Universität Leipzig Institut für Informatik Sommersemester 2018 Prof. Dr. Andreas Maletti Gustav Grabolle Mirko Schulze

Aufgaben zur Lehrveranstaltung

Berechenbarkeit

Serie 6

Hinweise:

- Abgabeschluss für Lösungen zu Hausaufgaben: 05.07.2018 vor der Vorlesung.
- Die Seminaraufgaben werden in den Übungen vom 26.06. bis 05.07. besprochen.
- Beschriften Sie jedes Lösungsblatt mit Matrikelnummer, Name, Übungsgruppe.
- Schreiben Sie Ihre Lösungen dokumentenecht auf; mit Bleistift verfasste Abgaben werden nicht bewertet.

Zur Wiederholung 6.1

Tauschen Sie sich mit Ihren KommilitonInnen aus und klären Sie die folgenden Fragen:

- Was ist PCP?
- Wie beweisen wir (Un)Entscheidbarkeit mittels Reduktion?
- Welche Mengen bezeichnen die Probleme Leerheit, Leerheit des Schnitts, Endlichkeit des Schnitts, Inklusion und Äquivalenz üblicherweise?
- Was ist WA?

Zur Wiederholung 6.2

Tauschen Sie sich mit Ihren KommilitonInnen aus und klären Sie die folgenden Fragen:

- Wie hängt die Komplexität von Algorithmen und Problemen zusammen?
- Wann ist eine Sprache polynomiell entscheidbar?
- Wann ist eine Sprache nichtdeterministisch polynomiell entscheidbar?
- Wann gilt $L \leq_P K$ für zwei Probleme L, K?

Seminaraufgabe 6.1

- (a) Wir definieren: $L_{PCP}^{\Sigma} = \{P \mid P \text{ ist l\"osbares } \Sigma\text{-PCP}\}$. Beweisen Sie nachfolgende Aussagen.
 - (i) $\{(100,110),(11,1),(1,01)\} \in L_{PCP}^{\{0,1\}}$.
 - (ii) $\{(110,1),(10,100),(10,010),(01,110)\}\in L_{PCP}^{\{0,1\}}$.
 - (iii) $L_{PCP}^{\Gamma} \leq L_{PCP}^{\{0,1\}}$, für beliebige Γ .
- (b) Beweisen oder widerlegen Sie die Entscheidbarkeit des folgenden Problems:

{P WHILE-Programm | $|P|_2$ ist nicht LOOP-berechenbar}

Hinweis: Ein PCP P ist genau dann ein Σ-PCP, wenn $u_i, v_i \in \Sigma^*$ für alle $(u_i, v_i) \in P$ gilt.

Seminaraufgabe 6.2

Wir betrachten die folgenden Probleme:

PROBLEM: RUCKSACK PROBLEM: PARTITION

Gegeben: $n_1, \ldots, n_k \in \mathbb{N}$ und $r \in \mathbb{N}$. Gegeben: $n_1, \ldots, n_k \in \mathbb{N}$.

Gefragt: Existiert eine Teilmenge $I\subseteq\{1,\ldots,k\}$ mit Gefragt: Existiert eine Teilmenge $I\subseteq\{1,\ldots,k\}$ mit

$$\sum_{i \in I} n_i = r \qquad \qquad \sum_{i \in I} n_i = \sum_{j \in \{1, \dots, k\} \setminus I} n_j$$

- (a) Zeigen Sie RUCKSACK \leq_P PARTITION.
- (b) Zeigen Sie PARTITION \in NP.

Seminaraufgabe 6.3

- (a) Bestimmen Sie die größte Teilmenge der Typ-0 Sprachen, die unter Komplement abgeschlossen ist.
- (b) Wir betrachten WHILE-Programme *P*, die ausschließlich durch nachfolgende Regeln erzeugt wurden.
 - $(1) x_i = x_j + z$
 - (2) P_1 ; P_2

Zeigen Sie explizit, dass für jedes dieser Programme $|P|_{maxvar(P)}$ arithmetisch repräsentierbar ist.

Hausaufgabe 6.4

- (a) Beweisen oder widerlegen Sie nachfolgende Aussagen.
 - (i) $\{(abb, aab), (aa, a), (a, ba)\} \in L_{PCP}^{\{a,b,c\}}$
 - (ii) $\{(abca,bc),(caab,acbc),(ba,aaac),(abbaca,acab),(bb,bbbc),(abcb,bbaaab)\} \in L_{PCP}^{\{a,b,c\}}$.
 - (iii) Es existiert $P \in L_{PCP}^{\{0,1\}}$ mit endlich vielen Lösungen.

Hinweis: Resultate aus der Vorlesung dürfen benutzt werden.

- (b) Wir definieren: Sei P ein PCP, dann ist lsg(P) die Menge der Lösungen von P. Zeigen Sie, dass $\{(P_1, P_2) \mid lsg(P_1) \cap lsg(P_2) \neq \emptyset\}$ unentscheidbar ist.
- (c) Seien \mathcal{A}, \mathcal{B} und \mathcal{C} beliebige Probleme. Beweisen oder widerlegen Sie:

Wenn
$$A \leq B$$
 und $B \leq C$, dann $A \leq C$.

Hausaufgabe 6.5

Wir betrachten die folgende Klasse von Problemen:

Problem: n-FÄRBBAR

Gegeвen: Endlicher Graph G.

GEFRAGT: Existiert eine gültige n-Färbung auf G?

Zeigen Sie, dass 3-FÄRBBAR \leq_P 4-FÄRBBAR gilt.

Hausaufgabe 6.6

Wir betrachten einfachen, ungerichtete, endliche Graphen G = (V, E). Wir definieren:

$$clique_n(G) = \{S \subseteq V \mid |S| \ge n \text{ und } (s_1, s_2) \in E \text{ für alle } s_1, s_2 \in S\}, stabil_n(G) = \{S \subseteq V \mid |S| \ge n \text{ und } (s_1, s_2) \notin E \text{ für alle } s_1, s_2 \in S\}$$

für alle $n \in \mathbb{N}$.

(a) Wir betrachten folgendes Problem:

PROBLEM: CLIQUE

Gegeben: Endlicher Graph G, natürliche Zahl n.

Gefragt: Existiert ein Element in $clique_n(G)$?

Zeigen Sie CLIQUE \in NP.

Seite 3 von 4

(b) Wir betrachten folgendes Problem:

PROBLEM: STABIL

Gegeben: Endlicher Graph G, natürliche Zahl n.

Gefragt: Existiert ein Element in $stabil_n(G)$?

Zeigen Sie STABIL \in NP.

(c) Zeigen Sie STABIL \leq_P CLIQUE.