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Abstract
We show that the equivalence, unambiguity and sequentiality problems are decidable for finitely
ambiguous max-plus tree automata.
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1 Introduction

A max-plus automaton is a finite automaton with transition weights in the real numbers. To
each word, it assigns the maximum weight of all accepting paths on the word, where the
weight of a path is the sum of the path’s transition weights. Max-plus automata and their
min-plus counterparts are weighted automata [19, 18, 13, 2, 4] over the max-plus or min-plus
semiring. Under varying names, max-plus and min-plus automata have been studied and
employed many times in the literature. They can be used to determine the star height of a
language [7], to decide the finite power property [20, 21] and to model certain timed discrete
event systems [5, 6]. Additionally, they appear in the context of natural language processing
[14].

For practical applications, the decidable properties of an automaton model are usually of
great interest. Typical problems considered include the emptiness, universality, inclusion,
equivalence, sequentiality and unambiguity problems. We consider the last three of these
problems for finitely ambiguous automata, which are automata in which the number of
accepting paths for every word is bounded by a global constant. If there is at most one
accepting path for every word, the automaton is called unambiguous. It is called deterministic
or sequential if for each pair of a state and an input symbol, there is at most one valid
transition into a next state. It is known [11] that finitely ambiguous max-plus automata are
strictly more expressive than unambiguous max-plus automata, which in turn are strictly
more expressive than deterministic max-plus automata.

Let us quickly recall the considered problems and the related results. The equivalence
problem asks whether two automata are equivalent, which is the case if the weights assigned
by them coincide on all words. In general, the equivalence problem is undecidable [12] for
max-plus automata, but for finitely ambiguous max-plus automata it becomes decidable
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[22, 9]. The sequentiality problem asks whether for a given automaton, there exists an
equivalent deterministic automaton. This was shown to be decidable by Mohri [14] for
unambiguous max-plus automata. Finally, the unambiguity problem asks whether for a given
automaton, there exists an equivalent unambiguous automaton. This problem is known to
be decidable for finitely ambiguous and even polynomially ambiguous max-plus automata
[11, 10]. In conjunction with Mohri’s results, it follows that the sequentiality problem is
decidable for these classes of automata as well.

In this paper, we show that these three problems are decidable for finitely ambiguous
max-plus tree automata, which are max-plus automata that operate on trees instead of words.
In the form of probabilistic context-free grammars, max-plus tree automata are commonly
employed in natural language processing [17]. Our approach to the decidability of the
equivalence problem uses ideas from [9]. We use a similar induction argument and also
reduce the equivalence problem to the same decidable problem, namely the decidability of
the existence of an integer solution for a system of linear inequalities [15]. On words, the
proof relies on the decomposition of words into subwords of bounded length, of which one
is removed in the induction step. This argument cannot be applied to trees as easily. A
tree can be decomposed into contexts of bounded height, but this requires contexts with
multiple variables. Removing such a context does usually not yield a tree. Consequently, our
induction is much more involved. We also point out and correct an important oversight in
the main theorem of [9].

The decidability of the unambiguity problem employs ideas from [11]. Here, we show
how the dominance property can be generalized to max-plus tree automata. To show the
decidability of the sequentiality problem, we first combine results from [3] and [14] to show
the decidability of this problem for unambiguous max-plus tree automata, and then combine
this result with the decidability of the unambiguity problem.

Our solution of the equivalence problem can be applied to weighted logics. In [16], a
fragment of a weighted logic is shown to have the same expressive power as finitely ambiguous
weighted tree automata. Over the max-plus semiring, equivalence is decidable for formulas
of this fragment due to our results.

2 Preliminaries

Let N = {0, 1, 2, . . .}. By N∗ we denote the set of all finite words over N. The empty word
is denoted by ε, and the length of a word w ∈ N∗ by |w|. The set N∗ is partially ordered
by the prefix relation ≤p and totally ordered with respect to the lexicographic ordering ≤l.
A ranked alphabet is a pair (Γ, rkΓ), often abbreviated by Γ, where Γ is a finite set and
rkΓ : Γ→ N. For every m ≥ 0 we define Γ(m) = rk−1

Γ (m) as the set of all symbols of rank m.
The rank rk(Γ) of Γ is defined as max{rkΓ(a) | a ∈ Γ}.

The set of (finite, labeled and ordered) Γ-trees, denoted by TΓ, is the set of all pairs t =
(pos(t), labelt), where pos(t) ⊂ N∗ is a finite non-empty prefix-closed set, labelt : pos(t)→ Γ
is a mapping and for every w ∈ pos(t) we have wi ∈ pos(t) iff 1 ≤ i ≤ rkΓ(labelt(w)). We
write t(w) for labelt(w). We also refer to the elements of pos(t) as nodes, to ε as the root of
t and to prefix-maximal nodes as leaves.

Now let s, t ∈ TΓ and w ∈ pos(t). The subtree of t at w, denoted by t�w, is a Γ-tree defined
as follows. We let pos(t�w) = {v ∈ N∗ | wv ∈ pos(t)} and for v ∈ pos(t�w), labelt�w

(v) =
t(wv). The substitution of s into w of t, denoted by t〈s→ w〉, is a Γ-tree defined as follows.
We let pos(t〈s → w〉) = {v ∈ pos(t) | w 6≤p v} ∪ {wv | v ∈ pos(s)}. For u ∈ pos(t〈s → w〉),
we let labelt〈s→w〉(u) = s(v) if u = wv, and otherwise labelt〈s→w〉(u) = t(u).
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For a ∈ Γ(m) and trees t1, . . . , tm ∈ TΓ, we also write a(t1, . . . , tm) to denote the tree t
with pos(t) = {ε} ∪ {iw | i ∈ {1, . . . ,m}, w ∈ pos(ti)}, labelt(ε) = a and labelt(iw) = ti(w).

A commutative semiring is a tuple (K,⊕,�,0,1), abbreviated by K, with operations sum
⊕ and product � and constants 0 and 1 such that (K,⊕,0) and (K,�,1) are commutative
monoids, multiplication distributes over addition, and k� 0 = 0� k = 0 for every k ∈ K. In
this paper, we only consider the following two semirings.

The boolean semiring B = ({0, 1},∨,∧, 0, 1) with disjunction ∨ and conjunction ∧.
The max-plus semiring Rmax = (R ∪ {−∞},max,+,−∞, 0) where the sum and the
product operations are max and +, respectively, extended to R∪ {−∞} in the usual way.

A (formal) tree series is a mapping S : TΓ → K. The set of all tree series (over Γ and K)
is denoted by K〈〈TΓ〉〉. For two tree series S, T ∈ K〈〈TΓ〉〉, the sum S ⊕ T and the Hadamard
product S � T are defined pointwise.

Let (K,⊕,�,0,1) be a commutative semiring. A weighted bottom-up finite state tree
automaton (short: WTA) over K and Γ is a tuple A = (Q,Γ, µ, ν) where Q is a finite set (of
states), Γ is a ranked alphabet (of input symbols), µ :

⋃rk(Γ)
m=0 Q

m×Γ(m)×Q→ K (the weight
function) and ν : Q→ K (the function of final weights). We set ∆A =

⋃rk(Γ)
m=0 Q

m×Γ(m)×Q.
A tuple (~p, a, q) ∈ ∆A is called a transition and (~p, a, q) is called valid if µ(~p, a, q) 6= 0. A
state q ∈ Q is called final if ν(q) 6= 0.

We call a WTA over the max-plus semiring a max-plus-WTA and a WTA over the boolean
semiring a finite tree automaton (FTA). A WTA A = (Q,Γ, µ, ν) over B is also written as a
tuple A′ = (Q,Γ, δ, F ) where δ = {d ∈ ∆A | µ(d) = 1} and F = {q ∈ Q | ν(q) = 1}.

For t ∈ TΓ, a mapping r : pos(t)→ Q is called a quasi-run of A on t. For a quasi-run r
on t and w ∈ pos(t) with t(w) = a ∈ Γ(m), the tuple t(t, r, w) = (r(w1), . . . , r(wm), a, r(w))
is called the transition at w. The quasi-run r is called a (valid) run if for every w ∈ pos(t)
the transition t(t, r, w) is valid with respect to A. We call a run r accepting if r(ε) is final.
By RunA(t) and AccA(t) we denote the sets of all runs and all accepting runs of A on t,
respectively. For r ∈ RunA(t) the weight of r is defined by wtA(t, r) =

⊙
w∈pos(t) µ(t(t, r, w)).

The tree series accepted by A, denoted by JAK ∈ K〈〈TΓ〉〉, is the tree series defined for every
t ∈ TΓ by JAK(t) =

⊕
r∈AccA(t) wtA(t, r)� ν(r(ε)) where the sum over the empty set is 0 by

convention. The support of A is the set supp(A) = {t ∈ TΓ | JAK(t) 6= 0}.
The support of an FTA A is also called the language accepted by A and denoted by L(A).

A subset L ⊆ TΓ is called recognizable if there exists an FTA A with L = L(A).
A WTA A is called deterministic if for every m ≥ 0, a ∈ Γ(m) and ~p ∈ Qm there exists

at most one q ∈ Q with µ(~p, a, q) 6= 0. We call A finitely ambiguous or M -ambiguous if
|AccA(t)| ≤M for some M ≥ 1 and every t ∈ TΓ. A 1-ambiguous WTA is also called unam-
biguous. We recall that for every recognizable language L ⊆ TΓ, there exists a deterministic
FTA A with L(A) = L.

An automaton A is called trim if (i) for every q ∈ Q there exist t ∈ TΓ, r ∈ AccA(t) and
w ∈ pos(t) such that q = r(w) and (ii) for every valid d ∈ ∆A there exist t ∈ TΓ, r ∈ AccA(t)
and w ∈ pos(t) such that d = t(t, r, w). The trim part of A is the automaton obtained by
removing all states q ∈ Q which do not satisfy (i) and setting µ(d) = 0 for all valid d ∈ ∆A
which do not satisfy (ii). This process obviously has no influence on JAK.

3 The Equivalence Problem

For two max-plus-WTA A1 and A2 over an alphabet Γ, we say that A1 dominates A2,
denoted by A1 ≥ A2, if for all trees t ∈ TΓ we have JA1K(t) ≥ JA2K(t). We say that A1 and
A2 are equivalent, denoted by A1 = A2, if for all t ∈ TΓ we have JA1K(t) = JA2K(t).

MFCS 2017
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The equivalence problem for max-plus (tree) automata asks whether for two given max-
plus (tree) automata A1 and A2, it holds that A1 = A2. For words, this problem was shown
to be undecidable in general [12], but it is decidable if both automata are finitely ambiguous
[9]. In this section, we prove that the equivalence problem is decidable for finitely ambiguous
max-plus-WTA. This section is based on ideas from [9].

I Theorem 1. The equivalence problem for finitely ambiguous weighted tree automata over
the max-plus semiring is decidable.

In fact, we will show that if A1 is a finitely ambiguous max-plus-WTA and A2 any
max-plus-WTA, then it is decidable whether A1 dominates A2.

I Theorem 2. Let A1 be a finitely ambiguous max-plus-WTA and A2 any max-plus-WTA.
It is decidable whether or not A1 ≥ A2.

If both automata in Theorem 2 are finitely ambiguous, we can reverse their roles.
Consequently, Theorem 1 is a corollary of Theorem 2. The remainder of this section is
dedicated to the proof of Theorem 2.

As a first step, we show in the following lemma that every finitely ambiguous max-plus-
WTA A can be “normalized” such that all trees, which have an accepting run in A, have the
same number of accepting runs.

I Lemma 3. Let A = (Q,Γ, µ, ν) be an M -ambiguous max-plus-WTA. Then there exists a
finitely ambiguous max-plus-WTA A′ with A = A′ and |AccA′(t)| ∈ {0,M} for all t ∈ TΓ.

For the rest of this section, fix an M -ambiguous max-plus-WTA A1 and a max-plus-WTA
A2. By Lemma 3, we can assume that for all t ∈ TΓ we have |AccA1(t)| ∈ {0,M}. Note that
A1 ≥ A2 can only hold if supp(A2) ⊆ supp(A1), which is decidable since the supports of A1
and A2 are recognizable languages. Therefore, in the forthcoming considerations we will
always assume that supp(A2) ⊆ supp(A1) holds. We write Ai = (Qi,Γ, µi, νi) for i = 1, 2.

For any tree in supp(A2), there are exactly M accepting runs of A1 on this tree. We
want to apply pumping type arguments to all of these runs and a given accepting run of A2
simultaneously. For this, we encode the runs of A1 and the given run of A2 directly into the
tree. Moreover, we want to decompose these trees, with all runs encoded, into smaller parts.
Formally, such a decomposition will be a tree of trees. To mark where these smaller trees
connect to each other, we use the new label �.

I Definition 4. For a set X and an alphabet Σ, we define for (a, x) ∈ Σ × X the rank
rkΣ×X(a, x) = rkΣ(a). We let Γ� = (Γ ∪ {�}, rkΓ ∪ {� 7→ 0}), where � is a new symbol. Let
Q = QM1 ×Q2 and let πQ, πΓ and πΓ� be the projections of Γ×Q and Γ� ×Q onto Q, Γ
and Γ�, respectively.

For a tree t ∈ TΓ�×Q, we define labelΓ�t = πΓ� ◦ labelt and labelit = πi ◦ πQ ◦ labelt where
πi is the i-th projection on Q. For i ∈ {1, . . . ,M + 1}, we define

wti(t) =


∑

w∈pos(t)
labelΓ�t (w)6=�

µ1(t((pos(t), labelΓ�t ), labelit, w)) if 1 ≤ i ≤M∑
w∈pos(t)

labelΓ�t (w)6=�
µ2(t((pos(t), labelΓ�t ), labelit, w)) if i = M + 1.

A tree t ∈ TΓ×Q is called accepting if label1t , . . . , labelMt are pairwise distinct accepting runs
of A1 on (pos(t), labelΓ�t ) and labelM+1

t is an accepting run of A2 on (pos(t), labelΓ�t ).
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(a, q0, p0)

(a, q1, p1)

(b, q0, p0) (b, q2, p2)

(c, q1, p1)

(b, q0, p0)

(a, q0, p0)

(a, q1, p1)

(�, q0, p0) (�, q2, p2)

(�, q1, p1)

(b, q2, p2)(b, q0, p0) (c, q1, p1)

(b, q0, p0)

Figure 1 A tree in TΓ×Q (M = 1) and a possible cycle decomposition with f defined as f(ε) = 1
and f(1) = f(2) = f(3) = 0.

Let t ∈ TΓ�×Q, n = |{w ∈ pos(t) | labelΓ�t (w) = �}| be the number of �-leaves in t and
{w1, . . . , wn} a lexicographically ordered enumeration of these leaves, i.e. w1 ≤l . . . ≤l wn.
For 1 ≤ i ≤ n, we define Wi(t) = wi. The set

Ξ = {t ∈ TΓ�×Q | ∀w ∈ pos(t) : |w| ≤ |Q| and labelΓ�t (ε) 6= �}

forms a ranked alphabet where for t as above we define rkΞ(t) = n. We recall that |w|
denotes the length of w and |Q| the cardinality of Q.

Every tree over Ξ corresponds to a unique tree over Γ×Q. This inclusion J : TΞ ↪→ TΓ×Q
is formally given as follows. For t ∈ TΞ with pos(t) = {ε} we let J (t) = t(ε). Otherwise let
m = rkΞ(t(ε)) and J (t) = t(ε)〈J (t�1)→W1(t(ε))〉 . . . 〈J (t�m)→Wm(t(ε))〉.

A tree t ∈ TΞ is called matching if for all w ∈ pos(t) and i ∈ {1, . . . , rkΞ(t(w))} we have
πQ(t(w)(Wi(t(w))) = πQ(t(wi)(ε)), i.e. the “state labels” of the �-letters match with the
state labels of the root at the corresponding child.

I Definition 5. Let t ∈ TΓ×Q. A cycle decomposition of t is a pair D = (t, f), where t ∈ TΞ
and f : pos(t)→ N is a mapping, satisfying the following.
1. We have J (t) = t and t is matching.
2. For all w ∈ pos(t) we have f(w) ≤ rkΞ(t(w)).
3. If w ∈ pos(t) with f(w) > 0, then with v = Wf(w)(t(w)) we have πQ(t(w)(ε)) =

πQ(t(w)(v)). In other words, the state labels of the root of t(w) coincide with the state
labels of the f(w)-th �-leaf of t(w).

4. If f(w) = 0 for some w ∈ pos(t), then for all i > 0 with wi ∈ pos(t), we have f(wi) > 0.

We call w ∈ pos(t) a cycle if f(w) > 0 and otherwise a link. The set of all cycles of D is
denoted by Cyc(D). By Decomp(t) we denote the set of all cycle decompositions of t. For
w ∈ pos(t) we call the set AncD(w) = {v ∈ Cyc(D) | vi ≤p w for some i ≥ 1 with i 6= f(v)}
the ancestors of w, see also Figure 2. We have the following lemma.

I Lemma 6. For every t ∈ TΓ×Q, there exists a cycle decomposition (t, f) ∈ Decomp(t).

For w ∈ Cyc(D) we now define a new tree tD(w) over the alphabet Ξ ∪ {�}, where � has
rank 0. Intuitively, tD(w) is the subtree of t at w, with all cycles apart from w itself removed
and the subtree at wf(w) replaced by �, see also Figure 2.

MFCS 2017
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(c1, 2)

(l1, 0)

(c2, 2)

(l2, 0) (l3, 0) (l4, 0)

(c3, 1)

(l5, 0)

(l8, 0) (c4, 2)

(l6, 0) (l7, 0)

c1

l1

l3 l5

� l7

Figure 2 A cycle decomposition D with f included in the labels and the tree tD(ε). A c denotes
a cycle and an l a link. The position of l8 has no ancestors, l5 has only the ancestor c1, and l4 has
ancestors c1 and c2.

Formally, we construct the tree as follows. We write f into the labels of t, i.e. we
define t′ = (pos(t), labelt × f). By π1 and π2 we denote the projections of Ξ × N to the
respective entries. We let s = t′�w. Now, as long as there is v ∈ pos(s) with π2(s(v)) > 0
and v 6= ε, we redefine s = s〈s�vπ2(s(v)) → v〉. Finally, we let s′ = (pos(s), π1 ◦ labels) and
tD(w) = s′〈� → f(w)〉. Note that tD(w) is matching.

For i ∈ {1, . . . ,M + 1} and w ∈ Cyc(D) we define

wtDi (w) =
∑

v∈pos(tD(w))
labeltD(w)(v)6=�

wti(labeltD(w)(v))

bDi =
∑

v∈pos(t)
v/∈Cyc(D)

AncD(v)=∅

wti(t(v)) +
{
ν1(labelit(ε)(ε)) if 1 ≤ i ≤M
ν2(labelM+1

t(ε) (ε)) if i = M + 1.

We have the following lemma.

I Lemma 7. Let t ∈ TΓ×Q, s = (pos(t), labelΓ�t ), ri = labelit and D = (t, f) ∈ Decomp(t).
Let {w1, . . . , wn} be a lexicographically ordered enumeration of Cyc(D). Then

ν1(ri(ε)) + wtA1(s, ri) = bDi + wtDi (w1) + . . .+ wtDi (wn)
ν2(rM+1(ε)) + wtA2(s, rM+1) = bDM+1 + wtDM+1(w1) + . . .+ wtDM+1(wn)

for i ∈ {1, . . . ,M}.

Let {w1, . . . , wn} be a lexicographically ordered enumeration of Cyc(D). We consider the
system of linear inequalities

bDi + wtDi (w1)X1 + . . .+ wtDi (wn)Xn < bDM+1 + wtDM+1(w1)X1 + . . .+ wtDM+1(wn)Xn

0 < Xj

where i ranges over 1, . . . ,M and j over 1, . . . n. For a cycle decomposition D ∈ Decomp(t),
the system above is denoted by LIS(D).

I Lemma 8. Let t ∈ TΓ×Q be accepting and D = (t, f) ∈ Decomp(t). For every choice of
X1, . . . , Xn ∈ N, Xi ≥ 1, there is an accepting tree s ∈ TΓ×Q with

ν1(labelis(ε)) + wti(s) = bDi + wtDi (w1)X1 + . . .+ wtDi (wn)Xn

ν2(labelM+1
s (ε)) + wtM+1(s) = bDM+1 + wtDM+1(w1)X1 + . . .+ wtDM+1(wn)Xn

for every i ∈ {1, . . . ,M}.
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Proof. For X1 = . . . = Xn = 1 we know by Lemma 7 that this is true for s = t. Otherwise
let w ∈ Cyc(D). We can “insert” the tree tD(w) into t at w as follows. Let s = t〈tD(w)→
wf(w)〉〈t�wf(w) → wf(w)f(w)〉. As w is a cycle, we know that s is matching and with
s = J (s) we have

νi(labelis(ε)) + wti(s) = νi(labelit(ε)) + wti(t) + wtDi (w)
= bDi + wtDi (w1) + . . .+ wtDi (wn) + wtDi (w)

where the last equality follows from Lemma 7. For every j ∈ {1, . . . , n} we apply this
procedure Xj − 1 times to wj to obtain s as needed. To see that s is indeed accepting, note
that label1t , . . . , labelMt are pairwise distinct. Since s is obtained from t by inserting subtrees,
label1s, . . . , labelMs must also be pairwise distinct. J

We are now ready to prove Theorem 2.

I Lemma 9. Let N =
∑|Q|
k=0 rk(Γ)k, Υ =

∑rk(Ξ)+1
k=1 (|Ξ|+ 1)k, Ω =

∑rk(Ξ)+2
k=1 (|Ξ|+ 1)k and

Θ = |Ξ|Ω(2Ω + 2). Then the following statements are equivalent.
(i) A1 ≥ A2.
(ii) For all accepting t ∈ TΓ×Q with |pos(t)| ≤ NΥ2Θ(2+rk(Ξ)) and all cycle decompositions

D ∈ Decomp(t), the system of linear inequalities LIS(D) does not possess an integer
solution.

(iii) For all accepting t ∈ TΓ×Q and all cycle decompositions D ∈ Decomp(t), the system of
linear inequalities LIS(D) does not possess an integer solution.

Property (ii) is clearly decidable. There are only finitely many trees to check, each tree has
only finitely many cycle decompositions, and the satisfiability of the corresponding linear
inequality systems with integers is decidable due to [15]. In particular, Theorem 2 holds.

Proof (sketch). (i) ⇒ (iii). We prove this by contradiction and assume that (iii) does not
hold. Then there is an accepting t ∈ TΓ×Q and a cycle decomposition D ∈ Decomp(t) such
that the system of inequalities LIS(D) has an integer solution. By Lemma 8 we can find an
accepting tree s ∈ TΓ×Q with

ν1(labelis(ε)) + wti(s) = bDi + wtDi (w1)X1 + . . .+ wtDi (wn)Xn

ν2(labelM+1
s (ε)) + wtM+1(s) = bDM+1 + wtDM+1(w1)X1 + . . .+ wtDM+1(wn)Xn

for every i ∈ {1, . . . ,M}. Thus by Lemma 7 with s′ = (pos(t), labelΓ�s ) and ri = labelis for
i ∈ {1, . . . ,M + 1} we have ν1(ri(ε)) + wtA1(s′, ri) < ν2(rM+1(ε)) + wtA2(s′, rM+1) for all
i ∈ {1, . . . ,M}. Since A1 is M -ambiguous and r1, . . . , rM are pairwise distinct, this means
JA1K(s′) < JA2K(s′), i.e. (i) does not hold.

(iii) ⇒ (i). We show this by contradiction and assume that (i) does not hold. Then
there is some tree s ∈ supp(A2) with JA1K(s) < JA2K(s). Let AccA1(s) = {r1, . . . , rM}.
Since JA1K(s) < JA2K(s), there must be rM+1 ∈ AccA2(s) with ν1(ri(ε)) + wtA1(s, ri) <
ν2(rM+1(ε)) + wtA2(s, rM+1) for all i ∈ {1, . . . ,M}. Consider the accepting tree t =
(pos(s), (labels, r1, . . . , rM+1)) ∈ TΓ×Q and let D = (t, f) ∈ Decomp(t). Then according to
Lemma 7, the system LIS(D) clearly has the integer solution X1 = . . . = Xn = 1, i.e. (iii)
does not hold.

(ii) ⇔ (iii). The direction (iii) ⇒ (ii) is clear. We prove (ii) ⇒ (iii) by induction on the
size of the trees t. For “small” trees, it follows by assuming (ii) as true. For “large” trees t, we
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show that if for a cycle decomposition D = (t, f) the system LIS(D) has an integer solution,
then we can find a smaller tree and a cycle decomposition D′ of that tree for which LIS(D′)
also has an integer solution. This constitutes a contradiction to our induction hypothesis.

The main issue is how to construct this smaller tree. For words, it is easy. If a word is
sufficiently long, there are two cycles with the same label. We remove one of these cycles
from the word, thereby making the word shorter, and in LIS(D) add the coefficient for this
cycle to that of the other, identical cycle. It is clear that this is not possible for trees. By
removing any cycle w, we also remove all other cycles v with w ∈ AncD(v).

Our solution for this is as follows. Using the concept of ancestors, we construct a tree
hierarchy on the cycles of D. The “child cycles” of a given cycle w are all cycles for which w
is the prefix-largest ancestor. We call this tree T and consider two different cases. If T has
sufficiently many leaves, there are two different leaves pointing to the “same cycle”. More
precisely, we find w1 6= w2 in Cyc(D) with tD(w1) = tD(w2) and for all v ∈ Cyc(D) we have
w1 /∈ AncD(v) and w2 /∈ AncD(v). The leaves of T correspond to cycles which are save to
remove as they are not ancestors of any other cycles. We can therefore remove w2 and add
this cycle’s coefficient to that of w1.

However, T might not have sufficiently many leaves for this argumentation. But assuming
that the number of leaves stays below the bound Υ, sufficiently large trees T have arbitrarily
long successions of nodes w,w1, w12, . . . , w1n each having only one child. Now consider the
cycles v0, . . . , vn ∈ Cyc(D) which correspond to such a succession w,w1, . . . , w1n. We can
show that there is only a finite number of possible trees tD(vi) for these cycles. If n is large
enough, we can find i1 < i2 < i3 < i4 such that tD(vi1) = tD(vi2) = tD(vi3) = tD(vi4) and
in addition {tD(vi) | i1 ≤ i ≤ i2} = {tD(vi) | i3 ≤ i ≤ i4}. We can then “remove” all cycles
vi3 , . . . , vi4−1 by inserting the subtree of t at vi4 into the node vi3 . The coefficients for the
cycles removed in this way can then be added to the coefficients of the corresponding cycles
in vi1 , . . . , vi2 . J

On the Proof for the Word Case
For words, Theorem 1 was shown by Hashiguchi et al. There are two different versions of the
paper, namely [8, 9]. In both papers, it is first shown that for deterministic max-plus word
automata A1, . . . ,AM+1, it is decidable whether maxMi=1JAiK ≥ JAM+1K. The approach for
the generalization to finitely ambiguous automata is then different in both papers.

In [8], it is claimed that every finitely ambiguous max-plus word automaton can be
written as a pointwise maximum of finitely many deterministic max-plus automata. This
argumentation was withdrawn in [9] and the claim posed as an open problem. It does in fact
not hold as shown in [1].

In [9], the argumentation is done directly on the runs of the finitely ambiguous max-plus
automata. However, this causes problems when not all words have the same number of
accepting runs. The two automata in Figure 3 over the one-letter alphabet {a} constitute a
counter example to Theorem 5.6 in [9], which is similar to our Lemma 9.

One easily checks that A1 ≥ A2. There are two accepting runs of A1 on a3, namely
q1aq2aq3aq3 and q4aq5aq6aq6, and one of A2 on a3, namely p1ap2ap3ap3. The last a thus
induces a cycle in the sense of [9]. From this, the linear inequality system

2+ (−1) ·X < 1+ 0 ·X
−2+ 1 ·X < 1+ 0 ·X

0 ≤ X

is derived. It clearly has the solution X = 2. However, it is stated that from the satisfiability
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q10 q2 q3 01 1

-1

q71 q8 q9 q10 q11 00 0 0 0

q40 q5 q6 0-1 -1

1A1

p11 p2 p3 00 0

0A2

Figure 3 The automata A1 and A2 over the alphabet {a} constitute a counter example to [9,
Theorem 5.6]. The transition letters are omitted.

of this inequality system with an integer value it follows that A1 ≥ A2 does not hold. The
problem here is that the word a4, which is supposed to “realize” the solution of the inequality
system, in fact possesses a third accepting run q7aq8aq9aq10aq11 which compensates the other
two runs.

The proof of Theorem 5.6 in [9] can easily be fixed by normalizing the automaton A1 as
we did in Lemma 3. If for some M ≥ 1 we have |AccA1(w)| ∈ {0,M} for every word w, all
arguments of the proof work as intended.

4 The Unambiguity Problem

The unambiguity problem asks whether for a given max-plus-WTA A there exists an
unambiguous max-plus-WTA A′ such that JAK = JA′K. In this section, we show that the
unambiguity problem is decidable for finitely ambiguous max-plus-WTA. We follow ideas
from [11, Section 5], where the decidability of this problem was shown for finitely ambiguous
max-plus word automata. The unambiguity problem is, in fact, even known to be decidable
for polynomially ambiguous max-plus word automata [10]. We leave the question open as to
whether the same holds true for polynomially ambiguous max-plus-WTA.

I Theorem 10. For a finitely ambiguous max-plus-WTA A it is decidable whether there
exists an unambiguous max-plus-WTA A′ with JAK = JA′K. If A′ exists, it can be effectively
constructed.

The rest of this section is dedicated to the proof of Theorem 10.
For an alphabet Γ, a tree over the alphabet Γ� = (Γ ∪ {�}, rkΓ ∪ {� 7→ 0}) is called a

Γ-context. For a max-plus-WTA A = (Q,Γ, µ, ν), a run of A on a Γ-context t is a run of the
max-plus-WTA A′ = (Q,Γ�, µ′, ν) on t, where µ′(�, q) = 0 for all q ∈ Q and µ′(d) = µ(d) for
d ∈ ∆A. We denote Run�A(t) = RunA′(t) and for r ∈ Run�A(t) write wt�A(t, r) = wtA′(t, r).

For s ∈ TΓ with |{w ∈ pos(s) | s(w) = �}| = 1 and r ∈ Run�A(s) such that for w0 ∈ pos(s)
with s(w0) = � we have r(ε) = r(w0) the pair (s, r) is called an A-circuit. We call (s, r)
small if |w| ≤ |Q| for all w ∈ pos(s).

Now let A be a finitely ambiguous max-plus-WTA. We decompose A into unambiguous
max-plus-WTA as follows.
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I Lemma 11 ([16]). Let A be a finitely ambiguous max-plus-WTA over Γ, then there exist
finitely many unambiguous max-plus-WTA A1, . . . ,AM over Γ with JAK = maxMi=1JAiK and
supp(A1) = . . . = supp(AM ).

Let A1, . . . ,AM be unambiguous max-plus-WTA with supp(A1) = . . . = supp(AM ) and
JAK = maxMi=1JAiK. We write Ai = (Qi,Γ, µi, νi) for i ∈ {1, . . . ,M}. The product automaton
of A1, . . . ,AM is the trimmed automaton B = (Q,Γ, µ, ν) over the product semiring (Rmax)M
defined as follows. We let Q = Q1 × . . . × QM and for a ∈ Γ with rkΓ(a) = m and
p0, . . . ,pm ∈ Q with pi = (pi1, . . . , piM ) we define with xj = µj(p1j , . . . , pmj , a, p0j) and
yj = νj(p0j)

µ(p1, . . . ,pm, a,p0) =
{

(x1, . . . , xM ) if (x1, . . . , xM ) ∈ RM

(−∞, . . . ,−∞) otherwise

ν(p0) =
{

(y1, . . . , yM ) if (y1, . . . , yM ) ∈ RM

(−∞, . . . ,−∞) otherwise.

Then B is unambiguous and for t ∈ TΓ we have JBK(t) = (JA1K(t), . . . , JAM K(t)).
For q,p ∈ Q, we write q � p if there exists t ∈ TΓ, r ∈ AccB(t) and w1, w2 ∈ pos(t) with

w1 ≤p w2 such that r(w1) = q and r(w2) = p. We write q ≈ p if q � p and p � q. By [q]
we denote the set of all p ∈ Q with q ≈ p.

I Definition 12. Let s ∈ TΓ� be a Γ-context, r ∈ Run�B(s) and write wt�B(s, r) = (θ1, . . . , θM ).
We define wti(s, r) = θi and wt(s, r) = maxMi=1 wti(s, r).

A coordinate i ∈ {1, . . . ,M} is called victorious if wti(s, r) = wt(s, r). The set of all
victorious coordinates of (s, r) is denoted by Vict(s, r). For q ∈ Q we define

Vict([q]) =
⋂

(s,r) small B-circuit
r(ε)∈[q]

Vict(s, r)

where the empty intersection is defined as {1, . . . ,M}. For P ⊆ Q, we let Vict(P ) =⋂
p∈P Vict([p]). We have the following lemma.

I Lemma 13. There is an unambiguous max-plus-WTA A′ with JAK = JA′K if and only if
for all t ∈ TΓ and all r ∈ AccB(t) we have Vict(r(pos(t))) 6= ∅. The latter property is called
the dominance property and is denoted by (P).

(P) is decidable as follows. We can consider Q as an (unranked) alphabet and construct an
FTA which accepts exactly the accepting runs of B, i.e. all pairs (pos(t), r) for some t ∈ TΓ
and r ∈ AccB(t). Also, for P ⊆ Q we can construct an FTA which accepts all trees in TQ in
which every p ∈ P occurs at least once as a label. By taking the intersection of these two
automata and checking for emptiness, we can decide for every P ⊆ Q whether there is any
t ∈ TΓ and r ∈ AccB(t) with P ⊆ r(pos(t)). Checking whether all P for which this is true
satisfy Vict(P ) 6= ∅ is equivalent to checking (P).

I Construction 14. Let N =
∑|Q|
i=0 rk(Γ)i, R =

⋃M
i=1(µi(∆Ai) ∪ νi(Qi)) and C = maxR−

min(R \ {−∞}). For x = (x1, . . . , xM ) ∈ RMmax we let x̌ = min{xi | 1 ≤ i ≤ M,xi 6= −∞}
and x = x− (x̌, . . . , x̌).

Assume that B satisfies (P). We construct an unambiguous max-plus-WTA A′ =
(Q′,Γ, µ′, ν′) with JAK = JA′K and Q′ ⊂ RMmax ×Q as follows.

Rule 1: For (a,q) ∈ ∆B ∩ (Γ × Q) with x = µ(a,q) ∈ RM , we let (x,q) ∈ Q′ and
µ′(a, (x,q)) = x̌.
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Rule 2: Assume for (z1,p1), . . . , (zm,pm) ∈ Q′ that we have d = (p1, . . . ,pm, a,p0) ∈
∆B for some a ∈ Γ, p0 ∈ Q and x = µ(d) ∈ RM . We let t =

∑m
i=1 zi+x and define y ∈ RMmax

through

yi =
{
−∞ if ti < max{tj | 1 ≤ j ≤M} − (2N + 1)C
ti otherwise.

We let (y,p0) ∈ Q′ and µ′((z1,p1), . . . , (zm,pm), a, (y,p0)) = y̌.
Finally, assume (z,p) ∈ Q′ and x = ν(p) ∈ RM . Then we let ν′(z,p) = maxMi=1 zi + xi.

I Lemma 15. A′ is an unambiguous max-plus-WTA with JAK = JA′K.

Proof (sketch). A′ is unambiguous as there is a bijection between the accepting runs of B
and A′. The idea behind A′ is as follows. From a bottom-up perspective, A′ remembers in
each coordinate of z the weight which B would have assigned to the run in this coordinate
“so far”. Since this can become unbounded, we normalize the smallest coordinate to 0 in
each transition, make this coordinate’s weight the transition weight, and remember only the
difference to this weight in the remaining coordinates. Still, these differences can become
unbounded. Therefore, once the difference exceeds the bound (2N + 1)C, the coordinates
with small weights are discarded by being set to −∞.

We can show that the coordinate k which in B eventually yields the largest weight will
not be discarded. First, we can show that a victorious coordinate of a run will never be
smaller than the largest weight (over all coordinates) minus NC. Second, we can show that
if l is victorious, then the weight of coordinate k will never be smaller than the weight of l
minus NC +C. Our assumption is that (P) holds, so there exists some victorious coordinate
in every accepting run. Therefore, the weight of k will never be smaller than the largest
weight minus (2N + 1)C and is never discarded. J

We now prove that (P) is a necessary condition, i.e. that from the existence of an
unambiguous automaton A′ with JAK = JA′K it follows that B satisfies (P).

I Lemma 16. If there exists an unambiguous max-plus-WTA A′ = (Q′,Γ, µ′, ν′) with
JAK = JA′K then B satisfies (P).

Proof. Let t ∈ TΓ and r ∈ RunB(t). Let C = {(s, rs) small B-circuit | [rs(ε)]∩r(pos(t)) 6= ∅}.
Let p ∈ r(pos(t)), (s, rs) ∈ C and q = rs(ε) ∈ [p].

We can assume that q ∈ r(pos(t)) due to the following argument. Since to p � q � p, we
can find tpq, tqp ∈ TΓ, rp

q ∈ RunB(tpq) and rq
p ∈ RunB(tqp) such that rp

q(ε) = p, rq
p(ε) = q and

for some wq ∈ pos(tpq) and wp ∈ pos(tqp) we have rp
q(wq) = q and rq

p(wp) = p. Thus with
s′ = tpq〈tqp〈� → wp〉 → wq〉 we obtain a circuit (s′, rs′) with rs′(ε) = p and rs′(wq) = q. We
can insert (s′, rs′) into t and r to obtain a tree t′ and a run r′ ∈ AccB(t′) with q ∈ r′(pos(t′)).

Now let wq ∈ pos(t) with r(wq) = q and w ∈ pos(s) with s(w) = �. We let s1 = s and
for n ≥ 1 define sn+1 = s〈sn → w〉. Then from rs we obtain a circuit (s|Q′|, r|Q

′|
s ) which we

can insert at wq to obtain a tree t′ ∈ TΓ and a run r′ ∈ AccB(t′). We do this for all small
circuits in C simultaneously. We assume without loss of generality that after this the circuit
(s|Q′|, r|Q

′|
s ) is still at position wq. Since suppB = suppA′, we find a run r′′ ∈ AccA′(t′). By

pigeon hole principle, we find 0 ≤ i1 < i2 ≤ |Q′| with r′′(wqw
i1) = r′′(wqw

i2). From this,
we obtain an A′-circuit (si2−i1 , r̂) which corresponds to a B-circuit (si2−i1 , ri2−i1s ). We can
now insert si2−i1 at wq repeatedly to create copies of these circuits. Clearly, this works for
all small circuits in C.
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Let c1, . . . , cn be an enumeration of C. We write ci = (si, ri). By (ŝi, r̂i) and (ŝi, ři),
we denote the circuits in A′ and B, respectively, we obtain from ci in the way we obtained
(si2−i1 , r̂) and (si2−i1 , ri2−i1) from (s, rs). For v = (v1, . . . , vn) ∈ Nn, we denote by tv the
tree obtained by adding vi copies of ŝi to t for each i ∈ {1, . . . , n}. Since B and A′ are both
unambiguous, we can make the following observations.

For i ∈ {1, . . . , n} we let ρi = wtA′(ŝi, r̂i). Then for some constant ρ0 we have JA′K(tv) =
ρ0 + v1ρ1 + . . . + vnρn. Due to the definition of victorious coordinates, for every v′ =
(v2, . . . , vn) ∈ Nn−1 there is N (1)

v′ ∈ N such that for all v1 > N
(1)
v′ the tuple JBK(t(v1,...,vn))

has its maximum in entry j1 for some j1 ∈ Vict(ŝ1, ř1). Then with ρ(1)
i = wtj1(ŝi, ři) for

i ∈ {1, . . . , n} and some constant ρ(1)
0 we have for all v1 > N

(1)
v′ that JBK(tv) = ρ

(1)
0 + v1ρ

(1)
1 +

. . . + vnρ
(1)
n . By varying v, we see that from JA′K(tv) = JBK(tv) it follows that ρi = ρ

(1)
i

for all i ∈ {1, . . . , n}. We can do the same for the other circuits (ŝ2, ř2), . . . , (ŝn, řn) and
see that if ji ∈ Vict(ŝi, ři) for every i ∈ {1, . . . , n} then wtj1(ŝi, ři) = . . . = wtjn

(ŝi, ři)
for every i ∈ {1, . . . , n}. In particular, j1 ∈ Vict(ŝi, ři) for all i ∈ {1, . . . , n}. This means
j1 ∈ Vict(r(pos(t))) and B satisfies (P). J

5 The Sequentiality Problem

The sequentiality problem asks whether for a given max-plus-WTA A there exists a determ-
inistic max-plus-WTA A′ such that JAK = JA′K. The term “sequentiality” stems from the
fact that in the weighted setting, deterministic automata are also often called sequential.
In this section, we show that the sequentiality problem is decidable for finitely ambiguous
max-plus-WTA. For words, this is known due to [11].

Let A = (Q,Γ, µ, ν) be a max-plus-WTA. We say that A satisfies the twins property
[14, 3] if the following holds. Whenever for q, q′ ∈ Q there exist t ∈ TΓ, r, r′ ∈ RunA(t)
with r(ε) = q, r′(ε) = q′ and A-circuits (s, r1), (s, r2) with r1(ε) = q and r2(ε) = q′ then
wt�A(s, r1) = wt�A(s, r2).

I Lemma 17. Let A be a trim unambiguous max-plus-WTA. There exists a deterministic
max-plus-WTA A′ with JAK = JA′K if and only if A satisfies the twins property. If it exists,
it can be effectively constructed.

Proof (sketch). If A satisfies the twins property, we know due to [3, Lemma 5.10] that a
deterministic max-plus-WTA A′ with JA′K = JAK can be effectively constructed.

To show that the twins property is also a necessary condition, we can apply an idea
similar to the proof of [14, Theorem 9]. J

I Lemma 18 ([3, Theorem 5.17]). For an unambiguous max-plus-WTA A it is decidable
whether A satisfies the twins property.

I Theorem 19. For a finitely ambiguous max-plus-WTA A it is decidable whether there
exists a deterministic max-plus-WTA A′ with JAK = JA′K. If A′ exists, it can be effectively
constructed.

Proof. Let A be a finitely ambiguous max-plus-WTA. Due to Theorem 10 we can decide
whether there exists an equivalent unambiguous max-plus-WTA. If this is not the case, A
can also not be determinizable. Otherwise we can effectively construct an unambiguous
max-plus-WTA A′ with JAK = JA′K. Due to Lemma 18 we can decide whether A′ satisfies
the twins property, which according to Lemma 17 is equivalent to deciding whether A is
determinizable. J
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