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if A assigns weights to trees t over Σ

⇒ s 7→
∑

t∈h−1(s)A(t) assigns weights to trees s over ∆

Thm h(A) regular iff no duplication of arbitrarily large subtrees in suppA
e.g. above: if σ only occurs in trees of height 10 or less in suppA
decidable in P
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