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QUANTUM MECHANICS

physical quantities in quantum mechanics: observables

3 remarkable properties:

Randomness measurement of observables probabilistic
“deterministic” state constructable for every observable

Incompatible observables A and B incompatible
⇒ A deterministic ↔ B strictly probabilistic
Uncertainty Principle: position and momentum along fixed axis

Post measurement collapse of states
repeated measurement of incompatible observables
 change of observables

10%



QUANTUM MECHANICS

physical quantities in quantum mechanics: observables

3 remarkable properties:

Randomness measurement of observables probabilistic
“deterministic” state constructable for every observable

Incompatible observables A and B incompatible
⇒ A deterministic ↔ B strictly probabilistic
Uncertainty Principle: position and momentum along fixed axis

Post measurement collapse of states
repeated measurement of incompatible observables
 change of observables

11%



QUANTUM MECHANICS

physical quantities in quantum mechanics: observables

3 remarkable properties:

Randomness measurement of observables probabilistic

“deterministic” state constructable for every observable

Incompatible observables A and B incompatible
⇒ A deterministic ↔ B strictly probabilistic
Uncertainty Principle: position and momentum along fixed axis

Post measurement collapse of states
repeated measurement of incompatible observables
 change of observables

12%



QUANTUM MECHANICS

physical quantities in quantum mechanics: observables

3 remarkable properties:

Randomness measurement of observables probabilistic
“deterministic” state constructable for every observable

Incompatible observables A and B incompatible
⇒ A deterministic ↔ B strictly probabilistic
Uncertainty Principle: position and momentum along fixed axis

Post measurement collapse of states
repeated measurement of incompatible observables
 change of observables

14%



QUANTUM MECHANICS

physical quantities in quantum mechanics: observables

3 remarkable properties:

Randomness measurement of observables probabilistic
“deterministic” state constructable for every observable

Incompatible observables A and B incompatible
⇒ A deterministic ↔ B strictly probabilistic

Uncertainty Principle: position and momentum along fixed axis

Post measurement collapse of states
repeated measurement of incompatible observables
 change of observables

15%



QUANTUM MECHANICS

physical quantities in quantum mechanics: observables

3 remarkable properties:

Randomness measurement of observables probabilistic
“deterministic” state constructable for every observable

Incompatible observables A and B incompatible
⇒ A deterministic ↔ B strictly probabilistic
Uncertainty Principle: position and momentum along fixed axis

Post measurement collapse of states
repeated measurement of incompatible observables
 change of observables

16%



QUANTUM MECHANICS

physical quantities in quantum mechanics: observables

3 remarkable properties:

Randomness measurement of observables probabilistic
“deterministic” state constructable for every observable

Incompatible observables A and B incompatible
⇒ A deterministic ↔ B strictly probabilistic
Uncertainty Principle: position and momentum along fixed axis

Post measurement collapse of states
repeated measurement of incompatible observables
 change of observables

18%



Incompatible observables A and B incompatible
⇒ A deterministic ↔ B strictly probabilistic

Example

p = “momentum of particle x is in [0, 16 ]”

q = “position of particle x is in [−2, 0]”

r = “position of particle x is in [0, 2]”

p ∧ (q ∨ r) is true with probability 1, for some system

neither p ∧ q nor p ∧ r is true with probability 1, for no system

⇒ p ∧ (q ∨ r) 6≡ (p ∧ q) ∨ (p ∧ r) distributivity fails
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Johann von Neumann’s approach (1932)

Quantum mechanical system Hilbert space H
finite dim. complex vector space with Hermitian scalar product 〈., .〉

State of system unit vector ψ ∈ H

Observable physical quantity self-adjoint operator A : H → H
〈Ax , y〉 = 〈x ,Ay〉

Spectral Theorem spectral measure for every observable A

PA : B(R)→ P(H)
Borel sets → projectors

probability that measurement of A in state ψ is in X ⊆ R

〈PA(X )ψ,ψ〉
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Johann von Neumann’s approach 〈PA(X )ψ,ψ〉

spectral measure PA : B(R)→ P(H) for observable A

projections P(H) form lattice: P ≤ Q ↔ range(P) ⊆ range(Q)

Example H = R3

P : (x , y , z) 7→ (x , y , 0) range(P) = R× R× {0}
Q : (x , y , z) 7→ (x , 0, z) range(Q) = R× {0} × R

P ∧ Q : (x , y , z) 7→ (x , 0, 0) range(P ∧ Q) = R× {0} × {0}
P ∨ Q : (x , y , z) 7→ (x , y , z) range(P ∨ Q) = R× R× R

negation: P ′ = I − P ⇒ Quantum Logic
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QUANTUM MULTI-VALUED (QMV) ALGEBRAS

E = (E ,�,′ , 0, 1) � binary, ′ unary �↔ ∨ ′ ↔ ¬

a� b = (a′ � b′)′ (= ¬(¬a ∨ ¬b) = a ∧ b)

a u b = (a� b′)� b (= (a ∨ ¬b) ∧ b = a ∧ b)

a ≤ b ↔ a = a u b

partial order  ∨,∧

E is Quantum multi-valued (QMV) algebra if

(QMV1) a� b = b � a commutative
(QMV2) a� (b � c) = (a� b)� c associative
(QMV3) a� a′ = 1 law of excluded middle
(QMV4) a� 0 = a neutral 0
(QMV5) a� 1 = 1 absorbing 1
(QMV6) a′′ = a double negation principle
(QMV7) a� [(a′ u b) u (c u a′)] = (a� b) u (a� c)

weak “distributivity” of � over u
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E = (E ,�,′ , 0, 1)

Example 1

E = {0, a, b, 1} 0 = 0 1 = 1

a� b = a� a = b � b = 1

a′ = a b′ = b

(a′ � b′)′ (a� b′)� b

� 0 a b 1

0 0 0 0 0

a 0 0 0 a

b 0 0 0 b

1 0 a b 1

u 0 a b 1

0 0 0 0 0

a 0 a b a

b 0 a b b

1 0 a b 1
1

a b

0 a ≤ b ↔ a = a u b
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QUANTUM COMPUTING

Benioff ’80 first quantum mechanical description of a computer

Feynman ’82 simulation of certain quantum effects
→ exponential slowdown of Turing machine

Deutsch ’85 description of first true quantum Turing machine
→ quantum parallelism

Shor ’94 polynomial time prime factorization algorithm

Grover ’96 O(
√
n) algorithm for search in unsorted database
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QMV Turing machine M = (Q,Σ, Γ, δ,B, I ,F )

Q set of states

Σ ⊆ Γ input alphabet

Γ working alphabet

δ : Q × Γ× Q × Γ× {L,S ,R} → E transition function

B ∈ Γ blank symbol

I ,F : Q → E initial / finial state function

paths of M on w ∈ Σ∗ defined as usual

weight of path I (first state)� δ(transitions)� F (last state)

weight of word |M|(w)
∧

P path on w weight of P
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A NIVAT THEOREM FOR QMV-TURING MACHINES

S : ∆∗ → E weighted language

projection h : ∆∗ → Σ∗ h(S)(w) =
∧

v∈h−1(w) S(v)

g : ∆∗ → E homomorphic ↔ g(a1 . . . an) = g(a1)� . . .� g(an)

Theorem

S : Σ∗ → E recognizable iff there exist

alphabet ∆

mapping h : ∆→ Σ ∪ {ε} extended to ∆∗ → Σ∗

homomorphic g : ∆∗ → E

recursively enumerable language L ⊆ ∆∗

such that S = h(g ∩ L)

Proof ⇒ construct ∆, h, g , L

⇐ show closures, recognizability of homomorphic languages
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