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1 Introduction

In the last years, there has been increasing interest in quantitative features of the specification and
analysis of systems. Such quantitative aspects include the consumption of a certain resource or the
output of a benefit. Both weighted automata and weighted logics [7] are means to achieve this quantitative
description of systems. They can be employed for both finite and infinite input.

Very recently, Chatterjee et al. introduced a new automaton model operating on infinite words [4].
Quantitative Monitor Automata are equipped with a finite number of monitor counters. At each tran-
sition, a counter can be started, terminated, or the value of the counter can be increased or decreased.
The term “monitor” stems from the fact that the values of the counters do not influence the behavior
of the automaton. The values of the counters when they are terminated provide an infinite sequence of
weights, which is evaluated into a single weight using a valuation function.

Quantitative Monitor Automata possess several interesting features. They are expressively equivalent
to a subclass of Nested Weighted Automata [3], an automaton model which for many valuation functions
has decidable emptiness and universality problems. Quantitative Monitor Automata are also very ex-
pressive. As an example, imagine a storehouse with a resource which is restocked at regular intervals.
Between restocks, demands can remove one unit of this resource at a time. Such a succession of restocks
and demands can be modeled as an infinite sequence over the alphabet {restock, demand}. Interesting
quantitative properties of such a sequence include the long-term average demand, the minimum demand
and the maximum demand between restocks. These properties can be described using Quantitative
Monitor Automata. At every restock a counter is started, counting the number of demands until the
next restock. An appropriate valuation function then computes the desired property. For the average
demand, this can be achieved with the Cesàro mean which was introduced to automata theory by Chat-
terjee et al. in [2]. Note that behaviors like these cannot be modeled using weighted Büchi-automata
[12, 13] or their extension with valuation functions [8]. In the latter model, the Cesàro mean of every
weight-sequence is bounded by the largest transition weight in the automaton. This is not the case for
Quantitative Monitor Automata.

In this paper, we develop a logic which is expressively equivalent to Quantitative Monitor Automata.
Our main results are the following.

• We introduce a new logic which we call Monitor Logic.

• We show that this Monitor Logic is expressively equivalent to Quantitative Monitor Automata.

• We show various closure properties of Quantitative Monitor Automata and prove that Muller and
Büchi acceptance conditions provide the same expressive power.

The relationship between automata and logics plays a large role in specification and verification. State-
ments are often easier to formulate in the form of a logic formula rather than directly as an automaton.
Consequently, the fundamental Büchi-Elgot-Trakhtenbrot Theorem [1, 11, 16], which established the
coincidence of regular languages with languages definable in monadic second order logic, has found use
in many areas of application. An extension to semiring weighted automata was later given by Droste
and Gastin [6].

Our logic is equipped with three quantifiers. A sum quantifier to handle the computations on the
counters, a valuation quantifier to handle the valuation, and a third quantifier to combine the weights
of all runs on a word. Our biggest challenge was to find appropriate restrictions on the use of the
quantifiers. Without any restrictions the logic would be too powerful, which we also formally prove using
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counter examples. The most important result of our considerations is that the computations of the sum
quantifier should depend on an MSO-definable condition.

We note that our constructions are effective. Given a formula from our logic, we can effectively
construct a Quantitative Monitor Automaton describing this formula. Conversely, for every automaton
we can effectively construct a formula whose semantics coincides with the behavior of the automaton.

2 Preliminaries

Let N = {0, 1, 2, . . .} denote the natural numbers, Z the integers, and R the reals. For a set X, we denote
the power set of X by P(X). For two sets X and Y and a mapping f : X → Y , we call X the domain of
f , denoted by dom(f). For a subset X ′ ⊆ X, the restriction of f to X ′, denoted by f�X′ , is the mapping
f�X′ : X ′ → Y defined by f�X′(x) = f(x) for every x ∈ X ′. For a second mapping g : X → Y , we write
f = g if for all x ∈ X we have f(x) = g(x). An alphabet Σ is a finite non-empty set. An infinite word
over Σ is a sequence w = a0a1a2 . . . from Σ. The set of infinite words over Σ is denoted by Σω. The set
of finite words Σ∗ over Σ is defined as the set of finite sequences a0a1 . . . an from Σ. The empty word is
denoted by ε. A mapping Σω → R ∪ {∞} is called a series.

A (non-deterministic) Muller automaton over Σ (NMA) is a tuple A = (Q,Σ, q0, δ,F) where (1) Q
is a finite set (of states), (2) Σ is an alphabet, (3) q0 ∈ Q is the initial state, (4) δ ⊆ Q × Σ × Q is the
set of transitions, and (5) F ⊆ P(Q) is the set of final sets.

Let w = a0a1 . . . ∈ Σω be an infinite word. A run of A on w is an infinite sequence of transitions

r = (di)i≥0

so that di = (qi, ai, qi+1) ∈ δ for all i ≥ 0. We denote by InQ(r) the set of states which appear infinitely
many times in r, i.e.,

InQ(r) = {q ∈ Q | ∀i∃j ≥ i : dj = (q, aj , qj+1)}.

A run r of A on w ∈ Σω is called accepting if InQ(r) ∈ F , that is, if the states which appear infinitely
many times in r form a set in F . In this case we say that w is recognized (accepted) by A. The set of
accepting runs on a word w ∈ Σω is denoted by AccA(w). The infinitary language of A, denoted by
Lω(A), is the set of all infinite words that are accepted by A. A language L ⊆ Σω is called ω-recognizable
if there exists a Muller automaton A so that L = Lω(A).

3 Quantitative Monitor Automata

An ω-valuation function is a mapping Val : ZN → R ∪ {∞} which assigns real values or ∞ to infinite
sequences of integers. Typical examples of such functions are the Cesàro mean

Ces((zi)i≥0) =

{
limn→∞

1
n

∑n−1
i=0 zi if this limit exists

∞ otherwise,

the supremum Sup((zi)i≥0) = supi≥0 zi, the infimum Inf((zi)i≥0) = infi≥0 zi, the limit superior LimSup((zi)i≥0) =
limn→∞ supi≥n zi, and the limit inferior LimInf((zi)i≥0) = limn→∞ infi≥n zi.

For a new symbol 1 and an ω-valuation function Val, we extend the domain of Val to sequences
(zi)i≥0 from Z ∪ {1} as follows. If at some point (zi)i≥0 becomes constantly 1, we let Val((zi)i≥0) =∞.
Otherwise, we let (zik)k≥0 be the subsequence of (zi)i≥0 which contains all elements which are not 1 and
define Val((zi)i≥0) = Val((zik)k≥0).

We now define Quantitative Monitor Automata. We use a different name, however, in order to
distinguish between Büchi and Muller acceptance conditions.

A Büchi automaton with monitor counters (BMCA) A is a tuple (Q,Σ, I, δ, F, n,Val) where (1) Q is
a finite set (of states), (2) Σ is an alphabet, (3) I ⊆ Q is the set of initial states, (4) δ is a finite subset
of Q × Σ × Q × (Z ∪ {s, t})n, called the transition relation, such that for every (p, a, q, ū) ∈ δ at most
one component of ū contains s, (5) F is the set of accepting states, (6) n ≥ 1 is the number of counters,
and (7) Val is an ω-valuation function.
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Intuitively, the meaning of a transition (p, a, q, ū) is that if the automaton is in state p and reads an
a, it can move to state q and either (1) start (or activate) counter j if uj = s, or (2) add uj to the current
value of counter j if this counter is active and uj ∈ Z, or (3) stop (or deactivate) counter j if uj = t.
Initially, all counters are inactive. We will also call A an n-BMCA or a Val-BMCA, thereby stressing
the number of counters or the ω-valuation function used.

Let a0a1 . . . ∈ Σω be an infinite word. A run of A on w is an infinite sequence of transitions

r = (di)i≥0

so that di = (qi, ai, qi+1, ū
i) ∈ δ for all i ≥ 0.

A run r of A on w ∈ Σω is called accepting if (1) q0 ∈ I, (2) InQ(r) ∩ F 6= ∅, (3) if uij = s for some

i ≥ 0, then there exists l > i such that ulj = t and for all k ∈ {i + 1, . . . , l − 1} we have ukj ∈ Z, (4) if

uij = t for some i ≥ 0, then there exists l < i such that ulj = s and for all k ∈ {l + 1, . . . , i− 1} we have

ukj ∈ Z, and (5) infinitely often some counter is activated, i.e.,

{i ≥ 0 | uij = s for some j}

is an infinite set. The set of accepting runs on a word w ∈ Σω is denoted by AccA(w).
An accepting run r defines a sequence (zi)i≥0 from Z∪{1} as follows. If uij = s for some j ∈ {1, . . . , n}

and l > i is such that ulj = t and for all k ∈ {i+ 1, . . . , l − 1} we have ukj ∈ Z, then zi =
∑l−1
k=i+1 u

k
j . If

uij 6= s for all j ∈ {1, . . . , n}, then zi = 1. We also call (zi)i≥0 the weight-sequence associated to r. The
weight of the run r is defined as Val(r) = Val((zi)i≥0). The behavior of the automaton A is the series
JAK : Σω → R ∪ {∞} defined by JAK(w) = infr∈AccA(w) Val(r), where the infimum over the empty set is
defined as ∞. A series Σω → R ∪ {∞} is called MC-recognizable if there exists a BMCA A such that
JAK = S. The notions of n-MC-recognizable and Val-MC-recognizable are defined likewise.

A Muller automaton with monitor counters (MMCA) is defined like a BMCA, but instead of a set
of accepting states we have a set of accepting sets F ⊆ P(Q). The condition (2) for a run r on a word
w ∈ Σω to be accepting is then replaced by InQ(r) ∈ F , i.e., a Muller acceptance condition.

Büchi automata with monitor counters use a Büchi acceptance condition, i.e., at least one accepting
state has to appear infinitely often. In Lemma 3 we show that using a Muller acceptance condition does
not influence the expressive power.

Example 1. Consider the alphabet Σ = {demand, restock} with the ω-valuation function Val = Ces.
We model a storehouse with some sort of supply which is restocked whenever restock is encountered, and
one unit of the supply is removed at every demand. Given an infinite sequence of restocks and demands,
we are interested in the long-time average number of demands between restocks. Under the assumption
that every such sequence starts with a restock, this behavior is modeled by the following automaton with
two monitor counters.

q0 q1 q2
(restock, s, 0)

(restock, t, s)

(demand, 1, 0)

(restock, s, t)

(demand, 0, 1)

When for the valuation function we take Inf or Sup, the automaton above describes the lowest or
highest demand ever encountered, for the latter assuming that the numbers of demands are bounded.

Example 2 ([4]). Consider the alphabet Σ = {a,#} and the language L consisting of words (#2a∗#a∗#)ω.
On these words, we consider the quantitative property “the maximal block-length difference between even
and odd positions”, i.e., the value of the word ##am1#am2### . . . shall be supi≥1 |m2i−1−m2i|. With
the choice Val = Sup, a BMCA realizing this behavior is the following.

q0 q1 q2 q3
(#, s, 0) (#, 0, s) (#, 0, 0)

(a, 1,−1) (a,−1, 1)

(#, t, t)
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Each (#2am1#am2#)-block is processed by starting both counters on the first two #’s, accumulating
m1 into the first counter and accumulating −m1 into the second, reading #, then accumulating m1−m2

into the first counter and −m1 +m2 into the second, and finally terminating both counters on the last #.
Thus, the associated weight-sequence for only this block is (m1 −m2,−m1 +m2,1, . . . ,1). Clearly, the
final value of counter one is always the negative of the final value in counter two. Since our ω-valuation
function is Sup, only the positive counter value actually plays a role in the value assigned to the whole
word, and this positive value is |m1 −m2|.

In the rest of this section, we prove various closure properties for automata with monitor counters
and that BMCA and MMCA have the same expressive power.

Lemma 3. Büchi automata with monitor counters are expressively equivalent to Muller automata with
monitor counters.

Proof. The proof is similar to the standard construction to show that Büchi automata are expressively
equivalent to Muller automata, see for example [9].

Let A = (Q,Σ, I, δ, F, n,Val) be a BMCA, we define the MMCA A′ = (Q,Σ, I, δ,F , n,Val) by
F = {S ⊆ Q | S ∩ F 6= ∅}. Then on every word w, the accepting runs of A on w coincide with the
accepting runs of A′ on w, i.e., JAK = JA′K.

Conversely, letA = (Q,Σ, I, δ,F , n,Val) be an MMCA. We construct a BMCAA′ = (Q′,Σ, I ′, δ′, F ′, n,Val)
as follows.

Q′ = Q ∪ (Q×F × P(Q))

I ′ = I ∪ {(q, F, {q}) | F ∈ F , q ∈ I ∩ F}
F ′ = {(q, F, F ) | F ∈ F , q ∈ F}
δ′ = δ

∪ {(p, a, (q, F, {q}), ū) | F ∈ F , p ∈ Q \ F, q ∈ F, a ∈ Σ, (p, a, q, ū) ∈ δ}
∪ {((p, F,R), a, (q, F,R ∪ {q}), ū) | F ∈ F , p, q ∈ F,R ( F, a ∈ Σ, (p, a, q, ū) ∈ δ}
∪ {((p, F, F ), a, (q, F, {q}), ū) | F ∈ F , p, q ∈ F, a ∈ Σ, (p, a, q, ū) ∈ δ}

We let π : Q′ → Q be the projection defined by q 7→ q and (q, F,R) 7→ q for (q, F,R) ∈ Q × F × P(Q).
We extend π to transitions by (p′, a, q′, ū) 7→ (π(p′), a, π(q′), ū) and to sequences of transitions from δ′ω

in the obvious way. We claim that for every w ∈ Σω, we have a surjection π : AccA′(w)→ AccA(w), and
that for every r′ ∈ AccA′(w) the weight-sequences associated to r′ and π(r′) are the same.

First, let r′ = (d′i)i≥0 with d′i = (q′i, a, q
′
i+1, ū

i) be an accepting run of A′ on w. Then for some F ∈ F
and q ∈ F , the state (q, F, F ) occurs infinitely often. By construction of δ′, this means that there exists
i ≥ 0 such that for all j ≥ i, we have π(q′j) ∈ F , and for every p ∈ F , there are infinitely many j such

that π(q′j) = p. Thus, InQ(π(r′)) = F and we have π(r′) ∈ AccA(w). It is also easy to see that the
weight-sequences of r′ and π(r′) coincide.

Now let r = (di)i≥0 with di = (qi, ai, qi+1, ū
i) be an accepting run of A on w and F = InQ(r). Then

either all qi are in F , or there is an i ≥ 0 with qi /∈ F and for all j > i, qj ∈ F .
In the first case, we let q′0 = (q0, F, {q0}), otherwise we let q′j = qj for j ≤ i and q′i+1 = (qi+1, F, {qi+1}).

Then assuming that q′j = (qj , F,R) for j > i is already defined, we let q′j+1 = (qj+1, F,R ∪ {qj+1}) if

R ( F , and otherwise if R = F we let q′j+1 = (qj+1, F, {qj+1}). Then with d′i = (q′i, aj , q
′
i+1, ū

i), the
sequence r′ = (d′i)i≥0 is an accepting run of A′ on w.

In conclusion, we have infr′∈AccA′ (w) Val(r′) = infr∈AccA(w) Val(r) for all w ∈ Σω, which means
JAK = JA′K.

In the next lemma, we show that MC-recognizable series are closed under projections and their
preimage. Given two alphabets Σ and Γ and a mapping h : Σ→ Γ, and thus a homomorphism h : Σω →
Γω, we define for every S : Σω → R ∪ {∞} the projection h(S) : Γω → R ∪ {∞} by

h(S)(w) = inf{S(v) | h(v) = w}

for every w ∈ Γω. Moreover, if S′ : Γω → R∪ {∞}, then we define h−1(S′) = S′ ◦ h, i.e., h−1(S′) : Σω →
R ∪ {∞}, w 7→ S′(h(w)).

Lemma 4. Let Σ and Γ be two alphabets, h : Σ→ Γ be a mapping, and Val be an ω-valuation function.
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(i) If S : Σω → R ∪ {∞} is Val-MC-recognizable, then the projection h(S) : Γω → R ∪ {∞} is also
Val-MC-recognizable.

(ii) If S′ : Γω → R ∪ {∞} is Val-MC-recognizable, then h−1(S′) : Σω → R ∪ {∞} is also Val-MC-
recognizable.

Proof. We apply an idea also used in [10].
(i) Let AS = (QS ,Σ, IS , δS , FS , nS ,Val) be a Val-BMCA over Σ with JASK = S. We construct a new

Val-BMCA A = (Q,Γ, I, δ, F, nS ,Val) over Γ with JAK = h(S) as follows.

• Q = QS × Σ, I = IS × {a0} for some fixed a0 ∈ Σ, F = FS × Σ, and

• ((p, a), b, (p′, a′), ū) ∈ δ if and only if h(a′) = b and (p, a′, p′, ū) ∈ δS .

Then r = ((q0, a0), b1, (q1, a1), ū1)((q1, a1), b2, (q2, a2), ū2) . . . is a run of A on b1b2 . . . if and only if
h(a1a2 . . .) = b1b2 . . . and rS = (q0, a1, q1, ū

1)(q1, a2, q2, ū
2) . . . is a run of AS on a1a2 . . .. Moreover, r is

accepting if and only if q0 ∈ IS , at least one q ∈ FS appears infinitely often in the first component of the
states, and the conditions (3), (4), and (5) concerning the counters are satisfied, i.e., if and only if rS is
accepting. By construction, we have Val(r) = Val(rS), and therefore JAK = h(JASK).

(ii) Let AS′ = (QS′ ,Γ, IS′ , δS′ , FS′ , nS′ ,Val) be a Val-BMCA over Γ with JAS′K = S′. Then let A =
(QS′ ,Σ, IS′ , δ, FS′ , nS′ ,Val) be a Val-BMCA over Σ with (p, a, q, ū) ∈ δ if and only if (p, h(a), q, ū) ∈ δS′ .
It is easy to see that A recognizes h−1(S′) = S′ ◦ h.

For two series S1, S2 : Σω → R ∪ {∞}, the minimum min(S1, S2) of S1 and S2 is defined pointwise,
i.e.,

min(S1, S2)(w) = min{S1(w), S2(w)}.

As the next lemma shows, taking the minimum of MC-recognizable series preserves recognizability.

Lemma 5. For a given ω-valuation function Val, the Val-MC-recognizable series are closed under min-
imum.

Proof. We show this using the usual union construction for automata: for two BMCAA1 = (Q1,Σ, I1, δ1, F1, n1,Val)
and A2 = (Q2,Σ, I2, δ2, F2, n2,Val) with disjoint state spaces, the BMCA (Q1∪Q2,Σ, I1∪I2, δ1∪δ2, F1∪
F2,max{n1, n2},Val) recognizes min(JA1K, JA2K). Here, we implicitly fill every tuple of weights ū of a
transition from δ1 ∪ δ2 with 0’s if it does not have max{n1, n2} entries.

Let L ⊆ Σω and S : Σω → R∪ {∞}. The intersection of L and S is the series L∩ S : Σω → R∪ {∞}
defined for w ∈ Σω by

L ∩ S(w) =

{
S(w) if w ∈ L
∞ otherwise.

As the next lemma shows, intersection of an ω-recognizable language with an MC-recognizable series
preserves MC-recognizability.

Lemma 6. Let Val be an ω-valuation function, let L ⊆ Σω be ω-recognizable, and let S : Σω → R∪{∞}
be Val-MC-recognizable. Then L ∩ S is also Val-MC-recognizable.

Proof. The proof is similar to the standard product construction to show that recognizable languages
are closed under intersection. Let A = (Q,Σ, q0, δ,F) be an NMA with Lω(A) = L and A′ =
(Q′,Σ, I ′, δ′,F ′, n,Val) an MMCA with JA′K = S. We construct a new MMCAA′′ = (Q′′,Σ, I ′′, δ′′,F ′′, n,Val)
with JA′′K = L ∩ S. We let Q′′ = Q × Q′, I ′′ = {q0} × I ′, and we let π1 : Q′′ → Q and π2 : Q′′ → Q′

be the projections. Then we let F ′′ ∈ F ′′ iff both π1(F ′′) ∈ F and π2(Q′′) ∈ F ′. The set of tran-
sitions δ′′ ⊂ Q′′ × Σ × Q′′ × (Z ∪ {s, t})n is defined by ((p, p′), a, (q, q′), ū) ∈ δ′′ iff (p, a, q) ∈ δ and
(p′, a, q′, ū) ∈ δ′. Then for every infinite word w ∈ Σω, there is an obvious bijection between the pairs
of accepting runs (r, r′) ∈ AccA(w) × AccA′(w) and the runs r′′ ∈ AccA′′(w), and under this bijection
we have Val(r′′) = Val(r′). Thus for every word w ∈ L we have JA′′K(w) = S(w), as AccA(w) 6= ∅. For
w /∈ L we have AccA(w) = ∅ and therefore JA′′K(w) =∞.
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4 Monitor MSO logic

In this section, we develop a logic which captures exactly the MC-recognizable series. We first want
to give a motivation for the quantifiers and restrictions we use in our logic. We are looking for a logic
which is expressively equivalent to automata with monitor counters. It is clear that we need a valuation
quantifier in order to model the valuation done by the automata. The question is which types of formulas
should be allowed in the scope of the valuation quantifier. From [8], it follows that allowing only almost
Boolean formulas (see below) is too weak. We would only describe Muller automata over valuation
monoids, and these are strictly weaker than automata with monitor counters [4].

We therefore have to allow at least some other quantifier in the scope of the valuation quantifier.
Taking into account the automaton model we want to describe, this should be a sum quantifier. Most
weighted logics [6, 9, 8, 14, 15, 5] use quantifiers that act unconditionally on the whole input, i.e., on the
whole word, tree, or picture. However, in Lemma 11 we will see that in our case, an unrestricted sum
quantifier is too powerful.

The intention of the sum quantifier as we define it here is to have a sum quantifier which acts on
infinite words, but still computes only finite sums on a given word. The computation of the sum quantifier
depends on a first order variable x and a second order variable X provided to it. The variable X serves
as a “list” of start and stop positions, and the variable x indicates where the summation on the infinite
word should take place. Simply put, the sum is evaluated to 1 if x does not point to a position in X or
there is no successor of x in X. Otherwise, if y is x’s successor in X, the sum is taken from x + 1 to
y − 1.

Intuitively, each sum quantifier corresponds to a counter. In a run of an automaton with monitor
counters, not more than one counter can be started at each letter of the given word. Therefore, we
use Boolean formulas to choose which counter to use. We combine these choices between counters into
so-called x-summing formulas, where x is the first order variable provided to each sum quantifier in the
formula.

We provide a countable set V of first and second order variables, where lower case letters like x and y
denote first order variables and capital letters like X and Y denote second order variables. We define a
three step logic over an alphabet Σ and an ω-valuation function Val according to the following grammars.

β ::= Pa(x) | x ≤ y | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β
ψ ::= k | β ? ψ : ψ

ζx ::= 1 | β ? ζx : ζx |
⊕x,X

y.ψ

ϕ ::= β ? ϕ : ϕ | min(ϕ,ϕ) | inf x.ϕ | inf X.ϕ | Valx.ζx

where x, y,X ∈ V, a ∈ Σ, and k ∈ Z. The formulas β are called Boolean or MSO formulas, the formulas
ψ almost Boolean formulas, the formulas ζx x-summing formulas, and the formulas ϕ monitor MSO
(mMSO) formulas. We denote the sets of Boolean, almost Boolean, and x-summing formulas over Σ by
MSO(Σ), mMSOa-bool(Σ), and mMSOx(Σ), respectively, and the set of monitor MSO formulas over Σ and
Val by mMSO(Σ,Val). We remark that within an x-summing formula, the first order variable provided
to each sum quantifier is always x. This restriction is not imposed on the second order quantifiers, i.e.,
β ?

⊕x,X
y.ψ1 :

⊕x,Z
y.ψ2 is an x-summing formula, but β ?

⊕x,X
y.ψ1 :

⊕z,Z
y.ψ2 is neither an x-

summing nor a z-summing formula. Also note that the x-summing formulas are only auxiliary formulas,
see Remark 7 later on.

The set of free variables Free(ϕ) is defined as usual, i.e., ∃, inf, and Val bind variables, and in
⊕x,X

y.ψ
the variable y is bound. A formula without free variables is called a sentence.

Let w = a0a1 . . . ∈ Σω. Let V be a finite set of first and second order variables with Free(ϕ) ⊆ V.
A (V, w)-assignment is a mapping ρ : V → N ∪ P(N) where every first order variable is mapped to an
element of N and every second order variable is mapped to a subset of N. The update ρ[x→ i] for i ∈ N
is defined as ρ[x→ i](x) = i and ρ[x→ i](X ) = ρ(X ) for all X ∈ V \{x}. The update ρ[X → I] for I ⊆ N
is defined similarly. We encode (V, w)-assignments as usual with an extended alphabet ΣV = Σ×{0, 1}V :
to a pair (w, ρ), we associate the word (a0, ρ0)(a1, ρ1) . . . ∈ ΣωV where

ρi(X ) =


1 if X is a first order variable and i = ρ(X )

1 if X is a second order variable and i ∈ ρ(X )

0 otherwise
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for i ∈ N. An infinite word (a0, ρ0)(a1, ρ1) . . . over ΣV is called valid if and only if for every first order
variable the respective row in the {0, 1}V -coordinate contains exactly one 1. In this case, we denote this
word by (w, ρ), where w is the projection to Σ and ρ is the (V, w)-assignment we obtain from the ρi by
reversing the above association. It is not difficult to see that the set

NV = {(w, ρ) ∈ ΣωV | (w, ρ) is valid}

is ω-recognizable. Let (w, ρ) ∈ ΣωV with w = a0a1 . . . ∈ Σω. For a Boolean formula β we define the
satisfaction relation (w, ρ) |= β as usual: if (w, ρ) is not valid, then (w, ρ) |= β does not hold; otherwise
we define it as follows.

(w, ρ) |= Pa(x) ⇐⇒ aρ(x) = a

(w, ρ) |= x ≤ y ⇐⇒ ρ(x) ≤ ρ(y)

(w, ρ) |= x ∈ X ⇐⇒ ρ(x) ∈ ρ(X)

(w, ρ) |= ¬β ⇐⇒ (w, ρ) |= β does not hold

(w, ρ) |= β1 ∨ β2 ⇐⇒ (w, ρ) |= β1 or (w, ρ) |= β2

(w, ρ) |= ∃x.β ⇐⇒ (w, ρ[x→ i]) |= β for some i ∈ N
(w, ρ) |= ∃X.β ⇐⇒ (w, ρ[X → I]) |= β for some I ⊆ N.

Let β be an MSO formula. We will write Σβ for ΣFree(β) and Nβ for NFree(β). We recall the fundamental
Büchi theorem [1], namely that for Free(β) ⊆ V the language

LV(β) = {(w, ρ) ∈ NV | (w, ρ) |= β}

defined by β over ΣV is ω-recognizable. We abbreviate L(β) = LFree(β)(β). Conversely, every ω-
recognizable language L ⊆ Σω is definable by an MSO sentence β, i.e., L = L(β).

We now come to the semantics of the remaining formulas. Let Val be an ω-valuation function. For an
almost Boolean, x-summing, or monitor MSO formula η, we define the semantics JηKV(w, ρ) of η under
the (V, w)-assignment ρ as follows: if (w, ρ) is not valid, then JηKV(w, ρ) = ∞; otherwise the semantics
are defined as follows.

JkKV(w, ρ) = k

Jβ ? ψ1 : ψ2KV(w, ρ) =

{
Jψ1KV(w, ρ) if (w, ρ) |= β

Jψ2KV(w, ρ) otherwise

J
⊕x,X

y.ψKV(w, ρ) =


∑min{j∈ρ(X)|j>ρ(x)}−1
i=ρ(x)+1 JψKV∪{y}(w, ρ[y → i]) if ρ(x) ∈ ρ(X) and

{j ∈ ρ(X) | j > ρ(x)} 6= ∅
1 otherwise.

Jmin(ϕ1, ϕ2)KV(w, ρ) = min{Jϕ1KV(w, ρ), Jϕ2KV(w, ρ)}
Jinf x.ϕKV(w, ρ) = inf

i∈N
JϕKV∪{x}(w, ρ[x→ i])

Jinf X.ϕKV(w, ρ) = inf
I⊆N

JϕKV∪{X}(w, ρ[X → I])

JValx.ζxKV(w, ρ) = Val((JζxKV∪{x}(w, ρ[x→ i]))i∈N)

We write JηK for JηKFree(η).

Remark 7. From the semantics defined here it is clear that every x-summing sentence ζx is semantically
equivalent to 1. In this sense, the x-summing formulas constitute no meaningful fragment of our logic,
and are only auxiliary formulas for the construction of monitor MSO formulas.

In Lemma 12 we will see that the first order variable x is necessarily also the variable which is
quantified by Val, i.e., allowing formulas like Valx.ζz leads to formulas which are not MC-recognizable.

Note also that for every valid (w, ρ), we have JValx.1KV(w, ρ) = ∞. By abuse of notation, we can
thus define the abbreviation ∞ = Valx.1.

Remark 8. The condition used in the definition of the sum quantifier is definable by the MSO formula

notLast(x,X) = x ∈ X ∧ ∃y.(y ∈ X ∧ x < y),
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where x < y is an abbreviation for x ≤ y ∧ ¬(y ≤ x). We can therefore also write

J
⊕x,X

y.ψKV(w, ρ) =

{∑min{j∈ρ(X)|j>ρ(x)}−1
i=ρ(x)+1 JψKV∪{y}(w, ρ[y → i]) if (w, ρ) |= notLast(x,X)

1 otherwise.

If we define an unrestricted sum quantifier
⊕
y.ψ by

J
⊕
y.ψKV(w, ρ) =

{∑
i∈NJψKV∪{y}(w, ρ[y → i]) if this sum converges

∞ otherwise,

we can write our restricted sum quantifier as

J
⊕x,X

y.ψKV(w, ρ) = JnotLast(x,X) ?
⊕
y.(x < y ∧ ∀z.((x < z ∧ z ≤ y)→ ¬z ∈ X) ? ψ : 0) : 1KV(w, ρ).

Example 9. Consider Example 1 again, i.e., the alphabet Σ = {demand, restock} with the ω-valuation
function Val = Ces. Then the formula

ϕ = inf X.
(
∀z.(z ∈ X ↔ Prestock(z)) ? Valx.

⊕x,X
y.1 :∞

)
describes the average number of demands between two restocks. We recall that ∞ is simply an abbre-
viation for the formula Valx.1. As in Example 1, if we take Inf or Sup for the valuation function, the
formula above describes the lowest or highest demand ever encountered.

We have the following fundamental lemma which intuitively states that the semantics and recogniz-
ability of a formula depend only on the variables occurring in it.

Lemma 10 (Consistency Lemma). Let ϕ ∈ mMSO(Σ,Val) and V be a finite set of variables with
V ⊇ Free(ϕ).

(i) For every valid (w, ρ) ∈ ΣωV we have JϕKV(w, ρ) = JϕK(w, ρ�Free(ϕ)).

(ii) JϕK is Val-MC-recognizable if and only if JϕKV is Val-MC-recognizable.

Proof. (i) This can be shown by induction on ϕ using the same ideas as in [6]. We first show that the
statement also holds for Boolean, almost Boolean, and x-summing formulas.

Let β be of the form Pa(x), x ≤ y, or x ∈ X where x and y are first order variables and X is a second
order variable. Then for every valid (w, ρ) ∈ ΣωV with V ⊇ Free(β), it is immediate from the definition
of satisfaction that (w, ρ) |= β if and only if (w, ρ�Free(β)) |= β.

Next, assume that β = ¬β′ with β′ ∈ MSO(Σ) and let (w, ρ) ∈ ΣωV be valid. Then since V ⊇
Free(β) = Free(β′), we have by induction that

(w, ρ) |= β ⇐⇒ not (w, ρ) |= β′

⇐⇒ not (w, ρ�Free(β)) |= β′

⇐⇒ (w, ρ�Free(β)) |= β.

Now assume that β = β1 ∨ β2 with β1, β2 ∈ MSO(Σ) and let (w, ρ) ∈ ΣωV be valid. Then since
V ⊇ Free(β) ⊇ Free(β1) and V ⊇ Free(β) ⊇ Free(β2), we have by induction that

(w, ρ) |= β ⇐⇒ (w, ρ) |= β1 or (w, ρ) |= β2

⇐⇒ (w, ρ�Free(β1)) |= β1 or (w, ρ�Free(β2)) |= β2

⇐⇒ (w, ρ�Free(β)) |= β1 or (w, ρ�Free(β)) |= β2

⇐⇒ (w, ρ�Free(β)) |= β.

For the first order existential quantifier, assume that β = ∃x.β′ with β′ ∈ MSO(Σ) and let (w, ρ) ∈ ΣωV
be valid. By definition, we have

(w, ρ) |= β ⇐⇒ (w, ρ[x→ i]) |= β′ for some i ∈ N.

Due to V ⊇ Free(β), we have

V ∪ {x} ⊇ Free(β) ∪ {x} ⊇ Free(β′) ∪ {x} ⊇ Free(β′).

8



By applying the induction hypothesis twice, we thus have for every i ∈ N that

(w, ρ[x→ i]) |= β′ ⇐⇒ (w, ρ[x→ i]�Free(β′)) |= β′

⇐⇒ (w, ρ�Free(β′)[x→ i]) |= β′.

It follows that (w, ρ) |= β ⇐⇒ (w, ρ�Free(β′)) |= β. For the the second order existential quantifier, we
can proceed in the same way.

We come to almost Boolean formulas. For ψ = k with k ∈ Z, the statement is clear. For ψ = β?ψ1 :ψ2

with β ∈ MSO(Σ) and ψ1, ψ2 ∈ mMSOa-bool(Σ), let (w, ρ) ∈ ΣωV be valid. Then since V ⊇ Free(ψ) ⊇
Free(ψ1), V ⊇ Free(ψ) ⊇ Free(ψ2), and V ⊇ Free(ψ) ⊇ Free(β), we have by induction that

JψKV(w, ρ) =

{
Jψ1KV(w, ρ) if (w, ρ) |= β

Jψ2KV(w, ρ) otherwise

=

{
Jψ1K(w, ρ�Free(ψ1)) if (w, ρ�Free(β)) |= β

Jψ2K(w, ρ�Free(ψ2)) otherwise

=

{
Jψ1KFree(ψ)(w, ρ�Free(ψ)) if (w, ρ�Free(ψ)) |= β

Jψ2KFree(ψ)(w, ρ�Free(ψ)) otherwise

= JψK(w, ρ�Free(ψ)).

For x-summing formulas, we proceed as follows. For ζ = 1, the statement is clear. For ζ = β ? ζ1 : ζ2
with β ∈ MSO(Σ) and ζ1, ζ2 ∈ mMSOx(Σ), we can proceed in the same way as for almost Boolean

formulas. Assume that ζ =
⊕x,X

y.ψ with ψ ∈ mMSOa-bool(Σ) and let (w, ρ) ∈ ΣωV be valid. We have
V ⊇ Free(ζ) = Free(ψ) \ {y} ∪ {x,X}. In particular, we have

V ∪ {y} ⊇ Free(ζ) ∪ {y} = Free(ψ) ∪ {y, x,X} ⊇ Free(ψ).

Thus, we see by induction that for every i ∈ N, we have

JψKV(w, ρ[y → i]) = JψK(w, ρ[y → i]�Free(ψ))

= JψKFree(ζ)∪{y}(w, ρ�Free(ζ)[y → i]),

from which the statement follows.
Finally, we come to monitor MSO formulas. For formulas of the form β ? ϕ1 : ϕ2 with ϕ1, ϕ2 ∈

mMSO(Σ,Val), we proceed in the same way as for almost Boolean formulas. For ϕ = min(ϕ1, ϕ2)
with ϕ1, ϕ2 ∈ mMSO(Σ,Val), let (w, ρ) ∈ ΣωV be valid. Then since V ⊇ Free(ϕ) ⊇ Free(ϕ1) and
V ⊇ Free(ϕ) ⊇ Free(ϕ2), we see by induction that

JϕKV(w, ρ) = min{Jϕ1KV(w, ρ), Jϕ2KV(w, ρ)}
= min{Jϕ1K(w, ρ�Free(ϕ1)), Jϕ2K(w, ρ�Free(ϕ2))}
= min{Jϕ1KFree(ϕ)(w, ρ�Free(ϕ)), Jϕ2KFree(ϕ)(w, ρ�Free(ϕ))}
= JϕK(w, ρ�Free(ϕ)).

For ϕ = Valx.ζ with ζ ∈ mMSOx(Σ), let (w, ρ) ∈ ΣωV be valid. Since V ⊇ Free(ϕ), we have

V ∪ {x} ⊇ Free(ϕ) ∪ {x} ⊇ Free(ζ) ∪ {x} ⊇ Free(ζ).

Thus, we see by induction that

JϕKV(w, ρ) = Val((JζKV∪{x}(w, ρ[x→ i]))i∈N)

= Val((JζK(w, ρ[x→ i]�Free(ζ)))i∈N)

= Val((JζKFree(ϕ)∪{x}(w, ρ�Free(ϕ)[x→ i]))i∈N)

= JϕK(w, ρ�Free(ϕ)).

The cases where ϕ = inf x.ϕ′ or ϕ = inf X.ϕ′ with ϕ′ ∈ mMSO(Σ,Val) are proved in the same way.

(ii) Consider the homomorphism h : ΣωV → Σωϕ defined by (w, ρ) 7→ (w, ρ�Free(ϕ)). If JϕKV is Val-MC-
recognizable, then by Lemma 4 (i), the series JϕK = h(JϕKV) is also Val-MC-recognizable.

Conversely, let JϕK be Val-MC-recognizable and let NV be the language of all words (w, ρ) where ρ
is a valid (V, w)-assignment. NV is an ω-recognizable language. We have JϕKV = NV ∩h−1(JϕK) because
of (i). Due to Lemma 4 (ii) and Lemma 6, NV ∩ h−1(JϕK) is Val-MC-recognizable.
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In the following lemma, we show that the use of an unrestricted sum quantifier leads to series which
are not MC-recognizable.

Lemma 11. Consider the unrestricted sum quantifier from Remark 8

J
⊕
y.ψKV(w, ρ) =

{∑
i∈NJψKV∪{y}(w, ρ[y → i]) if this sum converges

∞ otherwise,

the ω-valuation function Val defined by

Val((zi)i≥0) =

{∑∞
i=0 zi if this sum converges

∞ otherwise,

and the alphabet Σ = {a, b}. Then for the almost Boolean formula

ψ = y ≤ x ∧ ∀z.(z ≤ x→ Pa(z)) ?−1 : 0,

the formula

ϕ = Valx.
⊕
y.ψ

is not Val-MC-recognizable.

Proof. Let w = a0a1 . . . ∈ Σω, then for i ∈ N we have

J
⊕
y.ψK{x}(w, [x→ i]) =

{
−(i+ 1) if a0 = a1 = . . . = ai = a

0 otherwise.

By the Gauß summation formula, ϕ hence describes the series

JϕK(w) =

{
−m(m+1)

2 if w = ambw′ for some w′ ∈ Σω

∞ if w = aω.

The idea is now that with only finitely many transitions, and therefore only finitely many different
weights, this quadratic growth cannot be realized if only transitions up to the first b in each word influence
the weight of the runs. But once the automaton has read this first b, it cannot distinguish between the
words anymore. Under appropriate assumptions, we can therefore combine runs from different words to
obtain a contradiction.

Assume there was a BMCA A = (Q,Σ, I, δ, F, n,Val) with JAK = JϕK. We consider the special words
wm = ambaω. For m ≥ 0 and r ∈ AccA(wm), we have Val(r) ∈ Z ∪ {∞} and Val(r) ≥ JϕK(wm).
Therefore, there must be a minimal run in AccA(wm), i.e., r ∈ AccA(wm) with JϕK(wm) = Val(r).

For a minimal run r = (di)i≥0 of A on wm with di = (qi, ai, qi+1, ū
i), we define the counter pattern

CP(r) and the effective weights EW≤(r) and EW>(r) of r as follows. Intuitively, the counter pattern
tells us for each counter whether it is active or not at the letter b of wm. For j ∈ {1, . . . , n}, we let
kj = 1 if there is an i ≤ m such that uij = s and for all i′ with i < i′ ≤ m we have ui

′

j ∈ Z. Otherwise
we let kj = 0. Then we define CP(r) = (k1, . . . , kn) ∈ {0, 1}n. The effective weights will be partial
computations of Val(r) on amb on the one hand and on aω on the other hand. For j ∈ {1, . . . , n}, we let

E≤j =

m∑
i=0
ui
j=s

min({m}∪{k≥i|uk+1
j =t})∑

i′=i+1

ui
′

j

E>j =


∑∞
i=m+1
ui
j=s

∑min{k≥i|uk+1
j =t}

i′=i+1 ui
′

j if kj = 0∑∞
i=m+1
ui
j=s

∑min{k≥i|uk+1
j =t}

i′=i+1 ui
′

j +
∑min{k≥m|uk+1

j =t}
i′=m+1 ui

′

j if kj = 1.

The empty sum is simply defined as 0. We let EW≤(r) =
∑n
j=1E

≤
j and EW>(r) =

∑n
j=1E

>
j . We have

Val(r) = EW≤(r) + EW>(r).
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Now for every m ≥ 0, let rm = (dmi )i≥0 be a minimal run of A on wm. We consider the pairs pm =
(CP(rm), dmm). Since there are only finitely many different such pairs, namely not more than 2n · |δ|,
there must be such a pair p and a subsequence (rmk

)k≥0 of (rm)m≥0 with pmk
= p for all k ≥ 0.

Now let M > 0 such that all weights occurring in δ are in [−M,M ]. Then we have

|EW≤(rm)| ≤ nM(m+ 1).

For the special index m1 ≥ 1, we choose k sufficiently large to ensure that

−nM(m1 + 1)− m1(m1 + 1)

2
> −mk(mk + 1)

2
+ nM(mk + 1).

This is possible since if we treat the right hand side of this inequality as a polynomial in mk, the leading
coefficient of this polynomial is negative, thus the polynomial tends to minus infinity for k → ∞. We
know that

EW≤(rm1
) ≤ nM(m1 + 1)

EW≤(rmk
) ≥ −nM(mk + 1).

If we had

EW>(rmk
) ≥ −nM(m1 + 1)− m1(m1 + 1)

2
,

then we would have

Val(rmk
) = EW≤(rmk

) + EW>(rmk
)

≥ −nM(mk + 1)− nM(m1 + 1)− m1(m1 + 1)

2

> −mk(mk + 1)

2
,

which is a contradiction to the choice of rmk
. We therefore have

EW≤(rm1
) + EW>(rmk

) < −m1(m1 + 1)

2
.

We now consider the sequence of transitions r = dm1
0 . . . dm1

m1
dmk
mk+1d

mk
mk+2 . . . and claim that it is an

accepting run of A on wm1
. The first state is initial as rm1

is a run and the transitions are well matched
since dm1

m1
= dmk

mk
, which are also the only b-transitions of these runs. That the Büchi acceptance condition

is fulfilled and infinitely often some counter is activated is clear since rmk
is a run. Finally, that the

starts and stops form well matched pairs follows from the fact that CP(rm1) = CP(rmk
).

To conclude, we have

JAK(wm1) ≤ Val(r)

= EW≤(r) + EW>(r)

= EW≤(rm1
) + EW>(rmk

)

< −m1(m1 + 1)

2
= JϕK(wm1

).

Obviously, the behavior of A does not coincide with the semantics of ϕ, which is a contradiction to the
choice of A.

The next lemma shows that the first order variable x provided to the sum quantifier is necessarily
the variable which Val quantifies.

Lemma 12. Consider the ω-valuation function Val defined by

Val((zi)i≥0) =

{
1
z0

if 0 < z0 = z1 = z2 = . . .

−1 otherwise.
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and the alphabet Σ = {a}. We define the abbreviation

(y = x+ 1) = x ≤ y ∧ ¬(y ≤ x) ∧ ∀z.(z ≤ x ∨ y ≤ z).

Then for the Boolean formula

β(X) = ∀x1.∀x2.((x1 ∈ X ∧ x2 = x1 + 1)→ ¬(x2 ∈ X)),

the formula

ϕ = inf X. inf z.
(
β(X) ? Valx.

⊕z,X
y.1 :∞

)
is not Val-MC-recognizable.

Proof. For i ∈ N and I ⊆ N we have

J
⊕z,X

y.1K{z,X}(aω, [z → i,X → I]) ={
1 if i /∈ I or for all j > i we have j /∈ I
min{j ≥ i | j + 1 ∈ I} − i otherwise

and therefore

JValx.
⊕z,X

y.1K{z,X}(aω, [z → i,X → I]) =
∞ if i /∈ I or for all j > i we have j /∈ I
−1 if i ∈ I and i+ 1 ∈ I
(min{j ≥ i | j + 1 ∈ I} − i)−1 otherwise.

We obtain

Jβ(X) ? Valx.
⊕z,X

y.1 :∞K{z,X}(aω, [z → i,X → I]) =
∞ if i /∈ I or for all j > i we have j /∈ I

or i ∈ I and i+ 1 ∈ I
(min{j ≥ i | j + 1 ∈ I} − i)−1 otherwise,

in particular JϕK(aω) ≥ 0. For m ≥ 2 and the special choices Im = {0,m+ 1} and i = 0, we obtain

Jβ(X) ? Valx.
⊕z,X

y.1 :∞K{z,X}(aω, [z → i,X → I]) =
1

m

and therefore JϕK(aω) = inf{m−1 | m ≥ 2} = 0.
For a BMCA A realizing this series, the weight-sequence associated to each run has to be constant,

and there must be a sequence of runs such that this constant grows arbitrarily large. We exploit the
latter fact to show that there must be a run whose associated weight-sequence is not constant, which
leads to the contradiction JAK(aω) = −1.

Assume there was a BMCA A = (Q,Σ, I, δ, F, n,Val) with JAK = JϕK. Let r ∈ AccA(aω) and let
(zi)i≥0 be the associated weight-sequence. Clearly, we must have Val(r) ≥ 0 and therefore 0 < z0 = z1 =
z2 = . . ., i.e., Val(r) = z−1

0 > 0. Since infr∈AccA(aω) Val(r) = 0, there must be a sequence (rm)m≥1 in

AccA(aω) with Val(rm) < 1
m . We write rm = (dmi )i≥0.

Now similarly to the proof of Lemma 11, we associate to each m ≥ 1 and i ≥ 0 a quantifier pattern
CPm(i) = (k1, . . . , kn) ∈ {0, 1}n, which tells us whether in run rm at transition i, a counter j ∈ {1, . . . , n}
is active or not. More precisely, kj is 1 if for some i′ ≤ i counter j is started at i′ but not terminated on
the positions {i′ + 1, . . . , i}, and 0 otherwise.

For each m ≥ 1, let Nm > 0 such that in run rm, at least one counter was terminated before reading
the Nm-th letter of aω. For every c ∈ {0, 1}n and d ∈ δ, let M(d, c) = {m ≥ 1 | there exists i >
Nm with dmi = d and CPm(i) = c}. We have

⋃
(d,c)∈δ×{0,1}n M(d, c) = N+, and since δ × {0, 1}n is a

finite set, at least one M(d, c) must be infinite.
Consider such an infinite M(d, c). Let m1 ∈ M(d, c), let i1 > Nm1 with dm1

i1
= d and CPm1(i1) = c

and let ε1 = Val(rm1
). Since M(d, c) is infinite, there is m2 ∈ M(d, c) with m−1

2 < ε1. Then we have
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Val(rm2
) < m−1

2 < ε1 = Val(rm1
). Let i2 > Nm2

with dm2
i2

= d and CPm2
(i2) = c and let ε2 = Val(rm2

).

We know that the associated weight-sequence of rm1 is constantly ε−1
1 and that of rm2 is constantly ε−1

2 .
Now consider the sequence of transitions r = dm1

0 . . . dm1
i1
dm2
i2+1d

m2
i2+2 . . ., we claim that r is an accepting

run of A on aω and that Val(r) = −1. The first state is initial as rm1
is a run and the transitions are

well matched as dm1
i1

= dm2
i2

. That the Büchi acceptance condition is fulfilled and infinitely often some
counter is activated is clear as rm2

is a run. Finally, that the starts and stops form well matched pairs
follows from the fact that CPm1

(i1) = CPm2
(i2).

To see that Val(r) = −1, note that i1 > Nm1 , i.e., there is at least one counter in r which is started
at a position l1 < i1 and also terminated before position i1. Therefore, for the weight-sequence (zi)i≥0

associated to r, we have zl1 = ε−1
1 . Furthermore, there must also be a counter that is started at a

position l2 > i2 in rm2
, which means zl2−i2+i1 = ε−1

2 . Since ε2 < ε1, (zi)i≥0 is not constant and therefore
Val(r) = −1. It follows that JAK(aω) = −1, which is a contradiction to the choice of A.

5 The main result

In this section, we want to show that the MC-recognizable series coincide with the series definable by
monitor MSO formulas from our logic. In Lemma 14, we show how a given MMCA can be described
by a monitor MSO formula. To show that every series definable by a monitor MSO formula is also
MC-recognizable, we show by induction on the structure of the formula how to construct an MMCA
whose behavior coincides with the semantics of the formula. We first formulate our main theorem.

Theorem 13. Let Σ be an alphabet and Val an ω-valuation function. A series S : Σω → R ∪ {∞}
is Val-MC-recognizable if and only if there exists a monitor MSO sentence ϕ ∈ mMSO(Σ,Val) with
JϕK = S.

In the following lemma, we show the first direction, namely how to obtain a formula for a given
MMCA.

Lemma 14. For every Val-MMCA A over Σ, there exists a sentence ϕ ∈ mMSO(Σ,Val) with JAK = JϕK.

Proof. For first order variables x and y and second order variablesX1, . . . , Xk we define the MSO formulas

first(x) = ∀y.x ≤ y
(x < y) = x ≤ y ∧ ¬(y ≤ x)

(y = x+ 1) = x < y ∧ ∀z.(z ≤ x ∨ y ≤ z)

partition(X1, . . . , Xk) = ∀x.
k∨
i=1

x ∈ Xi ∧
∧
j 6=i

¬(x ∈ Xj)

 .

Now let A = (Q,Σ, I, δ,F , n,Val) be an n-MMCA. For every (p, a, q, ū) ∈ δ we choose a second order
variable X(p,a,q,ū) and with k = |δ| we fix a bijection v : {1, . . . , k} → δ. For i ∈ {1, . . . , k} we write Xi

for Xv(i) and X̄ for (X1, . . . , Xk). Furthermore, we fix second order variables Y1, . . . , Yn and write Ȳ for
(Y1, . . . , Yn). For j ∈ {1, . . . , n} and ? ∈ {s, t} we abbreviate

(uj(x) = ?) =
∨

(p,a,q,ū)∈δ
uj=?

x ∈ X(p,a,q,ū).

Intuitively, we use the variables X̄ to encode runs, i.e., by assigning the transition v(i) to every position
in Xi. The variables Ȳ are used to mark the starts and stops of the counters in the run X̄. In the
following, we define the MSO formula muller(X̄) which checks that X̄ encodes a run of A satisfying the
Muller acceptance condition, and the MSO formula accept(X̄) which checks that X̄ encodes an accepting
run. The MSO formula accept∗(X̄, Ȳ ) asserts that the positions in Ȳ conform to the starts and stops of
the counters in X̄. The precise formulas are as follows.

matched(X̄) =
∧

(p,a,q,ū)∈δ

∀x.
(
x ∈ X(p,a,q,ū) → Pa(x)

)

∧ ∀x.∀y.

y = x+ 1→
∨
q∈Q

 ∨
(p,a,q,ū),(q,a′,p′,ū′ )∈δ

(x ∈ X(p,a,q,ū) ∧ y ∈ X(q,a′,p′,ū′ ))


13



muller(X̄) = partition(X̄) ∧matched(X̄) ∧ ∃x.

first(x) ∧
∨

(p,a,q,ū)∈δ
p∈I

x ∈ X(p,a,q,ū)



∧
∨
F∈F

∃x.∀y.x ≤ y →

 ∨

(p,a,q,ū)∈δ
q∈F

y ∈ X(p,a,q,ū)

 ∧ ∧
q∈F
∃z.

y ≤ z ∧ ∨
(p,a,q,ū)∈δ

z ∈ X(p,a,q,ū)





accept(X̄) = muller(X̄) ∧ ∀x.∃y.(x ≤ y ∧
n∨
j=1

uj(y) = s)

∧
n∧
j=1

∀x.
((

(uj(x) = s)→ ∃y.
(
x < y ∧ uj(y) = t ∧ ∀z.((x < z ∧ z < y)→ ¬(uj(z) = s))

))
∧

(
(uj(x) = t)→ ∃y.

(
y < x ∧ uj(y) = s ∧ ∀z.((y < z ∧ z < x)→ ¬(uj(z) = t))

)))
accept∗(X̄, Ȳ ) = accept(X̄) ∧

n∧
j=1

∀x.(x ∈ Yj ↔ (uj(x) = s ∨ uj(x) = t)).

For (p, a, q, ū) ∈ δ and j ∈ {1, . . . , n}, we let wtj(p, a, q, ū) = uj if uj ∈ Z, and wtj(p, a, q, ū) = 0
otherwise. Then for i ∈ {1, . . . , k − 2} and j ∈ {1, . . . , n} we define inductively

ψjk−1 = (y ∈ Xk−1 ? wtj(v(k − 1)) : wtj(v(k)))

ψji =
(
y ∈ Xi ? wtj(v(i)) : ψji+1

)
ζn+1 = 1

ζj =
(

(uj(x) = s) ?
⊕x,Yj y.ψj1 : ζj+1

)
.

Then with

ϕ = inf X̄. inf Ȳ .(accept∗(X̄, Ȳ ) ? Valx.ζ1 :∞),

we have JAK = JϕK. The formula ψj1 evaluates to the weight for counter j in the transition at position y,
i.e., it is wtj(v(i)) iff y is in Xi. The formula ζ1 evaluates to the output of the counter started at position

x in the run encoded by X̄. More precisely, ζ1 evaluates to
⊕x,Yj y.ψj1 if counter j is started at position

x, and to 1 if no counter is started at x. Finally, the formula ϕ takes the infimum over the weights of
all runs X̄, in the sense that assignments to X̄ and Ȳ only influence the value of ϕ if X̄ encodes an
accepting run and Ȳ mirrors its counter starts and stops.

The remainder of this section is dedicated to show the converse, namely that for every monitor MSO
formula, there exists an MMCA whose behavior coincides with the semantics of the formula. Let Σ be
an alphabet and Val an ω-valuation function. We proceed by induction. For the base case, we show that
for an x-summing formula ζ ∈ mMSOx(Σ), the semantics of Valx.ζ is Val-MC-recognizable. For the
inductive part, we show that if we have mMSO formulas ϕ1, ϕ2 ∈ mMSO(Σ,Val) whose semantics are
Val-MC-recognizable and an MSO formula β ∈ MSO(Σ), then the semantics of β ? ϕ1 : ϕ2, min(ϕ1, ϕ2),
inf x.ϕ1, and inf X.ϕ1 are all recognizable. We will actually show the base case last, as it has the most
involved proof. We begin with the Val-recognizability of β ? ϕ1 : ϕ2.

Lemma 15. Let β ∈ MSO(Σ) be an MSO formula and ϕ1, ϕ2 ∈ mMSO(Σ,Val) such that Jϕ1K and Jϕ2K
are Val-MC-recognizable. Then with ϕ = β ? ϕ1 : ϕ2, the series JϕK is also Val-MC-recognizable.

Proof. Let V = Free(ϕ). Then we have Free(ϕ1) ⊆ V and Free(ϕ2) ⊆ V and hence by Lemma 10 Jϕ1KV
and Jϕ2KV are Val-MC-recognizable. Due to Free(β) ⊆ V, the classical Büchi theorem tells us that
both LV(β) and LV(¬β) are ω-recognizable. Hence by Lemma 5 and Lemma 6, JϕK = min(LV(β) ∩
Jϕ1KV ,LV(¬β) ∩ Jϕ2KV) is also Val-MC-recognizable.

Next, we show that for two mMSO formulas ϕ1 and ϕ2 whose semantics are Val-MC-recognizable,
the semantics of min(ϕ1, ϕ2) is also Val-MC-recognizable.
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Lemma 16. Let ϕ1, ϕ2 ∈ mMSO(Σ,Val) be such that Jϕ1K and Jϕ2K are Val-MC-recognizable. Then
with ϕ = min(ϕ1, ϕ2), the series JϕK is also Val-MC-recognizable.

Proof. Let V = Free(ϕ1) ∪ Free(ϕ2), then by Lemma 10, Jϕ1KV and Jϕ2KV are Val-MC-recognizable.
Hence by Lemma 5, JϕK = min(Jϕ1KV , Jϕ2KV) is also Val-MC-recognizable.

For the last step of the inductive part, we show that for an mMSO formula ϕ whose semantics is
Val-MC-recognizable, the semantics of inf x.ϕ and inf X.ϕ are also Val-MC-recognizable.

Lemma 17. Let ϕ ∈ mMSO(Σ,Val) such that JϕK is Val-MC-recognizable. Then the series Jinf x.ϕK
and Jinf X.ϕK are also Val-MC-recognizable.

Proof. We show the lemma for inf x.ϕ. The proof for inf X.ϕ is similar. Let V = Free(inf x.ϕ), then
x /∈ V. We consider the homomorphism

h : ΣωV∪{x} → ΣωV

which erases the x-row. Then for every valid (w, ρ) ∈ ΣωV , we have that

Jinf x.ϕKV(w, ρ) = inf{JϕKV∪{x}(w, ρ[x→ i]) | i ≥ 0} = h(JϕKV∪{x})(w, ρ).

As Free(ϕ) ⊆ V ∪ {x}, Lemma 10 shows that JϕKV∪{x} is Val-MC-recognizable and therefore by Lemma
4 (i), the series Jinf x.ϕKV is Val-MC-recognizable as well.

Before we come to the proof of the base case, we prove two technical lemmata about almost Boolean
and x-summing formulas.

Lemma 18. Let ψ ∈ mMSOa-bool(Σ) be an almost Boolean formula and V ⊇ Free(ψ). Then there are
MSO formulas β1, . . . , βn ∈ MSO(Σ) and weights z1, . . . , zn ∈ Z such that Free(ψ) =

⋃n
i=1 Free(βi),

NV =
⋃n
i=1 LV(βi), for i 6= j we have LV(βi)∩LV(βj) = ∅, and for (w, ρ) ∈ NV we have JψKV(w, ρ) = zi

if and only if (w, ρ) ∈ LV(βi).

Proof. For ψ = k with k ∈ Z, we choose n = 1, β1 as any tautology, for example β1 = ∃x.x ≤ x, and
z1 = k.

For ψ = β ?ψ1 :ψ2 we assume that the lemma is true for ψ1 with β
(1)
1 , . . . , β

(1)
n1 and z

(1)
1 , . . . , z

(1)
n1 and

for ψ2 with β
(2)
1 , . . . , β

(2)
n2 and z

(2)
1 , . . . , z

(2)
n2 . Then for ψ we let n = n1 +n2 and choose β1, . . . , βn1+n2

and

z1, . . . , zn1+n2 as follows. For i ∈ {1, . . . , n1}, we let βi = β ∧ β(1)
i and zi = z

(1)
i , and for i ∈ {1, . . . , n2},

we let βn1+i = ¬β ∧ β(2)
i and zn1+i = z

(2)
i .

Lemma 19. Let ζ ∈ mMSOx(Σ) be an x-summing formula and V ⊇ Free(ζ). Then there are MSO

formulas β1, . . . , βn ∈ MSO(Σ) and formulas ζ1, . . . , ζn with ζi =
⊕x,Yi y.ψi, where ψi is almost Boolean,

such that Free(ζ) =
⋃n
i=1 Free(βi) ∪ Free(ζi), for i 6= j we have LV(βi) ∩ LV(βj) = ∅, for (w, ρ) ∈ NV

we have JζKV(w, ρ) = JζiKV(w, ρ) if and only if (w, ρ) ∈ LV(βi), and if (w, ρ) /∈
⋃n
i=1 LV(βi) then

JζKV(w, ρ) = 1. We may assume the variables Yi to be pairwise distinct.

Proof. We proceed like in the proof of Lemma 18. For ζ = 1 we choose n = 0, i.e., there are no β
formulas. For ζ =

⊕x,X
y.ψ, we choose β1 as any tautology and ζ1 = ζ.

For ζ = β ? ζ ′1 : ζ ′2, we assume that the lemma is true for ζ ′1 with β
(1)
1 , . . . , β

(1)
n1 and ζ

(1)
1 , . . . , ζ

(1)
n1 and

for ζ ′2 with β
(2)
1 , . . . , β

(2)
n2 and ζ

(2)
1 , . . . , ζ

(2)
n2 . Then for ζ we let n = n1 +n2 and choose β1, . . . , βn1+n2 and

ζ1, . . . , ζn1+n2
as follows. For i ∈ {1, . . . , n1} we let βi = β ∧ β(1)

i and ζi = ζ
(1)
i , and for i ∈ {1, . . . , n2}

we let βn1+i = ¬β ∧ β(2)
i and ζn1+i = ζ

(2)
i .

Now in case that for some i 6= j we have Yi = Yj , we replace βi and βj by one formula β′ = βi ∨ βj
and we replace ζi and ζj by ζ ′ =

⊕x,Yi y.(βi ? ψi : ψj).

We now come to the proof of the base case of our induction.

Theorem 20. Let ζ ∈ mMSOx(Σ) be an x-summing formula. Then JValx.ζK is Val-MC-recognizable.

Proof. We adapt and expand an idea from [9]. Let β1, . . . , βn and ζ1, . . . , ζn be the formulas we can find

for ζ according to Lemma 19. We write ζi =
⊕x,Yi y.ψi. Then for each i ∈ {1, . . . , n}, let βi1, . . . , βini

and zi1, . . . , zini be the formulas and weights we can find for ψi according to Lemma 18.
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The proof idea is as follows. For V = Free(Valx.ζ), the mapping JValx.ζK assigns values to words
from ΣωV . Consider a valid (w, ρ) ∈ ΣωV . We can interpret each ζi as a counter which is stopped and then
restarted at the k-th letter of w depending on whether (w, ρ[x→ k]) satisfies βi. As our automata cannot
stop and start a single counter at the same time, each counter i will correspond to two counters i and
i′ in the automaton we construct. The computations of counter i depend on βi1, . . . , βini . We extend
the alphabet ΣV by adding two entries for each counter to each letter in ΣV . The entries for counter i
can contain an s to indicate the start of the counter, a t to indicate a stop, a number j ∈ {1, . . . , ni}
to indicate that the counter is active and should add zij to its current value, or a ⊥ to indicate that

the counter is inactive. Let Σ̃V be this new alphabet. We show that we can define an ω-recognizable
language L over Σ̃V which has all information about the counter operations encoded in the word. For
example, if (w, ρ[x → k]) |= βi, then in the word (w, ρ, v) ∈ Σ̃ωV corresponding to (w, ρ), the entry for
counter i in the k-th letter should contain an s. Then if (w, ρ[x → k, y → k + 1]) |= βij , the i-entry of
the k + 1-th letter should contain a j. The precise formulation is involved and will be formalized in the
sequel.

When we have shown that the language L is ω-recognizable, we can construct a Muller automaton
Ã which recognizes L. Turning Ã into an MMCA and applying a projection, we finally obtain the
recognizability of JValx.ζK.

If n = 0 then JζK ≡ 1, i.e., JValx.ζK ≡ ∞, which is recognized by every BMCA without final states.
Assume n > 0 and let W = Free(ζ), then according to Lemma 19 we have

W =

n⋃
i=1

Free(βi) ∪ Free(ζi)

=

n⋃
i=1

Free(βi) ∪ {x, Yi} ∪ (Free(ψi) \ {y}).

In particular, we have W ⊇ {x, Y1, . . . , Yn} and for every i ∈ {1, . . . , n}, we have W ⊇ Free(βi). Ac-
cording to the classical Büchi theorem, we therefore know that LW(βi) is ω-recognizable. This in turn
means that there are MSO sentences β′i over the alphabet ΣW with LW(βi) = L(β′i).

Let H = ({s, t,⊥, 1, . . . , n1} × . . . × {s, t,⊥, 1, . . . , nn})2, where ⊥ is a new symbol. An element
h ∈ H can be interpreted as a mapping with dom(h) = {1, . . . , 2n} and for i ∈ {1, . . . , n} we have
h(i), h(i + n) ∈ {s, t,⊥, 1, . . . , ni}. We now consider a new alphabet Σ̃W = ΣW × H. We represent
letters from Σ̃W as triples (a, g, h) where a ∈ Σ, g ∈ {0, 1}W , and h ∈ H. Infinite words over Σ̃W are
represented as triples (w, ρ, v) where (w, ρ) ∈ ΣωW and v : N→ H.

We transform each β′i in the following fashion. We obtain β′′i from β′i by replacing each atomic formula
P(a,g)(z) in β′i by

∨
h∈H P(a,g,h)(z). Then for every (w, ρ, v) ∈ Σ̃ωW we have (w, ρ, v) |= β′′i if and only if

(w, ρ) |= β′i.
Now let V = W \ {x}. We transform β′′i into a formula β′′′i over the alphabet Σ̃V = ΣV × H as

follows. Each atomic subformula P(a,g,h)(z) in β′′i is replaced by P(a,g′,h)(z) ∧ x = z if g(x) = 1 and
by P(a,g′,h)(z) ∧ ¬(x = z) if g(x) = 0, where g′ is the restriction of g to V, i.e., g′ = g�V . Then β′′′i
has exactly one free variable, namely x, as β′i is a sentence. Let k ∈ N and (w, ρ, v) ∈ Σ̃ωV . Then
((w, ρ, v), [x→ k]) |= β′′′i if and only if (w, ρ[x→ k], v) |= β′′i .

Now let W ′ =W ∪ {y}, then by Lemma 18 we have

W ′ ⊇ {y} ∪
n⋃
i=1

(Free(ψi) \ {y})

= {y} ∪
n⋃
i=1

ni⋃
j=1

Free(βij).

With the same argumentation as above, we find MSO sentences β′ij over the alphabet ΣW′ with LW′(βij) =

L(β′ij). Again, we obtain from each β′ij a sentence β′′ij over the alphabet Σ̃W′ = ΣW′ × H by replac-

ing every atomic formula P(a,g)(z) in β′ij by
∨
h∈H P(a,g,h)(z). Then for every (w, ρ, v) ∈ Σ̃ωW′ we have

(w, ρ, v) |= β′′ij if and only if (w, ρ) |= β′ij .

Next, we obtain from β′′ij a formula β′′′ij over the alphabet Σ̃V as follows. Each atomic subformula
P(a,g,h)(z) in β′′ij is replaced by

• P(a,g′,h)(z) ∧ x = z ∧ y = z if g(x) = 1 and g(y) = 1
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• P(a,g′,h)(z) ∧ x = z ∧ ¬(y = z) if g(x) = 0 and g(y) = 1

• P(a,g′,h)(z) ∧ ¬(x = z) ∧ y = z if g(x) = 1 and g(y) = 0

• P(a,g′,h)(z) ∧ ¬(x = z) ∧ ¬(y = z) if g(x) = 0 and g(y) = 0

where g′ is the restriction of g to V, i.e., g′ = g�V . Note the change of roles of x and y. Then β′′′ij has

exactly two free variables, namely x and y, as β′ij is a sentence. Let k, l ∈ N and (w, ρ, v) ∈ Σ̃ωV . Then
((w, ρ, v), [x→ k, y → l]) |= β′′′ij if and only if (w, ρ[x→ l, y → k], v) |= β′′ij .

Now recall that {Y1, . . . , Yn} ⊆ V. For i ∈ {1, . . . , n}, ? ∈ {s, t, 1, . . . , ni}, and i′ ∈ {i, i+n} we define
the abbreviations

Yi(z) =
∨

(a,g,h)∈Σ̃V
g(Yi)=1

P(a,g,h)(z)

(hi′(z) = ?) =
∨

(a,g,h)∈Σ̃V
h(i′)=?

P(a,g,h)(z)

even(x,X) = ∃Y.∃Z.∀x′.((x′ ∈ X ∧ x′ < x)→ (x′ ∈ Y ↔ ¬x′ ∈ Z)) ∧
∀x′.((x′ ∈ Y ∨ x′ ∈ Z)→ (x′ ∈ X ∧ x′ < x)) ∧
∀z.(z ∈ Z → ∃y.(y ∈ Y ∧ y < z)) ∧
∀y.(y ∈ Y → ∃z.(z ∈ Z ∧ y < z)) ∧
∀y1.∀y2.((y1 ∈ Y ∧ y2 ∈ Y ∧ y1 < y2)→ ∃z.(z ∈ Z ∧ y1 < z ∧ z < y2)) ∧
∀z1.∀z2.((z1 ∈ Z ∧ z2 ∈ Z ∧ z1 < z2)→ ∃y.(y ∈ Y ∧ z1 < y ∧ y < z2)).

For every w ∈ Σω, (w, [x → k,X → I]) |= even(x,X) if and only if {j ∈ I | j < k} has evenly many
elements. In the following, we will also use the formula notLast(x,X) defined in Remark 8. Now for
i ∈ {1, . . . , n}, j ∈ {1, . . . , ni}, and i′ ∈ {i, i+ n} we define

ϕis = (hi(x) = s)↔ (β′′′i ∧ ∃Y.((∀z.z ∈ Y ↔ Yi(z)) ∧ notLast(x, Y ) ∧ even(x, Y )))

ϕ(i+n)s = (hi+n(x) = s)↔ (β′′′i ∧ ∃Y.((∀z.z ∈ Y ↔ Yi(z)) ∧ notLast(x, Y ) ∧ ¬even(x, Y )))

ϕi′t = (hi′(x) = t)↔ (Yi(x) ∧ ∃z.(z ≤ x ∧ hi′(z) = s ∧ ∀z′.(z′ < x ∧ Yi(z′)→ z′ ≤ z)))
ϕi′j = (hi′(x) = j)↔ ∃y.∃y′.(y < x ∧ hi′(y) = s ∧ x < y′ ∧ hi′(y′) = t ∧

∀z.(Yi(z)→ (z ≤ y ∨ y′ ≤ z)) ∧ β′′′ij )

and finally

ϕ =

(
2n∧
i=1

∀x.ϕis

)
∧

(
2n∧
i=1

∀x.ϕit

)
∧

 n∧
i=1

ni∧
j=1

∀x.(ϕij ∧ ϕ(i+n)j)

 .

The formula ϕ is clearly a sentence over Σ̃V . In the following lemma, we show that L(ϕ) is exactly the
language over Σ̃V we described in the explanation at the beginning of the proof.

Lemma 21. Let (w, ρ) ∈ ΣωV be valid, then there exists exactly one mapping v : N → H such that
(w, ρ, v) |= ϕ and for this v we have the following. For all k ∈ N, either v(k)(i) 6= s for all i ∈ {1, . . . , 2n}
and JζKV∪{x}(w, ρ[x → k]) = 1, or we have v(k)(i) = s for exactly one i ∈ {1, . . . , 2n} and with
l = min{ι > k | v(ι)(i) = t} we have

JζKV∪{x}(w, ρ[x→ k]) =

l−1∑
ι=k+1

ziv(ι)(i).

In particular, {ι > k | v(ι)(i) = t} 6= ∅ in the latter case. Furthermore, for this v and all l ∈ N we have
that if v(l)(i) = t for some i ∈ {1, . . . , 2n}, then for some k < l we have v(k)(i) = s.

Proof. Step 1: We show the uniqueness first, so let (w, ρ) ∈ ΣωV be valid and v1, v2 : N → H such that
(w, ρ, v1) |= ϕ and (w, ρ, v2) |= ϕ. Let k ∈ N and i ∈ {1, . . . , 2n}. We then have the five different cases:
(1) v1(k)(i) = s with i ≤ n, (2) v1(k)(i) = s with i > n, (3) v1(k)(i) = t, (4) v1(k)(i) ∈ N, and (5)
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v1(k)(i) = ⊥. Assume the first case is true. Then we know that both ((w, ρ, v1), [x→ k]) |= (hi(x) = s)
and ((w, ρ, v1), [x→ k]) |= ϕis, which implies

((w, ρ, v1), [x→ k]) |= β′′′i ∧ ∃Y.((∀z.z ∈ Y ↔ Yi(z)) ∧ notLast(x, Y ) ∧ even(x, Y )). (1)

As we have ((w, ρ, v1), [x→ k]) |= β′′′i if and only if (w, ρ[x→ k]) |= βi, the validity of (1) does not depend
on v1. Hence, the formula in (1) is also satisfied by ((w, ρ, v2), [x→ k]). Since ((w, ρ, v2), [x→ k]) |= ϕis,
we therefore must have ((w, ρ, v2), [x → k]) |= (hi(x) = s), i.e., v1(k)(i) = v2(k)(i). With similar
reasoning, cases (2), (3), and (4) yield the same result. For case (5) it then follows trivially that
v2(k)(i) 6= ⊥ is impossible.

Step 2: We now construct a mapping v : N→ H with (w, ρ, v) |= ϕ. We assume that v is initialized
with ⊥, i.e., v(k)(i) = ⊥ for all k ∈ N and i ∈ {1, . . . , 2n}, and we will gradually redefine v. Let k ∈ N
and i ∈ {1, . . . , n}. We define i′ = i if the set {j ∈ ρ(Yi) | j < k} contains evenly many elements, and
i′ = i+ n otherwise. If

((w, ρ, v), [x→ k]) |= β′′′i ∧ ∃Y.((∀z.z ∈ Y ↔ Yi(z)) ∧ notLast(x, Y )), (2)

we redefine v(k)(i′) = s. Note that the validity of (2) does not depend on v. Doing this for all k and i

clearly yields (w, ρ, v) |=
∧2n
i=1 ∀x.ϕis.

Now let k ∈ N. Then for all i ∈ {1, . . . , n} and i′ ∈ {i, i+ n}, we redefine v(k)(i′) = t if

((w, ρ, v), [x→ k]) |= Yi(x) ∧ ∃z.(z ≤ x ∧ hi′(z) = s ∧ ∀z′.(z′ < x ∧ Yi(z′)→ z′ ≤ z)). (3)

We see as follows that v(k)(i′) was not redefined to s earlier. Let l = max{j ∈ ρ(Yi) | j < k}. Then
we have by (3) that v(l)(i′) = s. We know that {j ∈ ρ(Yi) | j < k} contains evenly many elements
if and only if {j ∈ ρ(Yi) | j < l} contains an odd number of elements. This shows that v(k)(i′)
and v(l)(i′) cannot both be s. Proceeding in the same way for all k ∈ N, we obtain v such that

(w, ρ, v) |=
(∧2n

i=1 ∀x.ϕis
)
∧
(∧2n

i=1 ∀x.ϕit
)

.

Finally, for k ∈ N, i ∈ {1, . . . , n}, i′ ∈ {i, i+ n}, and j ∈ {1, . . . , ni} with

((w, ρ, v), [x→ k]) |= ∃y.∃y′.(y < x ∧ hi′(y) = s ∧ x < y′ ∧ hi′(y′) = t ∧
∀z.(Yi(z)→ (z ≤ y ∨ y′ ≤ z)) ∧ β′′′ij ),

we redefine v(k)(i′) = j. Since clearly k /∈ ρ(Yi) in this case, v(k)(i′) was surely not redefined to s or t
earlier. In conclusion, we obtain (w, ρ, v) |= ϕ.

Step 3: Assume (w, ρ, v) |= ϕ. First, assume that for some l ∈ N and i′ ∈ {1, . . . , 2n} we have
v(l)(i′) = t. Since (w, ρ, v) |= ϕi′t, it easily follows that v(k)(i′) = s for some k < l.

Now let k ∈ N. We show that either v(k)(i′) 6= s for all i′ ∈ {1, . . . , 2n} and JζKV∪{x}(w, ρ[x→ k]) = 1,
or we have v(k)(i′) = s for some i ∈ {1, . . . , n}, i′ ∈ {i, i+ n} and with l = min{ι > k | v(ι)(i′) = t} we
have

JζKV∪{x}(w, ρ[x→ k]) =

l−1∑
ι=k+1

ziv(ι)(i′).

Step 3.1: According to the choice of β1, . . . , βn and by Remark 8, we know that JζKV∪{x}(w, ρ[x →
k]) 6= 1 if and only if there exists i ∈ {1, . . . , n} such that

(w, ρ[x→ k]) |= βi ∧ notLast(x, Yi)

and in this case the index i is uniquely determined. We have (w, ρ[x → k]) |= notLast(x, Yi) if and
only if ((w, ρ, v), [x → k]) |= ∃Y.((∀z.z ∈ Y ↔ Yi(z)) ∧ notLast(x, Y )), and by construction we have
(w, ρ[x→ k]) |= βi if and only if ((w, ρ, v), [x→ k]) |= β′′′i . We thus have

((w, ρ, v), [x→ k]) |= β′′′i ∧ ∃Y.((∀z.z ∈ Y ↔ Yi(z)) ∧ notLast(x, Y )).

Since ((w, ρ, v), [x→ k]) |= ϕis ∧ ϕ(i+n)s, we have either v(k)(i) = s or v(k)(i+ n) = s, but not both.
In conclusion, for every k ∈ N there is always at most one i′ ∈ {1, . . . , 2n} with v(k)(i′) = s, and

furthermore JζKV∪{x}(w, ρ[x→ k]) 6= 1 if and only if v(k)(i′) = s for some i′.
Step 3.2: Now assume JζKV∪{x}(w, ρ[x → k]) 6= 1 and let i ∈ {1, . . . , n} and i′ ∈ {i, i + n} with

v(k)(i′) = s as in Step 3.1. We know that

JζKV∪{x}(w, ρ[x→ k]) = JζiKV∪{x}(w, ρ[x→ k])
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= J
⊕x,Yi y.ψiKV∪{x}(w, ρ[x→ k])

=

min{j∈ρ(Yi)|j>k}−1∑
ι=k+1

JψiKV∪{x,y}(w, ρ[x→ k, y → ι]).

Let l = min{j ∈ ρ(Yi) | j > k}. We show that l = min{ι > k | v(ι)(i′) = t}. We have

((w, ρ, v), [x→ l]) |= Yi(x) ∧ ∃z.(z ≤ x ∧ hi′(z) = s ∧ ∀z′.(z′ < x ∧ Yi(z′)→ z′ ≤ z)). (4)

Due to (w, ρ, v) |= ϕi′t, we obtain v(l)(i′) = t. Now assume there was l′ with k < l′ < l and v(l′)(i′) = t,
then ((w, ρ, v), [x → l′]) |= (hi′(x) = t) and therefore (4) above is also satisfied for l′. In particular,
((w, ρ, v), [x→ l′]) |= Yi(x), but l′ ∈ ρ(Yi) is impossible by definition of l.

Step 3.3: Now let ι with k < ι < l, we show that

ziv(ι)(i′) = JψiKV∪{x,y}(w, ρ[x→ k, y → ι]).

By choice of βi1, . . . , βini there is exactly one j ∈ {1, . . . , ni} with (w, ρ[x → k, y → ι]) |= βij , which
is equivalent to ((w, ρ, v), [x → ι, y → k]) |= β′′′ij . Due to Steps 3.1 and 3.2, we therefore see that
((w, ρ, v), [x→ ι]) models

∃y.∃y′.(y ≤ x ∧ hi′(y) = s ∧ x ≤ y′ ∧ hi′(y′) = t ∧ ∀z.(Yi(z)→ (z ≤ y ∨ y′ ≤ z)) ∧ β′′′ij ),

which due to (w, ρ, v) |= ϕi′j means that v(ι)(i′) = j. We obtain

JψiKV∪{x,y}(w, ρ[x→ k, y → ι]) = zij = ziv(ι)(i′).

Let Ã = (Q, Σ̃V , q0, δ̃,F) be a Muller automaton which accepts L(ϕ). We construct the MMCA
A = (Q, Σ̃V , {q0}, δ,F , 2n,Val) by defining δ as follows. The set δ contains all transitions (p, (a, g, h), q, ū)
such that (1) (p, (a, g, h), q) ∈ δ̃ and (2) for all i ∈ {1, . . . , n} and i′ ∈ {i, i+ n} we have

ui′ =


s if h(i′) = s

t if h(i′) = t

zij if h(i′) = j

0 if h(i′) = ⊥.

By Lemma 21 we see that each transition starts at most one counter.
We show that now for every (w, ρ, v) ∈ Σ̃ωV we have

JAK(w, ρ, v) =

{
JValx.ζK(w, ρ) if (w, ρ, v) |= ϕ

∞ otherwise.

If (w, ρ, v) 6|= ϕ, then AccÃ(w, ρ, v) = ∅ and thus by construction of δ we also have AccA(w, ρ, v) = ∅,
i.e., JAK(w, ρ, v) =∞.

Conversely, assume (w, ρ, v) |= ϕ. If AccA(w, ρ, v) = ∅, we let r̃ ∈ AccÃ(w, ρ, v) be an accepting run

of Ã on (w, ρ, v). By supplying vectors ū to the transitions of r̃ in the obvious fashion, we obtain a run
r of A on (w, ρ, v). It follows from Lemma 21 that the start and stop symbols s and t for the counters
appear in well-formed pairs. Thus, r is accepting if and only if the set {k ∈ N | v(k)(i′) = s for some i′ ∈
{1, . . . , 2n}} is infinite. Since AccA(w, ρ, v) = ∅, the run r is not accepting, so we see by Lemma 21
that {k ∈ N | JζKV∪{x}(w, ρ[x → k]) 6= 1} is finite. Thus, we have JValx.ζK(w, ρ) = ∞. It follows that
JAK(w, ρ, v) = JValx.ζK(w, ρ).

Finally, if (w, ρ, v) |= ϕ and AccA(w, ρ, v) 6= ∅, we let r ∈ AccA(w, ρ, v), k ∈ N, and let (zj)j≥0

be the weight-sequence associated to r. We show that zk = JζKV∪{x}(w, ρ[x → k]). If zk = 1,
then by construction of δ we have v(k)(i′) 6= s for all i′ ∈ {1, . . . , 2n}. By Lemma 21 we thus have
JζKV∪{x}(w, ρ[x → k]) = 1 = zk. If zk 6= 1, we must have v(k)(i′) = s for some i ∈ {1, . . . , n} and
i′ ∈ {i, i+n} by the definition of (zj)j≥0 and the definition of δ. Thus, with l = min{ι > k | v(ι)(i′) = t}
we have by Lemma 21 and the definition of δ that

JζKV∪{x}(w, ρ[x→ k]) =

l−1∑
ι=k+1

ziv(ι)(i′) = zk.
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Therefore, we have Val(r) = Val((zj)j≥0) = JValx.ζK(w, ρ). Since r ∈ AccA(w, ρ, v) was arbitrary, it
follows that JAK(w, ρ, v) = Val(r) = JValx.ζK(w, ρ).

To conclude, consider the projection h : Σ̃V → ΣV , (w, ρ, v) 7→ (w, ρ). For every valid (w, ρ) ∈ ΣωV , we
know by Lemma 21 that there exists exactly one mapping v : N→ H with (w, ρ, v) |= ϕ. Thus we have

h(JAK)(w, ρ) = inf{JAK(w, ρ, v) | v : N→ H}
= JAK(w, ρ, v) for the unique v with (w, ρ, v) |= ϕ

= JValx.ζK(w, ρ),

so h(JAK) = JValx.ζK holds. By Lemma 4, h(JAK) is Val-MC-recognizable.

By combining Theorem 20 and Lemmata 15, 16, and 17, we obtain that the semantics of every mMSO
formula ϕ ∈ mMSO(Σ,Val) is Val-MC-recognizable. Together with Lemma 14, this concludes the proof
of Theorem 13.

6 A Nivat Theorem for Quantitative Monitor Automata

Theorem 22. Let Σ be an alphabet and Val an ω-valuation function. A series S : Σω → R∪{∞} is Val-
MC-recognizable if and only if there exists an alphabet Γ, a mapping h : Γ→ Σ, a one-state Val-BMCA
A′ over Γ, and an ω-recognizable language L ⊆ Γω such that S = h−1(JA′K ∩ L).

Proof. Let S be Val-MC-recognizable and A = (Q,Σ, I, δ,F , n,Val) be an MMCA with S = JAK. We let
Γ = {(p, a, q) | (p, a, q, ū) ∈ δ for some ū ∈ (Z ∪ {s, t})n}, define h by (p, a, q) 7→ a, and define a BMCA
A′ = ({∗},Γ, {∗}, δ′, {∗}, n,Val) by δ′ = {(∗, (p, a, q), ∗, ū) | (p, a, q, ū) ∈ δ}. Finally, for each q0 ∈ Q we
define an NMA Bq0 = (Q,Γ, q0, δ

′′,F) by δ′′ = {(p, (p, a, q), q) | (p, a, q) ∈ Γ} and let L =
⋃
q0∈Q L(Bq0).

Then S = h−1(JA′K ∩ L).
Conversely, take Γ, h, A′, and L as in the statement of the theorem. Then h−1(JA′K∩L) is Val-MC-

recognizable by combining Lemma 4 and Lemma 6.

7 Conclusion

We introduced a new logic which is expressively equivalent to Quantitative Monitor Automata. Since our
proofs are constructive, we immediately obtain the possibility to reduce the satisfiability and equivalence
problems of our logic to the emptiness and equivalence problems of Quantitative Monitor Automata.
Future work could therefore focus on the investigation of this automaton model, and on the related
model of Nested Weighted Automata [3].
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