FINITE SEQUENTIALITY OF UNAMBIGUOUS MAX-PLUS TREE AUTOMATA

Erik Paul

Leipzig University

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_5 \xrightarrow{a} q_6$$

Weights in $\mathbb{R} \cup \{-\infty\}$

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_5 \xrightarrow{a} q_6$$

Weights in $\mathbb{R} \cup \{-\infty\}$

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_5 \xrightarrow{a} q_6$$

Weight of run:

initial weight + transition weights + final weight

Weights in $\mathbb{R} \cup \{-\infty\}$

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_5 \xrightarrow{a} q_6$$

Weight of run:

initial weight + transition weights + final weight

Weight of word:

maximum over all runs

Weights in $\mathbb{R} \cup \{-\infty\}$

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_5 \xrightarrow{a} q_6$$

Weight of run:

initial weight + transition weights + final weight

Weight of word:

maximum over all runs

sequential / deterministic

one "initial state" no two valid $p\stackrel{a}{
ightarrow} q_1,\; p\stackrel{a}{
ightarrow} q_2$

sequential / deterministic

one "initial state" no two valid $p \stackrel{a}{ o} q_1, \ p \stackrel{a}{ o} q_2$

$$\operatorname{\mathsf{Run}}(w) = \{\operatorname{\mathsf{Runs}}\ r \ \operatorname{\mathsf{on}}\ w \ \operatorname{\mathsf{weight}}(r) \neq -\infty\}$$

sequential / deterministic

one "initial state" no two valid
$$p \stackrel{a}{\to} q_1, \ p \stackrel{a}{\to} q_2$$

$$Run(w) = \{Runs \ r \ on \ w \ with \ weight(r) \neq -\infty\}$$

unambiguous

$$|\mathsf{Run}(w)| \leq 1$$

one "initial state" no two valid
$$p\stackrel{a}{
ightarrow}q_1,\;p\stackrel{a}{
ightarrow}q_2$$

$$Run(w) = \{Runs \ r \ on \ w \ with \ weight(r) \neq -\infty\}$$

$$|\mathsf{Run}(w)| \leq 1$$

Sequentiality problem

Given \mathcal{A}

Is there determ
$$\mathcal{A}'$$
 with $\llbracket \mathcal{A} \rrbracket = \llbracket \mathcal{A}' \rrbracket$?

one "initial state" no two valid
$$p\stackrel{a}{
ightarrow}q_1,\;p\stackrel{a}{
ightarrow}q_2$$

$$Run(w) = \{Runs \ r \ on \ w \ with \ weight(r) \neq -\infty\}$$

unambiguous

$$|\mathsf{Run}(w)| \leq 1$$

Sequentiality problem

Given $\mathcal A$

Is there determ \mathcal{A}' with $[\![\mathcal{A}]\!] = [\![\mathcal{A}']\!]$?

decidable on words for unamb ${\mathcal A}$

[Mohri]

 ${\cal A}$ max-plus automaton

p, q states

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow a \mid 1$$

$$[A](w) = |w| \text{ odd } \rightsquigarrow 0 \qquad |w| \text{ even } \rightsquigarrow |w|$$

 ${\cal A}$ max-plus automaton

p, q states

$$p, q \text{ rivals}$$
 iff $\exists \text{ words } u, v$:

$$\xrightarrow{u} p \xrightarrow{v|x} p$$

$$\xrightarrow{u} q \xrightarrow{v|y} q$$

 $x \neq y$

$$[\![\mathcal{A}]\!](w) =$$

$$|w|$$
 odd $\rightsquigarrow 0$

$$|w|$$
 even $\rightsquigarrow |w|$

 ${\cal A}$ max-plus automaton

p, q states

$$p, q \text{ rivals}$$
 iff $\exists \text{ words } u, v$:

$$\xrightarrow{u} p \xrightarrow{v|x} p$$

$$\xrightarrow{u} q \xrightarrow{v|y} q$$

 $x \neq y$

$$u = \varepsilon \quad v = aa$$

$$a \mid 0$$

$$0 \rightarrow 0 \rightarrow q$$

$$a \mid 1$$

$$0 \rightarrow q$$

$$a \mid 1$$

$$0 \rightarrow q$$

$$a \mid 1$$

$$\llbracket \mathcal{A} \rrbracket (w) =$$

$$|w|$$
 odd $\rightsquigarrow 0$

$$|w|$$
 even $\rightsquigarrow |w|$

 ${\cal A}$ max-plus automaton

p, q states

$$p, q \text{ rivals}$$
 iff $\exists \text{ words } u, v$:

$$\xrightarrow{u} p \xrightarrow{v|x} p$$

$$\xrightarrow{u} q \xrightarrow{v|y} q$$

 $x \neq y$

$$[A](w) =$$

$$|w|$$
 odd $\rightsquigarrow 0$

$$|w|$$
 even $\rightsquigarrow |w|$

$$T_{\rm HM}$$
 \mathcal{A} unamb \Rightarrow

 ${\mathcal A}$ determinizable $\ \leftrightarrow \$ no rivals in ${\mathcal A}$

[Mohri]

Finite Sequentiality problem

Given
$$\mathcal{A}$$
 Is $[\![\mathcal{A}]\!] = \max_{i=1}^n [\![\mathcal{A}_i]\!]$ for some determ \mathcal{A}_i ?

Finite Sequentiality problem

Given \mathcal{A} Is $[\![\mathcal{A}]\!] = \max_{i=1}^n [\![\mathcal{A}_i]\!]$ for some determ \mathcal{A}_i ?

decidable on words for unamb ${\mathcal A}$

[Bala, Koniński]

Finite Sequentiality problem

Given \mathcal{A} Is $[\![\mathcal{A}]\!] = \max_{i=1}^n [\![\mathcal{A}_i]\!]$ for some determ \mathcal{A}_i ?

decidable on words for unamb ${\cal A}$

[Bala, Koniński]

Finite Sequentiality problem

Is $[A] = \max_{i=1}^n [A_i]$ for some determ A_i ? Given \mathcal{A}

decidable on words for unamb A

[Bala, Koniński]

for rivals p, q:

word w fork iff $p \xrightarrow{w} p \qquad p \xrightarrow{w} q$

Finite Sequentiality problem

Is $[A] = \max_{i=1}^n [A_i]$ for some determ A_i ? Given \mathcal{A}

decidable on words for unamb A

[Bala, Koniński]

for rivals p, q:

word w fork iff $p \xrightarrow{w} p \qquad p \xrightarrow{w} a$

 \mathcal{A} unamb \Rightarrow

 $\llbracket \mathcal{A} \rrbracket$ finitely sequential \leftrightarrow no forks

Finite Sequentiality problem

Is $[A] = \max_{i=1}^n [A_i]$ for some determ A_i ? Given \mathcal{A}

decidable on words for unamb A

[Bala, Koniński]

$$u = a$$

$$v = b$$

$$w = a$$

$$0 \rightarrow p$$

$$a \mid 0$$

$$b \mid 1$$

$$b \mid -1$$

$$a \mid 0$$

$$q \rightarrow 0$$

for rivals p, q:

word w fork iff $p \xrightarrow{w} p \qquad p \xrightarrow{w} q$

 \mathcal{A} unamb \Rightarrow

 $\llbracket \mathcal{A} \rrbracket$ finitely sequential \leftrightarrow no forks

Finite Sequentiality problem

Is $[A] = \max_{i=1}^n [A_i]$ for some determ A_i ? Given \mathcal{A}

decidable on words for unamb A

[Bala, Koniński]

$$u = a$$

$$v = b$$

$$w = a$$

$$0 \rightarrow p$$

$$a \mid 0$$

$$a \mid 0$$

$$a \mid 0$$

$$a \mid 0$$

$$q \rightarrow 0$$

b's before last a

b's after last a

for rivals p, q:

word w fork iff $p \xrightarrow{w} p p \xrightarrow{w} q$

 \mathcal{A} unamb \Rightarrow

 $\llbracket \mathcal{A} \rrbracket$ finitely sequential \leftrightarrow no forks

weight of run = transition weights + final weight (p_{11}, p_{12}, a, p_1)

weight of run = transition weights + final weight (p_{11}, p_{12}, a, p_1)

determinism: bottom-up

weight of run = transition weights + final weight (p_{11}, p_{12}, a, p_1)

determinism: bottom-up

Finite Sequentiality: $[A] = \max_{i=1}^{n} [A_i]$ for some determ A_i ?

transition weights + final weight

$$(p_{11}, p_{12}, a, p_1)$$

determinism: bottom-up

Finite Sequentiality:

$$\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$$
 for some determ \mathcal{A}_i ?

transition weights + final weight

$$(p_{11}, p_{12}, a, p_1)$$

determinism: bottom-up

Finite Sequentiality:

$$\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$$
 for some determ \mathcal{A}_i ?

transition weights + final weight

$$(p_{11}, p_{12}, a, p_1)$$

determinism: bottom-up

Finite Sequentiality:

$$\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$$
 for some determ \mathcal{A}_i ?

transition weights + final weight

$$(p_{11}, p_{12}, a, p_1)$$

determinism: bottom-up

Finite Sequentiality:

$$\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$$
 for some determ \mathcal{A}_i ?

90%

8

transition weights + final weight

$$(p_{11}, p_{12}, a, p_1)$$

determinism: bottom-up

Finite Sequentiality:

$$\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$$
 for some determ \mathcal{A}_i ?

fork

split

 $x \neq y$

transition weights + final weight

$$(p_{11}, p_{12}, a, p_1)$$

determinism: bottom-up

Finite Sequentiality:

$$\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$$
 for some determ \mathcal{A}_i ?

split

transition weights + final weight

$$(p_{11}, p_{12}, a, p_1)$$

determinism: bottom-up

Finite Sequentiality:

 $[A] = \max_{i=1}^{n} [A_i]$ for some determ A_i ?

fork

p
q
w
p
NEW THM

split

 \mathcal{A} unamb \Rightarrow $\llbracket \mathcal{A}
rbracket$ fin seq \leftrightarrow no forks, no splits