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Abstract

We show the decidability of the finite sequentiality problem for unambiguous max-plus tree
automata. A max-plus tree automaton is called unambiguous if there is at most one accepting run on
every tree. The finite sequentiality problem asks whether for a given max-plus tree automaton, there
exist finitely many deterministic max-plus tree automata whose pointwise maximum is equivalent to
the given automaton.

1 Introduction

A max-plus automaton is a finite automaton which assigns real numbers to words over a given alphabet.
The transitions of a max-plus automaton each carry a weight from the real numbers. To every run of
the automaton, a weight is associated by summing over the weights of the transitions which constitute
the run. The weight of a word is given by the maximum over the weights of all runs on this word.

More generally, max-plus automata and their min-plus counterparts are weighted automata [38, 37,
26, 7, 13] over the max-plus or min-plus semiring. Min-plus automata were originally introduced by Imre
Simon as a means to show the decidability of the finite power property [41, 42]. Since their introduction,
max-plus and min-plus automata have enjoyed a continuing interest [25, 18, 22, 8, 12, 15] and they have
been employed in many different contexts. To only name some examples, they can be used to determine
the star height of a language [17], to prove the termination of some string rewriting systems [43], and to
model certain discrete event systems [23]. Additionally, they appear in the context of natural language
processing [29], where for reasons of numerical stability, probabilities are often computed in the min-plus
semiring as negative log-likelihoods.

A very prominent open question about max-plus automata is the sequentiality problem, the problem
of deciding whether for an arbitrary max-plus automaton there exists a deterministic equivalent. A
max-plus automaton is called deterministic or sequential if at most one of its states is initial and for each
pair of a state and an input symbol, there is at most one valid transition into a next state. Although the
decidability of this problem is unknown for max-plus automata in general, it is known to be decidable
for the subclasses of unambiguous [29], finitely ambiguous [22], and even polynomially ambiguous [21]
automata. A max-plus automaton is called unambiguous if there exists at most one accepting run on
every word. It is called finitely ambiguous if the number of runs on each word is bounded by a global
constant. If on every word the number of accepting runs is bounded polynomially in the length of
the word, the automaton is said to be polynomially ambiguous. Note that the ambiguity of a max-
plus automaton is a decidable property, as it is easily reduced to deciding the ambiguity of a finite
automaton. Deciding the sequentiality of a finite automaton is trivial, polynomial time algorithms for
deciding the unambiguity, the finite ambiguity, and the polynomial ambiguity of a finite automaton can
be found in [9, 44, 40]. Furthermore, the classes of functions definable by deterministic, unambiguous,
finitely ambiguous, polynomially ambiguous, and arbitrary max-plus automata form a strictly ascending
hierarchy [22, 19, 28].

A decidability problem which is closely related to the sequentiality problem is the finite sequentiality
problem. The finite sequentiality problem asks whether a given max-plus automaton can be represented
as a pointwise maximum of finitely many deterministic max-plus automata. In [18], it was left as an open
question to determine the decidability of the finite sequentiality problem for finitely ambiguous max-plus
automata. It was shown only recently that for the classes of unambiguous as well as finitely ambiguous
automata, the finite sequentiality problem is decidable [4, 3]. The class of functions which allow a finitely
sequential representation by max-plus automata lies strictly between the classes of functions definable
by deterministic and by finitely ambiguous max-plus automata, and it is incomparable to the class of
functions definable by unambiguous max-plus automata [22].
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In this paper, we show that the finite sequentiality problem is decidable for unambiguous max-plus
tree automata. Max-plus tree automata are a generalization of max-plus automata and operate on trees
instead of words. In particular, max-plus tree automata are weighted tree automata [1, 6, 14, 16] over the
max-plus semiring. Applications for max-plus tree automata include proving the termination of certain
term rewriting systems [24], and they are also commonly employed in natural language processing [33]
in the form of probabilistic context-free grammars. Our approach to show the decidability of the finite
sequentiality problem employs ideas from [4]. In [4], the fork property is shown to be a decidable
criterion to determine the existence of a finitely sequential equivalent. More precisely, unambiguous
max-plus word automata are shown to possess a finitely sequential representation if and only if they do
not satisfy the fork property. It is shown elementarily that an unambiguous automaton satisfying the
fork property cannot possess a finitely sequential equivalent. The proof for the existence of a finitely
sequential representation in case that the fork property is not satisfied, on the other hand, relies on the
construction of finitely many unambiguous max-plus automata whose pointwise maximum is equivalent
to the original automaton, and which all satisfy the twins property. It was shown by Mohri [29] that
an unambiguous max-plus automaton which satisfies the twins property is determinizable. A finitely
sequential representation is thus found by determinizing the unambiguous automata.

For tree automata, we generalize the fork property to the tree fork property by adding a condition
which accounts for the nonlinear structure of trees. We then prove that an unambiguous max-plus
tree automaton possesses a finitely sequential representation if and only if it does not satisfy the tree
fork property. As in the word case, the most challenging part of the proof is to show the existence of
a finitely sequential representation whenever the tree fork property is not satisfied. Like in the proof
for word automata, we construct finitely many unambiguous max-plus tree automata which possess a
deterministic equivalent. However, we need to take a different approach in order to obtain these automata.
In [4], a modified Schützenberger covering [39, 35, 36] is first constructed from the unambiguous max-
plus automaton, from which in turn an automaton is constructed which monitors the occurrence of
certain states of the modified Schützenberger covering. This latter automaton is then decomposed
into the finitely many unambiguous automata. This approach, however, is not applicable to trees,
as the monitoring of states requires all relevant states to occur linearly. This happens trivially for
word automata due to the inherent linear structure of words, but for tree automata examples can be
found where relevant states occur nonlinearly. The approach we use here relies on constructing a max-
plus automaton which tracks certain pairs of states of the original automaton. When applied to word
automata, this immediately yields an automaton which can be decomposed into the desired unambiguous
automata. Unfortunately, for tree automata this tracking of pairs of states again fails due to states
occurring nonlinearly. Surprisingly however, our construction can be applied to the Schützenberger
covering of the original tree automaton, as the states relevant for tracking all occur pairwise linearly in
the Schützenberger covering. The most difficult part of our proof is to show that the Schützenberger
covering indeed has the property we just indicated.

An extended abstract of this paper appeared as [32]. This paper differs from it in the following
way. First, full proofs are included. Second, we combine some known results and ideas to obtain the
decidability of the sequentiality problem for unambiguous max-plus tree automata. This result has never
been stated explicitly, but follows rather easily from the main result of [11] and an idea from [29]. As
this result fits the theme of our paper quite nicely, we decided to include it. Third, we show that it is
decidable in PSPACE whether an unambiguous max-plus tree automaton satisfies the tree fork property.
In [32], we only outlined the decidablity of the tree fork property. Fourth, we now give some examples
to better illustrate the properties of the Schützenberger covering. Finally, we have added a section in
which we investigate additional properties of the Schützenberger covering. The main motivation for this
last section is to provide further tools for a possible generalization of our result, for example to finitely
ambiguous max-plus tree automata.

2 Preliminaries

For a set X, we denote the power set of X by P(X) and the cardinality of X by |X|. For two sets X and Y
and a mapping f : X → Y , we call X the domain of f , denoted by dom(f), and Y the range of f , denoted
by range(f). For a subset X ′ ⊆ X, we call the set f(X ′) = {y ∈ Y | ∃x ∈ X ′ : f(x) = y} the image or
range of X ′ under f . The restriction of f to X ′, denoted by f�X′ , is the mapping f�X′ : X

′ → Y defined
by f�X′(x) = f(x) for every x ∈ X ′. For an element y ∈ Y , we call the set f−1(y) = {x ∈ X | f(x) = y}
the preimage of y under f . For a second mapping g : X → Y , we write f = g if for all x ∈ X we have
f(x) = g(x).
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Let N = {0, 1, 2, . . .}. By N∗ we denote the set of all finite words over N. The empty word is denoted
by ε, and the length of a word w ∈ N∗ by |w|. The set N∗ is partially ordered by the prefix relation
≤p and totally ordered with respect to the lexicographic ordering ≤l. Two words from N∗ are called
prefix-dependent if they are in prefix relation, and otherwise they are called prefix-independent.

A ranked alphabet is a pair (Γ, rkΓ), often abbreviated by Γ, where Γ is a finite set and rkΓ : Γ → N
a mapping which assigns a rank to every symbol. For every m ≥ 0 we define Γ(m) = rk−1

Γ (m) as the set
of all symbols of rank m. The rank of Γ is defined as rk(Γ) = max{rkΓ(a) | a ∈ Γ}.

The set of (finite, labeled, and ordered) Γ-trees, denoted by TΓ, is the set of all pairs t = (pos(t), labelt),
where pos(t) ⊂ N∗ is a finite non-empty prefix-closed set of positions, labelt : pos(t) → Γ is a mapping,
and for every w ∈ pos(t) we have wi ∈ pos(t) iff 1 ≤ i ≤ rkΓ(labelt(w)). We write t(w) for labelt(w) and
|t| for |pos(t)|. We also refer to the elements of pos(t) as nodes, to ε as the root of t, and to prefix-maximal
nodes as leaves. The height of t is defined as height(t) = maxw∈pos(t) |w|. For a leaf w ∈ pos(t), the set
{v ∈ pos(t) | v ≤p w} is called a branch of t.

Now let s, t ∈ TΓ and w ∈ pos(t). The subtree of t at w, denoted by t�w, is a Γ-tree defined as follows.
We let pos(t�w) = {v ∈ N∗ | wv ∈ pos(t)} and for v ∈ pos(t�w), we let labelt�w(v) = t(wv).

The substitution of s into w of t, denoted by t〈s → w〉, is a Γ-tree defined as follows. We let
pos(t〈s → w〉) = (pos(t) \ {v ∈ pos(t) | w ≤p v}) ∪ {wv | v ∈ pos(s)}. For v ∈ pos(t〈s → w〉), we let
labelt〈s→w〉(v) = s(u) if v = wu for some u ∈ pos(s), and otherwise labelt〈s→w〉(v) = t(v).

For a ∈ Γ(m) and trees t1, . . . , tm ∈ TΓ, we also write a(t1, . . . , tm) to denote the tree t with pos(t) =
{ε} ∪ {iw | i ∈ {1, . . . ,m}, w ∈ pos(ti)}, labelt(ε) = a, and labelt(iw) = ti(w). For a ∈ Γ(0), the tree a()
is abbreviated by a.

For a ranked alphabet Γ, a tree over the alphabet Γ� = (Γ∪{�}, rkΓ ∪{� 7→ 0}) is called a Γ-context.
Let t ∈ TΓ� be a Γ-context and let w1, . . . , wn ∈ pos(t) be a lexicographically ordered enumeration of
all leaves of t labeled �. Then we call t an n-Γ-context and define ♦i(t) = wi for i ∈ {1, . . . , n}. For an
n-Γ-context t and contexts t1, . . . , tn ∈ TΓ� , we define t(t1, . . . , tn) = t〈t1 → ♦1(t)〉 . . . 〈tn → ♦n(t)〉 by
substitution of t1, . . . , tn into the �-leaves of t. A 1-Γ-context is also called a Γ-word. For a Γ-word s, we
define s0 = � and sn+1 = s(sn) for n ≥ 0.

A commutative semiring is a tuple (K,⊕,�,0,1), abbreviated by K, with operations sum ⊕ and
product � and constants 0 and 1 such that (K,⊕,0) and (K,�,1) are commutative monoids, multipli-
cation distributes over addition, and κ� 0 = 0� κ = 0 for every κ ∈ K. In this paper, we only consider
the max-plus semiring Rmax = (R ∪ {−∞},max,+,−∞, 0) where the sum and the product operations
are max and +, respectively, extended to R ∪ {−∞} in the usual way.

A max-plus weighted bottom-up finite state tree automaton (short: max-plus-WTA) over Γ is a tu-
ple A = (Q,Γ, µ, ν) where Q is a finite set (of states), Γ is a ranked alphabet (of input symbols),

µ :
⋃rk(Γ)
m=0 Q

m × Γ(m) ×Q→ Rmax (the function of transition weights), and ν : Q→ Rmax (the function
of final weights). We define ∆A = dom(µ). A tuple (p̄, a, q) ∈ ∆A is called a transition and (p̄, a, q) is
called valid if µ(p̄, a, q) 6= −∞. A state q ∈ Q is called final if ν(q) 6= −∞.

For a tree t ∈ TΓ, a mapping r : pos(t) → Q is called a quasi-run of A on t. For a quasi-run r on t
and a position w ∈ pos(t) with t(w) = a ∈ Γ(m), the tuple

t(t, r, w) = (r(w1), . . . , r(wm), a, r(w))

is called the transition at w. The quasi-run r is called a (valid) run if for every w ∈ pos(t) the transition
t(t, r, w) is valid with respect to A. We call a run r accepting if r(ε) is final. By RunA(t) and AccA(t)
we denote the sets of all runs and all accepting runs of A on t, respectively. For a state q ∈ Q, we denote
by RunA(t, q) the set of all runs r ∈ RunA(t) such that r(ε) = q.

For a run r ∈ RunA(t), the weight of r is defined by

wtA(t, r) =
∑

w∈pos(t)

µ(t(t, r, w)).

The behavior of A, denoted by JAK, is the mapping defined for every t ∈ TΓ by

JAK(t) = max
r∈AccA(t)

(wtA(t, r) + ν(r(ε))),

where the maximum over the empty set is −∞ by convention.
For a max-plus-WTA A = (Q,Γ, µ, ν), a run of A on a Γ-context t is a run of the max-plus-WTA

A′ = (Q,Γ�, µ
′, ν) on t, where µ′(�, q) = 0 for all q ∈ Q and µ′(d) = µ(d) for all d ∈ ∆A. We denote
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Run�A(t) = RunA′(t) and for r ∈ Run�A(t) write wt�A(t, r) = wtA′(t, r). For an n-Γ-context t ∈ TΓ� and
states q0, . . . , qn, we denote by Run�A(q1, . . . , qn, t, q0) the set of all runs r ∈ Run�A(t) such that r(ε) = q0

and r(♦i(t)) = qi for every i ∈ {1, . . . , n}. For a Γ-word s, we write p s|x−−→ q if there exists a run

r ∈ Run�A(p, s, q) with wt�A(s, r) = x. In this case, r is said to realize p s|x−−→ q. Note that r ∈ Run�A(s)
implies x 6= −∞.

Similar to trees, we define restrictions, substitutions, and powers of runs as follows. Let t, s ∈ TΓ,
r ∈ RunA(t), w ∈ pos(t), and rs ∈ RunA(s) with rs(ε) = r(w). Then we define r�w ∈ RunA(t�w) by
r�w(v) = r(wv) for every v ∈ pos(t�w). We define r〈rs → w〉 ∈ RunA(t〈s→ w〉) by r〈rs → w〉(v) = rs(u)
if v = wu for some u ∈ pos(s), and r〈rs → w〉(v) = r(v) otherwise. For a Γ-word s and a run r ∈ Run�A(s)
with r(ε) = r(♦1(s)), we let v = ♦1(s) and define r0〈v〉 = {ε 7→ r(ε)} and rn+1〈v〉 = r〈rn〈v〉 → v〉 ∈
Run�A(sn+1) for n ≥ 0.

For a max-plus-WTA A, we define a relation ≤ on Q by p ≤ q iff there exists a Γ-word s ∈ TΓ� such
that Run�A(q, s, p) 6= ∅. We call A trim if for every p ∈ Q there exists t ∈ TΓ, r ∈ Acc(t), and w ∈ pos(t)
with r(w) = p. The trim part of A is the automaton obtained from A by removing all states p ∈ Q for
which no such t, r, and w exist. This process obviously has no influence on JAK.

A max-plus-WTA A is called deterministic or sequential if for every m ≥ 0, a ∈ Γ(m), and p̄ ∈ Qm,
there exists at most one q ∈ Q with µ(p̄, a, q) 6= −∞. We call A unambiguous if |AccA(t)| ≤ 1 for
every t ∈ TΓ. We call the behavior JAK of A finitely sequential if there exist finitely many deterministic
max-plus-WTA A1, . . . ,An over Γ such that JAK = maxni=1JAiK, where the maximum is taken pointwise.

3 Main Result

We will show that for an unambiguous max-plus-WTA A, it is decidable whether its behavior JAK is
finitely sequential. Moreover, if it is finitely sequential, we will obtain that the deterministic max-plus-
WTA A1, . . . ,An can be effectively constructed. For this, we follow ideas from [4], where the decidability
of the finite sequentiality problem was proved for unambiguous max-plus word automata.

The general outline of our proof is similar to that of [4] and presents itself as follows. We introduce
the tree fork property and show that it is decidable whether an unambiguous max-plus-WTA A satisfies
this property. Then we show that the behavior of an unambiguous max-plus-WTA is finitely sequential
if and only if it does not satisfy the tree fork property. In conclusion, we obtain the decidability of the
finite sequentiality problem for unambiguous max-plus-WTA.

Elementary proof methods can be used to show that JAK is not finitely sequential if A satisfies the tree
fork property. On the other hand, if A does not satisfy the tree fork property, we show how to construct
finitely many unambiguous max-plus-WTA whose pointwise maximum is JAK, and which all satisfy the
twins property [29]. Every unambiguous max-plus-WTA which satisfies the twins property possesses
an effectively constructable deterministic equivalent [11]. Thus, we obtain finitely many deterministic
max-plus-WTA whose pointwise maximum is JAK, which is hence finitely sequential.

We begin by showing that the Lipschitz property of deterministic max-plus word automata [22, 29]
also holds for deterministic max-plus tree automata. On words, this Lipschitz property can be formulated
follows. Let A be a deterministic max-plus word automaton and let L be the largest weight, in terms of
absolute value, occurring in A (excluding −∞). Then for two words w1 = uv1 and w2 = uv2 which have
an accepting run in A, the difference between JAK(w1) and JAK(w2) can be at most |L|(|v1|+ |v2|+ 2).
This is clear since the unique runs of A on w1 and w2 will be identical on the prefix u, and then with
every remaining letter of each word the difference between both runs cannot grow more than |L|. For
deterministic max-plus-WTA, we can show a similar statement as follows.

Lemma 1 (c.f. [22, End of Section 2.4][29, Section 3.2]). Let A = (Q,Γ, µ, ν) be a deterministic max-
plus-WTA, let X = (µ(∆A) ∪ ν(Q)) \ {−∞}, and let L = maxx∈X |x|. Furthermore, let t1, t2 ∈ TΓ be
two trees with JAK(t1) 6= −∞ and JAK(t2) 6= −∞ and let w1 ∈ pos(t1) and w2 ∈ pos(t2) be two positions
such that t1�w1

= t2�w2
. Then with t = t1�w1

we have

|JAK(t1)− JAK(t2)| ≤ L(|t1|+ |t2| − 2|t|+ 2).

Proof. Since A is deterministic, there exists exactly one run r1 ∈ AccA(t1) and exactly one run r2 ∈
AccA(t2). Likewise, there exists exactly one run r ∈ RunA(t). Due to t1�w1

= t2�w2
= t, we thus have
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r1�w1
= r2�w2

= r. It follows that

|JAK(t1)− JAK(t2)|

=
∣∣∣ ∑
w∈pos(t1)

µ(t(t1, r1, w)) + ν(r1(ε))−
( ∑
w∈pos(t2)

µ(t(t2, r2, w)) + ν(r2(ε))
)∣∣∣

=
∣∣∣ ∑
w∈pos(t1)
¬(w1≤pw)

µ(t(t1, r1, w)) + ν(r1(ε))−
( ∑
w∈pos(t2)
¬(w2≤pw)

µ(t(t2, r2, w)) + ν(r2(ε))
)∣∣∣

≤ L(|t1| − |t|+ 1) + L(|t2| − |t|+ 1)

= L(|t1|+ |t2| − 2|t|+ 2).

Next, we recall the twins property. Let Γ be a ranked alphabet. We begin by introducing the concepts
of siblings and twins. Intuitively, two states are called siblings if they can be “reached” by the same tree.
Two siblings are called twins if for every Γ-word which can “loop” in both states, the maximal weight
for the loop is the same in both states.

Definition 2. Let A = (Q,Γ, µ, ν) be a max-plus-WTA. Two states p, q ∈ Q are called siblings if there
exists a tree u ∈ TΓ such that RunA(u, p) 6= ∅ and RunA(u, q) 6= ∅. We recall that RunA(u, p) and
RunA(u, q) contain only valid runs.

Two siblings p, q are called twins if for every Γ-word s and weights

x = max
r∈Run�A(p,s,p)

wt�A(s, r) y = max
r∈Run�A(q,s,q)

wt�A(s, r),

we have x = y whenever x 6= −∞ and y 6= −∞ holds. Here, the maximum over the empty set is −∞ by
convention.

A max-plus-WTA is said to satisfy the twins property if all of its siblings are twins. For unambiguous
max-plus-WTA, the twins property is a criterion for deciding the sequentiality problem. An unambiguous
max-plus-WTA possesses a deterministic equivalent if and only if it satisfies the twins property. For
words, this result is due to [29, Theorem 12], for trees, we cite the following theorem which states that
the twins property is a sufficient condition for determinizability.

Theorem 3 ([11, Lemma 5.10]). Let A be a trim unambiguous max-plus-WTA. If A satisfies the twins
property, there exists a deterministic max-plus-WTA A′ with JAK = JA′K which can be effectively con-
structed.

The converse, namely that the twins property is also a necessary condition for determinizability,
follows from the Lipschitz property of deterministic max-plus automata. For max-plus word automata,
consider the following. If an unambiguous max-plus word automaton A does not satisfy the twins
property, we can find states p and q which are siblings and not twins. We assume that our witnesses for
this are u and s as above. Then we consider words of the form w1 = usNvp and w2 = usNvq, where vp
and vq are two fixed words which lead from p and q, respectively, to some final state. For every fixed
L ∈ R, we can choose N sufficiently large to ensure that |JAK(w1)− JAK(w2)| > |L|(|vp|+ |vq|+ 2). Due
to the Lipschitz property of deterministic max-plus automata, it is thus not possible to determinize A if
it does not satisfy the twins property. For trees, we can proceed in the same way.

Lemma 4. Let A be a trim unambiguous max-plus-WTA. If there exists a deterministic max-plus-WTA
A′ with JAK = JA′K, then A satisfies the twins property.

Proof. We follow the idea for the proof of [29, Theorem 9]. Let A = (Q,Γ, µ, ν) be a trim unambiguous
max-plus-WTA and let p, q ∈ Q be siblings, i.e., there exists a tree u ∈ TΓ and runs rp ∈ RunA(u, p) and
rq ∈ RunA(u, q). Let s ∈ TΓ� be a Γ-word such that p s|x−−→ p and q s|y−−→ q for weights x, y ∈ R. Since A is

trim, there exist Γ-words ûp, ûq ∈ TΓ� such that p ûp|zp−−−→ p′ and q ûq|zq−−−→ q′ for two final states p′, q′ ∈ Q
and weights zp, zq ∈ R. We let κp = wtA(u, rp) + zp + ν(p′) and κq = wtA(u, rq) + zq + ν(q′) and for

n ≥ 1 define the trees t
(n)
p = ûp(s

n(u)) and t
(n)
q = ûq(s

n(u)). Due to the unambiguity of A, we see that
for every n ≥ 1 we have

JAK(t(n)
p ) = κp + nx

JAK(t(n)
q ) = κq + ny.
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Assume that there exists a deterministic max-plus-WTA A′ with JAK = JA′K. Then by Lemma 1, there
exists L ∈ R such that for all n ≥ 1 we have

|JAK(t(n)
p )− JAK(t(n)

q )| ≤ |L|(|ûp|+ |ûq|+ 2).

From the equations above we thus obtain that for every n ≥ 1 we have

|κp − κq + n(x− y)| ≤ |L|(|ûp|+ |ûq|+ 2).

This can only hold if x = y. It follows that A satisfies the twins property.

The twins property is decidable for both max-plus word automata [2, 5, 29, 30, 20] and max-plus tree
automata [10, Section 3]. Thus, by combining Lemma 4 with the results from [11] (see Theorem 3) and
[10], we obtain the decidability of the sequentiality problem for unambiguous max-plus tree automata.

Theorem 5. For an unambiguous max-plus-WTA A it is decidable whether there exists a deterministic
max-plus-WTA A′ with JAK = JA′K. If such an automaton A′ exists, it can be effectively constructed.

Deciding whether a max-plus word automaton satisfies the twins property is PSPACE-complete [20].
For max-plus tree automata, the problem is thus PSPACE-hard, but no upper complexity bound is
stated in [10]. Note that in general, it is undecidable whether two given siblings are twins [20], but for
so-called cycle-unambiguous max-plus automata, it was shown to be decidable on both words [2, Section
4] and trees [11, Section 5.4]. A max-plus tree automaton A = (Q,Γ, µ, ν) is called cycle-unambiguous
if for every Γ-word s ∈ TΓ� and every state q ∈ Q, there is at most one run which loops s in q, i.e.,
the set Run�A(q, s, q) is either a singleton or empty. It is easy to see that every trim unambiguous max-
plus tree automaton is cycle-unambiguous. Thus, for every two states of an unambiguous max-plus tree
automaton, it is decidable whether they are twins. As we will employ the reasoning from [11] in more
detail, we provide a short direct proof.

Lemma 6 ([11, Section 5.4]). Let A = (Q,Γ, µ, ν) be a cycle-unambiguous max-plus-WTA. Two states
p, q ∈ Q are siblings if and only if there exists a tree u ∈ TΓ of height at most |Q|2 such that RunA(u, p) 6=
∅ and RunA(u, q) 6= ∅. Two siblings p, q ∈ Q are not twins if and only if there exists a Γ-word s of height
at most 4|Q|2 such that p s|x−−→ p and q s|y−−→ q with x 6= y.

Proof. Let p, q ∈ Q be two states. First, to check whether p and q are siblings, we see as follows that it
suffices to check whether they can both be reached by a tree u of height at most |Q|2. Assume we have
a tree u ∈ TΓ and two runs rp ∈ RunA(t, p) and rq ∈ RunA(t, q). If height(u) > |Q|2, then by pigeon
hole principle, we can find a simultaneous loop in rp and rq; that is, we can find two positions w1 <p w2

in u with rp(w1) = rp(w2) and also rq(w1) = rq(w2). By removing everything between w1 and w2 from
u, we obtain the smaller tree u〈u�w2

→ w1〉 which still reaches p and q.
If p and q are siblings, we see as follows that we only need to check Γ-words s of height at most

4|Q|2 to decide whether p and q are twins. Assume p and q are not twins and our witness for this
is the Γ-word s with height(s) > 4|Q|2. Let rp ∈ Run�A(p, s, p) be the run on s which loops in p
with weight x = wt�A(s, rp) and let rq ∈ Run�A(q, s, q) be the run on s which loops in q with weight
y = wt�A(s, rq). Furthermore, let w ∈ pos(s) with |w| = height(s) and let w′ ∈ pos(s) be the longest
common prefix of w and ♦1(s). Then either |w′| > 2|Q|2 or |w| − |w′| > 2|Q|2, or both. In the
first case, there exist two disjoint simultaneous loops in rp and rq above ♦1(s). More precisely, by
pigeon hole principle we can find positions w1 <p w2 ≤p w3 <p w4 with w4 ≤p w′ ≤p ♦1(s) in s
for which (rp(w1), rq(w1)) = (rp(w2), rq(w2)) and (rp(w3), rq(w3)) = (rp(w4), rq(w4)). In the second
case, there exist two disjoint simultaneous loops in rp and rq which are prefix-independent from ♦1(s).
That is, there exist positions w1 <p w2 ≤p w3 <p w4 with w′ <p w1 and w4 ≤p w in s for which
(rp(w1), rq(w1)) = (rp(w2), rq(w2)) and (rp(w3), rq(w3)) = (rp(w4), rq(w4)).

Let x12 and x34 be the weights of the loops in the run rp, and let y12 and y34 be the weights of the
loops in the run rq. We obtain a smaller Γ-word s′ and runs r′p and r′q of distinct weights which loop in p
and q, respectively, by removing either one of the two loops or both loops as follows. If x−x12 6= y−y12,
we remove the w1-w2 loop. Otherwise, if x− x34 6= y − y34, we remove the w3-w4 loop. If we have both
x− x12 = y− y12 and x− x34 = y− y34, we obtain that 2x− x12 − x34 = 2y− y12 − y34. From x 6= y, it
follows that x−x12−x34 6= y−y12−y34, so we remove both loops. From the cycle-unambiguity of A, we
see that these two runs are the only runs on the smaller Γ-word, so we have found a smaller witness.
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p0 0 q0

00

a | 0

a | 0

a | 1

a | 1

Figure 1: A max-plus word automaton A over the alphabet {a} which is unambiguous, whose behavior
is finitely sequential, but which does not satisfy the twins property as p and q are siblings but not twins.
The behavior JAK of A assigns 0 to all words of odd length and |w| to all words w of even length.

There exist unambiguous max-plus automata which cannot be determinized, but whose behavior
is finitely sequential [22, Section 3.1], see also Figure 1. Thus, for the finite sequentiality problem we
inevitably have to deal with unambiguous automata in which not all siblings are twins. In the following,
we will call two such states rivals. For cycle-unambiguous automata, thus in particular for unambiguous
automata, the following definition is equivalent to being siblings and not twins.

Definition 7. Let A = (Q,Γ, µ, ν) be a max-plus-WTA. Two states p, q ∈ Q are called rivals if there
exists a tree u ∈ TΓ such that RunA(u, p) 6= ∅ and RunA(u, q) 6= ∅ and a Γ-word s such that p s|x−−→ p

and q s|y−−→ q with x 6= y. In this case, u and s are also said to be witnesses for the fact that p and q are
rivals.

If A is cycle-unambiguous, p and q are rivals if and only if they are siblings and not twins as we
do not have to consider a maximum over runs. Also note that by our definition of Run�A(s), we have
x 6= −∞ and y 6= −∞ above.

We now turn to the tree fork property which, as we will show, is satisfied by an unambiguous max-
plus-WTA if and only if its behavior is not finitely sequential. The property consists of two separate
conditions. The first condition intuitively states that there exist two rivals p and q and a Γ-word t which
can loop in p, and which can also lead from p to q. The second condition states that there exist two
rivals which can occur at prefix-independent positions.

Definition 8. Let A = (Q,Γ, µ, ν) be a max-plus-WTA. We say that A satisfies the tree fork property
if at least one of the following two conditions is satisfied.

(i) There exist rivals p, q ∈ Q and a Γ-word t with p t|zp−−→ p and p t|zq−−→ q for some weights zp, zq ∈ R.
In this case, t is also called a p-q-fork.

(ii) There exist rivals p, q ∈ Q, a 2-Γ-context t ∈ TΓ� , and a run r ∈ Run�A(t) with r(♦1(t)) = p and
r(♦2(t)) = q.

The tree fork property can be regarded as an extension of the fork property which was introduced
in [4] and which for max-plus word automata plays the same role as the tree fork property does for
max-plus tree automata. Condition (i) is essentially a tree version of the fork property. Casually put, if
we take only condition (i) and replace “Γ-word” by “word”, we obtain the fork property. The automaton
depicted in Figure 2 is unambiguous and satisfies the fork property. Condition (ii) is new and possesses
no counterpart in the fork property.

p0 q 0
a | 0

a | 0
b | 1 b | −1

Figure 2: An unambiguous max-plus word automaton A over the alphabet {a, b} which satisfies the fork
property. With u = a and s = b, we see that p and q are rivals, and a is a p-q-fork. All b’s after the
last a in a word are treated differently from the b’s before the last a. A deterministic automaton cannot
“guess” which a is the last in the word, and since there may be arbitrarily many a’s in a word, even
finitely many deterministic automata cannot compensate this inability to guess.

We have the following theorem which relates the tree fork property to the finite sequentiality problem.
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Theorem 9. Let A = (Q,Γ, µ, ν) be a trim unambiguous max-plus-WTA over Γ. Then there exist
deterministic max-plus-WTA A1, . . . ,An over Γ with JAK = maxni=1JAiK if and only if A does not
satisfy the tree fork property. If such automata A1, . . . ,An exist, they can be effectively constructed.
Furthermore, there is a PSPACE-algorithm to decide whether A satisfies the tree fork property. In
particular, the finite sequentiality problem is decidable for unambiguous max-plus-WTA.

Proof. Here, we only show that it is decidable whether A satisfies the tree fork property. The existence
of a PSPACE-algorithm for deciding the tree fork property is deferred to Lemma 10. The rest of the
proof is deferred to Sections 3.1 and 3.2, where we show that the behavior of A is finitely sequential if
and only if A does not satisfy the tree fork property.

To decide whether A satisfies condition (i), we first show that if there exists a p-q-fork t for two
rivals p and q, then there exists a p-q-fork t′ of height at most 2|Q|2. The argumentation for this is
similar to the proof of Lemma 6 that the property of being siblings is decidable. Assume that t is a
p-q-fork with height(t) > 2|Q|2 and that rp and rq are runs that realize p t|zp−−→ p and p t|zq−−→ q for some
weights zp, zq ∈ R. We let w ∈ pos(t) be a position with |w| = height(t) and let w′ be the longest
common prefix of w and ♦1(t). Then either |w′| > |Q|2 or |w| − |w′| > |Q|2, or both. In the first
case, there exist by pigeon hole principle two positions w1 <p w2 in t with w2 ≤p w′ ≤p ♦1(t) and
(rp(w1), rq(w1)) = (rp(w2), rq(w2)). In the second case, there exist two positions w1 <p w2 in t with
w′ <p w1 and (rp(w1), rq(w1)) = (rp(w2), rq(w2)). By removing the part of t between w1 and w2, we
obtain that t′ = t〈t�w2

→ w1〉 is a p-q-fork as well. Iterating this process, we obtain a p-q-fork of height
at most 2|Q|2.

Next, we identify all pairs of rivals, which is possible since by Lemma 6, we can decide for every pair
of states whether they are siblings and not twins. Then, for every pair of rivals p, q and all Γ-words t
of height at most 2|Q|2, we check whether t is a p-q-fork. If this yields no p-q-fork, A does not satisfy
condition (i).

In order to decide whether A satisfies condition (ii), we first compute the relation ≤ on Q. This
is possible since Q is a finite set and ≤ is the smallest transitive and reflexive relation satisfying
µ(q1, . . . , qm, a, q0) 6= −∞ → q0 ≤ qi for all transitions (q1, . . . , qm, a, q0) ∈ ∆A and i ∈ {1, . . . ,m}.
Then, by the trimness of A, condition (ii) is satisfied if and only if there exist two rivals p and q, a
transition (q1, . . . , qm, a, q0) ∈ ∆A with µ(q1, . . . , qm, a, q0) 6= −∞, and indices i, j ∈ {1, . . . ,m} with
i 6= j, qi ≤ p, and qj ≤ q.

Let A = (Q,Γ, µ, ν) be a cycle-unambiguous max-plus-WTA. In the following lemma, we present a
nondeterministic PSPACE-algorithm which admits a successful run if and only if A satisfies the tree fork
property. By Savitch’s determinization theorem, deciding the tree fork property is thus in PSPACE. We
do not make any statement about the hardness of the problem. We define the size |A| of a A as the size
of its representation, i.e.,

|A| = |Q|+
∑

(q1,...,qm,a,q0)∈∆A
µ(q1,...,qm,a,q0)6=−∞

(m+ 2).

Lemma 10. The problem of deciding whether a cycle-unambiguous max-plus-WTA satisfies the tree fork
property is in PSPACE.

Proof. Let A = (Q,Γ, µ, ν) be a cycle-unambiguous max-plus-WTA and let ∆ = {d ∈ ∆A | µ(d) 6= −∞}
be the set of all valid transitions of A.

For the algorithm, we nondeterministically guess two states p, q and deterministically verify whether
they are rivals and satisfy either condition (i) or condition (ii) of the tree fork property. If they are rivals
and satisfy at least one of the conditions, the algorithm terminates successfully, otherwise it does not.
Thus, the algorithm admits a successful run if and only if A satisfies the tree fork property.
Enumerating all pairs of siblings. We enumerate all siblings of A using the following reachability
algorithm. We initialize the set of all pairs S ⊆ Q × Q which are siblings with S = ∅. Then we iterate
the following operation.

Let S′ = S. For every two transitions (p1, . . . , pm, a, p0), (q1, . . . , qm, a, q0) ∈ ∆, add (p0, q0) to S′ if
{(p1, q1), . . . , (pm, qm)} ⊆ S. If S′ = S, store S as the set of all siblings and terminate. If S ( S′, let
S = S′ and continue the iteration. This iteration terminates after at most |Q × Q| = |Q|2 steps and
therefore runs in polynomial time. In particular, this part of the algorithm is in PSPACE and the output
S can be stored in polynomial space.
Test for siblings. If (p, q) ∈ S, then p and q are siblings and the algorithm continues, otherwise it is
not successful.
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Deciding condition (i). We initialize the set of all pairs of states reachable from (p, p) by R = {(p, p)}.
Then we iterate the following operation.

Let R′ = R. For every two transitions (p1, . . . , pm, a, p0), (q1, . . . , qm, a, q0) ∈ ∆, add (p0, q0) to R′ if
{(p1, q1), . . . , (pm, qm)} ⊆ S and R ∩ {(p1, q1), . . . , (pm, qm)} 6= ∅. If (p, q) ∈ R′, there exists a p-q-fork
and the algorithm continues to “Test for rivals”. If (p, q) /∈ R′ and R ( R′, the algorithm sets R = R′

and continues the iteration in search for a p-q-fork. If (p, q) /∈ R′ and R = R′, the search for a p-q-fork
failed and the algorithm continues to “Deciding condition (ii)”. This iteration also terminates after at
most |Q|2 steps and is thus in PSPACE.
Deciding condition (ii). We initialize set of states reachable from p by Rp = {p}. Then we iterate
the following operation.

Let R′p = Rp. For every transition (p1, . . . , pm, a, p0) ∈ ∆, add p0 to R′p if Rp ∩ {p1, . . . , pm} 6= ∅. If
R′p = Rp, store Rp as the set of all states reachable from p. If Rp ( R′p, let Rp = R′p and continue the
iteration.

In the same fashion, we compute the set Rq of all states reachable from q. This part of the algorithm
runs in polynomial time and the sets Rp and Rq can thus be stored in polynomial space.

Next, we verify for every transition (p1, . . . , pm, a, p0) ∈ ∆ whether there exist indices i, j with
1 ≤ i < j ≤ m such that pi ∈ Rp and pj ∈ Rq. If such a transition is found, condition (ii) is satisfied
and the algorithm continues to “Test for rivals”. Otherwise, p and q satisfy neither condition (i) nor
condition (ii) of the tree fork property and the algorithm is not successful.
Test for rivals. Finally, we verify that there exists a Γ-word s such that p s|x−−→ p and q s|y−−→ q with

x 6= y. By Lemma 6, it suffices to consider Γ-words of height at most 4|Q|2. As even with this size
restriction, we can not necessarily store such a Γ-word s in polynomial space, we guess s dynamically
and verify that it satisfies p s|x−−→ p and q s|y−−→ q with x 6= y.

More precisely, we guess the positions of s and their labels in lexicographic order. Whenever we have
guessed all subtrees below a node w ∈ pos(s), we compute two tuples of weights for this node, one each
for p and q. The tuple for p is defined as follows. If s�w contains a leaf �, the tuple contains for each state
p0 ∈ Q an entry with the weight of the unique run from Run�A(p, s�w, p0). If s does not contain a leaf �,
the tuple contains for each state p0 ∈ Q an entry with the weight of the unique run from Run�A(s�w, p0).
The tuple for q is defined similarly. After this computation, the subtrees below w and all data stored
about them is discarded.

This procedure allows us to compute the weights of the unique runs from Run�A(p, s, p) and Run�A(q, s, q)
without fully storing the runs in memory. Since s is bounded in height by 4|Q|2 and the rank of our sym-
bols is bounded by rk(Γ), at every point in time we have to store information for at most rk(Γ) ·4|Q|2 +1
positions of s, where the “+1” stems from the root. For each of these positions, we store the position
itself, which is of length at most 4|Q|2, the label of this position, and two tuples of weights, each of length
|Q|. Thus, guessing s and computing the weights x and y above can be realized in polynomial space.

In the following, we present a more detailed version of the algorithm we just described. We fix an
enumeration Q = {q1, . . . , qn} of Q. First, we initialize a single bit b with 0 in which we store whether
we have already guessed a context symbol � for s. Then we set w = ε as the next position to process
and execute the following algorithm.
Part 1. Guess label for w

If |w| < 4|Q|2 and b = 0, guess a letter a ∈ Γ ∪ {�}.
If |w| < 4|Q|2 and b = 1, guess a letter a ∈ Γ.
If |w| = 4|Q|2 and b = 0, guess a letter a ∈ Γ(0) ∪ {�}.
If |w| = 4|Q|2 and b = 1, guess a letter a ∈ Γ(0).
Store the pair (w, a).
If a = �, set b to 1.
If a ∈ Γ(0) ∪ {�}, continue to “Part 2”.
If rkΓ(a) > 0, set w = w1 as the next position to process and continue to “Part 1”.

Part 2. Combine weights for w
Let a be the label we guessed for w, i.e., the letter a for which we have stored the pair (w, a) in our
memory. Let m = rkΓ�(a) be the rank of a. By assumption, we have already processed all subtrees
below w and thus, for each i ∈ {1, . . . ,m} we have tuples x̄(i), ȳ(i) ∈ Rnmax for wi. If a = �, then for
each j ∈ {1, . . . , n}, let xj = 0 if qj = p and xj = −∞ otherwise, and let yj = 0 if qj = q and yj = −∞
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otherwise. If a 6= �, compute for every j ∈ {1, . . . , n} the weights

xi = max
1≤j1,...,jm≤|Q|

(µ(qj1 , . . . , qjm , a, qi) + x
(1)
j1

+ . . .+ x
(m)
jm

)

yi = max
1≤j1,...,jm≤|Q|

(µ(qj1 , . . . , qjm , a, qi) + y
(1)
j1

+ . . .+ y
(m)
jm

).

Store the tuples x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yn) for w and discard the tuples x̄(i), ȳ(i) for all
positions w1, . . . , wm and discard all tuples of the form (wi, a′). Then choose the next position to
process as follows. If w = ε, continue to “Part 3”. Otherwise, we can write w = vi with i ∈ N. Let a′ be
the label we guessed for v. If i = rkΓ(a′), redefine w = v as the next position to process and continue to
“Part 2”. If i < rkΓ(a′), redefine w = v(i+ 1) as the next position to process and continue to “Part 1”.
Part 3. By assumption, we have computed tuples of weights x̄, ȳ ∈ Rnmax for ε. Let i, j be the indices
such that p = qi and q = qj . If b = 1 and xi 6= yj , the algorithm terminates successfully. Otherwise, the
algorithm is not successful.

The following two sections are dedicated to completing the proof of Theorem 9.

3.1 Necessity

In this section, we show that if an unambiguous max-plus-WTA A satisfies either condition (i) or con-
dition (ii) of the tree fork property, then JAK is not finitely sequential. For condition (i), we adapt the
corresponding proof from the word case [4, Theorem 2]. The proof relies on the Lipschitz property of
deterministic max-plus automata and its approach is similar to the proof of Lemma 4 that the twins
property is a necessary condition for determinizability.

Theorem 11. Let A be a trim unambiguous max-plus-WTA over Γ. If A satisfies condition (i) of
the tree fork property, then there do not exist deterministic max-plus-WTA A1, . . . ,An over Γ with
JAK = maxni=1JAiK.

Proof. For contradiction, assume that A satisfies condition (i) of the tree fork property and that there ex-
ist deterministic max-plus-WTA A1, . . . ,An over Γ with JAK = maxni=1JAiK. We write Ai = (Qi,Γ, µi, νi)
and let N = maxni=1 |Qi|. Let p, q, t, zp, zq be as in condition (i) of the tree fork property and for the rivals
p and q, let u, s, x, y be as in the definition of rivals. We let rp ∈ RunA(u, p) and define zu = wtA(u, rp).
Furthermore, by trimness there exists a Γ-word û with q û|zû−−−→ qf for some weight zû ∈ R and some state
qf ∈ Q with ν(qf ) 6= −∞.

We define the constant L ∈ R to be the largest weight, in terms of absolute value, which occurs in the
automata A1, . . . ,An as follows. We let X =

⋃n
i=1 µi(∆Ai

) ∪ νi(Qi) and define L = maxx∈X\{−∞} |x|.
Furthermore, we define natural numbers N0, . . . , Nn inductively as follows. We let Nn = 0 and if
Nl+1, . . . , Nn are defined, then we define Nl such that for all k ∈ {l + 1, . . . , n} we have

Nl|x− y| > L
(

(k − l)|t|+ (

k∑
i=l+1

Ni|s|) + 2|û|+ 2
)

+ (k − l)|zp|+ (

k−1∑
i=l+1

Ni|x|) +Nk|y|.

We define trees t′0, . . . , t
′
n inductively by t′0 = sN0(t(u)) and t′k+1 = sNk+1(t(t′k)); for clarity, in the word

case we would have t′k = utsN0tsN1 · · · tsNk . Then for k ∈ {1, . . . , n}, we let tk = û(t′k). Due to the
unambiguity of A, we see that for every k ∈ {1, . . . , n} we have

JAK(tk) = zu + kzp + (

k−1∑
i=0

Nix) + zq +Nky + zû + ν(qf ).

Thus, for k > l, we have

|JAK(tk)− JAK(tl)| = |Nl(x− y) + (k − l)zp + (

k−1∑
i=l+1

Nix) +Nky|

≥ Nl|x− y| − (k − l)|zp| − (

k−1∑
i=l+1

Ni|x|)−Nk|y|

> L
(

(k − l)|t|+ (

k∑
i=l+1

Ni|s|) + 2|û|+ 2
)
.
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Note that the first inequality is an application of the reverse triangle inequality. The second inequality
follows from the definition of Nl. Now let j ∈ {1, . . . , n}, then by choice of L and because Aj is
deterministic, we have by Lemma 1 that

|JAjK(tk)− JAjK(tl)| ≤ L
(

(k − l)|t|+ (

k∑
i=l+1

Ni|s|) + 2|û|+ 2
)
.

In conclusion, we have n+ 1 trees ti, and n automata Ai, so by pigeonhole principle and the assumption
that JAK = maxni=1JAiK, there must be j ∈ {1, . . . , n} and k, l ∈ {0, . . . , n} with k > l such that
JAK(tk) = JAjK(tk) and JAK(tl) = JAjK(tl). However, we have |JAK(tk)− JAK(tl)| > |JAjK(tk)− JAjK(tl)|,
which is a contradiction.

Next, we address condition (ii) of the tree fork property. On words, states cannot occur in prefix-
independent positions. Thus, this condition is new for the tree case. Intuitively, the reason that the
behavior of an unambiguous max-plus-WTA A cannot be finitely sequential if it satisfies condition (ii)
is as follows. Assume we have a 2-Γ-context t and two rivals p and q as in condition (ii) and let u and
s be as in the definition of rivals. Then we can construct trees of the form t(sn(u), sn(u)) such that, by
increasing n, the difference between the weights on the two subtrees sn(u) is arbitrarily large. However,
every deterministic automaton necessarily assigns the same weight to both subtrees.

Theorem 12. Let A be a trim unambiguous max-plus-WTA over Γ. If A satisfies condition (ii) of
the tree fork property, then there do not exist deterministic max-plus-WTA A1, . . . ,An over Γ with
JAK = maxni=1JAiK.

Proof. For contradiction, we assume that A satisfies condition (ii) of the tree fork property and that
there exist deterministic max-plus-WTA A1, . . . ,An over Γ with JAK = maxni=1JAiK. First, we construct
a tree of the above mentioned form t(sn(u), sn(u)) and choose n large enough to ensure that in each of
the deterministic automata, some sub-Γ-word sm of sn loops in some state. Then we show that every
choice of a weight for such a loop leads to a contradiction.

Let p, q, t, r be as in condition (ii) of the tree fork property, v1 = ♦1(t), and v2 = ♦2(t). For the
rivals p and q, let u and s be as in the definition of rivals and v = ♦1(s). We let rpu ∈ RunA(u, p),
rqu ∈ RunA(u, q), rps ∈ Run�A(p, s, p), and rqs ∈ Run�A(q, s, q). Furthermore, we write Ai = (Qi,Γ, µi, νi)
and let N = maxni=1 |Qi|.

By the following argument, we may assume that ν(r(ε)) 6= −∞. By trimness, there exists a Γ-word
s′′ and a run r′′ ∈ Run�A(s′′) with r′′(♦1(s′′)) = r(ε) and ν(r′′(ε)) 6= −∞. Thus, if ν(r(ε)) = −∞, we
can consider the 2-Γ-context s′′(t) with the run r′′〈r → ♦1(s′′)〉 instead of t and r.

We now consider the tree t′ = t(sN (u), sN (u)) together with the run

r′ = r〈(rps)N〈v〉〈rpu → vN 〉 → v1〉〈(rqs)N〈v〉〈rqu → vN 〉 → v2〉.

Since r′ ∈ RunA(t′) and ν(r′(ε)) 6= −∞, we have JAK(t′) 6= −∞, so for some j ∈ {1, . . . , n} we have
JAjK(t′) = JAK(t′). By pigeonhole principle, since N ≥ |Qj |, we have r′(v1v

n1) = r′(v1v
n2) for some

n1, n2 ∈ {0, . . . , N} with n1 < n2. Since Aj is deterministic, we also obtain r′(v2v
n1) = r′(v2v

n2) =
r′(v1v

n1). Let m = n2 − n1 and let x, y, z ∈ R be the weights such that p s|x−−→ p and q s|y−−→ q in A and

r′(v1v
n1) sm|z−−−→ r′(v1v

n1) in Aj . In particular, x 6= y. We may assume that x < y. We consider two
cases.

First, if z ≥ m
2 (x+ y), then for the tree t+ = t(sN+m(u), sN (u)) we obtain

n
max
i=1

JAiK(t+) ≥ JAjK(t+) = JAjK(t′) + z ≥ JAjK(t′) +
m

2
(x+ y) > JAjK(t′) +mx = JAK(t+).

Note that this follows because A and Aj are both unambiguous, i.e., if we construct an accepting run
on a given tree, we know that the weight of this run must be the weight assigned to the tree by the
automaton.

For the other case, namely that z ≤ m
2 (x + y), we see that for the tree t− = t(sN (u), sN−m(u)) we

obtain

n
max
i=1

JAiK(t−) ≥ JAjK(t−) = JAjK(t′)− z ≥ JAjK(t′)−
m

2
(x+ y) > JAjK(t′)−my = JAK(t−).

In both cases, we see that JAK = maxni=1JAiK does not hold, which is a contradiction.

Together, Theorems 11 and 12 show that if a trim unambiguous max-plus-WTA satisfies the tree fork
property, then its behavior is not finitely sequential.
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3.2 Sufficiency

In this section, we show that the behavior of an unambiguous max-plus-WTA A which does not satisfy
the tree fork property is finitely sequential. For simplicity, we begin with a description of our method of
proof on max-plus word automata and compare it to the proof method of Bala and Koniński [4].

Both proofs work by distributing the runs of A across a finite set of unambiguous max-plus word
automata such that all of these automata satisfy the twins property. This distribution essentially has the
aim of separating the rivals of A. By Theorem 3, these unambiguous automata can then be determinized.
The major difference between our approach and that of [4] lies in the way we obtain these unambiguous
automata. To understand our approach, let p and q be two rivals of A. Furthermore, let u = u1 · · ·un be
a word for which there exist valid runs rp = p0 u1−→ p1 u2−→ . . . un−1−−−→ pn−1 un−−→ p and rq = q0 u1−→ q1 u2−→
. . . un−1−−−→ qn−1 un−−→ q of A on u. We also define pn = p and qn = q.

We now show that the first occurrence of either p or q in the runs rp and rq serves as a “distinguisher”
between the two runs. We let i be the smallest index with the property that pi ∈ {p, q}. Similarly, we
let j be the smallest index with the property that qj ∈ {p, q}. We obtain valid runs pi ui+1···un−−−−−−→ p and
qj uj+1···un−−−−−−→ q.

Now assume it would hold that i = j and pi = qj , i.e., the first occurrences are at the same position
in the word, and also the states at this position are the same in both runs. Then with t = ui+1 · · ·un,
we see that we have valid runs pi t−→ p and pi t−→ q, where pi ∈ {p, q}. Thus, A would satisfy the fork
property. Since our assumption is that A does not satisfy the fork property, we have either i 6= j or
pi 6= qj .

This fundamental property is also used in the corresponding proof of [4], but our way of exploiting
it differs from [4]. In their proof for word automata, Bala and Koniński use this property implicitly to
show that certain states of a modified Schützenberger covering of A occur at most once in every run [4,
Lemma 6]. They can therefore construct a new max-plus automaton which for each run keeps a record
of all occurrences of these states. The above mentioned unambiguous automata are then obtained by
separating runs with differing records into different automata. For tree automata, the number of these
occurrences is unfortunately not bounded, for reasons which we will also indicate below.

For now, we continue outlining our new approach, which is to construct an automaton which adds a
distinguishing marker to every run when first encountering one of the rivals p or q. This marker consists
of a number, which is used to distinguish occurrences at different positions, and the state from {p, q}
which was visited first. Whenever reading a letter which causes some valid run to visit p or q for the first
time, the automaton selects the smallest marker which was not used by any valid run on the prefix read
so far, and annotates it to the run. For example, assume that neither p nor q occur in any valid run the
word u, but that our run r on ua leads to p. Then r obtains the marker 1p. Now assume there is a valid
run on uaa which leads to p and which visited neither p nor q before that. Then this run obtains the
marker 2p, since 1p is already assigned to r. Next, assume that after reading uaaa another marker for
p has to be assigned, and that r cannot be extended to a valid run on uaa. Then we assign the marker
1p, as now no valid run on uaa exists to which the marker 1p is assigned. See Figure 3 for an example
of this annotation process on the word aaa for the automaton depicted there.

q0

00

p

00

q 0

00

a | 0

a | 0

a | 0

b | 1 b | −1

q0 q0 q0 q0

p, 1p p, 2p p, 3p p, 1p

q, 1q q, 1p q, 2p q, 3p

a a a

Figure 3: On the left, an unambiguous max-plus word automaton over the alphabet {a, b} which does
not satisfy the twins property but whose behavior is finitely sequential. On the right, an illustration of
the runs of the automaton on the words ε, a, aa, and aaa together with appropriate markers. Arrows
indicate a transition. The states p and q are rivals with witnesses u = ε and s = b.

With this procedure, runs like rp and rq above receive different markers since either one run obtains
a marker later than the other, and therefore a different marker, or at least the states they visit first are
different, which also leads to different markers. To separate the rivals of A, we can thus make a copy of
A for every marker, and only allow runs which carry the respective automaton’s marker. Whenever a
different marker would be assigned, the execution of the run is blocked.
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Note here that the number of markers we need for this annotation process is bounded. Since the
automaton A is unambiguous, the number of valid runs on every given word is bounded by the number
of states in A. If this were not the case, there would exist two distinct valid runs on the same word which
lead to the same state, from which a counterexample to the unambiguity of A could be constructed. In
particular, the number of markers assigned at any given “time” is bounded by the number of states of
A.

All of this can easily be generalized to the situation where there is more than one pair of rivals.
Then, runs simply obtain a marker for each pair of rivals of the automaton, and the copies of A allow a
distinguished marker for each of these pairs.

Unfortunately, these ideas do not translate to trees as easily. For example, consider the runs in Figure
4. Intuitively, both runs should obtain the marker 1p. However, since p and q are rivals, this marker does
not serve the purpose of distinguishing runs as it does in the word case. The first p occurs in different
subtrees of both runs, thus the annotation of distinct markers is not possible. Also, it is easy to construct
an automaton where a rival p can occur at arbitrarily many pairwise prefix-independent positions, thus
a simple lexicographic distinction is not possible. This is also the reason why the approach from [4] does
not work for tree automata.

ν(q) = 0

µ(p, a, q) = 0

µ(p, b, p) = 1

µ(q, b, q) = −1

µ(p, q0, c, p) = µ(q0, p, c, q) = 0

µ(d, p) = µ(d, q0) = 0

a

b

c

d d

b

b

c

d d

q

p

p

p q0

q

q

q

q0 p

Figure 4: Two accepting runs of the max-plus tree automaton A = ({q0, p, q},Γ, µ, ν) over the ranked
alphabet Γ = {a, b, c, d} where c ∈ Γ(2), a, b ∈ Γ(1), and d ∈ Γ(0). All unspecified weights are assumed to
be −∞. The states p and q are rivals.

Our solution is to distribute not the runs of the automaton A, but the runs of its Schützenberger
covering. The Schützenberger covering of a max-plus automaton A is a max-plus automaton which
possesses the same behavior as A. It has already been employed in a number of decidability results for
max-plus automata [22, 4, 3, 31]. Its construction is inspired by a paper of Schützenberger [39] and was
made explicit by Sakarovitch in [35], see also [36].

To better explain the idea behind its construction, we first point out a certain aspect of the classical
powerset construction for finite automata [34]. Assume that D is the result of applying the powerset
construction to an NFA B. Then we might say that for a word w = w1w2, the state which D is in
after reading the prefix w1 is the set of all states which B could be in after reading w1. Similarly, the
Schützenberger covering of a max-plus automaton A annotates to every state of a run of A on a word w
the set of all states which “A could be in” at this point, i.e., which can be reached by some valid run on
the considered prefix of w. Like the powerset construction, these ideas easily carry over to trees.

The reason we consider the Schützenberger covering of A is that each pair p,q of its rivals satisfies
the following property. For every tree t, either (1) p and q do not occur together in any run on t or (2)
p and q occur only linearly, i.e., there is a distinguished branch of t such that for every run on t, all
occurrences of p and q lie on this branch. In particular, the situation of Figure 4 is not possible. All
pairs which satisfy the first condition can simply be separated into different automata, all pairs which
satisfy the second condition can be handled like in the word case. The proof of this is non-trivial and
needs some preparation. We begin with the formal definition of the Schützenberger covering.

For the rest of this section, let A = (Q,Γ, µ, ν) be a trim unambiguous max-plus-WTA which does
not satisfy the tree fork property.

Definition 13 (Schützenberger covering, [35]). The Schützenberger covering S = (QS ,Γ, µS , νS) of A
is the trim part of the max-plus-WTA (Q × P(Q),Γ, µ′, ν′) defined for a ∈ Γ with rkΓ(a) = m and
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a

b

c

d d

b

b

c

d d

(q, {q})

(p, {p, q})

(p, {p, q})

(p, {p, q0}) (q0, {p, q0})

(q, {p, q})

(q, {p, q})

(q, {p, q})

(q0, {p, q0}) (p, {p, q0})

Figure 5: Two accepting runs of the Schützenberger covering of the automaton from Figure 4. The states
(p, {p, q}) and (q, {p, q}) are rivals. The state (p, {p, q0}) is not the rival of any state.

(p0, P0), . . . , (pm, Pm) ∈ Q× P(Q) by

µ′((p1, P1), . . . , (pm, Pm), a, (p0, P0)) ={
µ(p1, . . . , pm, a, p0) if P0 = {q0 ∈ Q | ∃(q1, . . . , qm) ∈ P1 × . . .× Pm with µ(q1, . . . , qm, a, q0) 6= −∞}
−∞ otherwise

ν′(p0, P0) = ν(p0).

We let π1 : Q× P(Q)→ Q, (p, P ) 7→ p and π2 : Q× P(Q)→ P(Q), (p, P ) 7→ P be the projections.

It is elementary to show that for a run of S on a tree t, the second entry of the state at a position
w consists of all states of A which can be reached by a valid run of A on t�w. In particular, every two
runs on the same tree coincide on their second entries. Furthermore, projecting all states of a run of S
to their first coordinate yields a run of A, and the weights of these runs coincide. It follows that S is
unambiguous and satisfies JSK = JAK. Also, S is trim by definition.

We can also make the following observation about the rivals of S. Let p and q be rivals of S and let
u and s be as in the definition of rivals. Since all runs of S on u coincide on the second entry of the state
at the root, p and q also coincide on their second entry. Moreover, as projecting the runs of S on u and
s to their first entries yields runs of A on u and s, respectively, we additionally see that the first entries
of p and q are rivals in A. Thus, if two states p,q ∈ QS are rivals in S, then p = (p, P ) and q = (q, P )
for some set P ⊆ Q and two states p, q ∈ Q which are rivals in A.

In the Schützenberger covering of the automaton from Figure 4, only the states (p, {p, q}) and
(q, {p, q}) are rivals. See also Figure 5 for the runs of the Schützenberger covering on the trees from
Figure 4. In the following lemma, we formally show that the properties we just described indeed hold
for S.

Lemma 14. Let t ∈ TΓ be a tree. Then the following statements hold.

(i) For every run r ∈ RunS(t) and position w ∈ pos(t) we have π2 ◦ r(w) = {p ∈ Q | ∃r′ ∈
RunA(t�w, p)}.

(ii) For every two runs r1, r2 ∈ RunS(t), it holds that π2 ◦ r1 = π2 ◦ r2.

(iii) The projection π1 induces a bijection π1 : RunS(t)→ RunA(t) by r 7→ π1 ◦ r.

(iv) For every run r ∈ RunS(t) and every position w ∈ pos(t), we have π1 ◦ r(w) ∈ π2 ◦ r(w).

(v) S is trim, unambiguous, and satisfies JSK = JAK.

(vi) For every Γ-word s and two states p,q ∈ QS with p s|x−−→ q, we have π1(p) s|x−−→ π1(q).

(vii) If two states p,q ∈ QS are rivals in S, then p = (p, P ) and q = (q, P ) for some set P ⊆ Q and
two states p, q ∈ Q which are rivals in A.

Proof. (i) Let t ∈ TΓ and r ∈ RunB(t) and for contradiction, let w ∈ pos(t) be a prefix-maximal position
for which (i) does not hold. We deduce that (i) holds for w. We let a = t(w), m = rkΓ(a), and write
r(w) = (p, P ) and r(wi) = (pi, Pi) for i ∈ {1, . . . ,m}.
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First, let q ∈ P , then there are states (q1, . . . , qm) ∈ P1 × . . . × Pm with µ(q1, . . . , qm, a, q) 6= −∞.
By assumption, for every i ∈ {1, . . . ,m} we find a run ri ∈ RunA(t�wi, qi). Then the quasi-run
r′ : pos(t�w)→ Q defined by r′(ε) = q and r′(iv) = ri(v) is a run of A on t�w with r′(ε) = q.

On the other hand, let r′ ∈ RunA(t�w) and let q = r′(ε). Then for every i ∈ {1, . . . ,m} we have that
r′�i ∈ RunA(t�wi), so by assumption, r′(i) ∈ Pi. Moreover, µ(r′(1), . . . , r′(m), a, q) 6= −∞, so q ∈ P .
Thus, (i) holds for w, which is a contradiction, so w does not exist.

(ii) follows from (i).

(iii) Let t ∈ TΓ. By definition of µS , it is clear that for r ∈ RunS(t) we have π1 ◦ r ∈ RunA(t). The
injectivity of π1 : RunS(t)→ RunA(t) follows from (ii) since for every two runs r1, r2 ∈ RunS(t) we have
π2 ◦ r1 = π2 ◦ r2. For surjectivity, we let r′ ∈ RunA(t) and define a run r ∈ RunS(t) inductively as
follows. For a leaf w ∈ pos(t), we let r(w) = (r′(w), {p0 ∈ Q | µ(t(w), p0) 6= −∞}). For w ∈ pos(t) with
rkΓ(t(w)) = m such that r is defined on w1, . . . , wm with π2 ◦ r(wi) = Pi, we let r(w) = (r′(w), {p0 ∈
Q | ∃(p1, . . . , pm) ∈ P1 × . . .× Pm with µ(p1, . . . , pm, a, p0) 6= −∞}). Then r ∈ RunS(t) and π1 ◦ r = r′.

(iv) follows from (i) and (iii).

(v) S is trim by definition. Let t ∈ TΓ. By definition of µS , for every run r ∈ RunS(t) we have
wtS(t, r) = wtA(t, π1 ◦ r). By definition of νS , we also have νS(r(ε)) = ν(π1 ◦ r(ε)). By (iii), we thus
have |AccS(t)| = |AccA(t)| ≤ 1, which means S is unambiguous, and JSK(t) = JAK(t).

(vi) Let s be a Γ-word and p,q ∈ QS be two states with p s|x−−→ q, then there exists a run r ∈
Run�S(p, s,q) with wt�S(s, r) = x. By definition of µS , we have π1 ◦ r ∈ Run�A(s) and wt�S(s, r) =
wt�A(s, π1 ◦ r), so π1(p) s|x−−→ π1(q).

(vii) Let p,q ∈ QS be rivals in S and write p = (p, Pp), q = (q, Pq). Let u ∈ TΓ and s ∈ TΓ� be as in
the definition of rivals and let rp ∈ RunS(u,p) and rq ∈ RunS(u,q). By (ii), we have Pp = π2 ◦ rp(ε) =
π2 ◦ rq(ε) = Pq. By (iii), we have π1 ◦ rp ∈ RunA(u, p) and π1 ◦ rq ∈ RunA(u, q), so p and q are siblings.
Finally, from (p, Pp) s|x−−→ (p, Pp) and (q, Pq) s|y−−→ (q, Pq), we obtain by (vi) that p s|x−−→ p and q s|y−−→ q.
Since x 6= y, p and q are rivals in A.

In the theorems to follow, we will use fact (vii) of Lemma 14 without explicit further notice.
In order to prove some deeper results about the rivals of S, we need two preparatory lemmata. As

a first simplification, we show that we may assume that two rivals p and q of A are always comparable
with respect to the relation ≤. To see this, note that by condition (ii) of the tree fork property, p and
q may not occur in prefix-independent positions in a run. If in addition, p and q can also not appear
in prefix-dependent positions in a run, they never appear together in the same run of A. Thus, we can
create two copies of A, one in which we remove p and one in which we remove q, and the pointwise
maximum of these two automata will be equivalent to the behavior of A.

Lemma 15. We may assume that for all rivals p, q ∈ Q we have either p ≤ q or q ≤ p, or both.

Proof. Let p, q ∈ Q be rivals for which neither p ≤ q nor q ≤ p. Then we can show that p and q never
occur together in the same run as follows. Assume we have a tree t ∈ TΓ, a run r ∈ RunA(t), and
positions w1, w2 ∈ pos(t) with r(w1) = p and r(w2) = q. Then w1 and w2 may not be prefix-independent
since p and q are rivals, and by assumption A does not satisfy condition (ii) of the tree fork property.
However, if w1 and w2 are prefix-dependent, we have a witness for either p ≤ q or q ≤ p. This is a
contradiction, and thus r as chosen does not exist.

We let Q1 = Q \ {p}, Q2 = Q \ {q}, and let Ai = (Qi,Γ, µi, νi) for i = 1, 2, where µi and νi are the
appropriate restrictions of µ and ν to the state sets Qi. As p and q do not occur together in any run of
A, every run of A is also a run of at least one of the automata A1,A2. Thus, we have JAK = max2

i=1JAiK
and both A1 and A2 are trim and unambiguous and do not satisfy the tree fork property.

This procedure can be iterated to separate all rivals which are not in ≤-relation. The termination
of this procedure is guaranteed by the fact that the set of states becomes strictly smaller with every
iteration. Eventually, we find trim unambiguous max-plus-WTA A1, . . . ,An, all of which do not satisfy
the tree fork property, such that JAK = maxni=1JAiK and all rivals in an automaton Ai are pairwise in
≤-relation.
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Figure 6: An illustration for the proof of Lemma 17.

Next, we note an elementary statement about self-maps f : X → X. Namely, if X is a finite set
and f : X → X a mapping, then for every a ∈ X there exists some element b ∈ X and an integer
n ≥ 1 such that after n iterations of f , both a and b are mapped to b. To see this, consider the
elements a, f(a), f2(a), . . . , f |X|(a). By pigeon hole principle, there are numbers 0 ≤ m1 < m2 ≤ |X|
with fm1(a) = fm2(a). Then if we choose n ≥ m1 as a multiple of m2 −m1 and b = fn(a), we see that
fn(a) = b = fn(b).

Lemma 16. Let X be a finite set and f : X → X a mapping. Then for every a ∈ X, there exists an
element b ∈ X and an integer n ≥ 1 with fn(a) = b = fn(b). Here, fn is the n-th iterate of f , i.e.,
f0 = idX and fm+1 = f ◦ fm.

We now identify the first important property which all rivals of S satisfy. Namely, if P ⊆ Q is the
second entry of some rival, then it cannot occur in the form of a “triangle” in any valid run of S. More
precisely, if we have a run r and positions w, wv1, and wv2 such that the second entry of r(w), r(wv1),
and r(wv2) is P , then wv1 and wv2 are prefix-dependent.

Lemma 17. Let (p, P ), (q, P ) ∈ QS be rivals in S. Furthermore, let t′ ∈ TΓ be a tree, r′ ∈ RunS(t′) a
run of S on t′, and w1, w2 ∈ pos(t′) be positions in t′. If π2 ◦ r′(ε) = π2 ◦ r′(w1) = π2 ◦ r′(w2) = P , then
w1 and w2 are prefix-dependent.

Proof. We proceed by contradiction and assume that t′, r′, w1, w2 as in the statement of the lemma exist
such that w1 and w2 are prefix-independent. We show that then, A satisfies condition (i) of the tree fork
property. For the rivals (p, P ) and (q, P ), let u and s be as in the definition of rivals and let v = ♦1(s).
As the proof is rather technical, we first provide a proof sketch and then follow up with a more precise
presentation of the argumentation. See also Figure 6 for some visual aid.

By assumption, u can reach (p, P ) and s can loop in (p, P ), thus the trees s|P |(u) and s|P |
|P |

(u) can
reach (p, P ). Due to the construction of S, this means both of these trees can also reach the states of r′

at w1 and w2. In particular, there exists a run of S on the tree t = t′〈s|P |(u) → w1〉〈s|P |
|P |

(u) → w2〉
and for this run, the second entry of every state at the beginning or end of an s-loop is P . In addition,
t leads to a state with second entry P , so there in fact exist |P | runs of S on t, one for each state in
P . We let r1, . . . , r|P | be the projections of these runs to their first entry and obtain |P | runs of A on t
where for each run the state at the root and all states at the beginning or end of an s-loop are from P .

By pigeonhole principle, there is some subloop sn below w2 which loops in all runs at the same
time, i.e., where for some n1 we have ri(w2v

n1) = ri(w2v
n1+n) for all runs ri. For each ri, we let

qi = ri(w2v
n1) ∈ P be the state which ri loops in and let xi be the weight of this loop.

If xi 6= xj for some i and j, the states qi and qj are rivals in A with witnesses u and sn. By Lemma
15, we may therefore assume qi ≤ qj . Again by pigeon hole principle, the run ri loops below w1 in sm

for some m ≥ 1 with some state pi ∈ P , say with weight yi. Due to xi 6= xj , we have mxi 6= nyi or
mxj 6= nyi. Since u can reach every state from P , the state pi is thus a rival of qi or qj with witnesses
u and snm. From the existence of ri and the assumption that qi ≤ qj , we see that pi can occur prefix-
independently both from qi and from qj . This is a contradiction to the assumption that A does not
satisfy the tree fork property. It must therefore hold that x1 = . . . = x|P |.

We let x and y be the weights such that A loops s in p with weight x and in q with weight y. Then
from x 6= y it follows that nx 6= x1 or ny 6= x1, so the states qi are either all rivals of p or all rivals
of q with witnesses u and sn. We assume all qi to be rivals of p and apply Lemma 16 to the mapping
f : P → {q1, . . . , q|P |}, ri(ε) 7→ qi with a = p to obtain qj ∈ P and m ≥ 1 such that fm(p) = qj = fm(qj).
Then with s̃ = t〈� → w2v

n1〉, we see that the Γ-word s̃m is a qj-p-fork, i.e., A satisfies condition (i) of
the tree fork property.
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We now turn to the more technical presentation of the proof. We define the tree t = t′〈s|P |(u) →
w1〉〈s|P |

|P |
(u)→ w2〉 and construct a run r ∈ RunS(t) of S on t as follows. By assumption, there exists

a run rp ∈ RunS(u, (p, P )) and a run rs ∈ Run�S((p, P ), s, (p, P )). We let r′1 = r
|P |〈v〉
s 〈rp → v|P |〉 and

r′2 = r
|P ||P |〈v〉
s 〈rp → v|P |

|P |〉. Then r′1 ∈ RunS(s|P |(u), (p, P )) and r′2 ∈ RunS(s|P |
|P |

(u), (p, P )).
By Lemma 14(iv), we have π1 ◦ r′(w1), π1 ◦ r′(w2) ∈ P , so by Lemma 14(i) we can find r′′1 ∈

RunA(s|P |(u)) with r′′1 (ε) = π1 ◦ r′(w1) and r′′2 ∈ RunA(s|P |
|P |

(u)) with r′′2 (ε) = π1 ◦ r′(w2). Then
r = r′〈π−1

1 (r′′1 ) → w1〉〈π−1
1 (r′′2 ) → w2〉 ∈ RunS(t) is a run of S on t and we have π2 ◦ r(w1v

i) = P for
0 ≤ i ≤ |P | and π2 ◦ r(w2v

i) = P for 0 ≤ i ≤ |P ||P |.
By Lemma 14(i) and because π2 ◦ r(ε) = P , we can now find |P | runs r1, . . . , r|P | ∈ RunA(t) on

t such that {r1(ε), . . . , r|P |(ε)} = P . We have rj(w2v
i) ∈ P for every j ∈ {1, . . . , |P |} and every

i ∈ {0, . . . , |P ||P |}. For each i ∈ {0, . . . , |P ||P |}, we define the tuple q̄i = (r1(w2v
i), . . . , r|P |(w2v

i)).

Since q̄i ∈ P |P | for every i, we can find n1 < n2 with q̄n1 = q̄n2 by pigeonhole principle. Let n = n2− n1

and write q̄n1 = (q1, . . . , q|P |).

We now show that q1, . . . , q|P | are either all rivals of p, or they are all rivals of q. For this, note first

that qj sn|xj−−−→ qj for all j ∈ {1, . . . , |P |} with weights x1, . . . , x|P | ∈ R. Also, by the existence of the run
rp on u and Lemma 14(i), all states in P are siblings.

We show first that x1 = . . . = x|P |. We assume that by contradiction, xi 6= xj for some i 6= j. Then
qi and qj are rivals in A with witnesses u and sn. By Lemma 15, we can therefore assume that qi ≤ qj
or qj ≤ qi. We assume qi ≤ qj and let sij be a Γ-word such that there exists a run rij ∈ Run�S(qj , s

i
j , qi).

Furthermore, by pigeonhole principle, we can find m1,m2 ∈ {0, . . . , |P |} with ri(w1v
m1) = ri(w2v

m2)
and m1 < m2. We let pi = ri(w1v

m1) and m = m2 −m1 and show that pi is a rival of either qi or qj .
We have pi sm|yi−−−→ pi for some weight yi ∈ R. Since pi ∈ P , we know that pi, qi, and qj are all siblings.

Also, we have pi snm|nyi−−−−−→ pi, qi snm|mxi−−−−−−→ qi, and qj snm|mxj−−−−−−→ qj . Since xi 6= xj , we have nyi 6= mxi or
nyi 6= mxj , or both. Thus, pi is a rival of either qi or of qj .

Under these assumptions, we see that A satisfies condition (ii) of the tree fork property as follows.
Either the 2-Γ-context t1 = t〈� → w1v

m1〉〈� → w2v
n1〉 together with the run ri�pos(t1) or the 2-Γ-

context t2 = t1(�, sij) together with the run ri�pos(t1)〈rij → ♦2(t1)〉 is a witness for condition (ii) to be
satisfied. Since our assumption for this section is that A does not satisfy the tree fork property, this is
a contradiction. In conclusion, x1 = . . . = x|P |.

To see that q1, . . . , q|P | are either all rivals of p, or they are all rivals of q, consider the following.
Using the same arguments as above, we find for every i ∈ {1, . . . , |P |} a run rqi ∈ RunA(u, qi). Fur-
thermore, we have p sn|nx−−−−→ p, q sn|ny−−−−→ q, and qi sn|x1−−−→ qi for every i ∈ {1, . . . , |P |}. Since x 6= y, we
have either nx 6= x1 or ny 6= x1. Without loss of generality, we assume nx 6= x1, thus all qi are rivals of p.

We now show that A satisfies condition (i) of the tree fork property. We define a mapping f : P →
{q1, . . . , q|P |} by ri(ε) 7→ qi for i ∈ {1, . . . , |P |}; recall that {q1, . . . , q|P |} ⊆ P , {r1(ε), . . . , r|P |(ε)} = P ,
and ri(ε) 6= rj(ε) for i 6= j. By Lemma 16, there exists m ≥ 1 and i ∈ {1, . . . , |P |} with fm(p) = qi =

fm(qi). From this, we obtain that with s̃ = t〈� → w2v
n1〉 we have qi s̃m|z−−−→ qi and qi s̃m|z′−−−→ p for weights

z, z′ ∈ R. As p and qi are rivals, this means that A satisfies condition (i) of the tree fork property.

In the previous lemma, we showed that if P is the second entry of some rival from S, then states
with second entry P do not occur in the form of a triangle. In the next lemma, we show that even
prefix-independent occurrences are restricted to a certain degree. Namely, if we have two rivals (p, P )
and (q, P ) with p ≤ q, then all occurrences of P as a second entry are prefix-dependent on (p, P ).

Lemma 18. Let (p, P ), (q, P ) ∈ QS be rivals in S with p ≤ q. Furthermore, let t′ ∈ TΓ be a tree,
r′ ∈ RunS(t′) a run of S on t′, and w1 ∈ pos(t′) a position in t′ with r′(w1) = (p, P ). Then all positions
w2 ∈ pos(t′) with π2 ◦ r′(w2) = P are prefix-dependent on w1.

Proof. We proceed by contradiction and take (p, P ), (q, P ), t′, r′, w1 as in the statement of the lemma
and assume that there exists a position w2 ∈ pos(t′) which is prefix-independent from w1 and for which
π2 ◦ r′(w2) = P . We show that under these assumptions, A satisfies condition (ii) of the tree fork
property. For the rivals (p, P ) and (q, P ), let u and s be as in the definition of rivals and let v = ♦1(s).
As in the proof of the previous lemma, we first provide a short proof sketch, see also Figure 7 for some
visual aid.

As we have seen in the proof of Lemma 17, the tree s|P |(u) can reach (p, P ), so due to the construction
of S, it can also reach the state of r′ at w2. Thus, there exists a run of S on the tree t = t′〈s|P |(u)→ w2〉
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Figure 7: An illustration for the proof of Lemma 18.

for which the state at w1 is (p, P ) and for which the second entry of every state at the beginning or end
of an s-loop is P . We let r be the projection of this run to the first entries of the states.

By pigeonhole principle, we find some subloop sn below w2 in r which loops in a state p′ ∈ P . Let z
be the weight of this loop and let x and y be the weights such that A loops s in p with weight x and in q
with weight y. Due to x 6= y, we have nx 6= z or ny 6= z. Since u can reach every state from P , the state
p′ is a rival of p or q with witnesses u and sn. From the fact that r(w1) = p and the assumption that
p ≤ q, we see that p′ can occur prefix-independently both from p and from q. This is a contradiction to
the assumption that A does not satisfy the tree fork property.

In more detail, the proof is as follows. We define the tree t = t′〈s|P |(u) → w2〉 and construct a run
r ∈ RunA(t) of A on t as follows. By assumption, there exists a run rp ∈ RunS(u, (p, P )) and a run

rs ∈ Run�S((p, P ), s, (p, P )). We let r′2 = r
|P |〈v〉
s 〈rp → v|P |〉. Then r′2 ∈ RunS(s|P |(u), (p, P )).

By Lemma 14(iv), we have π1 ◦ r′(w2) ∈ P , so by Lemma 14(i) we can find r′′2 ∈ RunA(s|P |(u)) with
r′′2 (ε) = π1 ◦ r′(w2). Then r = π1(r′)〈r′′2 → w2〉 ∈ RunA(t) is a run of A on t and we have r(w2v

i) ∈ P
for 0 ≤ i ≤ |P |.

By pigeonhole principle, we can find n1, n2 ∈ {0, . . . , |P |} with r(w2v
n1) = r(w2v

n2) and n1 < n2.
We let p′ = r(w1v

n1) and n = n2−n1 and show that p′ is a rival of either p or q. We know that p′ s
n|z−−−→ p′

for some weight z ∈ R. Since p′ ∈ P , we can also find a run rp
′ ∈ RunA(u, p′) which means that p′ is a

sibling of both p and q. We now have p′ s
n|z−−−→ p′, p sn|nx−−−−→ p, and q sn|ny−−−−→ q. Since x 6= y, we have nx 6= z

or ny 6= z, or both. Thus, p′ is a rival of either p or of q.
We see that A satisfies condition (ii) of the tree fork property as follows. Since we assumed p ≤ q,

there exists a Γ-word spq and a run rpq ∈ Run�A(q, spq , p). Therefore, either the 2-Γ-context t1 = t〈� →
w1〉〈� → w2v

n1〉 together with the run r�pos(t1) or the 2-Γ-context t2 = t1(spq , �) together with the run
r�pos(t1)〈rpq → ♦1(t1)〉 is a witness for condition (ii) to be satisfied. Since our assumption for this section
is that A does not satisfy the tree fork property, this is a contradiction.

We can now prove that every run of S satisfies at least one of the following two conditions. If (p, P )
and (q, P ) are rivals in S with p ≤ q, then for every run r of S on a tree t either (i) (p, P ) does not occur
in r or (ii) all states with second entry P occur along a distinguished branch of t. This property enables
us to apply the idea from the word case of using markers to indicate the first visit of a rival in a run. If
u is a witness for (p, P ) and (q, P ) to be siblings, there is in particular a run on u which leads to (p, P ).
This run then satisfies condition (ii) and since by Lemma 14(ii) the second entries of runs on the same
tree coincide, all states with second entry P occur along a distinguished branch of u in every run of S
on u. This is true in particular for the two rivals (p, P ) and (q, P ).

Theorem 19. Let (p, P ), (q, P ) ∈ QS be rivals in S with p ≤ q. Then for every tree t ∈ TΓ and every
run r ∈ RunS(t) of S on t, at least one of the following two conditions holds.

(i) The state (p, P ) does not occur in r, i.e., r(w) 6= (p, P ) for all w ∈ pos(t).

(ii) All states with second entry P occur linearly in r, i.e., for all w1, w2 ∈ pos(t) with π2 ◦ r(w1) =
π2 ◦ r(w2) = P we have w1 ≤p w2 or w2 ≤p w1.

Proof. Let (p, P ), (q, P ), t, r be as in the statement of the theorem. Assume that (i) does not hold,
i.e., there is a position w ∈ pos(t) with r(w) = (p, P ). Let w1, w2 ∈ pos(t) be two positions with
π2 ◦ r(w1) = π2 ◦ r(w2) = P . By Lemma 18, we see that then w1 and w2 are prefix-dependent on
w. From the definition of the prefix relation, we see that if either w1 ≤p w or w2 ≤p w, then all three
positions are in prefix relation. We thus consider the case that w ≤p w1 and w ≤p w2. In this case, we see
from Lemma 17 that w1 and w2 are prefix-dependent as follows. We write w1 = wv1 and w2 = wv2 and
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define t′ = t�w and r′ = r�w. Then we have r′ ∈ RunS(t′), r′(ε) = (p, P ), and π2◦r′(v1) = π2◦r′(v2) = P .
Thus, by Lemma 17 the positions v1 and v2 are prefix-dependent.

In the following example, we illustrate some more complex interactions which may exist between
rivals, in particular between the rivals of a Schützenberger covering.

Example 20. We extend the max-plus-WTA from Figure 4 to an automatonA = ({q0, p, p
′, p′′, q},Γ, µ, ν)

over the alphabet Γ = {a, b, c, d, e, f} where f ∈ Γ(3), c ∈ Γ(2), a, b, e ∈ Γ(1), and d ∈ Γ(0). As this exam-
ple is somewhat complex, we first give some intuition of what we are trying to show with the example
and how we achieve this.

Let P = {p, p′, p′′, q} and let S be the Schützenberger covering of A. We construct A such that it
satisfies the following conditions.

(i) A is unambiguous and does not satisfy the tree fork property. We achieve unambiguity simply by
making A top-down deterministic.

(ii) The problem showcased in Figure 4 still occurs, i.e., a nonlinearity in the first occurrence of rivals.

(iii) The state q is a rival of all of p, p′, and p′′.

(iv) We have p′′ ≤ q ≤ p ≤ q ≤ p′. In particular, we cannot trivially separate these states to different
automata.

(v) In S, the state (q, P ) is a rival of all of (p, P ), (p′, P ), and (p′′, P ).

(vi) In S, we have (p′′, P ) ≤ (q, P ) ≤ (p, P ) ≤ (q, P ), i.e., these three states cannot be trivially
separated, and we have (p′′, P ) ≤ (p′, P ).

(vii) In S, the state (p′, P ) may occur at arbitrarily many pairwise prefix-independent positions in the
same run.

The sole purpose of the letter c is to ensure condition (ii). The purpose of b is to ensure conditions (iii)
and (v), the purpose of a is to ensure the first part of condition (vi), the purpose of e is to ensure the
second part of condition (vi), and the purpose of f is to ensure condition (vii).

It is surprising that an automaton with the properties above exists since (1) Theorem 19 tells us that
whenever (p′′, P ) occurs in a run, then all states with second entry P occur at pairwise prefix-dependent
positions, (2) both (p′′, P ) and (p′, P ) may occur together in the same run, and (3) the state (p′, P ) may
occur at two prefix-independent positions in the same run. We define µ and ν as follows.

µ(d, q0) = µ(d, p) = µ(d, p′) = 0

µ(p, q0, c, p) = µ(q0, p, c, q) = µ(p′, q0, c, p
′) = µ(p′, q0, c, p

′′) = 0

µ(p, b, p) = µ(p′, b, p′) = µ(p′′, b, p′′) = 1

µ(q, b, q) = −1

µ(p, a, q) = µ(q, a, p) = µ(p′, a, p′) = µ(q, a, p′′) = 0

µ(p, e, p) = µ(q, e, q) = µ(p′, e, p′) = µ(p′, e, p′′) = 0

µ(q0, p
′, q0, f, q) = µ(p′, q0, p

′, f, p′) = 0

ν(p′′) = 0

All unspecified weights are −∞. The following trees together with the runs given on them showcase the
above transitions in a more graphical way.
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With witnesses u = c(d, d) and s = b(�), we see that conditions (iii) and (v) above are satisfied. Due
to (q, P ) a(�)|0−−−−→ (p, P ) a(�)|0−−−−→ (q, P ) a(�)|0−−−−→ (p′′, P ) and (p′, P ) e(�)|0−−−−→ (p′′, P ), we see that condition (vi)
is also satisfied. Let P0 = {q0, p, p

′}, then the following tree together with the run of S on it illustrates
that (p′, P ) may occur nonlinearly, i.e., condition (vii) is satisfied as well.

f

c

d d

d c

d d

(p′, {p′})

(p′, P )

(p′, P0) (q0, P0)

(q0, P0)

(p′, P )

(p′, P0) (q0, P0)

We note that the states p and p′ are also rivals inA with witnesses u = d and s = a(b(a(�))). Furthermore,
S contains many more rivals than the ones mentioned above, among others the rivals (p′, {p′, q}) and
(q, {p′, q}) with witnesses u = f(d, d, d) and s = b(�) and the rivals (p, {p, p′, p′′}) and (p′, {p, p′, p′′})
with witnesses u = a(f(d, d, d)) and s = a(b(a(�))).

We are now ready to construct the automaton which tracks the first occurrences of rivals, and whose
runs we will later distribute across multiple automata in order to separate all rivals.

Construction 21. Let R1, . . . , Rn ⊆ QS be an enumeration of all (unordered) pairs of rivals of S, i.e.,
for all i ∈ {1, . . . , n} we have Ri = {(pi, Pi), (qi, Pi)} such that (pi, Pi) and (qi, Pi) are rivals in S and
for every two rivals (p, P ), (q, P ) ∈ QS , we have Ri = {(p, P ), (q, P )} for some i ∈ {1, . . . , n}. Since by
Lemma 15, we may assume that all rivals in A are in ≤-relation, we assume in the following that pi and
qi are named such that pi ≤ qi for all i ∈ {1, . . . , n}.

For each pair of rivals Ri, we define a set of markers by Ii = {0, |Q|+ 1} ∪ ({1, . . . , |Q|} × Ri). The
set of all combined records of markers is defined by I = I1 × . . . × In. For ā ∈ I, we denote by ā[i] the
i-th entry of ā.

Intuitively, the states of our new automaton will consist of a state from S together with a record of
markers from I. However, in order to properly update markers, we need to know in each step the records
of all other runs as well. Thus, our states will be from QS × I × P(QS × I).

In order to define the transition function of our new automaton, we first define how markers are
updated. In some sense, this is similar to the context successor defined in [4]. Assume we transition into
the state q ∈ QS , we have m subtrees below our current position in the tree, the runs we consider on
these subtrees have obtained markers ā1, . . . , ām ∈ I, and the sets of states we could be in on these trees,
together with their markers, are given by A1, . . . , Am ⊆ QS × I.

Every pair (p, ā) ∈ Ak corresponds to exactly one run of S on the k-th subtree together with its
markers. Since S is unambiguous, we can therefore assume that |Ak| ≤ |Q|. Also, since āk is the marker
of a run on the k-th subtree, we may assume that (QS × {āk}) ∩Ak 6= ∅.

For k ∈ {1, . . . ,m} and i ∈ {1, . . . , n}, we define the sets of unassigned counters Bk[i] ⊆ {1, . . . , |Q|}
by

Bk[i] = {1, . . . , |Q|} \ {j | ∃(p, ā) ∈ Ak with ā[i] ∈ {j} ×Ri}.

Then if for all k ∈ {1, . . . ,m} we have |Ak| ≤ |Q| and (QS × {āk}) ∩ Ak 6= ∅, we define the record of
markers b̄ for our current position by (explanations below)

b̄[i] =



0 if m = 0 and q /∈ Ri
(1,q) if m = 0 and q ∈ Ri
āk[i] if k ∈ {1, . . . ,m} satisfies: āl[i] = 0 for all l 6= k and either āk[i] 6= 0 or q /∈ Ri
(minBk[i],q) if q ∈ Ri and k ∈ {1, . . . ,m} satisfies:

āk[i] = 0 and for all l 6= k and all (p, ā) ∈ Al : ā[i] = 0

|Q|+ 1 otherwise

for i ∈ {1, . . . , n}. If |Ak| > |Q| or QS × {āk} ∩Ak = ∅ for some k, we let b̄[1] = . . . = b̄[n] = |Q|+ 1.
Note that minBk[i] in above case distinction always exists since |Ak| ≤ |Q|, (QS × {āk}) ∩ Ak 6= ∅,

and in the case in question we have āk[i] = 0. We define I(q, ā1, . . . , ām, A1, . . . , Am) = b̄.
Case 1 of the definition above means our current position is a leaf and q is not from Ri, so we assign

the dummy marker 0. Case 2 means our current position is a leaf and q is from Ri, so we assign the
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marker (1,q). Case 3 means that either (1) there is exactly one subtree below our current position which
already obtained a marker different from 0 and we keep this marker for our current position, or (2) the
markers of all subtrees are 0 and q is also not from Ri, so we continue with the dummy marker 0.

Case 4 means the markers of all subtrees below our current position are 0, the state q is from Ri,
and there is at most one subtree on which runs exist that obtained a marker for Ri. Then, we take the
smallest number which is not already used in a marker for Ri in any run on this subtree, and use this
number together with q as the marker for our current position.

Case 5, the “otherwise-case”, applies in two situations. This case means that either (1) two distinct
subtrees below our current position have already obtained a marker, or that (2) all markers below our
current position are 0 and q is from Ri, but we cannot apply case 4 as there are two distinct subtrees on
which runs exist which obtained markers for Ri. In other words, markers were assigned nonlinearly, and
our run satisfies only condition (i) of Theorem 19. In this case, we assign the dummy marker |Q|+ 1.

The extra case covers the situation where in case 4, the set Bk[i] would be empty. This case is
necessary to ensure our definition is formally complete, but in our applications of the operator I it will
not actually occur.

We define our “run-marking” max-plus-WTA B = (Q̃,Γ, µ̃, ν̃) as follows. We let Q̃′ = QS × I ×
P(QS × I) and let B be the trim part of the automaton B′ = (Q̃′,Γ, µ̃′, ν̃′) defined for a ∈ Γ with
rkΓ(a) = m and (p0, ā0, A0), . . . , (pm, ām, Am) ∈ QS × I × P(QS × I) by

µ̃′((p1, ā1, A1), . . . , (pm, ām, Am), a, (p0, ā0, A0)) =
µS(p1, . . . ,pm, a,p0) if ā0 = I(p0, ā1, . . . , ām, A1, . . . , Am) and

A0 = {(q0, b̄0) ∈ QS × I | ∃((q1, b̄1), . . . , (qm, b̄m)) ∈ A1 × . . .×Am
with µS(q1, . . . ,qm, a,q0) 6= −∞ and b̄0 = I(q0, b̄1, . . . , b̄m, A1, . . . , Am)}

−∞ otherwise

ν̃′(p0, ā0, A0) = νS(p0).

For the rest of this section, we show that the automaton B “does what we want”: We show that
B is unambiguous, that it has the same behavior as A, and that we can indeed separate its rivals by
distributing runs with a different marker across different automata which then satisfy the twins property.

Let π̃1 : QS × I ×P(QS × I)→ QS , (p, ā, A) 7→ p, π̃2 : QS × I ×P(QS × I)→ I, (p, ā, A) 7→ ā, and
π̃3 : QS × I × P(QS × I)→ P(QS × I), (p, ā, A) 7→ A be the projections. We prove the following basic
observations about B.

Lemma 22. Let t ∈ TΓ be a tree. Then the following statements hold.

(i) For every run r ∈ RunB(t) we have (π̃1 ◦ r(w), π̃2 ◦ r(w)) ∈ π̃3 ◦ r(w). In particular, the only
applications of the operator I are for sets Ak and tuples āk with (QS × {āk}) ∩Ak 6= ∅.

(ii) For every two runs r1, r2 ∈ RunB(t) and every position w ∈ pos(t) we have π̃3 ◦ r1(w) = π̃3 ◦ r2(w).

(iii) For every run r ∈ RunB(t) and position w ∈ pos(t) we have π̃3 ◦ r(w) = {(q, b̄) ∈ QS × I | ∃r′ ∈
RunB(t�w) with r′(ε) = (q, b̄, π̃3 ◦ r(w))}.

(iv) The projection π̃1 induces a bijection π̃1 : RunB(t)→ RunS(t) by r 7→ π̃1 ◦ r.

(v) B is trim, unambiguous, and satisfies JBK = JAK.

(vi) For every run r ∈ RunB(t) and position w ∈ pos(t) we have |π̃3 ◦ r(w)| ≤ |Q|. In particular, the
only applications of the operator I are for sets Ak with |Ak| ≤ |Q|.

(vii) For every Γ-word s and two states p̃, q̃ ∈ Q̃ with p̃ s|x−−→ q̃, we have π̃1(p̃) s|x−−→ π̃1(q̃).

Proof. (i) Let t ∈ TΓ and r ∈ RunB(t) and for contradiction, let w ∈ pos(t) be a prefix-maximal
position for which (i) does not hold. We let m = rkΓ(t(w)) and write r(w) = (p, ā, A) and r(wj) =
(pj , āj , Aj) for j ∈ {1, . . . ,m}. Since r is a run of B on t, we have µS(p1, . . . ,pm, a,p) 6= −∞ and
ā = I(p, ā1, . . . , ām, A1, . . . , Am). By assumption, we have (pj , āj) ∈ Aj for all j ∈ {1, . . . ,m}, so
(p, ā) ∈ A follows from the definition of µ̃. This is a contradiction, thus w does not exist.

(ii) Let t ∈ TΓ and r1, r2 ∈ RunB(t) and let w ∈ pos(t) be a prefix-maximal position for which (ii)
does not hold. From the definition of µ̃, it is immediately clear that π̃3 ◦ r1(w) = π̃3 ◦ r2(w), so w does
not exist.
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(iii) Let t ∈ TΓ and r ∈ RunB(t) and let w ∈ pos(t) be a prefix-maximal position for which (iii) does
not hold. We will deduce that (iii) holds for w. We let m = rkΓ(t(w)) and write r(w) = (p, ā, A) and
r(wj) = (pj , āj , Aj) for j ∈ {1, . . . ,m}.

First, let (q, b̄) ∈ A, then there are states ((q1, b̄1), . . . , (qm, b̄m)) ∈ A1×. . .×Am with µ(q1, . . . ,qm, a,q) 6=
−∞ and b̄ = I(q, b̄1, . . . , b̄m, A1, . . . , Am). By assumption on w, for every j we find rj ∈ RunB(t�wj)

with rj(ε) = (qj , b̄j , Aj). Then by definition of µ̃, we see that the quasi-run r′ : pos(t�w)→ Q̃ defined by
r′(ε) = (q, b̄, A) and r′(jv) = rj(v) is a run of B on t�w with r′(ε) = (q, b̄, A).

On the other hand, let r′ ∈ RunB(t�w), with r′(ε) = (q, b̄, A) for some (q, b̄) ∈ QS × I. Then from
(i) we obtain (q, b̄) ∈ A. Thus, (iii) holds for w.

(iv) Let t ∈ TΓ. By definition of µ̃, it is clear that for r ∈ RunB(t) we have π̃1 ◦ r ∈ RunS(t). For
the injectivity of π̃1 : RunB(t)→ RunS(t), let r1, r2 ∈ RunB(t) with π̃1 ◦ r1 = π̃1 ◦ r2. Let w ∈ pos(t) be
a prefix-maximal position from the set {v ∈ pos(t) | r1(v) 6= r2(v)}. Then π̃1 ◦ r1(w) = π̃1 ◦ r2(w) and
for all j ∈ {1, . . . , rkΓ(t(w))} we have r1(wj) = r2(wj). From the definition of µ̃, it is immediately clear
that r1(w) = r2(w) follows, i.e., w as chosen does not exist.

For surjectivity, we let r′ ∈ RunS(t) and define a run r ∈ RunB(t) inductively as follows. For a leaf
w ∈ pos(t), we let p = r′(w), ā = I(p), A = {(q0, I(q0) | µS(t(w),q0) 6= −∞}, and r(w) = (p, ā, A).

Now let w ∈ pos(t) with rkΓ(t(w)) = m such that r is defined on w1, . . . , wm. We write p = r′(w)
and r(wj) = (pj , āj , Aj) for j ∈ {1, . . . ,m}. We let ā0 = I(p0, ā1, . . . , ām, A1, . . . , Am) and A =
{(q0, b̄0) ∈ QS×I | ∃((q1, b̄1), . . . , (qm, b̄m)) ∈ A1× . . .×Am with µS(q1, . . . ,qm, a,q0) 6= −∞ and b̄0 =
I(q0, b̄1, . . . , b̄m, A1, . . . , Am)}, and r(w) = (p, ā, A). Thus, we obtain a run r ∈ RunB(t) with π̃1◦r(w) =
r′.

(v) B is trim by definition. Let t ∈ TΓ. By definition of µ̃, for every run r ∈ RunS(t) we have
wtB(t, r) = wtS(t, π̃1 ◦ r). By definition of ν̃, we also have ν̃(r(ε)) = ν(π̃1 ◦ r(ε)). By (iv), we have
|AccB(t)| = |AccS(t)| ≤ 1, which means B is unambiguous, and we have JBK(t) = JSK(t) = JAK(t).

(vi) The automaton A is assumed to be trim and unambiguous, so we have |RunA(t)| ≤ |Q| for every
t ∈ TΓ. Furthermore, the projections π1 and π̃1 are bijections by Lemma 14(iii) and (iv) above. Let
t ∈ TΓ, r ∈ RunB(t), and w ∈ pos(t). From (iii), we see that |π̃3 ◦ r(w)| ≤ |RunB(t�w)| = |RunS(t�w)| =
|RunA(t�w)| ≤ |Q|.

(vii) Let s be a Γ-word and p̃, q̃ ∈ Q̃ be two states with p̃ s|x−−→ q̃, then there is a run r ∈ Run�B(p̃, s, q̃)
with wt�B(s, r) = x. By definition of µ̃, we have π̃1 ◦ r ∈ Run�S(s) and wt�B(s, r) = wt�S(s, π̃1(r)), so we
have π̃1(p̃) s|x−−→ π̃1(q̃).

Next, we prove two basic statements about how B sets markers. Assume we have some run in which
a state (p, ā, A) occurs. First, we show that if ā[i] 6= 0 for some i, then in the past, we must have visited
one of the rivals in Ri. Second, we show that if A contains a state (q, b̄) with b̄[i] 6= 0 for some i, then
we must have visited some state with second entry Pi in the past.

Lemma 23. Let t ∈ TΓ be a tree, r ∈ RunB(t) be a run of B on t, let w ∈ pos(t) be a position in t,
assume that r(w) = (p, ā, A), and let i ∈ {1, . . . , n}. Then the following statements hold.

(i) If ā[i] 6= 0, then there is a position v ∈ pos(t) with w ≤p v and π̃1 ◦ r(v) ∈ Ri.

(ii) If there exists (q, b̄) ∈ A with b̄[i] 6= 0, then there is a position v ∈ pos(t) with w ≤p v such that
π2 ◦ π̃1 ◦ r(v) = Pi.

Proof. (i) Assume ā[i] 6= 0. We choose v prefix-maximal from the set {w′ ∈ pos(t) | w ≤p w′ and r(w′) =
(q, b̄, B) with b̄[i] 6= 0}. This set is not empty since it contains w. We write r(v) = (q, b̄, B). If q /∈ Ri
would hold, we see from the definition of µ̃, the definition of the operator I, and the fact that we chose
v prefix-maximal from above set, that either case 1 or case 3 of the definition of I would apply in the
definition of b̄[i]. Thus, b̄[i] = 0 would hold, which is not the case. Therefore, q ∈ Ri holds.

(ii) Assume there is (q, b̄) ∈ A with b̄[i] 6= 0. By Lemma 22(iii), there is a run r′ ∈ RunB(t�w) with
r′(ε) = (q, b̄, A). Then by (i), there exists v ∈ pos(t�w) with π̃1 ◦r′(v) ∈ Ri. Furthermore, we have r�w ∈
RunB(t�w). Combining Lemma 22(iv) and Lemma 14(ii), we have Pi = π2 ◦ π̃1 ◦ r′(v) = π2 ◦ π̃1 ◦ r�w(v).
Thus, we see that π2 ◦ π̃1 ◦ r(wv) = Pi.

22



Next, we essentially prove that markers for Ri are properly set in runs where states with Pi as a
second entry occur only linearly. That is, we show that in these runs, a marker for Ri is only set when
a rival from Ri is actually visited, and that it cannot be altered afterwards.

Lemma 24. Let t ∈ TΓ, i ∈ {1, . . . , n}, and r ∈ RunB(t) such that for all positions v1, v2 ∈ pos(t) with
π2 ◦ π̃1 ◦ r(v1) = π2 ◦ π̃1 ◦ r(v2) = Pi we have v1 ≤p v2 or v2 ≤p v1. If w ∈ pos(t) is the prefix-largest
position of t with π̃1 ◦ r(w) ∈ Ri then the following properties are satisfied

(i) The marker π̃2 ◦ r(w) is defined using case 2 or case 4 of the definition of the operator I.

(ii) For all positions v ∈ pos(t) with v ≤p w we have π̃2◦r(v)[i] = π̃2◦r(w)[i] ∈ {1, . . . , |Q|}×{π̃1◦r(w)}.

(iii) For all positions v ∈ pos(t) \ {w} such that either v and w are prefix-independent or w ≤p v, we
have π̃2 ◦ r(v)[i] = 0.

Proof. Let m = rkΓ(t(w)). If m = 0, π̃2 ◦ r(w)[i] is obviously defined using case 2. Otherwise, since w is
the prefix-largest among all positions w′ with π̃1◦r(w′) ∈ Ri, we have by Lemma 23(i) that π̃2◦r(v)[i] = 0
for all v ∈ pos(t)\{w} with w ≤p v. In particular, we have π̃2 ◦r(wj)[i] = 0 for all j ∈ {1, . . . ,m}. Thus,
by Lemma 23(ii) and our assumptions on r and w, we see that case 4 of the definition of the operator I
applies in the definition of π̃2 ◦ r(w)[i]. Thus, π̃2 ◦ r(w)[i] ∈ {1, . . . , |Q|} × {π̃1 ◦ r(w)}.

We show (ii). For contradiction, let v ∈ pos(t) be the prefix-largest position with v ≤p w and
π̃2 ◦ r(v)[i] 6= π̃2 ◦ r(w)[i]. Let m = rkΓ(t(v)) and j ∈ {1, . . . ,m} such that w = vjv′ for some v′. Then
π̃2 ◦ r(vj)[i] = π̃2 ◦ r(w)[i] 6= 0, and by Lemma 23(i) and our assumption on r, we have π̃2 ◦ r(vk)[i] = 0
for all k 6= j. Thus, case 3 of the definition of I applies in the definition of π̃2 ◦ r(v)[i], so π̃2 ◦ r(v)[i] =
π̃2 ◦ r(vj)[i] = π̃2 ◦ r(w)[i]. This means v as chosen does not exist.

Finally let v ∈ pos(t)\{w} be such that either v and w are prefix-independent or w ≤p v. Then from
Lemma 23(i) and our assumption on r we immediately obtain π̃2 ◦ r(v)[i] = 0.

In the next lemma, we show that if two states are rivals in B, then their records of markers differ.
The reasoning for this is exactly the same as in our intuitive description at the beginning of this section.

Lemma 25. If (p, ā, A) and (q, b̄, B) are rivals in B, then p and q are rivals in S and for i ∈ {1, . . . , n}
with Ri = {p,q}, we have ā[i] 6= b̄[i] and ā[i], b̄[i] ∈ {1, . . . , |Q|} × {p,q}.

Proof. Let p̃ = (p, ā, A) and q̃ = (q, b̄, B) be rivals in B. Let u and s be as in the definition of rivals
and let rp̃ ∈ Run�B(u, p̃) and rq̃ ∈ Run�B(u, q̃). Then by Lemma 22(iv), we have π̃1(rp̃) ∈ RunS(u,p) and
π̃1(rq̃) ∈ RunS(u,q). By Lemma 22(vii), we also have p s|x−−→ p and q s|y−−→ q with x 6= y, thus p and q
are rivals in S. Let i ∈ {1, . . . , n} with Ri = {p,q}. We may assume that p = (pi, Pi) and q = (qi, Pi).

We show that ā[i], b̄[i] /∈ {0, |Q|+ 1}. We let rp = π̃1 ◦ rp̃ and rq = π̃1 ◦ rq̃. We have rp(ε) = (pi, Pi)
and we assumed pi ≤ qi, so by Theorem 19 we obtain that for every two positions v1, v2 ∈ pos(u) with
π2 ◦ rp(v1) = π2 ◦ rp(v2) = Pi, we have v1 ≤p v2 or v2 ≤p v1. This also holds for rq since by by Lemma
14(ii) we have π2 ◦ rp = π2 ◦ rq.

Let wp ∈ pos(u) be the prefix-largest position of u with rp(wp) ∈ Ri and wq ∈ pos(u) be the
prefix-largest position with rq(wq) ∈ Ri. That wp and wq exist is clear from the fact that rp(ε) ∈ Ri
and rq(ε) ∈ Ri. By Lemma 24(ii), we have ā[i] = π̃2 ◦ rp̃(wp)[i] ∈ {1, . . . , |Q|} × {π̃1 ◦ rp̃(wp)} and
b̄[i] = π̃2 ◦ rq̃(wq)[i] ∈ {1, . . . , |Q|} × {π̃1 ◦ rq̃(wq)}.

We show that ā[i] 6= b̄[i] and consider two cases. First, if wp = wq we assume for contradiction that
ā[i] = b̄[i]. Then we see that rp(wp) = rq(wq) ∈ Ri, and we also have rp(ε) = p and rq(ε) = q. It follows
that with s = u〈� → wp〉, we have π1 ◦ rp(wp) s|z1−−→ pi and π1 ◦ rp(wp) s|z2−−→ qi for weights z1, z2 ∈ R.

Thus, A satisfies condition (i) of the tree fork property, which is a contradiction. Therefore, ā[i] = b̄[i]
cannot hold when wp = wq.

Now assume without loss of generality that wp ≤p wq with wp 6= wq and write wq = wpjv and
rq̃(wpj) = (q′, b̄′, Aj). By Lemma 22(i) and Lemma 22(ii), we then have (q′, b̄′) ∈ Aj = π̃3 ◦ rp̃(wpj).
By Lemma 24(i), we know that π̃2 ◦ rp̃(wp)[i] is defined using case 4 of the definition of I, so ā[i] 6= b̄[i]
must hold.

We turn to our final construction where we distribute the runs of B across multiple automata. For
every record of markers c̄ ∈ I, we construct one automaton Bc̄ which for each pair of rivals Ri admits only
runs using the markers 0 and c̄[i]. All runs in which rivals occur nonlinearly are covered by admitting the
marker |Q|+ 1. All other runs are covered by admitting an appropriate marker from {1, . . . , |Q|} ×Ri.

23



Construction 26. For every tuple c̄ ∈ I, we define a max-plus-WTA Bc̄ = (Q̃c̄,Γ, µ̃, ν̃) by removing
states from B through

Q̃c̄ = {(p, ā, A) ∈ Q̃ | for all i ∈ {1, . . . , n} it holds: if c̄[i] = |Q|+ 1 then p 6= (pi, Pi),

and if c̄[i] 6= |Q|+ 1 then ā[i] ∈ {0, c̄[i]}}.

Finally, we formally prove that the automata Bc̄ are unambiguous, that their pointwise maximum is
equivalent to the behavior of A, and that they all satisfy the twins property, which means that they can
be determinized. We note that the construction of the automata Bc̄ is optimized for provability, so we
omit analyzing their size and the complexity of their construction.

Theorem 27. We have JAK = maxc̄∈IJBc̄K and for every c̄ ∈ I, the automaton Bc̄ is unambiguous and
satisfies the twins property.

Proof. The unambiguity of Bc̄ follows from the unambiguity of B. To see that Bc̄ satisfies the twins
property, let (p, ā, A), (q, b̄, B) ∈ Q̃c̄ be rivals in Bc̄. Then (p, ā, A) and (q, b̄, B) are also rivals in B, so
by Lemma 25 for some i ∈ {1, . . . , n} we have ā[i] 6= b̄[i] and ā[i], b̄[i] /∈ {0, |Q|+ 1}. By definition of Bc̄,
this means (p, ā, A), (q, b̄, B) ∈ Q̃c̄ is impossible, so there are no rivals in Bc̄ and Bc̄ satisfies the twins
property.

To show that JAK = maxc̄∈IJBc̄K, we show that for every tree t ∈ TΓ we have RunB(t) =
⋃
c̄∈I RunBc̄(t).

From this, it follows that maxc̄∈IJBc̄K = JBK = JAK. The inclusion “⊇” is clear.
Let t ∈ TΓ, r ∈ RunB(t), and let O = {i ∈ {1, . . . , n} | there is a position w ∈ pos(t) with π̃1 ◦ r(w) =

(pi, Pi)}. Let i ∈ O and assume we have two positions v1, v2 ∈ pos(t) such that π2 ◦ π̃1 ◦ r(v1) =
π2◦π̃1◦r(v2) = Pi. Then, since π̃1(r) ∈ RunS(t) by Lemma 22(iv), we obtain by Theorem 19 that v1 ≤p v2

or v2 ≤p v1. We can therefore let wi ∈ pos(t) be the prefix-largest position in t with π̃1 ◦ r(wi) ∈ Ri.
Then from Lemma 24(ii) and Lemma 24(iii), we obtain that for all positions v ∈ pos(t) with v ≤p wi we
have π̃2 ◦ r(v)[i] = π̃2 ◦ r(wi)[i] ∈ {1, . . . , |Q|} × {π̃1 ◦ r(wi)}, and for all other positions v ∈ pos(t) we
have π̃2 ◦ r(v)[i] = 0.

We define a tuple c̄ ∈ I as follows. If i ∈ O, we let c̄[i] = π̃2 ◦ r(wi)[i], where wi is defined as above.
If i /∈ O, we let c̄[i] = |Q|+ 1. Then we have r ∈ RunBc̄

(t). Thus, RunB(t) =
⋃
c̄∈I RunBc̄

(t).

We now obtain a finitely sequential representation of A by applying Theorem 3 to the automata Bc̄.
In particular, we see that the behavior of a trim unambiguous max-plus-WTA is finitely sequential if it
does not satisfy the tree fork property. This concludes the proof of Theorem 9.

4 Further Insights

In this section, we show some additional properties of the rivals of the Schützenberger covering S. These
properties are not necessary for the proof of Theorem 9, but they do give a better idea of the limits of
interaction there may exist between the rivals of S. If two rivals (p, P ) and (q, P ) of S cannot occur
together in the same run, they can be trivially separated like in Lemma 15. Therefore, in the following
we only consider the case that (p, P ) ≤ (q, P ). Under this assumption, the first property we show is that
Theorem 19 is true even if we replace (p, P ) by (q, P ) in (i), i.e., we have the following theorem.

Theorem 28. Let (p, P ), (q, P ) ∈ QS be rivals in S with p ≤ q. Then for every tree t ∈ TΓ and every
run r ∈ RunS(t) of S on t, at least one of the following two conditions holds.

(i) The state (q, P ) does not occur in r, i.e., r(w) 6= (q, P ) for all w ∈ pos(t).

(ii) All states with second entry P occur linearly in r, i.e., for all w1, w2 ∈ pos(t) with π2 ◦ r(w1) =
π2 ◦ r(w2) = P we have w1 ≤p w2 or w2 ≤p w1.

Theorem 28 follows from Theorem 19 by applying Lemma 29 below. In short, Lemma 29 tells us that
from (p, P ) ≤ (q, P ), it follows that there is a rival (q′, P ) of (q, P ) with (q, P ) ≤ (q′, P ). Thus, Theorem
28 follows by applying Theorem 19 to the rivals (q, P ) and (q′, P ). Together, Theorems 19 and 28 tell
us that whenever we have two rivals (p, P ) and (q, P ) with (p, P ) ≤ (q, P ) in S, then whenver one of
(p, P ), (q, P ) occurs in a run on a tree t, then for every run on that tree all states with second entry P
occur along a distinguished branch of t. We prove Lemma 29.

Lemma 29. Let (p, P ), (q, P ) ∈ QS be rivals in S with witnesses u and s such that (p, P ) ≤ (q, P ).
Then there exists a state q′ ∈ P with (q, P ) ≤ (q′, P ) such that (q′, P ) and (q, P ) are rivals in S with
witnesses u and sn for some n ≥ 1.
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Proof. Let (p, P ), (q, P ), u, and s be as in the statement of the lemma. Furthermore, let s′ be a Γ-word
such that Run�S((q, P ), s′, (p, P )) 6= ∅, which exists due to (p, P ) ≤ (q, P )

By construction of S and our assumption on s′, there exists for every p′ ∈ P at least one q′ ∈ P
with Run�S((q′, P ), s′, (p′, P )) 6= ∅. On the other hand, we obtain from the unambiguity of S that for
every p′ ∈ P , there can be at most one q′ ∈ P with Run�S((q′, P ), s′, (p′, P )) 6= ∅. It follows that s′

induces a mapping g : P → P which maps p′ to q′ if Run�S((q′, P ), s′, (p′, P )) 6= ∅ and g satisfies p 7→ q.
With an identical argumentation, we obtain that s induces a mapping h : P → P which maps p′ to q′ if
Run�S((q′, P ), s, (p′, P )) 6= ∅ and h satisfies p 7→ p and q 7→ q.

Let R′ be the smallest set satisfying q ∈ R′, g(R′) ⊆ R′, and h(R′) ⊆ R′, i.e., such that R′ con-
tains q and is closed under g and h. Then let R = {p} ∪ R′ and let p1, . . . , pm be an enumeration of
R. By pigeon hole principle, there exist integers 0 ≤ n1 < n2 such that (hn1(g(p1)), . . . , hn1(g(pm))) =
(hn2(g(p1)), . . . , hn2(g(pm))). By definition ofR and the fact that g(p) = q, we have hn1(g(p1)), . . . , hn1(g(pm)) ∈
R. Thus, f = hn1 ◦ g is a mapping f : R → R and we can apply Lemma 16 to f with a = p. We ob-
tain q′ ∈ R and n ≥ 1 with fn(p) = q′ = fn(q′). From the definitions of h and g, it follows that
(s′(sn1))n is a (q′, P )-(p, P )-fork, and therefore also a q′-p-fork. Since A does not satisfy the tree fork
property, q′ is therefore not a rival of p. Moreover, we have fn−1 ◦ hn1(q) = fn(p) = q′, so we see that
Run�S((q′, P ), sn1((s′(sn1))n−1), (q, P )) 6= ∅ and therefore (q, P ) ≤ (q′, P ).

Due to the fact that hn2−n1(q′) = q′, we see from the definition of h that (q′, P ) sn2−n1 |z−−−−−−→ (q′, P ) for

some z ∈ R. Let k = n2 − n1. We know that (p, P ) s|x−−→ (p, P ) and (q, P ) s|y−−→ (q, P ) for some x, y ∈ R
with x 6= y. It follows that (p, P ) sk|kx−−−→ (p, P ) and (q, P ) sk|ky−−−→ (q, P ), so (q′, P ) is either a rival of (p, P )

or of (q, P ) with witnesses u and sk. As (q′, P ) and (p, P ) being rivals implies by Lemma 14(vii) that q′

and p are rivals in A and we found that the latter is not the case, it must hold that (q′, P ) and (q, P )
are rivals.

Now assume that (p, P ) and (q, P ) ∈ QS with (p, P ) ≤ (q, P ) are rivals in S with witnesses u and
s. Furthermore, assume (p1, P ) and (p2, P ) may occur at prefix-independent positions, i.e., there is a
tree t ∈ TΓ, prefix-independent positions w1, w2 ∈ pos(t), and a run r ∈ RunS(t) with r(w1) = (p1, P )
and r(w2) = (p2, P ). In the following, we want to analyze how (p1, P ) may occur together with (p, P )
or (q, P ) in a run.

First, Theorems 19 and 28 tell us that (p1, P ) may not occur prefix-independently from (p, P ) and
(q, P ). Second, if (p1, P ) ≤ (p, P ) or (p1, P ) ≤ (q, P ), then by our assumption the state (p2, P ) may
occur prefix-independently from (p, P ) or (q, P ). This is impossible again by Theorems 19 and 28, so
(p1, P ) ≤ (p, P ) and (p1, P ) ≤ (q, P ) both cannot hold. Third, we know that RunS(s|P |(u), (p1, P )) 6=
∅, from which follows that there is some p̂ ∈ P and an integer k ≥ 1 with (p1, P ) ≤ (p̂, P ) and
Run�S((p̂, P ), sk, (p̂, P )) 6= ∅. Thus, (p̂, P ) is a rival of either (p, P ) or (q, P ) and by our assump-
tion, it may occur prefix-independently from (p2, P ). Then if (q, P ) ≤ (p1, P ) held, we would have
(p, P ) ≤ (q, P ) ≤ (p1, P ) ≤ (p̂, P ). By applying Theorem 28 either to (p, P ) and (p̂, P ) or to (q, P ) and
(p̂, P ), we see that (p2, P ) may not occur prefix-independently from (p̂, P ), which does not match our
assumption. It follows that (q, P ) ≤ (p1, P ) is also impossible. Finally, the only remaining possibility
is (p, P ) ≤ (p1, P ). This is in fact possible, as shown in Example 20, where we have (p′′, P ) ≤ (q, P ),
(p′′, P ) ≤ (p′, P ), and (p′, P ) may occur at prefix-independent positions.

In conclusion, we obtain that if (p, P ) and (q, P ) are rivals in S with (p, P ) ≤ (q, P ), then all states
with second entry P which can occur at prefix-independent positions can be trivially separated from
(q, P ) as they may never occur in the same run. We decided not to employ this fact in Section 3.2 as
doing so does not lead to a shorter proof or a significantly simpler construction.
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