
Monitor Logics
for Quantitative Monitor Automata∗

Erik Paul1

1 Institute of Computer Science, Leipzig University, 04109 Leipzig, Germany
{epaul}@informatik.uni-leipzig.de

Abstract
We introduce a new logic called Monitor Logic and show that it is expressively equivalent to
Quantitative Monitor Automata.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Quantitative Monitor Automata, Nested Weighted Automata, Monitor
Logics, Weighted Logics

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.14

1 Introduction

In the last years, there has been increasing interest in quantitative features of the specification
and analysis of systems. Such quantitative aspects include the consumption of a certain
resource or the output of a benefit. Both weighted automata and weighted logics [7] are
means to achieve this quantitative description of systems. They can be employed for both
finite and infinite input.

Very recently, Chatterjee et al. introduced a new automaton model operating on infinite
words [4]. Quantitative Monitor Automata are equipped with a finite number of monitor
counters. At each transition, a counter can be started, terminated, or the value of the counter
can be increased or decreased. The term “monitor” stems from the fact that the values of
the counters do not influence the behavior of the automaton. The values of the counters
when they are terminated provide an infinite sequence of weights, which is evaluated into a
single weight using a valuation function.

Quantitative Monitor Automata possess several interesting features. They are expressively
equivalent to a subclass of Nested Weighted Automata [3], an automaton model which for
many valuation functions has decidable emptiness and universality problems. Quantitative
Monitor Automata are also very expressive. As an example, imagine a storehouse with a
resource which is restocked at regular intervals. Between restocks, demands can remove one
unit of this resource at a time. Such a succession of restocks and demands can be modeled as
an infinite sequence over the alphabet {restock, demand}. Interesting quantitative properties
of such a sequence include the long-term average demand, the minimum demand and the
maximum demand between restocks. These properties can be described using Quantitative
Monitor Automata. At every restock a counter is started, counting the number of demands
until the next restock. An appropriate valuation function then computes the desired property.
For the average demand, this can be achieved with the Cesàro mean which was introduced

∗ This work was supported by Deutsche Forschungsgemeinschaft (DFG), Graduiertenkolleg 1763
(QuantLA).

© Erik Paul;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 14; pp. 14:1–14:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Monitor Logics for Quantitative Monitor Automata

to automata theory by Chatterjee et. al in [2]. Note that behaviors like these cannot be
modeled using weighted Büchi-automata [11, 12] or their extension with valuation functions
[8]. In the latter model, the Cesàro mean of any sequence is bounded by the largest transition
weight in the automaton. This is not the case for Quantitative Monitor Automata.

In this paper, we develop a logic which is expressively equivalent to Quantitative Monitor
Automata. Our main results are the following.

We introduce a new logic which we call Monitor Logic.
We show that this Monitor Logic is expressively equivalent to Quantitative Monitor
Automata.
We show various closure properties of Quantitative Monitor Automata and prove that
Muller and Büchi acceptance conditions provide the same expressive power.

The relationship between automata and logics plays a large role in specification and verification.
Statements are often easier to formulate in the form of a logic formula rather than directly as
an automaton. Consequently, the fundamental Büchi-Elgot-Trakhtenbrot Theorem [1, 10, 17],
which established the coincidence of regular languages with languages definable in monadic
second order logic, has found use in many areas of application. An extension to semiring
weighted automata was later given by Droste and Gastin [6].

Our logic is equipped with three quantifiers. A sum quantifier to handle the computations
on the counters, a valuation quantifier to handle the valuation, and a third quantifier to
combine the weights of all runs on a word. Our biggest challenge was to find appropriate
restrictions on the use of the quantifiers. Without any restrictions the logic would be too
powerful, which we also formally prove using counter examples. The most important result
of our considerations is that the computations of the sum quantifier should depend on an
MSO-definable condition.

We note that our constructions are effective. Given a formula from our logic, we can
effectively construct a Quantitative Monitor Automaton describing this formula. Conversely,
for every automaton we can effectively construct a formula with the automaton’s behavior.

2 Preliminaries

Let N = {0, 1, 2, . . .} denote the natural numbers, Z the integers and R the reals. An alphabet
Σ is a finite set. An infinite word over Σ is a sequence w = a0a1a2 . . . from Σ. The set of
infinite words over Σ is denoted by Σω. The set of finite words Σ∗ over Σ is defined as the
set of finite sequences a0a1 . . . an from Σ. The empty word is denoted by ε. A mapping
Σω → R ∪ {∞} is called a series.

A (nondeterministic) Muller automaton over Σ (NMA) is a tuple A = (Σ, Q, q0,F , δ)
where (1) Σ is an alphabet, (2) Q is a finite set of states, (3) q0 ∈ Q is the initial state, (4)
F ⊆ P(Q) is the set of final sets and (5) δ ⊆ Q× Σ×Q is the set of transitions.

Let a0a1 . . . ∈ Σω be an infinite word. A run of A over w is an infinite sequence of
transitions rw = (ti)i≥0 so that ti = (qi, ai, qi+1) ∈ δ for all i ≥ 0. We denote by InQ(rw) the
set of states which appear infinitely many times in rw, i.e.

InQ(rw) = {q ∈ Q | ∀i∃j ≥ i : tj = (q, aj , qj+1)}.

A run rw of A over w ∈ Σω is called accepting if InQ(rw) ∈ F , that is, if the states which
appear infinitely many times in rw form a set in F . In this case we say that w is recognized
(accepted) by A. The set of accepting runs over a word w ∈ Σω is denoted by AccA(w). The
infinitary language of A, denoted by Lω(A), is the set of all infinite words that are accepted

E. Paul 14:3

by A. A language L ⊆ Σω is called ω-recognizable if there is a Muller automaton A so that
L = Lω(A).

A Muller automaton A = (Σ, Q, q0,F , δ) is called deterministic if the set of transitions
δ can be interpreted as a function Q× A→ Q, i.e. if for every (p, a) ∈ Q× A there exists
exactly one q ∈ Q with (p, a, q) ∈ δ. It is well known and will be important to us that for
each Muller automaton A, we can effectively construct a deterministic Muller automaton
with the same language [15, 16].

3 Quantitative Monitor Automata

An ω-valuation function is a mapping Val : ZN → R ∪ {∞} that assigns real values or ∞ to
infinite sequences of integers. Typical examples of such functions are the Cesàro mean

Ces((zi)i≥0) =
{

limn→∞
1
n

∑n−1
i=0 zi if this limit exists

∞ otherwise,

the supremum Sup((zi)i≥0) = supi≥0 zi, the infimum Inf((zi)i≥0) = infi≥0 zi, the limit
superior LimSup((zi)i≥0) = limn→∞ supi≥n zi and the limit inferior LimInf((zi)i≥0) =
limn→∞ infi≥n zi.

For a new symbol 1 and an ω-valuation function Val, we extend the domain of Val to
sequences z = (zi)i≥0 from Z ∪ {1} as follows. If at some point z becomes constantly 1, we
let Val(z) =∞. Otherwise we let z′ be the subsequence of z which contains all elements that
are not 1 and define Val(z) = Val(z′).

We now define Quantitative Monitor Automata. We use a different name, however, in
order to distinguish between Büchi and Muller acceptance conditions.

A Büchi automaton with monitor counters (BMCA) A is a tuple (Σ, Q, I, F, δ, n,Val)
where (1) Σ is the alphabet, (2) Q is a finite set of states, (3) I ⊆ Q is the set of initial
states, (4) F is the set of accepting states, (5) δ is a finite subset of Q×Σ×Q× (Z∪{s, t})n,
called the transition relation, such that for every (q, a, q′,u) ∈ δ at most one component of u
contains s, (6) n is the number of counters and (7) Val is an ω-valuation function.

Intuitively, the meaning of a transition (q, a, q′,u) is that if the automaton is in state q
and reads an a, it can move to state q′ and start counter j if uj = s, add uj to the current
value of counter j if this counter is activated and uj ∈ Z, or stop counter j if uj = t. Initially,
all counters are inactive. We will also call A an n-BMCA or a Val-BMCA, thereby stressing
the number of counters or the ω-valuation function used.

Let a0a1 . . . ∈ Σω be an infinite word. A run of A over w is an infinite sequence of
transitions rw = (ti)i≥0 so that ti = (qi, ai, qi+1,ui) ∈ δ for all i ≥ 0.

A run rw of A over w ∈ Σω is called accepting if (1) q0 ∈ I, (2) InQ(rw) ∩ F 6= ∅, (3) if
uji = s for some i ≥ 0, then there exists l > i such that ujl = t and for all k ∈ {i+1, . . . , l−1}
we have ujk ∈ Z, (4) if uji = t for some i ≥ 0, then there exists l < i such that ujl = s and for
all k ∈ {l+ 1, . . . , i− 1} we have ujk ∈ Z and (5) infinitely often some counter is activated, i.e.

{i ≥ 0 | uji = s for some j}

is an infinite set. The set of accepting runs over a word w ∈ Σω is denoted by AccA(w).
An accepting run rw defines a sequence z = (zi)i≥0 from Z ∪ {1} as follows. If uji = s

for some j ∈ {1, . . . , n} and l > i is such that ujl = t and for all k ∈ {i + 1, . . . , l − 1}
we have ujk ∈ Z, then zi =

∑l−1
k=i+1 u

j
k. If uji 6= s for all j ∈ {1, . . . , n}, then zi = 1. We

MFCS 2017

14:4 Monitor Logics for Quantitative Monitor Automata

also call z the weight-sequence associated to rw. The weight of the run rw is defined as
Val(rw) = Val(z). The behavior of the automaton A is the series JAK : Σω → R ∪ {∞}
defined by JAK(w) = infrw∈Acc(w) Val(rw), where the infimum over the empty set is defined
as ∞. A series Σω → R∪ {∞} is called MC-recognizable if there exists a BMCA A such that
JAK = S. The notions of n-MC-recognizable and Val-MC-recognizable are defined likewise.

A Muller automaton with monitor counters (MMCA) is defined like a BMCA, but instead
of a set of accepting states we have a set of accepting sets F ⊆ P(Q). The condition (2) for
a run rw on a word w ∈ Σω to be accepting is then replaced by InQ(rw) ∈ F , i.e. a Muller
acceptance condition.

Büchi automata with monitor counters use a Büchi acceptance condition, i.e. at least one
accepting state has to appear infinitely often. Lemma 3 shows that using a Muller acceptance
condition does not influence the expressive power.

I Example 1. Consider the the alphabet Σ = {demand, restock} with the ω-valuation
function Val = Ces. We model a storehouse with some sort of supply that is restocked
whenever restock is encountered, and one unit of the supply is removed at every demand.
Given an infinite sequence of restocks and demands, we are interested in the long-time average
demand between restocks. Under the assumption that every such sequence starts with a
restock, this behavior is modeled by the following automaton with two monitor counters.

q0 q1 q2
(restock, s, 0)

(restock, t, s)

(demand, 1, 0)

(restock, s, t)

(demand, 0, 1)

When for the valuation function we take Inf or Sup, the automaton above describes the
lowest or highest demand ever encountered, for the latter assuming that the demands are
bounded.

I Example 2 ([4]). Consider the alphabet Σ = {a,#} and the language L consisting
of words (#2a∗#a∗#)ω. On these words, we consider the quantitative property “the
maximal block-length difference between even and odd positions”, i.e. the value of the word
##am1#am2### . . . shall be supi≥1 |m2i−1 −m2i|. With the choice Val = Sup, a BMCA
realizing this behavior is the following.

q0 q1 q2 q3
(#, s, 0) (#, 0, s) (#, 0, 0)

(a, 1,−1) (a,−1, 1)

(#, t, t)

Each (#2am1#am2#)-block is processed by starting both counters on the first two #’s,
accumulating m1 into the first counter and accumulating −m1 into the second, reading #,
then accumulating m1 −m2 into the first counter and −m1 +m2 into the second, and finally
terminating both counters on the last #. Thus, the associated weight-sequence for only this
block is (m1 −m2,−m1 +m2,1, . . . ,1). Clearly, the final value of counter one is always the
negative of the final value in counter two. Since our ω-valuation function is Sup, only the

E. Paul 14:5

positive counter value actually plays a role in the value assigned to the whole word, and this
positive value is |m1 −m2|.

In the rest of this section, we prove various closure properties for automata with monitor
counters and that BMCA and MMCA have the same expressive power.

I Lemma 3. Büchi automata with monitor counters are expressively equivalent to Muller
automata with monitor counters.

Proof. The proof is similar to the standard construction to show that Büchi automata are
expressively equivalent to Muller automata, see for example [9]. J

The next lemma shows that MC-recognizable series are closed under projections and their
preimage. Given two alphabets Σ and Γ and a mapping h : Σ→ Γ and thus a homomorphism
h : Σω → Γω, we define for every S : Σω → R ∪ {∞} the projection h(S) : Γω → R ∪ {∞} by

h(S)(w) = inf{S(v) | h(v) = w}

for every w ∈ Γω. Moreover, if S′ : Γω → R ∪ {∞}, then we put h−1(S′) = S′ ◦ h, i.e.
h−1(S′) : Σω → R ∪ {∞}, w 7→ S′(h(w)).

I Lemma 4. Let Σ and Γ be two alphabets, h : Σ→ Γ be a mapping and Val be an ω-valuation
function.
(i) If S : Σω → R ∪ {∞} is Val-MC-recognizable, then the projection h(S) : Γω → R ∪ {∞}

is also Val-MC-recognizable.
(ii) If S′ : Γω → R ∪ {∞} is Val-MC-recognizable, then h−1(S′) : Σω → R ∪ {∞} is also

Val-MC-recognizable.

For two series S1, S2 : Σω → R ∪ {∞}, the minimum min(S1, S2) of S1 and S2 is defined
pointwise, i.e.

min(S1, S2)(w) = min{S1(w), S2(w)}.

Applying the usual union construction for automata, we can show that the minimum of two
MC-recognizable series is MC-recognizable as well.

I Lemma 5. For any given ω-valuation function Val, the Val-MC-recognizable series are
closed under minimum.

Let L ⊆ Σω and S : Σω → R∪{∞}. The intersection of L and S is the series L∩S : Σω →
R ∪ {∞} defined for w ∈ Σω by

L ∩ S(w) =
{
S(w) if w ∈ L
∞ otherwise.

The intersection of a recognizable language with an MC-recognizable series is MC-recognizable
as well.

I Lemma 6. Let Val be an ω-valuation function, let L ⊆ Σω be ω-recognizable and S : Σω →
R ∪ {∞} be Val-MC-recognizable. Then L ∩ S is also Val-MC-recognizable.

Proof. The proof is similar to the standard product construction to show that recognizable
languages are closed under intersection. J

MFCS 2017

14:6 Monitor Logics for Quantitative Monitor Automata

4 Monitor MSO logic

We first want to give a motivation for the quantifiers and restrictions we use in our logic. We
are looking for a logic which is expressively equivalent to automata with monitor counters.
It is clear that we need a valuation quantifier in order to model the valuation done by the
automata. The question is which types of formulas should be allowed in the scope of the
valuation quantifier. From [8] it follows that allowing only almost Boolean formulas (see
below) is too weak. We would only describe Muller automata over valuation monoids, and
these are strictly weaker than automata with monitor counters [4].

We therefore have to allow at least some other quantifier in the scope of the valuation
quantifier. Taking into account the automaton model we want to describe, this should be a
sum quantifier. Most weighted logics [6, 9, 8, 13, 14, 5] use quantifiers that act unconditionally
on the whole input, i.e. on the whole word, tree or picture. However, in Lemma 11 we will
see that in our case, an unrestricted sum quantifier quickly gets out of hand.

The intention of the sum quantifier as we define it here is to have a sum quantifier which
acts on infinite words, but still computes only finite sums on a given word. The computation
of the sum quantifier depends on a first order variable x and a second order variable X
provided to it. The variable X serves as a “list” of start and stop positions, and the variable
x indicates where the summation on the infinite word should take place. Simply put, the
sum is evaluated to 1 if x does not point to a position in X or there is no successor of x in
X. Otherwise, if y is x’s successor in X, the sum is taken from x+ 1 to y − 1.

Intuitively, each sum quantifier corresponds to a counter. In a run of an automaton
with monitor counters, not more than one counter can be started at each letter of the given
word. Therefore, we use Boolean formulas to choose which counter to use. We combine
these choices between counters into so-called x-summing formulas, where x is the first order
variable provided to each sum quantifier in the formula.

We provide a countable set V of first and second order variables, where lower case letters
like x and y denote first order variables and capital letters like X and Y denote second
order variables. We define a three step logic over an alphabet Σ according to the following
grammars.

β ::= Pa(x) | x ≤ y | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β
ψ ::= k | β ? ψ : ψ

ζx ::= 1 | β ? ζx : ζx |
⊕x,X

y.ψ

ϕ ::= β ? ϕ : ϕ | min(ϕ,ϕ) | inf x.ϕ | inf X.ϕ | Valx.ζx

where x, y,X ∈ V , a ∈ Σ and k ∈ Z. The formulas β are called Boolean or MSO formulas, the
formulas ψ almost Boolean formulas, the formulas ζx x-summing formulas and the formulas
ϕ monitor MSO (mMSO) formulas. We remark that within an x-summing formula, the first
order variable provided to each sum quantifier is always x. This restriction is not imposed
on the second order quantifiers, i.e. β ?

⊕x,X
y.ψ1 :

⊕x,Z
y.ψ2 is an x-summing formula, but

β ?
⊕x,X

y.ψ1 :
⊕z,Z

y.ψ2 is neither an x-summing nor a z-summing formula. Also note that
the x-summing formulas are only auxiliary formulas, see Remark 7 later on.

The set of free variables Free(ϕ) is defined as usual, i.e. ∃, inf and Val bind variables, and
in
⊕x,X

y.ψ the variable y is bound. A formula without free variables is called a sentence.
Let w ∈ Σω. We put dom(w) = {0, 1, 2, . . .} and denote the i-th letter of w by wi, i.e.

w = w0w1w2 Let V be a finite set of first and second order variables with Free(ϕ) ⊆ V.
A (V, w)-assignment is a mapping ρ : V → dom(w) ∪ P(dom(w)) where every first order

E. Paul 14:7

variable is mapped to an element of dom(w) and every second order variable is mapped
to a subset of dom(w). The update ρ[x → i] for i ∈ dom(w) is defined as ρ[x → i](x) = i

and ρ[x → i](X) = ρ(X) for all X ∈ V \ {x}. The update ρ[X → I] for I ⊆ dom(w)
is defined similarly. We encode (V, w)-assignments as usual with an extended alphabet
ΣV = Σ× {0, 1}V . Here, we refer to a word over the alphabet ΣV by (w, ρ), where w is the
projection to Σ and ρ is the projection to {0, 1}V . A word over ΣV represents an assignment
if and only if for every first order variable the respective row in the extended word contains
exactly one 1, in which case (w, ρ) is called valid.

It is not difficult to see that the set

NV = {(w, ρ) ∈ ΣωV | (w, ρ) is valid}

is ω-recognizable. Let (w, ρ) ∈ Σω
V . For a Boolean formula β we define the satisfaction

relation (w, ρ) |= β as usual: if (w, ρ) is not valid, then (w, ρ) |= β does not hold; otherwise
we define it as follows.

(w, ρ) |= Pa(x) ⇐⇒ wρ(x) = a

(w, ρ) |= x ≤ y ⇐⇒ ρ(x) ≤ ρ(y)
(w, ρ) |= x ∈ X ⇐⇒ ρ(x) ∈ ρ(X)
(w, ρ) |= ¬β ⇐⇒ (w, ρ) |= β does not hold
(w, ρ) |= β1 ∨ β2 ⇐⇒ (w, ρ) |= β1 or (w, ρ) |= β2
(w, ρ) |= ∃x.β ⇐⇒ (w, ρ[x→ i]) |= β for some i ∈ dom(w)
(w, ρ) |= ∃X.β ⇐⇒ (w, ρ[X → I]) |= β for some I ⊆ dom(w).

Let β be an MSO formula. We will write Σβ for ΣFree(β) and Nβ for NFree(β). We recall the
fundamental Büchi Theorem [1], namely that for Free(β) ⊆ V the language

LV(β) = {(w, ρ) ∈ NV | (w, ρ) |= β}

defined by β over ΣV is ω-recognizable. We abbreviate L(β) = LFree(β)(β).
Conversely, every ω-recognizable language L ⊆ Σω is definable by an MSO sentence β,

i.e. L = L(β).
We now come to the semantics of the remaining formulas. Let Val be an ω-valuation

function. For an almost Boolean, x-summing or monitor MSO formula η we define the
semantics JηKV(w, ρ) of η under the (V, w)-assignment ρ as follows: if (w, ρ) is not valid,
then JηKV(w, ρ) =∞; otherwise the semantics are defined as follows.

JkKV(w, ρ) = k

Jβ ? ψ1 : ψ2KV(w, ρ) =
{

Jψ1KV(w, ρ) if (w, ρ) |= β

Jψ2KV(w, ρ) otherwise

J
⊕x,X

y.ψKV(w, ρ) =


min{j∈ρ(X)|j>ρ(x)}−1∑

i=ρ(x)+1

JψKV(w, ρ[y → i])
if ρ(x) ∈ ρ(X) and
{j ∈ ρ(X) | j > ρ(x)} 6= ∅

1 otherwise.
Jmin(ϕ1, ϕ2)KV(w, ρ) = min{Jϕ1KV(w, ρ), Jϕ2KV(w, ρ)}

Jinf x.ϕKV(w, ρ) = infi∈dom(w)JϕKV(w, ρ[x→ i])
Jinf X.ϕKV(w, ρ) = infI⊆dom(w)JϕKV(w, ρ[X → I])
JValx.ζxKV(w, ρ) = Val((JζxKV(w, ρ[x→ i]))i∈dom(w)).

We write JηK for JηKFree(η). To indicate the ω-valuation function Val or the alphabet Σ used,
we may denote the set of monitor MSO formulas by mMSO(Σ,Val).

MFCS 2017

14:8 Monitor Logics for Quantitative Monitor Automata

I Remark 7. From the semantics defined here it is clear that any x-summing sentence ζx is
semantically equivalent to 1. In this sense, the x-summing formulas constitute no meaningful
fragment of our logic, and are only auxiliary formulas for the construction of monitor MSO
formulas.

Note also that for (w, ρ) valid, we have JValx.1K(w, ρ) =∞. By abuse of notation, we
can thus define the abbreviation ∞ = Val x.1.
I Remark 8. The condition used in the definition of the sum quantifier is definable by the
MSO formula

notLast(x,X) = x ∈ X ∧ ∃y.(y ∈ X ∧ x < y),

where x < y is an abbreviation for x ≤ y ∧ ¬(y ≤ x). We can therefore also write

J
⊕x,X

y.ψK(w, ρ) =
{∑min{j∈ρ(X)|j>ρ(x)}−1

i=ρ(x)+1 JψK(w, ρ[y → i]) if (w, ρ) |= notLast(x,X)
1 otherwise.

In Lemma 12 we will see that the first order variable x is necessarily also the variable which
is quantified by Val. If we define an unrestricted sum quantifier

⊕
y.ψ by

J
⊕
y.ψK(w, ρ) =

∑
i∈dom(w)JψK(w, ρ[y → i]),

we can write our restricted sum quantifier as

J
⊕x,X

y.ψK(w, ρ) =
JnotLast(x,X) ?

⊕
y.(x < y ∧ ∀z.((x < z ∧ z ≤ y)→ ¬z ∈ X) ? ψ : 0) : 1K(w, ρ).

I Example 9. Consider Example 1 again, i.e. the alphabet Σ = {demand, restock} with the
ω-valuation function Val = Ces. Then the formula

ϕ = inf X.
(
∀z.(z ∈ X ↔ Prestock(z)) ? Val x.

⊕x,X
y.1 :∞

)
describes the average total demand between two restocks. We recall that ∞ is simply an
abbreviation for the formula Valx.1. As in Example 1, if we take Inf or Sup for the valuation
function, the formula above describes the lowest or highest demand ever encountered.

I Lemma 10 (Consistency Lemma). Let ϕ ∈ mMSO(Σ,Val) and V be a finite set of variables
with V ⊇ Free(ϕ).
(i) For any valid (w, ρ) ∈ ΣωV we have JϕKV(w, ρ) = JϕK(w, ρ�Free(ϕ)).
(ii) JϕK is MC-recognizable if and only if JϕKV is MC-recognizable.

The following lemma shows that the use of an unrestricted sum quantifier leads to not
MC-recognizable series.

I Lemma 11. Consider the unrestricted sum quantifier from Remark 8

J
⊕
y.ψK(w, ρ) =

∑
i∈dom(w)JψK(w, ρ[y → i]),

the ω-valuation function Val defined by

Val((zi)i≥0) =
{∑∞

i=0 zi if this sum converges
∞ otherwise

and the alphabet Σ = {a, b}. Then for the almost Boolean formula

ψ = y ≤ x ∧ ∀z.(z ≤ x→ Pa(z)) ?−1 : 0,

the formula ϕ = Val x.
⊕
y.ψ is not Val-MC-recognizable.

E. Paul 14:9

Proof (sketch). One easily checks that

JϕK(w) =
{
−m(m+1)

2 if w = ambw′ for some w′ ∈ Σω

∞ if w = aω.

The idea is now that with only finitely many transitions, and therefore only finitely many
different weights, this quadratic growth cannot be realized if only transitions up to the first
b in each word influence the weight of the runs. But once the automaton has read this first b,
it cannot distinguish between the words anymore. Under appropriate assumptions, we can
therefore combine runs from different words to obtain a contradiction. J

The next lemma shows that the first order variable x provided to the sum quantifier is
necessarily the variable that Val quantifies.

I Lemma 12. Consider the ω-valuation function Val defined by

Val((zi)i≥0) =
{

1
z0

if 0 < z0 = z1 = z2 = . . .

−1 otherwise.

and the alphabet Σ = {a}. We define the abbreviation

(y = x+ 1) = x ≤ y ∧ ¬(y ≤ x) ∧ ∀z.(z ≤ x ∨ y ≤ z).

Then for the Boolean formula

β(X) = ∀x1.∀x2.((x1 ∈ X ∧ x2 = x1 + 1)→ ¬(x2 ∈ X)),

the formula ϕ = inf X. inf z.
(
β(X) ? Val x.

⊕z,X
y.1 :∞

)
is not Val-MC-recognizable.

Proof (sketch). One can check that JϕK(aω) = 0. For a BMCA A realizing this series, the
weight-sequence associated to each run has to be constant, and there must be a sequence of
runs such that this constant grows arbitrarily large. The latter fact can be exploited to show
that there must be a run whose associated weight-sequence is not constant, which leads to
the contradiction JAK(aω) = −1. J

5 The main result

In this section, we want to show that the MC-recognizable series coincide with the series
definable by monitor MSO formulas from our logic. In Lemma 14, we show how a given
MMCA can be described by a monitor MSO formula. To show that every series definable by
a monitor MSO formula is also MC-recognizable, we show by induction on the structure of
the formula how to construct an MMCA with the same behavior as the formula. We first
formulate our main theorem.

I Theorem 13. Let Σ be an alphabet and Val an ω-valuation function. A series S : Σω →
R ∪ {∞} is Val-MC-recognizable if and only if there is a monitor MSO sentence ϕ ∈
mMSO(Σ,Val) with JϕK = S.

In the following lemma, we show the first direction, namely how to obtain a formula for a
given MMCA.

I Lemma 14. For every Val-MMCA A, there exists a sentence ϕ ∈ mMSO(Σ,Val) with
JAK = JϕK.

MFCS 2017

14:10 Monitor Logics for Quantitative Monitor Automata

Proof. For first order variables x and y and second order variables X1, . . . , Xk we define the
MSO formulas

first(x) = ∀y.x ≤ y
x < y = x ≤ y ∧ ¬(y ≤ x)

(y = x+ 1) = x < y ∧ ∀z.(z ≤ x ∨ y ≤ z)

partition(X1, . . . , Xk) = ∀x.
k∨
i=1

x ∈ Xi ∧
∧
j 6=i
¬(x ∈ Xj)

 .

Now let A = (Σ, Q, I,F , δ, n,Val) be an n-MMCA. For every (p, a, q,u) ∈ δ we choose a
second order variable X(p,a,q,u) and with k = |δ| we fix a bijection v : {1, . . . , k} → δ. For
i ∈ {1, . . . , k} we write Xi for Xv(i) and X̄ for (X1, . . . , Xk). Furthermore, we fix second
order variables Y1, . . . , Yn and write Ȳ for (Y1, . . . , Yn). For j ∈ {1, . . . , n} and ? ∈ {s, t} we
abbreviate

(uj(x) = ?) =
∨

(p,a,q,u)∈δ
uj=?

x ∈ X(p,a,q,u).

Intuitively, we use the variables X̄ to encode runs, i.e. by assigning the transition v(i) to
every position in Xi. The variables Ȳ are used to mark the starts and stops of the counters
in X̄. In the following, we define the MSO formula muller(X̄) which checks that X̄ encodes
a run of A satisfying the Muller acceptance condition, and the MSO formula valid(X̄) which
checks that X̄ encodes an accepting run. The MSO formula valid∗(X̄, Ȳ) asserts that the
positions in Ȳ conform to the starts and stops of the counters in X̄. The precise formulas
are as follows.

matched(X̄) =
∧

(p,a,q,u)∈δ

∀x.
(
x ∈ X(p,a,q,u) → Pa(x)

)
∧ ∀x.∀y.

(
y = x+ 1→

∨
q∈Q

(∨
(p,a,q,u),(q,a′,p′,u′)∈δ

(x ∈ X(p,a,q,u) ∧ y ∈ X(q,a′,p′,u′))
))

muller(X̄) = partition(X̄) ∧matched(X̄) ∧ ∃x.

first(x) ∧
∨

(p,a,q,u)∈δ
p∈I

x ∈ X(p,a,q,u)



∧
∨
F∈F

∃x.∀y.x ≤ y →

 ∨

(p,a,q,u)∈δ
q∈F

y ∈ X(p,a,q,u)



∧
∧
q∈F
∃z.

y ≤ z ∧ ∨
(p,a,q,u)∈δ

z ∈ X(p,a,q,u)





valid(X̄) = muller(X̄) ∧ ∀x.∃y.(x ≤ y ∧
n∨
j=1

uj(y) = s)∧

n∧
j=1
∀x.
((

(uj(x) = s)→ ∃y.(x < y ∧ uj(y) = t ∧ ∀z.((x < z ∧ z < y)→ ¬(uj(z) = s)))
)

∧
(

(uj(x) = t)→ ∃y.(y < x ∧ uj(y) = s ∧ ∀z.((y < z ∧ z < x)→ ¬(uj(z) = t)))
))

E. Paul 14:11

valid∗(X̄, Ȳ) = valid(X̄) ∧
n∧
j=1
∀x.(x ∈ Yj ↔ (uj(x) = s ∨ uj(x) = t)).

For (p, a, q,u) ∈ δ we let wtj(p, a, q,u) = uj and for i ∈ {1, . . . , k − 2} and j ∈ {1, . . . , n}
define inductively

ψjk−1 = (y ∈ Xk−1 ? wtj(v(k − 1)) : wtj(v(k)))

ψji =
(
y ∈ Xi ? wtj(v(i)) : ψji+1

)
ζn+1 = 1

ζj =
(

(uj(x) = s) ?
⊕x,Yj y.ψj1 : ζj+1

)
.

Then with ϕ = inf X̄. inf Ȳ .(valid∗(X̄, Ȳ) ? Valx.ζ1 :∞), we have JAK = JϕK. The formula
ψj1 evaluates to the weight for counter j in the transition at position y, i.e. it is wtj(v(i)) iff
y is in Xi. The formula ζ1 evaluates to the output of the counter started at position x in
the run encoded by X̄. More precisely, ζ1 evaluates to

⊕x,Yj y.ψj1 if counter j is started at
position x, and to 1 if no counter is started at x. Finally, the formula ϕ takes the infimum
over the weights of all “runs” X̄, in the sense that assignments to X̄ and Ȳ only influence
the value of ϕ if X̄ encodes an accepting run and Ȳ mirrors its counter starts and stops. J

The remainder of this section is dedicated to show the converse, namely that for every
monitor MSO formula there is an MMCA with the same behavior as the formula.

I Lemma 15. Let β be an MSO formula and ϕ1, ϕ2 ∈ mMSO(Σ,Val) such that Jϕ1K and
Jϕ2K are MC-recognizable. Then with ϕ = β ? ϕ1 : ϕ2, the series JϕK is also MC-recognizable.

Proof. Let V = Free(ϕ). Then we have Free(ϕ1) ⊆ V and Free(ϕ2) ⊆ V and hence by
Lemma 10 Jϕ1KV and Jϕ2KV are MC-recognizable. Due to Free(β) ⊆ V, the classical Büchi
theorem tells us that both LV(β) and LV(¬β) are ω-recognizable. Hence by Lemma 5 and
Lemma 6, JϕK = min(LV(β) ∩ Jϕ1KV ,LV(¬β) ∩ Jϕ2KV) is also MC-recognizable. J

I Lemma 16. Let ϕ1, ϕ2 ∈ mMSO(Σ,Val) be such that Jϕ1K and Jϕ2K are MC-recognizable.
Then ϕ = min(ϕ1, ϕ2), the series JϕK is also MC-recognizable.

Proof. Let V = Free(ϕ1) ∪ Free(ϕ2), then by Lemma 10, Jϕ1KV and Jϕ2KV are also MC-
recognizable. Hence by Lemma 5, JϕK = min(Jϕ1KV , Jϕ2KV) is also MC-recognizable. J

I Lemma 17. Let ϕ ∈ mMSO(Σ,Val) such that JϕK is MC-recognizable. Then inf x.ϕ and
inf X.ϕ are also MC-recognizable.

Proof. We show the lemma for inf x.ϕ. The proof for inf X.ϕ is similar. Let V = Free(inf x.ϕ),
then x /∈ V. We now consider the homomorphism h : ΣωV∪{x} → ΣωV , which erases the x-row.
Then for any (w, ρ) ∈ ΣωV , we have that

Jinf x.ϕKV(w, ρ) = inf{JϕKV∪{x}(w, ρ[x→ i]) | i ≥ 0} = h(JϕKV∪{x})(w, ρ).

As Free(ϕ) ⊆ V ∪ {x}, Lemma 10 shows that JϕKV∪{x} is MC-recognizable and therefore by
Lemma 4 (i) the series Jinf x.ϕKV is MC-recognizable as well. J

I Lemma 18. Let ψ be an almost Boolean formula and V ⊇ Free(ψ). Then there are
MSO formulas β1, . . . , βn and weights z1, . . . , zn ∈ Z such that Free(ψ) =

⋃n
i=1 Free(βi),

NV =
⋃n
i=1 LV(βi), for i 6= j we have LV(βi) ∩ LV(βj) = ∅ and for (w, ρ) ∈ NV we have

JψKV(w, ρ) = zi if and only if (w, ρ) ∈ LV(βi).

MFCS 2017

14:12 Monitor Logics for Quantitative Monitor Automata

Proof. For ψ = k with k ∈ Z, we choose β1 as any tautology, for example β1 = ∃x.x ≤ x,
and z1 = k.

For ψ = β ? ψ1 : ψ2 we assume that the lemma is true for ψ1 with β
(1)
1 , . . . , β

(1)
n1

and z
(1)
1 , . . . , z

(1)
n1 and for ψ2 with β

(2)
1 , . . . , β

(2)
n2 and z

(2)
1 , . . . , z

(2)
n2 . Then for ψ we choose

β1, . . . , βn1+n2 and z1, . . . , zn1+n2 as follows. For i ∈ {1, . . . , n1} we set βi = β ∧ β(1)
i and

zi = z
(1)
i and for i ∈ {1, . . . , n2} we set βn1+i = ¬β ∧ β(2)

i and zn1+i = z
(2)
i . J

I Lemma 19. Let ζ be an x-summing formula and V ⊇ Free(ζ). Then there are MSO
formulas β1, . . . , βn and formulas ζ1, . . . , ζn with ζi =

⊕x,Yi y.ψi for some almost Boolean
formula ψi such that Free(ζ) =

⋃n
i=1 Free(βi)∪Free(ζi), for i 6= j we have LV(βi)∩LV(βj) = ∅,

for (w, ρ) ∈ NV we have JζKV(w, ρ) = JζiKV(w, ρ) if and only if (w, ρ) ∈ LV(βi) and if
(w, ρ) /∈

⋃n
i=1 LV(βi) then JζK(w, ρ) = 1. We can assume the variables Yi to be pairwise

distinct.

I Theorem 20. Let ζ be an x-summing formula. Then JValx.ζK is MC-recognizable.

Proof (sketch). We adapt and expand an idea from [9]. Let β1, . . . , βn and ζ1, . . . , ζn be
the formulas we can find for ζ according to Lemma 19. We write ζi =

⊕x,Yi y.ψi. Then
for each i ∈ {1, . . . , n}, let βi1, . . . , βini and zi1, . . . , zini be the formulas and weights we can
find for ψi according to Lemma 18.

The proof idea is as follows. For V = Free(Valx.ζ), the mapping JValx.ζK assigns values
to words from Σω

V . Consider (w, ρ) ∈ Σω
V . We can interpret each ζi as a counter which

is stopped and then restarted at the k-th letter of w depending on whether (w, ρ[x → k])
satisfies βi. As our automata cannot stop and start a single counter at the same time, each
counter i will correspond to two counters i and i′ in the automaton we construct. The
computations of counter i depend on βi1, . . . , βini . We extend the alphabet ΣV by adding
two entries for each counter to each letter in ΣV . The entries for counter i can contain an
s to indicate the start of the counter, a t to indicate a stop, a number j ∈ {1, . . . , ni} to
indicate that the counter is active and should add zij to its current value, or a ⊥ to indicate
that the counter is inactive. Let Σ̃V be this new alphabet. We show that we can define an
ω-recognizable language L over Σ̃V which has all information about the counter operations
encoded in the word. For example, if (w, ρ[x → k]) |= βi, then in the word (w, ρ, v) ∈ Σ̃ωV
corresponding to (w, ρ) the entry for counter i in the k-th letter should contain an s. Then
if (w, ρ[x→ k, y → k + 1]) |= βij , the i-entry of the k + 1-th letter should contain a j. The
precise formulation of this is involved.

When we have shown that the language L is recognizable, we can construct a deterministic
Muller automaton Ã which recognizes L. Turning Ã into an MMCA and applying a projection,
we finally obtain the recognizability of JValx.ζK. J

This concludes our induction, and thus the proof of Theorem 13.

6 Conclusion

We introduced a new logic which is expressively equivalent to Quantitative Monitor Automata.
Since our proofs are constructive, we immediately obtain the possibility to reduce the
satisfiability and equivalence problems of our logic to the emptiness and equivalence problems
of Quantitative Monitor Automata. Future work could therefore focus on the investigation
of this automaton model, and on the related model of Nested Weighted Automata [3].

E. Paul 14:13

References
1 J. Richard Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik und

Grundl. Math., 6:66–92, 1960.
2 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.

In Michael Kaminski and Simone Martini, editors, Proc. CSL, volume 5213 of LNCS, pages
385–400. Springer, 2008.

3 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Nested weighted automata.
In Proc. LICS, pages 725–737, 2015.

4 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Quantitative monitor auto-
mata. In Xavier Rival, editor, Proc. SAS, volume 9837 of LNCS. Springer, 2016.

5 Manfred Droste and Stefan Dück. Weighted automata and logics on graphs. In Giuseppe F.
Italiano, Giovanni Pighizzini, and Donald T. Sannella, editors, Proc. MFCS, volume 9234
of LNCS, pages 192–204. Springer, 2015.

6 Manfred Droste and Paul Gastin. Weighted automata and weighted logics. Theor. Comput.
Sci., 380:69 – 86, 2007.

7 Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata.
Monogr. Theoret. Comput. Sci. EATCS Ser. Springer, 2009.

8 Manfred Droste and Ingmar Meinecke. Weighted automata and weighted MSO logics for
average and long-time behaviors. Inform. Comput., 220–221:44 – 59, 2012.

9 Manfred Droste and George Rahonis. Weighted automata and weighted logics on infinite
words. In Proc. DLT, volume 4036 of LNCS, pages 49–58. Springer, 2006.

10 Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.
Am. Math. Soc., 98(1):21–51, 1961.

11 Zoltán Ésik and Werner Kuich. A semiring-semimodule generalization of ω-regular lan-
guages I. Special issue on "Weighted automata". In Manfred Droste and Heiko Vogler,
editors, J. Autom. Lang. Comb., volume 10, pages 203–242. 2005.

12 Zoltán Ésik and Werner Kuich. A semiring-semimodule generalization of ω-regular lan-
guages II. Special issue on "Weighted automata". In Manfred Droste and Heiko Vogler,
editors, J. Autom. Lang. Comb., volume 10, pages 243–264. 2005.

13 Ina Fichtner. Weighted picture automata and weighted logics. Theor. Comput. Syst.,
48(1):48–78, 2011.

14 Christian Mathissen. Weighted logics for nested words and algebraic formal power series.
In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólf-
sdóttir, and Igor Walukiewicz, editors, Proc. ICALP, volume 5126 of LNCS, pages 221–232.
Springer, 2008.

15 Wolfgang Thomas. Automata on infinite objects. In Jan van Leeuwen, editor, Handbook
of Theoretical Computer Science (Vol. B), pages 133–191. Elsevier Science, 1990.

16 Wolfgang Thomas. Languages, automata, and logic. In Grzegorz Rozenberg and Arto
Salomaa, editors, Handbook of Formal Languages (Vol. 3), pages 389–455. Springer, 1997.

17 Boris Avraamovich Trakhtenbrot. Finite automata and logic of monadic predicates. Doklady
Akademii Nauk SSSR, 140:326–329, 1961. In Russian.

MFCS 2017

	Introduction
	Preliminaries
	Quantitative Monitor Automata
	Monitor MSO logic
	The main result
	Conclusion

