the product of roots is not simplified. The reason is the same as
explained above: If considered as independent, it is not clear which branches have to be
combined to get the mathematically correct result. (Note that this changed in version 1.4 thus
weakening mathematical correctness.) Probably, MuPAD implemented Cardano’s formula

x = u + v with u, v = 3

√
− q

2 ±
√

D “as it is” and did not remember, that both roots u, v are
related through the relation u v = −p

3 .
For the power sum simplification, this does not seem to be important:

[radsimp(_plus(op(s,i)^k $ i=1 .. 3)) $ k=2 .. 9];

[-2, -3, 2, 5, 1, -7, -6, 6]

Axiom, Macsyma, Mathematica, and Reduce solve this task in a manner similar to Maple.
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4 Algebraic numbers not represented as radical expressions

It is time to convince the students that there exist natural contexts where algebraic numbers
should not be presented as radical expressions. For this purpose we discuss (in the course, not
in this paper; for a nice explanation see (Pieper, 1988)) how to solve polynomial equations of
degree 3 theoretically. The casus irreducibilis that leads to 3 real roots deserves special atten-
tion, since these roots usually are represented in trigonometric form, and Reduce, MuPAD
and Derive do so.

s:=solve(x^3-3*x+1,x); # MuPAD

{
2cos

(
2π
9

)
,−cos

(
2π
9

)
+
√

3 sin
(

2π
9

)
,−cos

(
2π
9

)
−
√

3 sin
(

2π
9

)}
Needless to say, all Computer Algebra Systems under consideration (currently) don’t simplify
expressions containing such numbers automatically and hence the above task fails on that
example. (Nevertheless Maple and Mathematica are capable of a guided simplification of
such expressions through conversion to exponential form and expansion, followed by algebraic
simplification.) This is probably the main reason why Maple, Mathematica, Macsyma, and
Axiom use Cardano’s formula also for negative discriminants.

The students’ knowledge about the values of trigonometric functions at the special ar-
guments π

3 , π
4 and π

6 shows that special values of trigonometric functions may be expressed
through radicals. Computer Algebra Systems usually know more such examples, e.g., radical
expressions for cos(π

5 ) and sin(π
5 ), but have difficulties with cos(π

n) for n > 6. On the other
hand, they are powerful enough easily to play around with such examples. So we can try to
simplify expressions of the form

pi:=Pi; # for Maple
u0:=cos(pi/5)*cos(2*pi/5);
u1:=cos(pi/7)*cos(2*pi/7)*cos(3*pi/7);
u2:=cos(pi/9)*cos(2*pi/9)*cos(4*pi/9);

u0 simplifies with Maple and little effort to 1
4 . For u1 and u2 numeric approximations show

that these numbers are very close to 1
8 but it is impossible or at least hard (depending on the

Computer Algebra System) to prove that they are in fact equal to that number.
At this point the trigonometric simplification rules, developed earlier in the course, may

be applied to transform such expressions into polynomial expressions with a single kernel.
This ends up with the equivalent problem (for n = 7 or n = 9) if cos(π

n) is a root of a certain
polynomial. If n is odd such a polynomial pn(y) may be obtained from the expansion of
cos(n x) + 1 as a polynomial in y = cos(x) since for x = π

n we get cos(n x) + 1 = 0. Note that
for odd primes n this polynomial factors as

pn(y) = (y + 1) qn(y)2

for a certain irreducible polynomial qn(y). Hence cos(π
n) is an algebraic number of degree n−1

2
for such n.

This suggests the (usual from a mathematical point of view) definition of an algebraic
number as a root of a certain polynomial. It is also a good motivation to prove some prop-
erties of such a presentation. In particular, we may easily extract the important additional
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information that such a description doesn’t characterize the corresponding algebraic number
uniquely. Indeed, the equation pn(y) = 0 has obviously the zeroes yk = cos( (2k+1)π

n ) for
k = 1, . . . , n−1

2 .

5 Computing with algebraic numbers

With the definition given at the end of the last section we arrive at true symbolic objects
that may represent several algebraic numbers (with the same defining polynomial). As long
as we are not interested in the interaction between roots of the same polynomial p(x), a single
symbolic object RootOf(p(x),x) may serve as representative for any of its roots. All these
roots will be treated uniformly by the simplifier applying the algebraic rewriting rule extracted
from p(x). Since the students learned earlier in the course how to work with symbols and
rewriting rules we may do the corresponding calculations “by hand”.

This allows us to illustrate some usually difficult for beginners questions in the arithmetic
of algebraic numbers. Consider the statement that the sum of algebraic numbers is again
an algebraic number and the crucial point in the proof to construct a corresponding defining
polynomial. Explanations based on computer supported (symbolic) “hand” calculations may
give much more evidence of the driving principles. Consider, e.g., the algebraic numbers
a =

√
2 and b = 3

√
5. For calculations “by hand” we will represent them as symbols a and b

with rewriting rules {a2 => 2, b3 => 5}. Applying (with Reduce) these algebraic rewriting
rules to the powers of their sum c = a + b

for k:=0:10 collect (a+b)^k where { a^2 => 2, b^3 => 5 };

we see that all such powers may be expressed as linear combinations of the six products aibj

with i = 0, 1, j = 0, 1, 2. Hence we may expect the seven powers ci, i = 0, . . . , 6 to be linearly
dependent. Such a dependency relation may easily be found from a generic polynomial p(x)
of degree 6 by solving a system of linear equations. Here is the corresponding Reduce code:

p:=x^6+for k:=0:5 sum mkid(c,k)*x^k;
p1:=(sub(x=a+b,p) where { a^2 => 2, b^3 => 5 } );
sys:=for each u in coeff(p1,a) join coeff(u,b);
sol:=solve(sys);

Hence

q:=sub(sol,p);

is a (possibly not yet irreducible) polynomial with root c. The main advantage of such an
approach is that the students can (and must) concentrate on the top level algorithmic steps
and are not burdened with tedious hand calculations.

The same applies to the computation of the defining polynomial of the product and also
to the computation of the inverse of an algebraic number. Finally we arrive at the following
well known proposition from algebra:

If α is an algebraic number of degree d over a field k then the set R := k[α] of
k-linear combinations of terms from

Tred := {αi, i = 0, . . . , d− 1}

is a field.
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The proof is constructive and hence R computable. Indeed, applying the rewriting rule of
α extracted from its minimal polynomial, sums and products of such k-linear combinations
are transformed into combinations of the same form. We leave the (slightly) more subtle
argumentation for quotients as an exercise to the reader. All these computations assume, of
course, that the arithmetic of k is computable, too. More precisely:

If k has (canonical) normal forms and the minimal polynomial of α is known then
R has (canonical) normal forms.

This proposition proves that the representation of an algebraic number as a symbol
equipped with an algebraic rewriting rule derived from the corresponding defining polynomial
is well suited for computationally efficient arithmetic operations. Note that such an approach
may be extended to several algebraic numbers. It introduces only a restricted number of them
as (preferably independent) basic symbols and represents other algebraic numbers as their
linear combinations. This method is much more efficient than the primitive element approach
proposed in (Loos, 1983b) and implemented in the arnum package of Reduce. It has certain
disadvantages for dependent basic numbers. A more detailed discussion is beyond the scope
of the present paper.

We conclude that the designers of Computer Algebra Systems are well advised both to
enable the user to introduce algebraic numbers in such a form and to detect and represent
algebraic numbers produced by the system in even this form. Different Computer Algebra
Systems meet this requirement on different levels. The latter is commonly connected with
the introduction of RootOf symbols, but, e.g., Macsyma (version 421) doesn’t even apply
the obvious rewriting rule to expressions containing such symbols. Note, on the other hand,
the ubiquity of RootOf symbols even for algebraic numbers of degree 3 and 4 in the solution
of systems of polynomial equations obtained with the corresponding solve function. As
explained above a representation of the corresponding number as radical expression may
explode both with respect to size and computational complexity.

For the introduction of user defined algebraic numbers the Computer Algebra Systems
provide different mechanisms. In table 2 we collected the instructions necessary to introduce
an algebraic number a with defining polynomial p(x) = x5−x+1 and to simplify the expression
1/(1−a2) yielding a3+a for some of the Computer Algebra System under consideration. Note
that we found no way to tell Mathematica (3.0) to rationalize the denominator. Simplify is
too weak and RootReduce too strong.

For more advanced computations involving algebraic numbers it would be of great benefit
to hide the implementational difference between “true” and “symbolic” numbers from the
user by a uniform interface. Well-known concepts from computer science to realize such
polymorphism include abstract data types or object oriented methods. Both approaches lead
beyond the abilities of second generation Computer Algebra Systems since they require an
additional (symbolic) layer managing the type information. Although they are much more
adequate from a mathematical point of view, the practical realization of a strong type system
for symbolic computations meets essential difficulties, see (Comon, 1991), (Davenport, 1990)
or (Fateman, 1990). The experience with strong typing obtained during the development of
Axiom shows that the concepts to be developed must include advanced ideas from modern
type system theory that reach far beyond the state of the art, e.g., of C++, see (Jenks/Sutor,
1992). This leads immediately to the forefront not only of computer algebra but also of
computer science.
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System Version Commands

Macsyma 421 algebraic:true;
tellrat(a^5-a+1);
rat(1/(1-a^2));

Maple V.5 alias(a=RootOf(x^5-x+1));
evala(1/(1-a^2));

Mathematica 3.0 a=Root[x^5-x+1,1];
[ 1/(1-a^2); ]

Reduce 3.6 load arnum;
defpoly a^5-a+1;
1/(1-a^2);

Table 2: User defined algebraic numbers

In a systematic way such concepts are developed with Axiom (strong typing) and MuPAD
(object oriented domain concept). It’s neither the aim of this paper nor of a systematic
introductory course in symbolic computation to report about these ongoing developments.
(Davenport, 1990) remarks that a qualified exploitation of these mechanisms requires even
more structural insight than for second generation Computer Algebra Systems. For example,
in MuPAD we may define the field extension considered above as a new domain of computation

Q:=Dom::AlgebraicExtension(Dom::Rational,a^5-a+1);

and then put a:=Q(a), assigning to the variable a as value the algebraic number a obtained
from the symbol a via the domain element constructor Q(a). This on a first glance difficult
procedure is a good illustration of the subtle notions that arise in an object oriented approach.
Finally

1/(1-a^2);

yields the desired result since the domain type of a forces the operations from Q to be called.

6 Computing in algebraic extension towers

The above proposition may be applied recursively to adjoin several algebraic numbers α1, α2,
. . ., αn to a ground field k. Such a series of algebraic extensions ki = ki−1[αi] with k0 = k
is an algebraic extension tower. We can effectively compute in such towers if we can factor
polynomials in ki[x] over all intermediate extensions ki.

The latter is essential for computations with several algebraic numbers with the same
(over the ground field) defining polynomial. If α1 and α2 are two algebraic numbers with the
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common (e.g., over k = Q) defining polynomial p(x), then α2 is a root of p(x) over k1 = k[α1]
but

p(x) = (x− α1) q(x)

for a certain polynomial q(x) ∈ k1[x] and α2 is a root of this second (not necessarily
irreducible) factor. For example, if a is an algebraic number with defining polynomial
p(x) = x5 − x + 1 then p(x) factors over Q[a] as

p(x) = (x− a) (a4 + x4 + ax3 + a3x + a2x2 − 1)

Such a factorization may be computed with a special version of the factorization command
in Macsyma, Maple, Mathematica and MuPAD. Macsyma factors only in single algebraic
extensions, the other three systems support also factorization in multiple extensions (at least
in principle). The algebraic factorizer implemented in the arnum package of Reduce may
be invoked only with the factor switch and not with the factorize command and doesn’t
cooperate well with the remaining part of the system.

Based on its strong type system Axiom offers the most advanced factorization tool and
can even compute the splitting field of p(x), see (Jenks/Sutor, 1992, p. 236 ff.). But as noted
it may be quite tricky to compose the correct input that initiates the desired computations.
In our situation Axiom tends to convert input to the more general type Expression Integer
rather than AlgebraicNumber but this is inappropriate for the factorizer.

7 Conclusions

Starting with an intuitive notion of algebraic numbers as radical expressions common to the
students we study the advantages and drawbacks of such a presentation. One may argue that
many effects are due to the weakness of today’s Computer Algebra Systems. But even if some
of the worst odds will be eliminated I’m convinced (and this is confirmed by the development of
the widespread Computer Algebra Systems during the last years) that practically important
systems will offer both sloppy but effective procedures that cover 90 % of the practically
relevant cases and strong but extensive implementations for the remaining cases. Hence, if
not the same examples as above, but similar examples will remain to be studied also in future
releases.

Moreover, since the results of a perfect algebraic simplifier are rather unexpected (radical
expressions in the denominator of algebraic numbers of degree 3 instead of Cardano’s formula,
RootOf expressions instead of radicals), a small tour through algebraic numbers makes sense
anyway.

The trigonometric form occuring in the casus irreducibilis is the bridge between the radical
and RootOf representations of algebraic numbers. Their study involves only knowledge about
simplification of trigonometric expressions at an advanced high school level, but requires
certain experience with rule based programming.

Normal forms are one of the central issues of our introductory course. These notions and
concepts of simplification become apparent during design and analysis of the properties of
the algebraic RootOf simplifier.

Finally, the outlook on algebraic extension towers demonstrates the limits of the type-less
structure of second generation Computer Algebra Systems and indicates the value of ongoing
developments concerned with the incorporation of modern computer science concepts into
symbolic systems.

14



Hence the proposed small tour through algebraic numbers indeed passes many important
concepts of symbolic computation in an essential way.
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