WEIGHTED HOM-PROBLEM FOR NONNEGATIVE INTEGERS

Andreas Maletti, Andreea-Teodora Nász, Erik Paul

HOM-Problem:

regular tree language

tree homomorphism

image regular?

weighted regular tree language

tree homomorphism

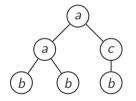
image regular?

weighted regular tree language

tree homomorphism

image regular?

weighted tree automaton over \mathbb{N}_0

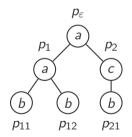


weighted regular tree language

tree homomorphism

image regular?

weighted tree automaton over \mathbb{N}_0

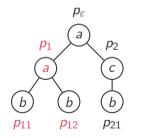


weighted regular tree language

tree homomorphism

image regular?

weighted tree automaton over \mathbb{N}_0



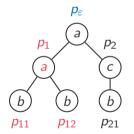
 (p_{11}, p_{12}, a, p_1)

weighted regular tree language

tree homomorphism

image regular?

weighted tree automaton over \mathbb{N}_{0}



final weights transition weights in \mathbb{N}_0

 (p_{11}, p_{12}, a, p_1)

weighted regular tree language

tree homomorphism

image regular?

weighted tree automaton over \mathbb{N}_0

 $\begin{array}{c} & & & \\ & & & \\ & & & \\ p_1 & & p_2 \\ & & & \\ a & & c \\ & & & \\ b & & b \\ \hline \\ p_{11} & p_{12} & p_{21} \end{array}$

final weights transition weights in \mathbb{N}_0 (p_{11}, p_{12}, a, p_1) weight of run = \prod transition weights \cdot final weight

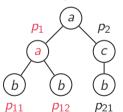
weighted regular tree language

tree homomorphism

image regular?

weighted tree automaton over \mathbb{N}_0

 $p_{arepsilon}$



final weights transition weights in \mathbb{N}_0 (p_{11}, p_{12}, a, p_1) weight of run = \prod transition weights \cdot final weight

weight of tree = sum over runs on tree

alphabets: $\Sigma = \{ \sigma^{(1)} \ \gamma^{(1)} \ \beta^{(0)} \}$ $\Delta = \{ a^{(2)} \ c^{(1)} \ b^{(0)} \}$

homomorphism h from Σ to Δ :

alphabets:

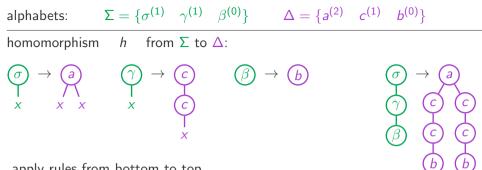
$$\Sigma = \{\sigma^{(1)} \ \gamma^{(1)} \ \beta^{(0)}\}$$
 $\Delta = \{a^{(2)} \ c^{(1)} \ b^{(0)}\}$

 homomorphism
 h
 from Σ to Δ :

 σ
 A
 γ
 σ
 χ
 χ
 σ
 ϕ
 χ
 χ
 σ
 ϕ
 χ
 χ
 ϕ
 ϕ
 ϕ
 χ
 χ
 ϕ
 ϕ
 ϕ
 ϕ
 χ
 χ
 ϕ
 ϕ
 ϕ
 ϕ
 ϕ

alphabets:
$$\Sigma = \{\sigma^{(1)} \ \gamma^{(1)} \ \beta^{(0)}\}$$
 $\Delta = \{a^{(2)} \ c^{(1)} \ b^{(0)}\}$ homomorphismhfrom Σ to Δ : $\sigma \rightarrow a$ $\gamma \rightarrow c$ $\beta \rightarrow b$ $\sigma \rightarrow a$ $\chi \rightarrow \chi \rightarrow \chi$ $\chi \rightarrow c$ $\beta \rightarrow b$ $\sigma \rightarrow a$ $\gamma \rightarrow c$ $\beta \rightarrow b$ $\sigma \rightarrow a$ $\gamma \rightarrow c$ $\beta \rightarrow c$ $\sigma \rightarrow a$ $\gamma \rightarrow c$ $\beta \rightarrow c$ $\sigma \rightarrow a$ $\gamma \rightarrow c$ $\phi \rightarrow c$ $\chi \rightarrow c$ $\phi \rightarrow c$ $\gamma \rightarrow c$

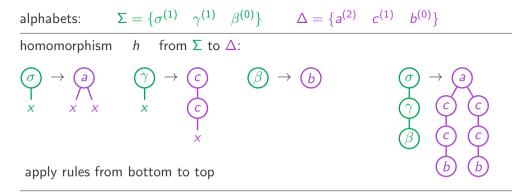
apply rules from bottom to top



apply rules from bottom to top

if \mathcal{A} assigns weights to trees t over Σ

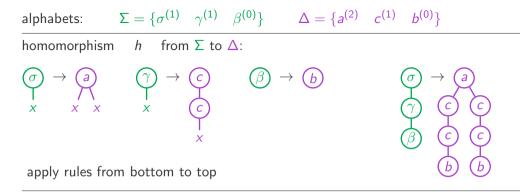
 $\Rightarrow s \mapsto \sum_{t \in h^{-1}(s)} \mathcal{A}(t)$ assigns weights to trees s over Δ



if \mathcal{A} assigns weights to trees t over Σ

 $\Rightarrow s \mapsto \sum_{t \in h^{-1}(s)} \mathcal{A}(t)$ assigns weights to trees s over Δ

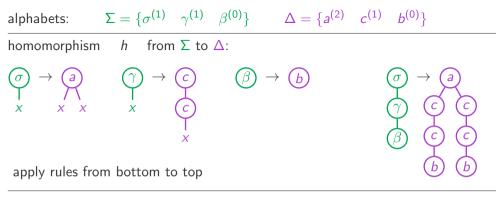
Thm $h(\mathcal{A})$ regular iff no duplication of arbitrarily large subtrees in supp \mathcal{A}



if \mathcal{A} assigns weights to trees t over Σ

 $\Rightarrow s \mapsto \sum_{t \in h^{-1}(s)} \mathcal{A}(t)$ assigns weights to trees s over Δ

Thm $h(\mathcal{A})$ regulariffnoduplication of arbitrarily large subtreesin supp \mathcal{A} e.g. above:if σ only occurs in trees of height 10 or less in supp \mathcal{A}



if $\mathcal A$ assigns weights to trees t over Σ

 $\Rightarrow s \mapsto \sum_{t \in h^{-1}(s)} \mathcal{A}(t)$ assigns weights to trees s over Δ

Thm h(A) regular iff no duplication of arbitrarily large subtrees in supp Ae.g. above: if σ only occurs in trees of height 10 or less in supp Adecidable in P

for
$$L = \left\{ \begin{array}{c|c} & & \\ & & \\ & & \\ & t & t \end{array} \middle| t \text{ tree} \right\}$$

 1_L non-regular (non-regular support)

for
$$L = \left\{ \begin{array}{c} \left| \begin{array}{c} \partial \\ \partial \\ t \end{array} \right| t \text{ tree} \right\}$$
 $1 + 1_L$

 $1 + 1_L$ non-regular?

$\mathcal{A} + 1_L$ non-regular?

for
$$L = \left\{ \begin{array}{c} \left| \begin{array}{c} \mathbf{A} \\ \mathbf{A}$$

for
$$L = \left\{ \begin{array}{c} \left| \begin{array}{c} c \\ t \end{array} \right| t \text{ tree} \right\}$$
 1+1_L non-regular? $\mathcal{A} + 1_L$ non-regular?
$$\mathcal{A} \left(\left| \begin{array}{c} c \\ s \end{array} \right| \right) = \sum_{\substack{\text{run on } p \\ s \end{array}} \prod_{t \text{ transitions in run } t \text{ final weight}} \prod_{t \text{ p } q} r_{t \text{ transitions in run } t \text{ final weight}} \right\}$$

for
$$L = \left\{ \begin{array}{c} \left| \begin{array}{c} a \\ t \\ t \end{array} \right| t \text{ tree} \right\}$$
 1+1_L non-regular? $\mathcal{A} + 1_L$ non-regular?
$$\mathcal{A} \left(\left| \begin{array}{c} a \\ s \\ s \end{array} \right| \right) = \sum_{\substack{\text{run on } \left| \begin{array}{c} c \\ s \\ s \\ s \\ t \end{array} \right|} \prod \text{ transitions in run } \text{ final weight} \qquad \left| \begin{array}{c} r \\ r \\ p \\ q \\ \end{array} \right|$$
$$= \sum_{\substack{p,q \in \mathcal{Q} \\ p,q \in \mathcal{Q} \\ \text{run on } s \text{ to } p \\ \text{run on } s \text{ to } p \\ \text{run on } s \text{ to } p \\ \text{run on } t \text{ to } q \end{array}} \prod \text{ transitions on } s \cdot \prod \text{ transitions on } t \cdot \text{wt}(p,q,a,r) \cdot \text{final}(r)$$

for
$$L = \left\{ \begin{array}{c} \left| \begin{array}{c} \left| \begin{array}{c} t \\ t \end{array} \right| \\ t \end{array} \right| \\ t \end{array} \right\}$$
 1+1_L non-regular? $\mathcal{A} + 1_L$ non-regular?
$$\mathcal{A} \left(\left| \begin{array}{c} \left| \begin{array}{c} \left| \begin{array}{c} \\ s \end{array} \right| \\ s \end{array} \right| \\ = \sum_{\substack{run \text{ on } \\ s \end{array}} \prod_{\substack{r \in Q \\ run \text{ on } s \text{ to } p \\ run \text{ on } s \text{ to } p \\ run \text{ on } t \text{ to } q \end{array} \right] = \sum_{\substack{p,q \in Q \\ run \text{ on } s \text{ to } p \\ run \text{ on } s \text{ to } p \\ = \sum_{\substack{p,q \in Q \\ run \text{ on } s \text{ to } p \\ run \text{ on } s \text{ to } p \\ run \text{ on } s \text{ to } p \\ = \sum_{\substack{p,q \in Q \\ run \text{ on } s \text{ to } p \\ run \text{ on } s \text{ to } p \\ run \text{ on } s \text{ to } p \\ = \sum_{\substack{p,q \in Q \\ run \text{ on } s \text{ to } p \\ run \text{ on } s \text{ to } s$$

for
$$L = \left\{ \begin{array}{c|c} & & \\ & & \\ & & \\ & t & t \end{array} \middle| t \text{ tree} \right\} \qquad \mathcal{A} + 1_L \text{ non-regular}? \qquad t_1, t_2, t_3, \dots \text{ pairwise distinct}$$

for
$$L = \left\{ \begin{array}{c|c} & & \\ & & \\ & & \\ & t & t \end{array} \middle| t \text{ tree} \right\} \qquad \mathcal{A} + 1_L \text{ non-regular}? \qquad t_1, t_2, t_3, \dots \text{ pairwise distinct}$$

assume $\mathcal{A} + \mathbf{1}_L$ is regular

$$(\mathcal{A}+1_L)\left(\begin{array}{c} \textcircled{\partial}\\ \overleftarrow{t_i} & t_j \end{array}\right) = \mathcal{A}\left(\begin{array}{c} \textcircled{\partial}\\ \overleftarrow{t_i} & t_j \end{array}\right) + \delta_{ij}$$

assume
$$\mathcal{A} + 1_L$$
 is regular
 $\mathbf{v}'_i \mathcal{M}' \mathbf{v}'_j = (\mathcal{A} + 1_L) \left(\begin{array}{c} \mathbf{a} \\ \mathbf{a} \\ \mathbf{t}_i & \mathbf{t}_j \end{array} \right) = \mathcal{A} \left(\begin{array}{c} \mathbf{a} \\ \mathbf{a} \\ \mathbf{t}_i & \mathbf{t}_j \end{array} \right) + \delta_{ij} = \mathbf{v}_i \mathcal{M} \mathbf{v}_j + \delta_{ij}$

for
$$L = \left\{ \begin{array}{c|c} & & \\ & & \\ & & \\ & t & t \end{array} \middle| t \text{ tree} \right\} \qquad \mathcal{A} + 1_L \text{ non-regular}? \qquad t_1, t_2, t_3, \dots \text{ pairwise distinct}$$

assume
$$\mathcal{A} + 1_L$$
 is regular
 $\mathbf{v}'_i \mathcal{M}' \mathbf{v}'_j = (\mathcal{A} + 1_L) \begin{pmatrix} \widehat{\mathcal{A}} \\ f_i & t_j \end{pmatrix} = \mathcal{A} \begin{pmatrix} \widehat{\mathcal{A}} \\ \widehat{\mathcal{A}} \\ t_i & t_j \end{pmatrix} + \delta_{ij} = \mathbf{v}_i \mathcal{M} \mathbf{v}_j + \delta_{ij}$

$$\begin{pmatrix} \mathbf{v}_1\\ \mathbf{v}'_1 \end{pmatrix}, \begin{pmatrix} \mathbf{v}_2\\ \mathbf{v}'_2 \end{pmatrix}, \dots \text{ vectors in finite-dim vector space } \mathbb{Q}^n \quad \Rightarrow \quad \begin{pmatrix} \mathbf{v}_{\mathcal{K}+1}\\ \mathbf{v}'_{\mathcal{K}+1} \end{pmatrix} = \sum_{i=1}^K \alpha_i \begin{pmatrix} \mathbf{v}_i\\ \mathbf{v}'_i \end{pmatrix}$$

for
$$L = \left\{ \begin{array}{c|c} & & \\ & & \\ & & \\ & t & t \end{array} \middle| t \text{ tree} \right\} \qquad \mathcal{A} + 1_L \text{ non-regular}? \qquad t_1, t_2, t_3, \dots \text{ pairwise distinct}$$

assume
$$\mathcal{A} + 1_L$$
 is regular
 $\mathbf{v}'_i \mathcal{M}' \mathbf{v}'_j = (\mathcal{A} + 1_L) \begin{pmatrix} \widehat{\mathcal{A}} \\ f_i & t_j \end{pmatrix} = \mathcal{A} \begin{pmatrix} \widehat{\mathcal{A}} \\ f_i & t_j \end{pmatrix} + \delta_{ij} = \mathbf{v}_i \mathcal{M} \mathbf{v}_j + \delta_{ij}$

$$\begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}'_1 \end{pmatrix}, \begin{pmatrix} \mathbf{v}_2 \\ \mathbf{v}'_2 \end{pmatrix}, \dots \text{ vectors in finite-dim vector space } \mathbb{Q}^n \quad \Rightarrow \quad \begin{pmatrix} \mathbf{v}_{K+1} \\ \mathbf{v}'_{K+1} \end{pmatrix} = \sum_{i=1}^K \alpha_i \begin{pmatrix} \mathbf{v}_i \\ \mathbf{v}'_i \end{pmatrix}$$

 $v'_{K+1}M'v'_{K+1} = \sum_{i=1}^{K} \alpha_i v'_iM'v'_{K+1}$

for
$$L = \left\{ \begin{array}{c|c} & & \\ & & \\ & & \\ & t & t \end{array} \middle| t \text{ tree} \right\} \qquad \mathcal{A} + 1_L \text{ non-regular}? \qquad t_1, t_2, t_3, \dots \text{ pairwise distinct}$$

assume
$$\mathcal{A} + 1_L$$
 is regular
 $\mathbf{v}'_i \mathcal{M}' \mathbf{v}'_j = (\mathcal{A} + 1_L) \begin{pmatrix} a \\ f_i & t_j \end{pmatrix} = \mathcal{A} \begin{pmatrix} a \\ f_i & t_j \end{pmatrix} + \delta_{ij} = \mathbf{v}_i \mathcal{M} \mathbf{v}_j + \delta_{ij}$

$$\begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}'_1 \end{pmatrix}, \begin{pmatrix} \mathbf{v}_2 \\ \mathbf{v}'_2 \end{pmatrix}, \dots \text{ vectors in finite-dim vector space } \mathbb{Q}^n \quad \Rightarrow \quad \begin{pmatrix} \mathbf{v}_{K+1} \\ \mathbf{v}'_{K+1} \end{pmatrix} = \sum_{i=1}^K \alpha_i \begin{pmatrix} \mathbf{v}_i \\ \mathbf{v}'_i \end{pmatrix}$$
$$\mathbf{v}'_{K+1} M' \mathbf{v}'_{K+1} \quad = \quad \sum_{i=1}^K \alpha_i \mathbf{v}'_i M' \mathbf{v}'_{K+1} \quad = \quad \sum_{i=1}^K \alpha_i \mathbf{v}_i M \mathbf{v}_{K+1}$$

for
$$L = \left\{ \begin{array}{c|c} \left| \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right| t \text{ tree} \right\} \qquad \mathcal{A} + 1_L \text{ non-regular}? \qquad t_1, t_2, t_3, \dots \text{ pairwise distinct}$$

assume
$$\mathcal{A} + 1_L$$
 is regular
 $\mathbf{v}'_i \mathcal{M}' \mathbf{v}'_j = (\mathcal{A} + 1_L) \begin{pmatrix} \widehat{\mathcal{A}} \\ \widehat{\mathbf{v}}_i \\ t_i & t_j \end{pmatrix} = \mathcal{A} \begin{pmatrix} \widehat{\mathcal{A}} \\ \widehat{\mathbf{v}}_i \\ t_i & t_j \end{pmatrix} + \delta_{ij} = \mathbf{v}_i \mathcal{M} \mathbf{v}_j + \delta_{ij}$

$$\begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}'_1 \end{pmatrix}, \begin{pmatrix} \mathbf{v}_2 \\ \mathbf{v}'_2 \end{pmatrix}, \dots \text{ vectors in finite-dim vector space } \mathbb{Q}^n \quad \Rightarrow \quad \begin{pmatrix} \mathbf{v}_{K+1} \\ \mathbf{v}'_{K+1} \end{pmatrix} = \sum_{i=1}^K \alpha_i \begin{pmatrix} \mathbf{v}_i \\ \mathbf{v}'_i \end{pmatrix}$$
$$\mathbf{v}'_{K+1} M' \mathbf{v}'_{K+1} \quad = \quad \sum_{i=1}^K \alpha_i \underbrace{\mathbf{v}'_i M' \mathbf{v}'_{K+1}}_{K+1} \quad = \quad \sum_{i=1}^K \alpha_i \mathbf{v}_i M \mathbf{v}_{K+1} \quad = \quad \mathbf{v}_{K+1} M \mathbf{v}_{K+1} \notin \mathbf{v}_{K+1}$$