
Finite Sequentiality of Finitely Ambiguous Max-Plus Tree

Automata

Erik Paul

June 29, 2020

Abstract

We show that the finite sequentiality problem is decidable for finitely ambiguous max-plus tree
automata. A max-plus tree automaton is a weighted tree automaton over the max-plus semiring. A
max-plus tree automaton is called finitely ambiguous if the number of accepting runs on every tree
is bounded by a global constant. The finite sequentiality problem asks whether for a given max-plus
tree automaton, there exist finitely many deterministic max-plus tree automata whose pointwise
maximum is equivalent to the given automaton.

1 Introduction

A max-plus automaton is a finite automaton whose transitions are weighted by real numbers. A max-
plus automaton assigns a weight to each of its runs by adding the weights of the transitions which
constitute the run and it assigns a weight to every word by taking the maximum over the weights of
all runs on the given word. Max-plus automata are weighted automata [45, 44, 31, 6, 16] over the
max-plus semiring. In the form of min-plus automata, they were originally introduced by Imre Simon
as a means to show the decidability of the finite power property [47, 48] and they enjoy a continuing
interest [30, 23, 26, 7, 13, 19, 33]. They have found applications in many different contexts, for example
to determine the star height of a language [22], to prove the termination of certain string rewriting
systems [50], and to model discrete event systems [27]. They also appear in the context of natural
language processing [34], where probabilities are often computed in the min-plus semiring as negative
log-likelihoods for reasons of numerical stability.

Like finite automata, max-plus automata are by definition non-deterministic devices. However, while
every finite automaton can be determinized [41], the same is in general not true for max-plus automata
[26]. Actually, it is a long-standing open question whether given a max-plus automaton, the existence
of an equivalent deterministic automaton can be decided. This problem is commonly known as the
sequentiality problem and is one of the most prominent open questions about max-plus automata. For
practical applications, the execution of a deterministic automaton is of course much more efficient than
the execution of a non-deterministic one, so being able to decide whether a given automaton can be
determinized is very much desirable. While open in general, the sequentiality problem has been shown
to be decidable for some important subclasses of max-plus automata, namely for unambiguous [34],
finitely ambiguous [26], and polynomially ambiguous [25] max-plus automata. Here, we call a max-plus
automaton unambiguous if there exists at most one run on every word, finitely ambiguous if the number
of runs on each word is bounded by a global constant, and polynomially ambiguous if the number of runs
on each word is bounded polynomially in the length of the word. Note that the classes of deterministic,
unambiguous, finitely ambiguous, polynomially ambiguous, and arbitrary max-plus automata form a
strictly ascending hierarchy [26, 24, 33]. Also, deciding the degree of ambiguity of a max-plus automaton
can easily be reduced to deciding the degree of ambiguity of a finite automaton. It is trivial to decide
whether a finite automaton is deterministic. Polynomial time algorithms to decide whether a finite
automaton is unambiguous, finitely ambiguous, or polynomially ambiguous can be found in [8, 51, 46].

While a given max-plus automaton may not be equivalent to a single deterministic max-plus au-
tomaton, this does not exclude the possibility that it is equivalent to the pointwise maximum of finitely
many deterministic automata. The problem of deciding whether a max-plus automaton possesses such
a finitely sequential representation is known as the finite sequentiality problem. The decidability of the
finite sequentiality problem was posed as an open question in [23] and has been solved only recently for
unambiguous [4] and finitely ambiguous [3] max-plus automata. Note that the class of max-plus au-
tomata which possess a finitely sequential representation lies strictly between the classes of deterministic

1

and finitely ambiguous max-plus automata, and it is incomparable to the class of unambiguous max-plus
automata [26].

In this paper, we show that the finite sequentiality problem is decidable for finitely ambiguous max-
plus tree automata. Operating on trees instead of words, max-plus tree automata are a generalization
of max-plus word automata and more generally, they are weighted tree automata [1, 5, 17, 20] over the
max-plus semiring. Applications of max-plus tree automata include proving the termination of certain
term rewriting systems [28] and they are commonly employed in natural language processing [40] in
the form of probabilistic context-free grammars. Our approach to proving the decidability of the finite
sequentiality problem for finitely ambiguous max-plus tree automata employs ideas from Bala’s proof of
the corresponding result for finitely ambiguous max-plus word automata [3]. However, due to lack of
space, formal proofs had to be omitted in [3] and Bala’s informal description of his methods does not
suffice for reconstruction. Also, no other published version of [3] exists. We provide an honest attempt
to compare our approach to his but note that our interpretation might not be accurate.

In his proof for max-plus word automata, Bala first introduces the A-Fork property and then proceeds
to show that this property is a decidable criterion characterizing the finite sequentiality of a finitely
ambiguous max-plus automaton. More precisely, he shows that a finitely ambiguous max-plus automaton
possesses a finitely sequential representation if and only if the A-Fork property is not satisfied. To show
the decidability of the A-Fork property, he shows its expressibility in a decidable fragment of Presburger
arithmetic. To show that an automaton is not finitely sequential if the A-Fork property is satisfied,
he uses pumping techniques similar to those employed in [4] for the finite sequentiality problem of
unambiguous max-plus word automata. This part of his proof most likely employs Ramsey’s Theorem
[42] as it involves “colorings of finite hypercubes”. His proof for the existence of a finitely sequential
representation in case that the A-Fork property is not satisfied employs transducers and the notions of
critical pairs and close approximations, none of which occur in our approach. We are thus unsure about
the nature of this particular part of the proof, but it most likely uses a reduction to the decidability of
the finite sequentiality problem for unambiguous automata.

Our approach is as follows. First, we introduce the separation property, a twofold modification of
the A-Fork property. On the one hand, we endow our new property with a criterion accounting for the
non-linear structure of trees. This new criterion is inspired by the criterion we added in [39] to the fork
property [4], the property characterizing finite sequentiality of unambiguous max-plus word automata,
in order to obtain the tree fork property, the property characterizing finite sequentiality of unambiguous
max-plus tree automata. On the other hand, we strengthen the A-Fork property as with only the first
modification, our new property would wrongly characterize some finitely sequential automata as not
being finitely sequential. We then show that the separation property is decidable by employing Parikh’s
Theorem [36, 18] for a reduction to the decidability of the satisfiability of systems of linear inequalities
over the rational numbers with integer solutions [35, 9]. This means in particular that we show the
decidability of the finite sequentiality problem only for automata with weights in the rationals. Then
we employ Ramsey’s Theorem to show that no finitely sequential representation exists whenever the
separation property is satisfied. Due to the criterion accounting for the non-linearity of trees, this is
considerably more difficult than in [3] and it is in fact the most technical and the most challenging
aspect of our result. Finally, we show that if the separation property is not satisfied for a given max-plus
tree automaton, then we can construct finitely many unambiguous max-plus tree automata which all do
not satisfy the tree fork property and whose pointwise maximum is equivalent to the automaton. By
[39], these unambiguous automata then possess finitely sequential representations. Combining these, we
obtain a finitely sequential representation of the original automaton.

2 Preliminaries

For a set X, we denote the power set of X by P(X) and the cardinality of X by |X|. For two sets X and Y
and a mapping f : X → Y , we call X the domain of f , denoted by dom(f), and Y the range of f , denoted
by range(f). For a subset X ′ ⊆ X, we call the set f(X ′) = {y ∈ Y | ∃x ∈ X ′ : f(x) = y} the image or
range of X ′ under f . The restriction of f to X ′, denoted by f�X′ , is the mapping f�X′ : X

′ → Y defined
by f�X′(x) = f(x) for every x ∈ X ′. For an element y ∈ Y , we call the set f−1(y) = {x ∈ X | f(x) = y}
the preimage of y under f . For a second mapping g : X → Y , we write f = g if for all x ∈ X we have
f(x) = g(x).

We let N = {0, 1, 2, . . .}. By N∗ we denote the set of all finite words over N. The empty word is
denoted by ε, and the length of a word w ∈ N∗ by |w|. The set N∗ is partially ordered by the prefix

2

relation ≤p and totally ordered with respect to the lexicographic ordering ≤l. Two words from N∗ are
called prefix-dependent if they are in prefix relation, and otherwise they are called prefix-independent.

A ranked alphabet is a pair (Γ, rkΓ), often abbreviated by Γ, where Γ is a finite set and rkΓ : Γ → N
a mapping which assigns a rank to every symbol. For every m ≥ 0 we define Γ(m) = rk−1

Γ (m) as the set
of all symbols of rank m. The rank of Γ is defined as rk(Γ) = max{rkΓ(a) | a ∈ Γ}.

The set of (finite, labeled, and ordered) Γ-trees, denoted by TΓ, is the set of all pairs t = (pos(t), labelt),
where pos(t) ⊂ N∗ is a finite non-empty prefix-closed set of positions, labelt : pos(t) → Γ is a mapping,
and for every w ∈ pos(t) we have wi ∈ pos(t) iff 1 ≤ i ≤ rkΓ(labelt(w)). We write t(w) for labelt(w) and
|t| for |pos(t)|. We also refer to the elements of pos(t) as nodes, to ε as the root of t, and to prefix-maximal
nodes as leaves. The height of t is defined as height(t) = maxw∈pos(t) |w|. For a leaf w ∈ pos(t), the set
{v ∈ pos(t) | v ≤p w} is called a branch of t.

Now let s, t ∈ TΓ and w ∈ pos(t). The subtree of t at w, denoted by t�w, is a Γ-tree defined as follows.
We let pos(t�w) = {v ∈ N∗ | wv ∈ pos(t)} and for v ∈ pos(t�w), we let labelt�w(v) = t(wv).

The substitution of s into w of t, denoted by t〈s → w〉, is a Γ-tree defined as follows. We let
pos(t〈s → w〉) = (pos(t) \ {v ∈ pos(t) | w ≤p v}) ∪ {wv | v ∈ pos(s)}. For v ∈ pos(t〈s → w〉), we let
labelt〈s→w〉(v) = s(u) if v = wu for some u ∈ pos(s), and otherwise labelt〈s→w〉(v) = t(v).

For a ∈ Γ(m) and trees t1, . . . , tm ∈ TΓ, we also write a(t1, . . . , tm) to denote the tree t with pos(t) =
{ε} ∪ {iw | i ∈ {1, . . . ,m}, w ∈ pos(ti)}, labelt(ε) = a, and labelt(iw) = ti(w). For a ∈ Γ(0), the tree a()
is abbreviated by a.

For a ranked alphabet Γ, a tree over the alphabet Γ� = (Γ∪{�}, rkΓ ∪{� 7→ 0}) is called a Γ-context.
Let t ∈ TΓ� be a Γ-context and let w1, . . . , wn ∈ pos(t) be a lexicographically ordered enumeration of
all leaves of t labeled �. Then we call t an n-Γ-context and define ♦i(t) = wi for i ∈ {1, . . . , n}. For an
n-Γ-context t and contexts t1, . . . , tn ∈ TΓ� , we define t(t1, . . . , tn) = t〈t1 → ♦1(t)〉 · · · 〈tn → ♦n(t)〉 by
substitution of t1, . . . , tn into the �-leaves of t. A 1-Γ-context is also called a Γ-word. For a Γ-word s, we
define s0 = � and sn+1 = s(sn) for n ≥ 0.

A commutative semiring is a tuple (K,⊕,�,0,1), abbreviated by K, with operations sum ⊕ and
product � and constants 0 and 1 such that (K,⊕,0) and (K,�,1) are commutative monoids, multi-
plication distributes over addition, and κ � 0 = 0 � κ = 0 for every κ ∈ K. In this paper, we mainly
consider the following two semirings.

• The Boolean semiring B = ({0, 1},∨,∧, 0, 1) with disjunction ∨ and conjunction ∧.

• The max-plus semiring Qmax = (Q∪ {−∞},max,+,−∞, 0) where the sum and the product oper-
ations are max and +, respectively, extended to Q ∪ {−∞} in the usual way.

For a commutative semiring (K,⊕,�,0,1) and an integer n ≥ 1, the product semiring (Kn,⊕n,�n,0n,1n)
is defined by componentwise operations and the constants 0n = (0, . . . ,0) and 1n = (1, . . . ,1). We will
usually denote ⊕n and �n simply by ⊕ and �.

Let (K,⊕,�,0,1) be a commutative semiring. A weighted bottom-up finite state tree automaton
(short: WTA) over K and Γ is a tuple A = (Q,Γ, µ, ν) where Q is a finite set (of states), Γ is a ranked

alphabet (of input symbols), µ :
⋃rk(Γ)
m=0 Q

m × Γ(m) × Q → K (the function of transition weights), and
ν : Q→ K (the function of final weights). We define ∆A = dom(µ). A tuple d ∈ ∆A is called a transition
and d is called valid if µ(d) 6= 0. A state q ∈ Q is called final if ν(q) 6= 0.

We call a WTA over the max-plus semiring a max-plus-WTA and a WTA over the Boolean semiring
a finite tree automaton (FTA). We also write a WTA A = (Q,Γ, µ, ν) over B as a tuple A′ = (Q,Γ, δ, F)
where δ = {d ∈ ∆A | µ(d) = 1} and F = {q ∈ Q | ν(q) = 1}.

For a tree t ∈ TΓ, a mapping r : pos(t) → Q is called a quasi-run of A on t. For a quasi-run r on t
and a position w ∈ pos(t) with t(w) = a ∈ Γ(m), the tuple

t(t, r, w) = (r(w1), . . . , r(wm), a, r(w))

is called the transition at w. The quasi-run r is called a (valid) run if for every w ∈ pos(t) the transition
t(t, r, w) is valid with respect to A. We call a run r accepting if r(ε) is final. By RunA(t) and AccA(t)
we denote the sets of all runs and all accepting runs of A on t, respectively. For a state q ∈ Q, we denote
by RunA(t, q) the set of all runs r ∈ RunA(t) such that r(ε) = q. For a position w ∈ pos(t), we define
the restriction r�w ∈ RunA(t�w) of r to w by r�w(v) = r(wv) for every v ∈ pos(t�w).

For a run r ∈ RunA(t), the weight of r is defined by

wtA(t, r) =
⊙

w∈pos(t)

µ(t(t, r, w)).

3

The behavior of A, denoted by JAK, is the mapping defined for every t ∈ TΓ by

JAK(t) =
⊕

r∈AccA(t)

(wtA(t, r)� ν(r(ε))),

where the sum over the empty set is 0 by convention. The support of a WTA A is the set supp(A) =
{t ∈ TΓ | JAK(t) 6= 0}. The support of an FTA A is also called the language accepted by A and denoted
by L(A). A subset L ⊆ TΓ is called recognizable if there exists an FTA A with L = L(A).

For a WTA A = (Q,Γ, µ, ν), a run of A on a Γ-context t is a run of the WTA A′ = (Q,Γ�, µ
′, ν) on

t, where µ′(�, q) = 1 for all q ∈ Q and µ′(d) = µ(d) for all d ∈ ∆A. We denote Run�A(t) = RunA′(t)
and for r ∈ Run�A(t) write wt�A(t, r) = wtA′(t, r). For an n-Γ-context t ∈ TΓ� and states q0, . . . , qn, we
denote by Run�A(q1, . . . , qn, t, q0) the set of all runs r ∈ Run�A(t) such that r(ε) = q0 and r(♦i(t)) = qi
for every i ∈ {1, . . . , n}.

We consider the set Γ×Q as an alphabet by defining rkΓ×Q(a, q) = rkΓ(a) for every pair (a, q) ∈ Γ×Q
and identify every tree t′ ∈ TΓ×Q with the pair (t, r) given by t = (pos(t′), πΓ ◦ labelt′) ∈ TΓ and r =
πQ ◦ labelt′ , where πΓ : Γ×Q→ Γ and πQ : Γ×Q→ Q are the projections. For a Γ-word s ∈ TΓ� , a state
q ∈ Q, and a run rs ∈ Run�A(q, s, q), we define (s, rs)

0 = (�, q) and (s, rs)
n+1 = (s, rs)〈(s, rs)n → ♦1(s)〉

for n ≥ 0. For a Γ-context t ∈ TΓ� , a run rt ∈ Run�A(t), and a position w ∈ pos(t) with r(w) = q, we define
the insertion of (s, rs) into (t, r) at w by (t, rt)〈(s, rs) . w〉 = (t, rt)〈(s, rs)→ w〉〈(t, rt)�w → w♦1(s)〉.

We call a WTA A = (Q,Γ, µ, ν) over K and Γ trim if for every p ∈ Q, there exist t ∈ TΓ, r ∈ AccA(t),
and w ∈ pos(t) with r(w) = p. The trim part of A is the automaton obtained from A by removing all
states p ∈ Q for which no such t, r, and w exist. This process obviously has no influence on JAK. We
call A complete if for every m ≥ 0, a ∈ Γ(m), and (q1, . . . , qm) ∈ Qm, there exists at least one q ∈ Q
with µ(q1, . . . , qm, a, q) 6= 0. We call A deterministic or sequential if for every m ≥ 0, a ∈ Γ(m), and
(q1, . . . , qm) ∈ Qm, there exists at most one q ∈ Q with µ(q1, . . . , qm, a, q) 6= 0. If there exists an integer
M ≥ 1 such that |AccA(t)| ≤M for every t ∈ TΓ, we call A M -ambiguous. We call A finitely ambiguous
if it is M -ambiguous for some M ≥ 1 and unambiguous if it is 1-ambiguous. We call the behavior JAK of
A finitely sequential if there exist finitely many deterministic WTA A1, . . . ,An over K and Γ such that
JAK =

⊕n
i=1JAiK, where the sum is taken pointwise.

3 The Criterion for Finite Sequentiality

We will show that for a finitely ambiguous max-plus-WTA A, it is decidable whether its behavior JAK
is finitely sequential. Moreover, we will show that if JAK is finitely sequential, then deterministic max-
plus-WTA whose pointwise maximum is equivalent to JAK can be effectively constructed. Our approach
is inspired by Bala’s corresponding proof for finitely ambiguous max-plus word automata [3]. A precise
comparison of our methods to those of [3] is difficult, however, as for lack of space, most proof details
had to be left out in [3]. The general outline of our proof can be summarized as follows.

First, we formulate the separation property, a generalization of Bala’s A-Fork property. Then we show
that it is decidable whether the separation property is satisfied and that the behavior of a max-plus-WTA
is finitely sequential if and only if the separation property is not satisfied. For the decidability of the
separation property, we employ Parikh’s Theorem [36, 18] and show that the decidability of the separation
property can be reduced to the satisfiability of systems of linear inequalities over the rationals with integer
solutions. To show that the behavior of a max-plus-WTA A which satisfies the separation property is
not finitely sequential, we assume that JAK can be represented as a finite maximum of deterministic
max-plus-WTA and employ Ramsey’s Theorem [42] to obtain a contradiction. For the converse, if the
separation property is not satisfied, we show how to construct finitely many unambiguous max-plus-WTA
whose pointwise maximum is equivalent to JAK and which all do not satisfy the tree fork property. As
the behavior of an unambiguous max-plus-WTA which does not satisfy the tree fork property is finitely
sequential [39], we obtain that JAK is also finitely sequential.

We need some more preparation before we can formulate the separation property. In the following,
let Γ be a ranked alphabet. We begin by recalling the tree fork property and the related concepts of
rivals, reachers, distinguishers, and forks. Intuitively, two states of a finitely ambiguous max-plus-WTA
A are called rivals if they can be reached by the same tree u and they can loop in the same Γ-word s
but the weights of these loops differ. The tree u is then called a reacher of p and q and the Γ-word s a
distinguisher for p and q. For two rivals p and q, a Γ-word f is called a p-q-fork if f can both loop in
p and also go from p to q, in a bottom-up sense. We say that A satisfies the tree fork property if there
exist two rivals p and q such that either there exists a p-q-fork or p and q can occur at prefix-independent
positions in some run of A. Formally, these definitions are as follows.

4

Definition 3.1. Let A = (Q,Γ, µ, ν) be a finitely ambiguous max-plus-WTA. Two states p, q ∈ Q are
called rivals if there exists a tree u ∈ TΓ with RunA(u, p) 6= ∅ and RunA(u, q) 6= ∅ and a Γ-word s with
runs rp ∈ Run�A(p, s, p) and rq ∈ Run�A(q, s, q) such that wt�A(s, rp) 6= wt�A(s, rq). In this case, we call u
a p-q-reacher and s a p-q-distinguisher. We say that A satisfies the tree fork property if at least one of
the following two conditions is satisfied.

(i) There exist rivals p, q ∈ Q and a Γ-word f with RunA(p, f, p) 6= ∅ and RunA(p, f, q) 6= ∅. In this
case, we call f a p-q-fork.

(ii) There exist rivals p, q ∈ Q, a 2-Γ-context t ∈ TΓ� , and a run r ∈ Run�A(t) with r(♦1(t)) = p and
r(♦2(t)) = q. In this case, we call t a p-q-split.

We have the following theorem relating the tree fork property to finite sequentiality of unambiguous
max-plus-WTA.

Theorem 3.2 ([39]). The behavior of a trim unambiguous max-plus-WTA A is finitely sequential if
and only if A does not satisfy the tree fork property. If JAK is finitely sequential, a finitely sequential
representation of A can be effectively constructed.

For finitely ambiguous max-plus-WTA, however, the tree fork property does not capture finite se-
quentiality. To see why, consider an unambiguous max-plus-WTA A satisfying the tree fork property
[39, 4, 26] and let L be the largest weight used in A. Then construct a one-state max-plus-WTA B whose
every transition weight and every final weight is L. Clearly, B is deterministic and we have JBK ≥ JAK.
By taking the disjoint union A∪B of A and B, we obtain a 2-ambiguous max-plus-WTA which satisfies
the tree fork property but whose behavior coincides with that of the deterministic automaton B. In this
particular example, the states relevant for the tree fork property to be satisfied are not relevant at all
for the behavior of the automaton.

In order to reduce the finite sequentiality problem of finitely ambiguous max-plus-WTA to that of
unambiguous max-plus-WTA, we decompose every finitely ambiguous max-plus-WTA A into a maximum
of finitely many unambiguous max-plus-WTA A1, . . . ,AN and then analyze the interplay of these latter
automata. We can do so as in fact, every finitely ambiguous WTA can be decomposed into finitely many
unambiguous WTA [26, 37]. This is a common approach when dealing with finite ambiguity [26, 29, 38]
and is also used by Bala in the corresponding proof for words [3]. In the simplest case, if A1, . . . ,AN
all do not satisfy the tree fork property, we find a finitely sequential representation of A by constructing
such a representation for each An and then combining all of these. However, if some An does satisfy the
tree fork property, we have to analyze whether this automaton contributes enough to the behavior of A
for there not to exist a finitely sequential representation of A. We have the following lemma.

Lemma 3.3 ([37]). Let A be a finitely ambiguous WTA over a semiring K and a ranked alphabet Γ, then
we can effectively find an integer M ∈ N and construct finitely many unambiguous WTA A1, . . . ,AM
over K and Γ with JAK = JA1K⊕ . . .⊕ JAM K.

Proof. We provide a short direct proof. By [46], we can choose M as 222 log(rk(Γ)+1)n

, where n is the
number of states of A. For the construction of A1, . . . ,AM , we employ an idea also used in [15] for word
automata, namely using a lexicographic ordering on the runs of A. We write A = ({1, . . . , n},Γ, µ, ν)
and for every tree t ∈ TΓ, define a total order <l on RunA(t) by r1 <l r2 if and only if there exists
w ∈ pos(t) such that r1(w) < r2(w) and for all v ∈ pos(t) with v <l w we have r1(v) = r2(v). For
every i ∈ {1, . . . ,M}, we define an unambiguous WTA Ai executing every lexicographically i-th run
of A as follows. For every m ∈ {1, . . . , rk(Γ)}, we define a total order <l on (Q × {1, . . . ,M})m × Q
by ((q1, n1), . . . , (qm, nm), q0) <l ((q′1, n

′
1), . . . , (q′m, n

′
m), q′0) if and only if either nk < n′k for some k ∈

{1, . . . ,m} and nl = n′l for all l < k or nl = n′l for all l ∈ {1, . . . ,m} and q0 < q′0.

For a letter a ∈ rk
(m)
Γ and sets V1, . . . , Vm ⊆ Q×{1, . . . ,M}, we let ((q

(1)
1 , n

(1)
1), . . . , (q

(1)
m , n

(1)
m), q

(1)
0) <l

. . . <l ((q
(N)
1 , n

(N)
1), . . . , (q

(N)
m , n

(N)
m), q

(N)
0) be an enumeration of the set {((q1, n1), . . . , (qm, nm), q0) ∈

V1×. . .×Vm×Q | µ(q1, . . . , qm, a, q0) 6= 0} and let ord(V1, . . . , Vm, a) = {((q(k)
1 , n

(k)
1), . . . , (q

(k)
m , n

(k)
m), (q

(k)
0 , k)) |

k ∈ {1, . . . , N}} and succ(V1, . . . , Vm, a) = {(q(k)
0 , k) | k ∈ {1, . . . , N}}. Then for every i ∈ {1, . . . ,M},

we define a WTA Ai = (Q × {1, . . . ,M} × P(Q × {1, . . . ,M}),Γ, µi, νi) over K and Γ by defining for

5

every a ∈ Γ with m = rkΓ(a) and (q0, n0, V0), . . . , (qm, nm, Vm) ∈ Q× {1, . . . ,M} × P(Q× {1, . . . ,M})

µi((q1, n1, V1), . . . , (qm, nm, Vm), a, (q0, n0, V0)) =
µ(q1, . . . , qm, a, q0) if V0 = succ(V1, . . . , Vm, a) and

((q1, n1), . . . , (qm, nm), (q0, n0)) ∈ ord(V1, . . . , Vm, a)

0 otherwise

νi(q0, n0, V0) =

{
ν(q0) if n0 = i

0 otherwise.

Then every automaton Ai is unambiguous and we have JAK = JA1K⊕ . . .⊕ JAM K.

In order to more easily analyze the interplay of the automata we obtain from Lemma 3.3, we want
to join them into a product automaton. For this, it is necessary that all of these automata coincide on
their support. For the max-plus semiring, this can easily be achieved.

Lemma 3.4. Let A be a finitely ambiguous max-plus-WTA over Γ, then we can effectively find an
integer M ∈ N and construct unambiguous max-plus-WTA A1, . . . ,AM over Γ with JAK = maxMi=1JAiK
and supp(A1) = . . . = supp(AM).

Proof. By Lemma 3.3, we can effectively find an integer M ∈ N and construct unambiguous max-plus-
WTA A1, . . . ,AM over Γ with JAK = maxMi=1JAiK. We write Ai = (Qi,Γ, µi, νi), let L =

⋃M
i=1 supp(Ai),

and let κ be the smallest weight used in the automata A1, . . . ,AM , i.e., for R =
⋃M
i=1(µi(∆Ai

)∪ νi(Qi))
we let κ = min(R \ {−∞}).

The language L is recognizable, therefore for i ∈ {1, . . . ,M}, the language Li = L \ supp(Ai) is also
recognizable and there exists a deterministic FTA A′i = (Q′i,Γ, δ

′
i, F
′
i) with L(A′i) = Li. We define the

max-plus-WTA A′′i = (Q′i,Γ, µ
′′
i , ν
′′) by

µ′′i (d) =

{
κ if d ∈ δ′i
−∞ otherwise

and ν′′i (q) =

{
κ if q ∈ F ′i
−∞ otherwise.

We assume without loss of generality that Qi ∩Q′i = ∅ and define A′′′i = (Qi ∪Q′i,Γ, µ′′′i , νi ∪ ν′′i) with

µ′′′i (d) =


µi(d) if d ∈ ∆Ai

µ′′i (d) if d ∈ ∆A′′i
−∞ otherwise

as the union of Ai and A′′i . Then A′′′i is unambiguous since Ai is unambiguous, A′′i is deterministic, and
supp(Ai) ∩ supp(A′′i) = ∅. Furthermore, for t ∈ supp(Ai) we have JA′′′i K(t) = JAiK(t).

For every t ∈ supp(A′′i), there exists some j ∈ {1, . . . ,M} with t ∈ supp(Aj) and due to the choice
of κ we have JAjK(t) ≥ JA′′i K(t). In conclusion, for all i ∈ {1, . . . ,M} we have that A′′′i is unambiguous,
supp(A′′′i) = L, and maxMi=1JA′′′i K = maxMi=1JAiK = JAK.

For our proofs, it will be convenient to assume that all final weights of the automata we obtain from
Lemma 3.4 are either −∞ or 0, i.e., they only decide whether a run is accepting or not, but otherwise
do not influence the weight of the run. We can do so by the following lemma.

Lemma 3.5 ([10]). Let A = (Q,Γ, µ, ν) be a WTA over a semiring K and a ranked alphabet Γ. Then
we can effectively construct a WTA A′ = (Q′,Γ, µ′, ν′) over K and Γ with JAK = JA′K, ν′(Q′) ⊆ {0,1},
and |AccA(t)| = |AccA′(t)| for every t ∈ TΓ.

Proof. We define the WTA A′ = (Q′,Γ, µ′, ν′) as follows. We let Q′ = Q× {0, 1} and define ν′(q, 0) = 0
and ν′(q, 1) = 1 for all q ∈ Q. For every d = (p1, . . . , pm, a, p0) ∈ ∆A, we let µ′((p1, 0), . . . , (pm, 0), a, (p0, 0)) =
µ(d) and µ′((p1, 0), . . . , (pm, 0), a, (p0, 1)) = µ(d)� ν(p0). On all remaining transitions we define µ′ as 0.

It is easy to see that for every tree t ∈ TΓ, we have a bijection f : AccA(t) → AccA′(t) given by
(f(r))(ε) = (r(ε), 1) and (f(r))(w) = (r(w), 0) for w ∈ pos(t) \ {ε}, and for this bijection it holds that
wtA(t, r)� ν(r(ε)) = wtA′(t, f(r)).

For the rest of this paper, let A be a trim finitely ambiguous max-plus-WTA over the ranked alphabet
Γ. We join the automata we obtain for A from Lemma 3.4 and Lemma 3.5 into a product automaton
over the product semiring QMmax as follows.

6

Lemma 3.6. We can effectively find an integer M ∈ N and construct a trim WTA Ǔ = (Q̌,Γ, µ̌, ν̌) over
QMmax and Γ such that

• Ǔ is unambiguous,

• µ̌(∆Ǔ) ⊆ QM ∪ {(−∞, . . . ,−∞)} and ν̌(Q̌) ⊆ {(0, . . . , 0), (−∞, . . . ,−∞)}, and

• for every t ∈ TΓ we have JAK(t) = maxMi=1 πi(JǓK(t)),

where πi : QMmax → Qmax is the projection to the i-th coordinate for every i ∈ {1, . . . ,M}.

Proof. By combining Lemma 3.4 and Lemma 3.5, we can find M ∈ N and unambiguous max-plus-
WTA A1, . . . ,AM over Γ such that JAK = maxMi=1JAiK, supp(A1) = . . . = supp(AM), and such that with
Ai = (Qi,Γ, µi, νi), we have νi(Qi) ⊆ {0,−∞} for every i ∈ {1, . . . ,M}. We define Ǔ = (Q̌,Γ, µ̌, ν̌) as the
trim part of the automaton Ǔ ′ = (Q̌′,Γ, µ̌′, ν̌′) defined as follows. We let Q̌′ = Q1×. . .×QM and for a ∈ Γ
with rkΓ(a) = m and p̌0, . . . , p̌m ∈ Q̌′ with p̌j = (pj1, . . . , pjM) we define, with xi = µi(p1i, . . . , pmi, a, p0i)
and yi = νi(p0i),

µ̌′(p̌1, . . . , p̌m, a, p̌0) =

{
(x1, . . . , xM) if (x1, . . . , xM) ∈ QM

(−∞, . . . ,−∞) otherwise

ν̌′(p̌0) =

{
(y1, . . . , yM) if (y1, . . . , yM) ∈ QM

(−∞, . . . ,−∞) otherwise.

It is easy to verify that Ǔ defined likes this satisfies all properties from the statement of the lemma.

Let Ǔ be the automaton we obtain for A from Lemma 3.6. For a tree t ∈ TΓ, a Γ-word s ∈
TΓ� , runs řt ∈ RunǓ (t), řs ∈ Run�Ǔ (s), states p̌, q̌ ∈ Q̌, and a coordinate i ∈ {1, . . . ,M}, we let
w̌ti(t, řt) = πi(wtǓ (t, řt)), w̌t�i (s, řs) = πi(wt�Ǔ (s, řs)), and w̌t�i (p̌, s, q̌) = wt�i (s, ř

q
p) for the unique run

řqp ∈ Run�Ǔ (p̌, s, q̌).

As we are still concerned with the rivals of the individual automata used to construct Ǔ , we define
in the following the concepts of rivals, reachers, distinguishers, and forks for Ǔ .

Definition 3.7. Let i ∈ {1, . . . ,M}, p̌, q̌ ∈ Q̌, t ∈ TΓ, and ř ∈ AccǓ (t).

• We call p̌ and q̌ i-rivals if there exists a tree u ∈ TΓ such that RunǓ (u, p̌) 6= ∅ and RunǓ (u, q̌) 6= ∅
and a Γ-word s such that Run�Ǔ (p̌, s, p̌) 6= ∅, Run�Ǔ (q̌, s, q̌) 6= ∅, and w̌t�i (p̌, s, p̌) 6= w̌t�i (q̌, s, q̌). In
this case, we also call u a p̌-q̌-reacher and s an i-p̌-q̌-distinguisher.

• We call a Γ-word f an i-p̌-q̌-fork if p̌ and q̌ are i-rivals, Run�Ǔ (p̌, f, p̌) 6= ∅, and Run�Ǔ (p̌, f, q̌) 6= ∅.

• We say that (t, ř) is i-p̌-q̌-fork-broken if there exist positions wp, wq ∈ pos(t) such that wq <p wp,
ř(wp) = p̌, ř(wq) = q̌, and (t〈� → wp〉)�wq

is an i-p̌-q̌-fork.

• We say that (t, ř) is i-p̌-q̌-split-broken if p̌ and q̌ are i-rivals and there exist two prefix-independent
positions wp, wq ∈ pos(t) with ř(wp) = p̌ and ř(wq) = q̌.

When appropriate, we may drop some of the hyphenated modifiers from the terms above; for example,
we will refer to (t, ř) as i-fork-broken if there exist states p̌, q̌ ∈ Q̌ such that (t, ř) is i-p̌-q̌-fork-broken and
as i-split-broken if there exist states p̌, q̌ ∈ Q̌ such that (t, ř) is i-p̌-q̌-split-broken. We call (t, ř) i-broken
if it is i-fork-broken or i-split-broken.

Our concept of brokenness, is inspired by Bala’s notion of “broken paths” [3]. Of course, as his
proof is concerned with words, the concept of split-brokenness does not exist. His notion of brokenness
corresponds to our notion of fork-brokenness. Employing the notion of brokenness, Bala characterizes
finite sequentiality of finitely ambiguous max-plus word automata using the A-Fork property. Translated
to tree automata, the A-Fork property is defined as follows. We say that Ǔ satisfies the A-Fork property
if for every constant C > 0, there exists a tree t ∈ TΓ and an accepting run r ∈ AccǓ (t) such that for some
weight-maximal coordinate i, i.e., with w̌ti(t, r) = maxMj=1 w̌tj(t, r), we have that (t, r) is i-broken and

for every coordinate j such that (t, r) is not j-broken, we have w̌tj(t, r) < w̌ti(t, r)−C. In other words,
the A-Fork property is satisfied if broken coordinates are able to dominate non-broken coordinates by
an arbitrarily large margin. Bala shows that a finitely ambiguous max-plus word automaton is finitely
sequential if and only if the corresponding automaton Ǔ does not satisfy the A-Fork property.

7

ν̌(>) = (0, 0, 0) µ̌(p, b, p)

µ̌(p, q, c,>) = (0, 0, 0) µ̌(q, b, q)

= (1, 1, 1)

= (1,−1, 1)

µ̌(p1, b, p) = µ̌(p2, b, p) = µ̌(q1, b, q) = µ̌(q2, b, q) = (0, 0, 0)

µ̌(p1, a1, p1) = µ̌(q1, a1, q1) = (−1, 0, 0)

µ̌(p2, a2, p2) = µ̌(q2, a2, q2) = (0, 0,−1)

µ̌(d1, p1) = µ̌(d1, q1) = µ̌(d2, p2) = µ̌(d2, q2) = (0, 0, 0)

c

b

b

a1

d1

b

b

a2

d2

c

b

b

a2

d2

b

b

a1

d1

>

q

q

q2

q2

p

p

p1

p1

>

q

q

q1

q1

p

p

p2

p2

(1, 1, 1)

(−1, 0, 0)

(1,−1, 1)

(0, 0,−1)

(1, 1, 1)

(0, 0,−1)

(1,−1, 1)

(−1, 0, 0)

Figure 1: A scenario for the automaton Ǔ : The automaton ({p1, p2, q1, q2, p, q,>},Γ, µ̌, ν̌) over the ranked
alphabet Γ = {a1, a2, b, c, d1, d2} where c ∈ Γ(2), a1, a2, b ∈ Γ(1), and d1, d2 ∈ Γ(0). All unspecified weights
are assumed to be −∞. The states p and q are 2-rivals.

For tree automata, however, this criterion does not capture finite sequentiality. More precisely, if we
know that there do not exist a tree t and a run r on t such that (t, r) is split-broken, then the A-Fork
property does capture finite sequentiality also for tree automata. However, if Ǔ satisfies the A-Fork
property due to split-broken coordinates dominating non-broken coordinates, the behavior of A may still
be finitely sequential. This is evidenced by the following example.

Example 3.8. Consider the scenario for Ǔ as defined in Figure 1. The support of Ǔ consists of all trees
of the form c(bk(ami (di)), b

l(anj (dj))) with i, j ∈ {1, 2}, k, l > 0, and m,n ≥ 0. A valid run on such a
tree necessarily assigns states from {p1, p2, p} to the left branch of the tree and states from {q1, q2, q} to
the right branch of the tree. Moreover, if a branch begins with a letter di, this branch is assigned states
from {pi, qi, p, q}. In particular, we see that Ǔ is unambiguous.

The states p and q are 2-rivals as we see from the p-q-reacher u = b(a1(d1)) and the 2-p-q-distinguisher
s = b(�). By considering the trees tn = c(b(an1 (d1)), b(an2 (d2))), we see that runs exist where p and q occur
prefix-independently and the weight of coordinate 2 is arbitrarily larger than the weights of coordinates
1 and 3 since we have JǓK(tn) = (−n, 0,−n). However, in tn the subtrees below p and q are distinct,
thus a deterministic automaton can distinguish between them.

In fact, if Ǔ is given this way, we can construct a finitely sequential representation of JAK as follows.
All trees of the form c(bk(am1 (d1)), bl(an1 (d1))) are assigned the weight (−m − n + k + l − 2, k − l, k +
l − 2), so coordinate 3 is always dominant. Similarly, coordinate 1 is dominant for trees of the form
c(bk(am2 (d2)), bl(an2 (d2))). These trees can be handled by the deterministic max-plus-WTA obtained
from Ǔ by removing the states q1 and q2, letting µ(p, p, c,>) = (0, 0, 0), and replacing µ̌ with π1 ◦ µ̌ and
π3 ◦ µ̌, respectively. For trees of the form c(bk(am1 (d1)), bl(an2 (d2))), we remove the states p2 and q1 from
Ǔ and then construct three deterministic max-plus-WTA by replacing µ̌ by π1 ◦ µ̌, π2 ◦ µ̌, and π3 ◦ µ̌,
respectively. For the trees c(bk(am2 (d2)), bl(an1 (d1))) we can proceed similarly. The pointwise maximum
of the automata constructed this way is then equivalent to JAK. This example shows in particular that
if Ǔ satisfies the A-Fork property, JAK can still be finitely sequential.

Our fundamental idea to adapt the A-Fork property to tree automata is to formulate our version not
for Ǔ but for a covering of Ǔ . Oversimplifying, a covering of an automaton is a new automaton obtained
by enhancing the states of the original automaton with additional capacities to store information. A
prominent example of a covering construction is the Schützenberger covering of an automaton. The
Schützenberger covering in particular has already been employed in a number of decidability results for

8

max-plus automata [26, 4, 3, 38, 39]. For more background on the Schützenberger covering and coverings
in general, see [43].

Here, we construct from Ǔ an unambiguous automaton U with the same behavior as Ǔ and whose
states are tuples from Q̌ × P(Q̌) × P(Q̌4 × P(Q̌2)). Every run r of U on a tree t ∈ TΓ will correspond
uniquely to a run of Ǔ on t, given by projecting to the first entry. For a position w, the second entry
of r(w) will be the set of all states q̌ ∈ Q̌ which can be reached by t�w, i.e., for which RunǓ (t�w, q̌) is
non-empty. The third entry of r(w) will consist of all tuples (p̌, q̌, p̌′, q̌′, Y) such that (1) there exist runs
řp ∈ RunǓ (t�w, p̌) and řq ∈ RunǓ (t�w, q̌), (2) for some position below w, i.e., some position v ∈ pos(t�w),
we have řp(v) = p̌′ and řq(v) = q̌′, and (3) Y is the set of all pairs of states (řp(vu), řq(vu)) with
u ∈ pos(t�wv). Intuitively, the third entry of r(w) contains a tuple (p̌, q̌, p̌′, q̌′, Y) if and only if t�w can
reach p̌ and q̌ with two runs řp and řq, these runs visited p̌′ and q̌′ simultaneously at some position v in
the past, and Y consists of all pairs of states which these runs visited simultaneously up to v.

Our intention of considering the covering U is to increase the knowledge we have about each pair of
rivals. For two rivals of Ǔ , all we know is what the definition of rivals specifies. For two rivals of U on
the other hand, we will show that they are necessarily of the form (p̌, P, V) and (q̌, P, V) where p̌ and q̌
are rivals of Ǔ . This allows us to infer statements about the rivals of U which are not necessarily true
for the rivals of Ǔ . The precise construction of U is as follows.

Construction 3.9. We define U = (Q,Γ,µ,ν) as the trim part of the automaton U ′ = (Q′,Γ,µ′,ν′)
defined as follows. We let Q′ = Q̌×P(Q̌)×P(Q̌4×P(Q̌2)) and for subsets P1, . . . , Pm ⊆ Q̌ and a letter
a ∈ Γ with rkΓ(a) = m, we let

succ(P1, . . . , Pm, a) = {q̌0 | ∃(q̌1, . . . , q̌m) ∈ P1 × . . .× Pm with µ̌(q̌1, . . . , q̌m, a, q̌0) ∈ QM}.

For i ∈ {1, . . . , rkΓ(a)} and states (p̌, q̌, p̌′, q̌′, Y) ∈ Q̌4 × P(Q̌2), we let

succ(P1, . . . , Pm, (p̌, q̌, p̌
′, q̌′, Y), i, a) =

succ(P1, . . . , Pi−1, {p̌}, Pi+1, . . . , Pm, a)× succ(P1, . . . , Pi−1, {q̌}, Pi+1, . . . , Pm, a)× {p̌′} × {q̌′} × {Y }.

For V ⊆ Q̌4 × P(Q̌2) and p̌, q̌ ∈ Q̌, we let

visited(p̌, q̌, V) = {(p̌′, q̌′) | (p̌, q̌, p̌′, q̌′, Y) ∈ V for some Y ⊆ Q̌2}.

Then for a ∈ Γ with rkΓ(a) = m and (p̌0, P0, V0), . . . , (p̌m, Pm, Vm) ∈ Q′, we define

µ′((p̌1, P1, V1), . . . , (p̌m, Pm, Vm), a, (p̌0, P0, V0)) =
µ̌(p̌1, . . . , p̌m, a, p̌0) if P0 = succ(P1, . . . , Pm, a) and with

V =
⋃m
i=1

⋃
(p̌,q̌,p̌′,q̌′,Y)∈Vi

succ(P1, . . . , Pm, (p̌, q̌, p̌
′, q̌′, Y), i, a)

we have V0 = V ∪ {(p̌, q̌, p̌, q̌, Y) | p̌, q̌ ∈ P0 and Y = visited(p̌, q̌, V) ∪ {(p̌, q̌)}}
(−∞, . . . ,−∞) otherwise

ν′(p̌0, P0, V0) = ν̌(p̌0).

We let π1 : Q → Q̌, π2 : Q → P(Q̌), and π3 : Q → P(Q̌4 × P(Q̌2)) be the projections, and let wti and
wt�i be defined for U in the same way we defined w̌ti and w̌t�i for Ǔ . Furthermore, we note that the
concepts of rivals, reachers, distinguishers, and forks as defined for Ǔ in Definition 3.7 apply to U in a
similar fashion.

We have the following lemma stating that U indeed possesses the properties we described earlier.

Lemma 3.10. Let t ∈ TΓ be a tree. Then the following statements hold.

(i) For every run r ∈ RunU (t) and position w ∈ pos(t), we have q̌ ∈ π2 ◦ r(w) if and only if there
exists a run ř ∈ RunǓ (t�w, q̌).

(ii) For every run r ∈ RunU (t) and position w ∈ pos(t), we have (p̌, q̌, p̌′, q̌′, Y) ∈ π3 ◦ r(w) if and only
if there exist runs řp ∈ RunǓ (t�w, p̌) and řq ∈ RunǓ (t�w, q̌) such that for some v ∈ pos(t�w) we
have řp(v) = p̌′, řq(v) = q̌′, and Y = {(řp(vu), řq(vu)) ∈ Q̌2 | u ∈ pos(t�wv)}.

(iii) The projection π1 induces a bijection π1 : RunU (t)→ RunǓ (t) by r 7→ π1 ◦ r.

(iv) U is trim, unambiguous, and satisfies JUK = JǓK.

9

(v) Let p,q ∈ Q be rivals. Then p and q are of the form (p̌, P, V) and (q̌, P, V), respectively, for
two states p̌, q̌ ∈ Q̌ and sets P ⊆ Q̌, V ⊆ Q̌4 × P(Q̌2). Moreover, for every tree u ∈ TΓ we have
RunU (u,p) = ∅ if and only if RunU (u,q) = ∅.

Proof. (i) Let t ∈ TΓ and r ∈ RunU (t) and for contradiction, let w ∈ pos(t) be a prefix-maximal position
for which (i) does not hold. We deduce that (i) holds for w. We let a = t(w), m = rkΓ(a), and write
r(w) = (p̌0, P0, V0) and r(wi) = (p̌i, Pi, Vi) for i ∈ {1, . . . ,m}.

First, let q̌ ∈ P0, then there are states (q̌1, . . . , q̌m) ∈ P1× . . .×Pm with µ̌(q̌1, . . . , q̌m, a, q̌) 6= −∞. By
assumption, for every i ∈ {1, . . . ,m} we find a run ři ∈ RunǓ (t�wi, q̌i). Then the quasi-run ř : pos(t�w)→
Q̌ defined by ř(ε) = q̌ and ř(iv) = ři(v) is a run of Ǔ on t�w with ř(ε) = q̌.

On the other hand, let ř ∈ RunǓ (t�w, q̌). Then for every i ∈ {1, . . . ,m} we have ř�i ∈ RunǓ (t�wi),
so by assumption ř(i) ∈ Pi. Moreover, µ̌(ř(1), . . . , ř(m), a, q̌) 6= −∞, so q̌ ∈ P . Thus, (i) holds for w,
which is a contradiction, so w does not exist.

(ii) Let t ∈ TΓ and r ∈ RunU (t) and for contradiction, let w ∈ pos(t) be a prefix-maximal posi-
tion for which (ii) does not hold. We deduce that (ii) holds for w. We let a = t(w), m = rkΓ(a),
and write r(w) = (p̌′′0 , P0, V0) and r(wi) = (p̌′′i , Pi, Vi) for i ∈ {1, . . . ,m}. Furthermore, we let V =⋃m
i=1

⋃
(p̌,q̌,p̌′,q̌′,Y)∈Vi

succ(P1, . . . , Pm, (p̌, q̌, p̌
′, q̌′, Y), i, a).

♣ First, we let (p̌, q̌, p̌′, q̌′, Y) ∈ V0. If (p̌, q̌, p̌′, q̌′, Y) ∈ V , then for some i ∈ {1, . . . ,m} and
(p̌i, q̌i, p̌

′, q̌′, Y) ∈ Vi we have (p̌, q̌, p̌′, q̌′, Y) ∈ succ(P1, . . . , Pm, (p̌i, q̌i, p̌
′, q̌′, Y), i, a). Thus, there ex-

ist (p̌1, . . . , p̌i−1, p̌i+1, . . . , p̌m), (q̌1, . . . , q̌i−1, q̌i+1, . . . , q̌m) ∈ P1 × . . . × Pi−1 × Pi+1 × . . . × Pm with
µ̌(p̌1, . . . , p̌m, a, p̌) ∈ QM and µ̌(q̌1, . . . , q̌m, a, q̌) ∈ QM . By (i), there exist runs řpj ∈ RunǓ (t�wj , p̌j)
and řqj ∈ RunǓ (t�wj , q̌j) for every j ∈ {1, . . . ,m} \ {i}. Furthermore, we assume that (ii) holds for wi, so
there exist runs řpi ∈ RunǓ (t�wi, p̌i) and řqi ∈ RunǓ (t�wi, q̌i) and a position v ∈ pos(t�wi) with řpi (v) = p̌′,
řqi (v) = q̌′, and Y = {(řpi (vu), řqi (vu)) ∈ Q̌2 | u ∈ pos(t�wiv)}. Thus, for the runs řp and řq defined
by řp(ε) = p̌, řq(ε) = q̌, řp(ju) = řpj (u), and řq(ju) = řqj (u) for every position ju ∈ pos(t�w), we have

řp(iv) = p̌′, řq(iv) = q̌′, and Y = {(řp(ivu), řq(ivu)) ∈ Q̌2 | u ∈ pos(t�wiv)}.
If (p̌, q̌, p̌′, q̌′, Y) = (p̌, q̌, p̌, q̌, Y) with p̌, q̌ ∈ P0 and Y = visited(p̌, q̌, V) ∪ {(p̌, q̌)}, we see by (i)

that there exist runs řp ∈ RunǓ (t�w, p̌) and řq ∈ RunǓ (t�w, q̌). We show that Y = {(řp(u), řq(u)) ∈
Q̌2 | u ∈ pos(t�w)}. First, let (p̌′, q̌′) ∈ Y . For (p̌′, q̌′) = (p̌, q̌), the statement follows by considering
u = ε. Otherwise, there exists Y ′ ⊆ Q̌2 with (p̌, q̌, p̌′, q̌′, Y ′) ∈ V . Thus, for some i ∈ {1, . . . ,m}
and (p̌i, q̌i, p̌

′, q̌′, Y ′) ∈ Vi we have (p̌, q̌, p̌′, q̌′, Y ′) ∈ succ(P1, . . . , Pm, (p̌i, q̌i, p̌
′, q̌′, Y ′), i, a). We assume

that (ii) holds for wi, so there exist runs řpi ∈ RunǓ (t�wi, p̌i) and řqi ∈ RunǓ (t�wi, q̌i) and a position
v ∈ pos(t�wi) with řpi (v) = p̌′ and řqi (v) = q̌′. From the unambiguity of Ǔ , it follows that řp�i = řpi and
řq�i = řqi , so we have řp(iv) = p̌′ and řq(iv) = q̌′.

Now let u ∈ pos(t�w), p̌i = řp(i), and q̌i = řq(i) for every i ∈ {1, . . . ,m}. For every i ∈ {1, . . . ,m}, we
have řp�i, ř

q�i ∈ RunǓ (t�wi), so we have p̌i, q̌i ∈ Pi by (i). For u = ε, we have (řp(u), řq(u)) = (p̌, q̌) ∈ Y .
Otherwise, we have u = iv for some i ∈ {1, . . . ,m}. It follows that (řp(u), řq(u)) = (řp�i(v), řq�i(v)).
We assume that (ii) holds for wi, so we have (p̌i, q̌i, ř

p(u), řq(u), Y ′) ∈ Vi for some Y ′ ⊆ Q̌2. Since
µ̌(p̌1, . . . , p̌m, a, p̌) ∈ QM and µ̌(q̌1, . . . , q̌m, a, q̌) ∈ QM , we see that (p̌, q̌, řp(u), řq(u), Y ′) ∈ V . In
particular, we have (řp(u), řq(u)) ∈ visited(p̌, q̌, V) ⊆ Y .
♣ Conversely, we let (p̌, q̌, p̌′, q̌′, Y) ∈ Q̌4 × P(Q̌2) satisfying that there exist runs řp ∈ RunǓ (t�w, p̌)

and řq ∈ RunǓ (t�w, q̌) such that for some v ∈ pos(t�w) we have řp(v) = p̌′, řq(v) = q̌′, and Y =
{(řp(vu), řq(vu)) ∈ Q̌2 | u ∈ pos(t�wv)}. We let p̌i = řp(i), q̌i = řq(i) for i ∈ {1, . . . ,m}. For v 6= ε, we
have v = iv′ for some i ∈ {1, . . . ,m}. We assume that (ii) holds for wi, so we have (p̌i, q̌i, p̌

′, q̌′, Y) ∈ Vi.
By (i), we see that (p̌, q̌, p̌′, q̌′, Y) ∈ succ(P1, . . . , Pm, (p̌i, q̌i, p̌

′, q̌′, Y), i, a) ⊆ V0.
For v = ε, we note that we have (p̌, q̌, p̌, q̌, visited(p̌, q̌, V)∪{(p̌, q̌)}) ∈ V0. We show Y = visited(p̌, q̌, V)∪

{(p̌, q̌)}. Let u ∈ pos(t�w). For u = ε, we have (řp(u), řq(u)) = (p̌, q̌). Otherwise, we have u = iu′ for some
i ∈ {1, . . . ,m}. We assume that (ii) holds for wi, so for some Y ′ ⊆ Q̌2 we have (p̌i, q̌i, ř

p(u), řq(u), Y ′) ∈
Vi. It follows that (p̌, q̌, řp(u), řq(u), Y ′) ∈ V , so (řp(u), řq(u)) ∈ visited(p̌, q̌, V). On the other hand, for
(p̌′′, q̌′′) ∈ visited(p̌, q̌, V), there exists i ∈ {1, . . . ,m} and (p̌′i, q̌

′
i, p̌
′′, q̌′′, Y ′) ∈ Vi with (p̌, q̌, p̌′′, q̌′′, Y ′) ∈

succ(P1, . . . , Pm, (p̌
′
i, q̌
′
i, p̌
′′, q̌′′, Y ′), i, a). We assume that (ii) holds for wi, so by (i) and the unambiguity

of Ǔ , we have p̌′i = p̌i and q̌′i = q̌i. Thus, there exists v′ ∈ pos(t�wi) with (p̌′′, q̌′′) = (řp(iv′), řp(iv′)) ∈ Y .

(iii) Let t ∈ TΓ. By definition of µ, it is clear that for r ∈ RunU (t) we have π1 ◦ r ∈ RunǓ (t). The
injectivity of π1 : RunU (t)→ RunǓ (t) follows from (i) and (ii), as all runs on t coincide on their second
and third entries. For surjectivity, note that given a run ř ∈ RunǓ (t), the definition of µ provides an
obvious way to define a run r ∈ RunU (t) with π1 ◦ r = ř.

10

(iv) U is trim by definition. Let t ∈ TΓ. By definition of µ, for every run r ∈ RunU (t) we have
wtU (t, r) = wtǓ (t, π1 ◦ r). By definition of ν, we also have ν(r(ε)) = ν̌(π1 ◦ r(ε)). By (iii), we thus have
|AccU (t)| = |AccǓ (t)| ≤ 1, which means that U is unambiguous, and JUK(t) = JǓK(t).

(v) Let p,q ∈ Q be rivals and let u ∈ TΓ be a p-q-reacher. Then there exist runs rp ∈ RunU (u,p)
and rq ∈ RunU (u,q). We write p = (p̌, Pp, Vp) and q = (q̌, Pq, Vq). From (i) and (ii), we obtain
Pp = π2 ◦ rp(ε) = π2 ◦ rq(ε) = Pq and Vp = π3 ◦ rp(ε) = π3 ◦ rq(ε) = Vq. Moreover, by (i), we see that
p̌ ∈ Pp and q̌ ∈ Pq.

For the second statement, let u ∈ TΓ such that rp ∈ RunU (u,p) exists. Since q̌ ∈ Pq = Pp, we see
by (i) that there exists a run řq ∈ RunǓ (u, q̌). By (iii), there thus exists a run rq ∈ RunU (u) with
π1 ◦ r(ε) = q̌. From (i) and (ii), we obtain π2 ◦ r(ε) = Pp = Pq and π3 ◦ r(ε) = Vp = Vq, so we have
r(ε) = q. By symmetry, the stated equivalence holds.

Finally, we introduce our version of the A-Fork property. To allow for easier proofs, we use a different
formulation and consequently a different name. But in fact, U satisfies the separation property if and
only if it satisfies the A-Fork property in the way we translated it to trees earlier.

Definition 3.11. Let C ∈ N. We call a set I ⊆ {1, . . . ,M} C-separable if there exists a tree t ∈ TΓ and
a run r ∈ AccU (t) such that

(i) if i ∈ I, then (t, r) is i-broken and

(ii) if j ∈ {1, . . . ,M} \ I, then wtj(t, r) ≤ wti(t, r)− C for all i ∈ I.

In this case, we also say that (t, r) is I-C-separated. We call I separable if it is C-separable for every
C ∈ N and define I as the set of all separable subsets I ⊆ {1, . . . ,M}. If I is non-empty, we say that U
satisfies the separation property or, for short, that U is broken.

Our main result is to prove the following theorem relating the separation property to the finite
sequentiality problem of finitely ambiguous max-plus-WTA.

Theorem 3.12. The behavior JAK of A is finitely sequential if and only if U is not broken. Moreover,
it is decidable whether U is broken. In particular, it is decidable whether JAK is finitely sequential.

We separate the proof of Theorem 3.12 into three parts. We show in Section 3.1 that it is decidable
whether U is broken. In Section 3.2, we show that if U is broken, then JAK is not finitely sequential.
Finally, in Section 3.3, we show how to construct finitely many deterministic max-plus-WTA whose
pointwise maximum is equivalent to JAK in case that U is not broken.

For all of our proofs, it will be crucial that for every two states of U , we can decide whether they are
rivals [2, Section 4], [11, Section 5.4]. For two rivals of an unambiguous automaton, it is in fact quite
easy to give an upper bound on the size of their smallest distinguisher. The same applies to reachers and
forks. Thus, deciding whether two states are rivals reduces to checking for finitely many trees whether
they can reach both states and checking for finitely many Γ-words whether they are a distinguisher for
these two states. For Section 3.3, we require an even more precise statement, namely that if s is a
distinguisher for two rivals p and q, then we can obtain a p-q-distinguisher of height at most 4|Q|2 by
removing loops from the unique runs looping in p and q. For this, we employ the notion of a truncation.
Simply put, for a Γ-word s and a run r on s, a truncation of (s, r) is any pair (s′, r′) of a Γ-word s′ and
a run r′ on s′ which can be obtained by repeatedly cutting loops from (s, r).

Definition 3.13. Let s, s′ ∈ TΓ� be Γ-words, r ∈ Run�U (s), and r′ ∈ Run�U (s′). We say that (s′, r′)
is a truncation of (s, r), denoted by (s, r) (s′, r′), if there exists a mapping g : pos(s′) → pos(s) such
that g(ε) = ε, g(♦1(s′)) = ♦1(s), for all w ∈ pos(s′) we have t(s′, r′, w) = t(s, r, g(w)), and for all
w1, w2 ∈ pos(s′) we have g(w1) ≤l g(w2) if and only if w1 ≤l w2 and g(w1) ≤p g(w2) if and only if
w1 ≤p w2.

We observe as follows that removing a loop from a pair (s, r) yields a truncation and that “being a
truncation of” is a transitive relation.

Proposition 3.14. Let s ∈ TΓ� be a Γ-word and r ∈ Run�U (s), then the following holds.

(i) For every two positions w1, w2 ∈ pos(s) with w1 ≤p w2 and r(w1) = r(w2) and (s′, r′) =
(s, r)〈(s, r)�w2

→ w1〉 we have (s, r) (s′, r′) by defining g : pos(s′)→ pos(s) through g(w) = w2v
if w = w1v for some v ∈ N∗ and g(w) = w otherwise.

11

(ii) If (s, r) (s′, r′) and (s′, r′) (s′′, r′′), then (s, r) (s′′, r′′) by concatenating the mappings
g : pos(s′)→ pos(s) and g′ : pos(s′′)→ pos(s′) to g ◦ g′ : pos(s′′)→ pos(s).

We can use truncations to bound the size of distinguishers as follows.

Lemma 3.15 ([11, Lemma 5.10],[39]). Let p,q ∈ Q be i-rivals for some i ∈ {1, . . . ,M}, let s ∈ TΓ�

be an i-p-q-distinguisher, and let rp ∈ Run�U (p, s,p) and rq ∈ Run�U (q, s,q). Then there exists an
i-p-q-distinguisher s′ with height(s′) ≤ 4|Q|2 such that for the runs r′p ∈ Run�U (p, s′,p) and r′q ∈
Run�U (q, s′,q), (s′, r′p) is a truncation of (s, rp) and (s′, r′q) is a truncation of (s, rq).

Proof. Let p,q, s, rp, rq be as in the statement of the lemma. If height(s) ≤ 4|Q|2, the statement is
clear as both (s, rp) and (s, rq) are each truncations of themselves. Otherwise, we let w ∈ pos(s) such
that |w| = height(s) > 4|Q|2 and we let w′ ∈ pos(s) be the longest common prefix of w and ♦1(s).
Then either |w′| > 2|Q|2 or |w| − |w′| > 2|Q|2, or both. In the first case, there exist two disjoint
simultaneous loops in rp and rq above ♦1(s). More precisely, by pigeon hole principle we can find
positions w1 <p w2 <p w3 <p w4 with w4 ≤p w

′ ≤p ♦1(s) for which (rp(w1), rq(w1)) = (rp(w2), rq(w2))
and (rp(w3), rq(w3)) = (rp(w4), rq(w4)). In the second case, there exist two disjoint simultaneous loops
in rp and rq which are prefix-independent from ♦1(s). That is, there exist positions w1 <p w2 ≤p

w3 <p w4 with w′ <p w1 and w4 ≤p w in pos(s) for which (rp(w1), rq(w1)) = (rp(w2), rq(w2)) and
(rp(w3), rq(w3)) = (rp(w4), rq(w4)).

We let x = wt�U (s, rp) and y = wt�U (s, rq), we let x12 and x34 be the weights of the loops in the run
rp, and we let y12 and y34 be the weights of the loops in the run rq. We obtain truncations of (s, rp) and
(s, rq) by removing either one of the two loops or both loops as follows. If x− x12 6= y− y12, we remove
the w1-w2 loop by (s, rp)〈(s, rp)�w2

→ w1〉 and (s, rq)〈(s, rq)�w2
→ w1〉. Otherwise, if x−x34 6= y− y34,

we remove the w3-w4 loop in the same fashion. If we have both x− x12 = y− y12 and x− x34 = y− y34,
we obtain that 2x−x12−x34 = 2y− y12− y34. From x 6= y, it follows that x−x12−x34 6= y− y12− y34,
so we remove both loops. We continue this procedure until we arrive at truncations of height at most
4|Q|2. The transitivity of truncations ensures that the distinguisher and runs we obtain eventually are
indeed truncations of the original distinguisher and runs.

Using similar arguments, we can also bound the sizes of reachers and forks.

Lemma 3.16 ([39]). Let p,q ∈ Q be rivals, u ∈ TΓ be a p-q-reacher, and f ∈ TΓ� be a p-q-fork.
Then there exists a p-q-reacher u′ with height(u′) ≤ |Q|2 and a p-q-fork f ′ with height(f ′) ≤ 2|Q|2. In
particular, for every two states p,q ∈ Q, it is decidable whether p and q are rivals.

3.1 Decidability

In this section, we show that it is decidable whether U is broken. For this, we employ Parikh’s Theorem
and the decidability of the satisfiability of systems of linear inequalities over the rationals with integer
solutions [35, 9]. Note that this part of the proof does not follow any idea from [3] as in his proof, Bala
reduces the decidability of the A-Fork property to the decidability of a decidable fragment of Presburger
arithmetic. We begin by recalling Parikh’s Theorem and the concepts it involves.

Let Σ = {a1, . . . , an} be an alphabet. The Parikh vector p(w) ∈ Nn of a word w ∈ Σ∗ is the
vector p(w) = (|w|a1

, |w|a2
, . . . , |w|an). For a language L ⊆ Σ∗, the Parikh image of L is the set

p(L) = {p(w) | w ∈ L}.
A set of vectors J ⊆ Nn is called linear if there exist k ≥ 0 and vectors α, β1, . . . , βk ∈ Nn such that

J = {α+

k∑
i=1

ni · βi | n1, . . . , nk ∈ N}.

The set J is called semilinear if it is the union of finitely many linear subsets of Nn.
A context-free grammar (short: CFG) [21] is a tuple (N,Σ, P, S) where (1) N is a finite set of

nonterminal symbols, (2) Σ is a finite set of terminal symbols with N ∩ Σ = ∅, (3) P ⊆ N × (N ∪ Σ)∗

is a finite set of productions or rules, and (4) S ∈ N is the initial symbol. We usually denote a rule
(A,w) ∈ P by A→ w.

Let G = (N,Σ, P, S) be a context-free grammar. For u, v ∈ (N ∪Σ)∗ we write u⇒G v if there exists
u′, u′′ ∈ (N ∪ Σ)∗ and a production A → w ∈ P such that u = u′Au′′ and v = u′wu′′. The language
generated by G is the language

L(G) = {w ∈ Σ∗ | ∃n ≥ 0∃u1, . . . , un ∈ (N ∪ Σ)∗ : S ⇒G u1 ⇒G . . .⇒G un ⇒G w}.

12

A language L ⊆ Σ∗ is called context-free if there exists a context-free grammar G with L = L(G). By
Parikh’s Theorem, the Parikh image of every context-free language is semilinear.

Theorem 3.17 ([36, Theorem 2],[18]). For every context-free language L, the set p(L) is semilinear.

Furthermore, integers k, k1, . . . , kk and vectors α(i), β
(i)
j ∈ Nn (i ∈ {1, . . . , k}, j ∈ {1, . . . , ki}) with

p(L) =

k⋃
i=1

{α(i) +

ki∑
j=1

nj · β(i)
j | n1, . . . , nki ∈ N}

can be effectively found from every context-free grammar generating L.

We will employ Parikh’s Theorem to show that the image JUK(TΓ) of TΓ under JUK is the image of
a semilinear set under a matrix over the rationals. From this matrix, we will be able to infer a constant
C̃ such that every set I ⊆ {1, . . . ,M} is separable if and only if it is C̃-separable. We then reduce the
C̃-separability of such a set I to deciding the satisfiability of finitely many systems of inequalities over
the rationals with an integer solution. As the latter problem is decidable [35, 9], deciding the brokenness
of U boils down to deciding the C̃-separability of every set I ⊆ {1, . . . ,M}. We will employ the following
notion of the Parikh image of an automaton.

In the following, let B = (QB,Γ, µB, νB) be a WTA over a commutative semiring K = (K,⊕,�,0,1)
and Γ and let d1, . . . , dD be an enumeration of ∆B. For a run r of B on a tree t, we define the transition
Parikh vector of (t, r) by

p(t, r) = (|{w ∈ pos(t) | t(t, r, w) = d1}|, . . . , |{w ∈ pos(t) | t(t, r, w) = dD}|).

We define the Parikh image of B as the set p(B) = {p(t, r) | t ∈ TΓ, r ∈ AccB(t)}. As the following
lemma shows, the Parikh image of every WTA coincides with the Parikh image of a context-free language.

Lemma 3.18. There exists a context-free language L over the alphabet ∆B such that p(L) = p(B). A
context-free grammar G generating L can be found effectively from B.

Proof. We define the context-free grammar G = (QB ∪ {S},∆B, P, S), where S is a new symbol, by

P = {S → p | νB(p) 6= 0}
∪ {p→ (p1, . . . , pm, a, p)p1 . . . pm | µB(p1, . . . , pm, a, p) 6= 0}.

Then L = L(G) is context-free and we see as follows that p(L) = {p(t, r) | t ∈ TΓ, r ∈ AccB(t)}.
“⊆”: Let w ∈ L. We construct a tree t ∈ TΓ and a run r ∈ AccB(t) such that p(w) = p(t, r). Since

w ∈ L, we find words u1, . . . , un ∈ (QB ∪ ∆B)∗ such that un = w and S ⇒G u1 ⇒G . . . ⇒G un. We
construct by induction for every i ∈ {1, . . . , n} a Γ-context ti ∈ TΓ� and a run ri ∈ Run�B(ti) such that
νB(ri(ε)) 6= 0 and for every p ∈ Q and d ∈ ∆B we have

|ui|p = |{v ∈ pos(t) | ti(v) = � and ri(v) = p}|
|ui|d = |{v ∈ pos(t) | t(t, r, w) = d}|.

For i = 1, we know by the definition of G that u1 = p with νB(p) 6= 0, so we let t1 = � and r1(ε) = p. Now
assume we have constructed ti and ri with the properties above. We have ui ⇒G ui+1, so by definition
of G, there exists a transition d = (p1, . . . , pm, a, p) ∈ ∆B with µB(d) 6= 0 and words u′, u′′ ∈ (QB ∪∆B)∗

such that ui = u′pu′′ and ui+1 = u′dp1 . . . pmu
′′. Thus |ui|p ≥ 1, so by induction we find v ∈ pos(ti)

with ti(v) = � and ri(v) = p. We let ti+1 = ti〈a(�, . . . , �) → v〉 and define ri+1 by ri+1(v′) = ri(v
′) for

v′ ∈ pos(ti) and ri+1(vj) = pj for j ∈ {1, . . . ,m}. It is easy to check that ti+1 and ri+1 satisfy all of the
above properties.

Since un = w ∈ ∆∗B, the Γ-context tn is actually a Γ-tree, the run rn ∈ Run�B(tn) is an accepting run
of B on tn, and we have p(w) = p(un) = p(tn, rn). Thus, we have p(L) ⊆ {p(t, r) | t ∈ TΓ, r ∈ AccB(t)}.

“⊇”: Now let t ∈ TΓ and r ∈ AccB(t). We construct a word w ∈ L with p(w) = p(t, r). For this, we
construct by induction for every v ∈ pos(t) words u1, . . . , un such that r(v)⇒G u1 ⇒G . . .⇒G un, un ∈
∆∗B, and p(un) = p(t�v, r�v). We proceed by a reverse induction on the length of v. For |v| = height(t),
we let n = 1 and u1 = t(t, r, v), then we have r(v)⇒G u1, un ∈ ∆∗B, and p(un) = p(t�v, r�v).

For |v| < height(t), we assume that t(t, r, v) = d = (p1, . . . , pm, a, p) and that for every i ∈ {1, . . . ,m}
we have words u

(i)
1 , . . . , u

(i)
ni with pi ⇒G u

(i)
1 ⇒G . . . ⇒G u

(i)
ni , u

(i)
ni ∈ ∆∗B, and p(u

(i)
ni) = p(t�vi, r�vi).

13

Since r ∈ AccB(t), we have µB(d) 6= 0, so by the definition of G, we have p⇒G dp1 . . . pm. Thus, we see
that

p⇒G dp1 . . . pm

⇒G du
(1)
1 p2 . . . pm ⇒G . . .⇒G du(1)

n1
p2 . . . pm

⇒G du(1)
n1
u

(2)
1 p3 . . . pm ⇒G . . .⇒G du(1)

n1
u(2)
n2
p3 . . . pm

...

⇒G du(1)
n1
. . . u

(m−1)
m−1 u

(m)
1 ⇒G . . .⇒G du(1)

n1
. . . u(m)

nm
.

From this, we obtain words u1, . . . , un ∈ (QB ∪ ∆B)∗ with p ⇒G u1 ⇒G . . . ⇒G un such that un =

du
(1)
n1 . . . u

(m)
nm ∈ ∆∗B, and therefore p(un) = p(d)+

∑m
i=1 p(u

(i)
ni) = p(d)+

∑m
i=1 p(t�vi, r�vi) = p(t�v, r�v).

For v = ε, we thus obtain words u1, . . . , un such that r(ε) ⇒G u1 ⇒G . . . ⇒G un, un ∈ ∆∗B, and
p(un) = p(t, r). Due to r ∈ AccB(t) we have r(ε) 6= 0, which means that S ⇒G r(ε). Therefore un ∈ L,
which shows that p(L) ⊇ {p(t, r) | t ∈ TΓ, r ∈ AccB(t)}.

Lemma 3.18 shows in particular that the Parikh image of a WTA is semilinear.

Lemma 3.19. The set p(B) is semilinear and integers k, k1, . . . , kk, vectors α(l) ∈ ND, and matrices
β(l) ∈ ND×kl (l ∈ {1, . . . , k}) with

p(A) =

k⋃
l=1

{α(l) + β(l)X̄ | X̄ = (X1, . . . , Xkl) ∈ Nkl}

can be effectively found from B. Furthermore, with Ω = (µB(d1), . . . , µB(dD)) ∈ KD we have wtB(t, r) =
Ω · p(t, r) for every t ∈ TΓ and every r ∈ AccB(t).

Proof. It follows from Theorem 3.17 and Lemma 3.18 that p(B) is semilinear. The second statement
follows from the definition of wtB and the commutativity of ⊕.

In fact, we do not apply Lemma 3.19 directly to U but to a covering of U . For this covering, we add
a mechanism to U to detect the broken coordinates of a run. More precisely, we add to each state of Q
one entry containing all states reachable on the current subtree, one entry containing all states visited
on the current run, one entry containing all pairs (p,q) of states such that q is reachable by a run which
visited p at a position where our current run also visited p, and one entry containing a record of all
broken coordinates. This allows us to infer the brokenness of a run directly from the state at its root.
The precise construction is as follows.

Construction 3.20. Let Q̄ = Q × P(Q) × P(Q) × P(Q2) × {0, 1}M . For subsets P1, . . . , Pm ⊆ Q
and a letter a ∈ Γ with rkΓ(a) = m, we let succ(P1, . . . , Pm, a) = {q0 | ∃(q1, . . . ,qm) ∈ P1 × . . . ×
Pm with µ(q1, . . . ,qm, a,q0) ∈ QM}. For a setW ⊆ Q2 and l ∈ {1, . . . ,m}, we let succ(P1, . . . , Pm,W, l, a) =⋃

p∈Q{p} × succ(P1, . . . , Pl−1, {p′ | (p,p′) ∈ W}, Pl+1, . . . , Pm, a). Then we define the weight functions

of the new automaton Ū = (Q̄,Γ, µ̄, ν̄) by

µ̄((q1, P1, V1,W1, ā1), . . . , (qm, Pm, Vm,Wm, ām), a, (q0, P0, V0,W0, ā0)) =

µ(q1, . . . ,qm, a,q0) if P0 = succ(P1, . . . , Pm, a) and V0 = {q0} ∪
⋃m
l=1 Vl and

W0 = {(q0,q0)} ∪
⋃m
l=1 succ(P1, . . . , Pm,Wl, l, a) and

for all i ∈ {1, . . . ,M} we have ā0[i] = 1 if

either āl[i] = 1 for some l ∈ {1, . . . ,m}
or for some i-rival p of q0 we have (p,p) ∈W0

or there are l1, l2 ∈ {1, . . . ,m} with l1 6= l2 and p ∈ Vl1 ,q ∈ Vl2
such that p and q are i-rivals

and ā0[i] = 0 otherwise

−∞ otherwise

ν̄(q0, P0, V0,W0, ā0) = ν(q0).

14

We have the following proposition stating that the additional entries of the states of Ū realize the
intuition behind its construction described earlier.

Proposition 3.21. Let t ∈ TΓ, r̄ ∈ RunŪ (t), w ∈ pos(t), and r̄(w) = (q, P, V,W, ā). Then the following
statements hold.

(i) P = {p ∈ Q | RunU (t�w,p) 6= ∅}

(ii) V = {πQ ◦ r̄(wv) | v ∈ pos(t�w)}, where πQ : Q̄→ Q is the projection to the first coordinate.

(iii) W = {(p1,p2) ∈ Q2 | for some v ∈ pos(t�w) we have πQ ◦ r̄(wv) = p1 and Run�U (p1, t〈� →
wv〉�w,p2) 6= ∅}

(iv) ā[i] = 1 if and only if (t, πQ ◦ r̄)�w is i-broken.

(v) πQ : AccŪ (t)→ AccU (t) is a bijection preserving weights of runs.

Finally, we show the decidability of the separation property by applying Lemma 3.19 to Ū .

Theorem 3.22. There exists an integer C̃ such that every set of coordinates I ⊆ {1, . . . ,M} is separable
if and only if it is C̃-separable. Moreover, it is decidable for every such I whether it is C̃-separable. In
particular, it is decidable whether U is broken.

Proof. We let d1, . . . , dD be an enumeration of ∆Ū and for Ū , let k, k1, . . . , kk ∈ N, α(l) ∈ ND, β(l) ∈
ND×kl ,Ω ∈ QM×D (l ∈ {1, . . . , k}) be as in Lemma 3.19. Furthermore, we let ω1, . . . , ωM be the rows of
Ω, let C̃ = 1 + max{|ωiα(l) − ωjα(l)| | i, j ∈ {1, . . . ,M}, l ∈ {1, . . . , k}}, and for I ⊆ {1, . . . ,M}, let

DI = {l ∈ {1, . . . , D} | dl = (q̄1, . . . , q̄m, ā, (q, P, V,W, ā)) ∈ ∆Ū with

ā[i] = 1 for all i ∈ I and ā[j] = 0 for all j ∈ {1, . . . ,M} \ I}.

♣ Let I ⊆ {1, . . . ,M} and J = {1, . . . ,M}\ I. First, assume that I is C̃-separable and let t ∈ TΓ and
r ∈ AccU (t) such that (t, r) is I-C̃-separated. Let r̄ be the unique accepting run of Ū on t. Then for some
l ∈ {1, . . . , k} and some X̄ ∈ Nkl we have p(t, r̄) = α(l) + β(l)X̄. We let α(l)[1], . . . , α(l)[D] be the entries
of α(l) and β(l)[1], . . . , β(l)[D] be the rows of β(l). Since (t, r) is i-broken exactly for the coordinates i ∈ I,
we have

∑
d∈DI

α(l)[d] + β(l)[d]X̄ ≥ 1 and
∑
I(I′⊆M

∑
d∈DI′

α(l)[d] + β(l)[d]X̄ = 0. Moreover, for every

two i ∈ I and j ∈ J we have ωjα
(l) + ωjβ

(l)X̄ = wtj(t, r) ≤ wti(t, r) − C̃ = ωiα
(l) + ωiβ

(l)X̄ − C̃. In
conclusion, we see that there exists l ∈ {1, . . . , k} such that the following system of linear inequalities
possesses an integer solution. ∑

d∈DI

β(l)[d]X̄ ≥ 1−
∑
d∈DI

α(l)[d]

−
∑

I(I′⊆M

∑
d∈DI′

β(l)[d]X̄ ≥
∑

I(I′⊆M

∑
d∈DI′

α(l)[d]

(ωiβ
(l) − ωjβ(l))X̄ ≥ ωjα(l) − ωiα(l) + C̃ (i ∈ I, j ∈ J)

X̄ ≥ 0

♣ Conversely, assume that there exists l ∈ {1, . . . , k} such that the above system of linear inequalities
possesses an integer solution. Let C ∈ N and let Ȳ be the scalar multiplication of X̄ with C̃ + C. Then
there exists a tree t ∈ TΓ and an accepting run r̄ ∈ AccŪ (t) such that p(t, r̄) = α(l) + β(l)Ȳ . Let
r = πQ ◦ r̄ ∈ AccU (t) be the unique accepting run of U on t. By choice of C̃ and the linearity of matrix
multiplication, we see that for every i ∈ I and every j ∈ J we have

(ωiβ
(l) − ωjβ(l))Ȳ = (C̃ + C)(ωiβ

(l) − ωjβ(l))X̄

≥ (C̃ + C)(ωjα
(l) − ωiα(l) + C̃)

≥ C̃ + C

≥ ωjα(l) − ωiα(l) + C.

It follows that wtj(t, r) = ωjα
(l) + ωjβ

(l)Ȳ ≤ ωiα
(l) + ωiβ

(l)Ȳ − C = wti(t, r) − C for every i ∈
I and every j ∈ J . Moreover, since all entries in α(l) and β(l) are non-negative, we see that also

15

∑
d∈DI

α(l)[d] + β(l)[d]Ȳ ≥ 1 and
∑
I(I′⊆M

∑
d∈DI′

α(l)[d] + β(l)[d]X̄ ≤ 0 holds, so (t, r) is i-broken
exactly for the coordinates i ∈ I. Thus, I is C-separable. As C was arbitrary, I is separable.
♣ In conclusion, we see on the one hand that if I is C̃-separable, then for some l ∈ {1, . . . , k} the above

system of linear inequalities possesses an integer solution. On the other hand, if for some l ∈ {1, . . . , k}
the above system of linear inequalities possesses an integer solution, then I is separable. In particular, I
is separable iff it is C̃-separable iff the above system of linear inequalities possesses an integer solution.
The satisfiability of systems of linear inequalities over the rationals with integer solutions is a decidable
problem [35][9, Theorem 3.4]. As there are only finitely many such systems to consider, it is decidable
whether I is separable. To decide whether U is broken, it suffices to check whether there exists a separable
subset I ⊆ {1, . . . ,M}.

3.2 Necessity

In this section, we show that if U is broken, then JAK is not finitely sequential. For this, we employ
Ramsey’s Theorem, so we briefly recall Ramsey’s Theorem and the related concepts.

Let H, c ∈ N be integers. For a set X, we denote by
[
X
H

]
the set of all subsets of X of cardinality H,

i.e.,
[
X
H

]
= {Y ⊆ X | |Y | = H}. A set Y ∈

[
X
H

]
is also called an H-subset of X. A c-H-coloring of X is

a mapping g :
[
X
H

]
→ {1, . . . , c}. We have Ramsey’s Theorem as follows.

Theorem 3.23 ([42]). Let H, c, n ∈ N. Then there exists an integer R(H, c, n) ∈ N such that for every
set X of cardinality at least R(H, c, n) and every c-H-coloring of X, there exists a subset Y ⊆ X of
cardinality n such that |g(

[
Y
H

]
)| = 1, i.e., all sets in

[
Y
H

]
are colored by the same color.

Although not stated explicitly, Bala’s proof for words [3] most likely also involves some form of
Ramsey’s Theorem as his proof of Ǔ being broken implying JAK to not be finitely sequential “deals with
colorings of finite hypercubes”. In our proof for tree automata, we are able to handle fork-brokenness
without employing Ramsey’s Theorem. This suggest that applying our approach to word automata
yields a proof which is simpler than the corresponding one used in [3]. The reason for this is that
our separation property considers sets of coordinates instead of the single coordinates which the A-
Fork property considers. For the separable sets I ∈ I which are minimal with respect to set inclusion,
we are able to prove a statement for I-C-separated pairs (t, r) which greatly facilitates dealing with
fork-brokenness and enables us to deal with split-brokenness in the first place. Namely, if (t, r) is I-C-
separated for a sufficiently large C and no subset of I is separable, then the weights of all coordinates in
I coincide for every loop which loops in a state occurring in r.

To prove this statement, we define Υ as the size of the largest Γ-word of height at most 4|Q|2 and
we define ξ as the smallest difference between the weights of two coordinates of a loop in a Γ-word of
height at most 4|Q|2. That is, we let

Υ = max{|t| | t ∈ TΓ� with height(t) ≤ 4|Q|2},
X = {|wt�i (p, s,p)−wt�j (q, s,q)| | p,q ∈ Q, i, j ∈ {1, . . . ,M}, s is a Γ-word with height(s) ≤ 4|Q|2,

Run�U (p, s,p) 6= ∅,Run�U (q, s,q) 6= ∅},

and ξ = minX \ {0}. Moreover, we let µmax ∈ Q be a positive upper bound on the weights occurring in
U , i.e., for R = {|πi(x̄)| | i ∈ {1, . . . ,M}, x̄ ∈ (µ(∆U)∪ν(Q))\{(−∞, . . . ,−∞)}}, we let µmax = maxR.
Then we have the following lemma.

Lemma 3.24. Let I ∈ I be minimal with respect to set inclusion, let C̃ be as in Theorem 3.22, and let

n =
⌈
2MC̃ξ−1

⌉
. Furthermore, let C ≥ 2µmaxnΥ and let t ∈ TΓ and r ∈ AccU (t) be such that (t, r) is I-

C-separated. Then for every p ∈ r(pos(t)), every Γ-word s with height(s) ≤ 4|Q|2 and Run�U (p, s,p) 6= ∅,
and every two coordinates i, j ∈ I we have wt�i (p, s,p) = wt�j (p, s,p).

Proof. Let I, C, n, t, r be as in the statement of the theorem. First, we see as follows that for every
two i, j ∈ I we have |wti(t, r) − wtj(t, r)| ≤ MC̃. Let i1, . . . , i|I| be an enumeration of I such that

wti1(t, r) ≤ . . . ≤ wti|I|(t, r). If for some k ∈ {1, . . . , |I| − 1} we had wtik+1
(t, r) ≥ wtik(t, r) + C̃, then

clearly I ′ = I\{i1, . . . , ik} would be C̃-separable. By Theorem 3.22, we would therefore have I ′ ∈ I, which
would be a contradiction to the minimality of I. Thus, we have wti|I|(t, r)−wti1(t, r) ≤ (|I|−1)C̃ ≤MC̃.

Now assume for contradiction that there exists a state p ∈ r(pos(t)), a Γ-word s of height at most
4|Q|2, and two coordinates i, j ∈ I such that Run�U (p, s,p) 6= ∅ and wt�i (p, s,p) 6= wt�j (p, s,p). We may
assume that wt�i (p, s,p) < wt�j (p, s,p). Then by our choice of ξ, we have wt�i (p, s,p) ≤ wt�j (p, s,p)−ξ.

16

Let rp ∈ Run�U (p, s,p), w ∈ pos(t) with r(w) = p, and let (t′, r′) = (t, r)〈(s, rp)n . w〉. Then r′ ∈
AccU (t′) satisfies

wti(t
′, r′) = wti(t, r) + nwt�i (p, s,p)

≤ wti(t, r) + n(wt�j (p, s,p)− ξ)
≤ wtj(t, r) +MC̃ + nwt�j (p, s,p)− 2MC̃

= wtj(t
′, r′)−MC̃.

Now let i1, . . . , i|I| be an enumeration of I such that wti1(t′, r′) ≤ . . . ≤ wti|I|(t
′, r′). Since

wtj(t
′, r′)−wti(t

′, r′) ≥MC̃, there must exist some k ∈ {1, . . . , |I|−1} with wtik+1
(t, r) ≥ wtik(t, r)+C̃.

Furthermore, for every ι ∈ {1, . . . ,M} \ I we have by choice of C that

wtι(t
′, r′) ≤ wtι(t, r) + µmax|sn|

≤ wtι(t, r) + µmaxnΥ

≤ wtik(t, r)− 2µmaxnΥ + µmaxnΥ

≤ wtik(t′, r′)− 2µmaxnΥ + 2µmaxnΥ

= wtik(t′, r′).

Thus, I ′ = I \ {i1, . . . , ik} is C̃-separable. By Theorem 3.22, we therefore have I ′ ∈ I, which is a
contradiction to the minimality of I.

We are now ready to prove the main result of this section, i.e., that JAK is not finitely sequential if
U is broken. We will assume that a finitely sequential representation JAK = maxNn=1JAnK of A exists,
choose a C-separated pair (t, r) for a sufficiently large C, and then deduce a contradiction depending on
whether (t, r) is fork-broken or split-broken.

Due to Lemma 3.24, our method to deal with with fork-brokenness is quite similar to the method
used to deal with fork-brokenness in [4] and [39]. As in these proofs, we construct from (t, r) new trees
and runs with increasingly more alterations of forks and distinguishers and then show that at least N +1
deterministic max-plus-WTA are necessary to assign the correct weight to all of these trees. The challenge
we face in adapting the proof from [39] to our situation is that, in order to obtain a contradiction, we
have to ensure that in the runs we construct the coordinates from I dominate the other coordinates.
In our constructions we may therefore only make “small” modifications to (t, r). Our solution involves
constructing more than the N + 1 trees sufficient for the proofs in [4, 39].

Dealing with split-brokenness is much more complicated and is in fact the only reason we have to
use the covering automaton U instead of Ǔ . As split-brokenness does not apply to words, this was not
an issue in [3]. We provide a detailed intuition of this part of our proof when we consider the case that
(t, r) is split-broken. We prove the following lemma.

Lemma 3.25. If U is broken, A does not possess a finitely sequential representation.

Proof. For contradiction, we assume that JAK = maxMi=1 πi(JUK) is the maximum of the determinis-
tic max-plus-WTA A1, . . . ,AN . We write An = (Qn,Γ, µn, νn) for n ∈ {1, . . . , N} and let |Q•| =
maxNn=1 |Qn| and L = maxNn=1 maxx∈µn(∆An)\{−∞} |x|. Due to the determinism of A1, . . . ,AN , the set
RunAn(t) is either empty or a singleton for every n ∈ {1, . . . , N} and t ∈ TΓ. We may even assume that
RunAn(t) is always a singleton, i.e., that each An is complete. If An is not complete, we can simply add
a dummy state with final weight −∞ to Qn which the automaton can transition into whenever no valid
transition is available.

We warn the reader that the roles of the constants defined in the following are likely not apparent
until these constants are actually used. It may thus be wise to only take note of which constants are
defined and then later verify the correctness of their choice. We let Ξ = Q1 × . . .×QN × Q̌2 and

Υ′ = max{|t| | t ∈ TΓ with height(t) ≤ |Ξ|2}.

For H ∈ {1, . . . ,M} we let RH be the Ramsey number R(2H,MN, 2H + 2) from Theorem 3.23, i.e.,
such that for every set X of cardinality at least RH and every MN -2H-coloring of X, there exists a
subset Y ⊆ X of cardinality 2H + 2 whose 2H-subsets are all colored with the same color. Then we let
R̄ = max{R1, . . . , RM}. Furthermore, we let D = N |Q•|2 + 1 and define natural numbers N1, . . . , ND

17

inductively as follows. We let ND = 0 and if Nk1+1, . . . , ND are defined, we choose Nk1
such that for all

k2 ∈ {k1 + 1, . . . , D} we have

Nk1
· ξ > L

(
(k2 − k1)Υ + Υ

k2∑
l=k1+1

Nl

)
+ (k2 − k1)µmaxΥ + (µmaxΥ

k2∑
l=k1+1

Nl).

Let I ∈ I be minimal with respect to set inclusion, let C̃ be as in Theorem 3.22 and for some

C ≥ max{2µmaxΥ
⌈
2MC̃ξ−1

⌉
, 2µmaxΥ

D∑
l=1

(Nl + 1), 4µmaxM |Ξ|ΥR̄+ 2µmax(Υ + Υ′ +M |Ξ|Υ) + 1},

choose t ∈ TΓ and r ∈ AccU (t) such that (t, r) is I-C-separated. We consider two cases.
Case 1: For some i ∈ I and i-rivals p,q ∈ Q, (t, r) is i-p-q-fork-broken.

In this case, there exist two positions wp, wq ∈ pos(t) such that wq <p wp, r(wp) = p, r(wq) = q,
and f ′ = (t〈� → wp〉)�wq

is an i-p-q-fork. By Lemma 3.15 and Lemma 3.16, there exists an i-p-q-

distinguisher s with height(s) ≤ 4|Q|2 and a p-q-fork f with height(f) ≤ 2|Q|2. We let u = t�wp

and û = t〈� → wq〉, i.e., we have t = û(f ′(u)). We let s0 = u and for k ∈ {1, . . . , D − 1}, we let
sk = sNk(f(sk−1)). Then for k ∈ {1, . . . , D}, we let tk = û(sNk(f ′(sk−1))). For clarity, for words we
would have t1 = uf ′sN1 û and tk = ufsN1 · · · fsNk−1f ′sNk û. For each k ∈ {1, . . . , D}, we let rk be the
unique accepting run of U on tk.

Due to the choice of I and C, the heights of s and f , and Lemma 3.24, we have wt�i (p, f,p) =
wt�j (p, f,p), wt�i (p, s,p) = wt�j (p, s,p), and wt�i (q, s,q) = wt�j (q, s,q) for every two i, j ∈ I. Let i ∈ I
such that wti(t, r) ≥ wtj(t, r) for all j ∈ I. Then, for every k ∈ {1, . . . , D} and every j ∈ I, we have

wtj(tk, rk) = wtj(t, r) + (k − 1)wt�j (p, f,p) + wt�j (p, s,p)

k−1∑
l=1

Nl +Nkwt�j (q, s,q)

≤ wti(t, r) + (k − 1)wt�i (p, f,p) + wt�i (p, s,p)

k−1∑
l=1

Nl +Nkwt�i (q, s,q)

= wti(tk, rk).

Furthermore, for every k ∈ {1, . . . , D} and j ∈ {1, . . . ,M} \ I, we have by choice of C that

wtj(tk, rk) = wtj(t, r) + (k − 1)wt�j (p, f,p) + wt�j (p, s,p)

k−1∑
l=1

Nl +Nkwt�j (q, s,q)

≤ wtj(t, r) + (k − 1)µmaxΥ + µmaxΥ

k∑
l=1

Nl

≤ wtj(t, r) + µmaxΥ

D∑
l=1

(Nl + 1)

≤ wti(t, r)− µmaxΥ

D∑
l=1

(Nl + 1)

≤ wti(t, r)− (k − 1)µmaxΥ− µmaxΥ

k∑
l=1

Nl

≤ wti(tk, rk).

Thus, we have maxMj=1 wtj(tk, rk) = wti(tk, rk) for every k ∈ {1, . . . , D}. By choice of N1, . . . , ND, it
follows that for every two k1, k2 ∈ {1, . . . , D} with k2 > k1 we have

|JAK(tk2)− JAK(tk1)|

= | M
max
j=1

wtj(tk2
, rk2

)− M
max
j=1

wtj(tk1
, rk1

)|

= |wti(tk2
, rk2

)−wti(tk1
, rk1

)|

18

= |Nk1
(wt�i (p, s,p)−wt�i (q, s,q)) + (k2 − k1)wt�i (p, f,p) + wt�i (p, s,p)

k2−1∑
l=k1+1

Nl +Nk2
wt�i (q, s,q)|

≥ Nk1
|wt�i (p, s,p)−wt�i (q, s,q)| − (k2 − k1)|wt�i (p, f,p)| − |wt�i (p, s,p)|

k2−1∑
l=k1+1

Nl −Nk2
|wt�i (q, s,q)|

≥ Nk1
ξ − (k2 − k1)µmaxΥ− µmaxΥ

k2∑
l=k1+1

Nl

> L
(

(k2 − k1)Υ + Υ

k2∑
l=k1+1

Nl

)
. (♥)

Here, the first inequality is an application of the reverse triangle inequality. We assume that JAK =
maxNn=1JAnK, so for every k ∈ {1, . . . , D} there exists some nk ∈ {1, . . . , N} with JAK(tk) = JAnk

K(tk).
For every k ∈ {1, . . . , D}, we let rk ∈ RunAnk

(tk) be the unique run of Ank
on tk. Furthermore, we let

v̂ = ♦1(û) and vk = ♦1(û(sNk(f ′))). We have D = N |Q•|2 +1 many trees and every automaton An has at
most |Q•|many states, so by pigeon hole principle there are at least two distinct indices k1, k2 ∈ {1, . . . , D}
such that (nk1

, rk1
(v̂), rk1

(vk1
)) = (nk2

, rk2
(v̂), rk2

(vk2
)). We may assume that k2 > k1. We let n = nk1

,
then due to the assumption that An is deterministic, we have

|JAK(tk2)− JAK(tk1)| = |JAnK(tk2)− JAnK(tk1)|

≤ L(k2 − k1)|f |+ L|s|
k2−1∑
l=k1

Nl + L|s|(Nk2 −Nk1)

≤ L
(

(k2 − k1)Υ + Υ

k2∑
l=k1+1

Nl

)
.

Clearly, this is a contradiction to (♥) above.

Case 2: For some i ∈ I and i-rivals p,q ∈ Q, (t, r) is i-p-q-split-broken.
As the proof for this case is rather involved, we first provide an intuitive description of the main ideas
behind our approach. First, assume that M = N = 1 and that for some tree t and some accepting run
of U on t two rivals p,q occur at prefix-independent positions wp, wq as in Figure 2. We let s be a
p-q-distinguisher and u a p-q-reacher. Then we substitute the subtrees at wp and wq in t by the tree
s|Q•|(u) to obtain a tree t′ as in Figure 2. We easily obtain an accepting run r′ of U on t′ and this run
loops s in p below wp with some weight x and it loops s in q below wq with some weight y such that
x 6= y.

Since M = N = 1, the weight of this run is exactly the weight JA1K(t′) assigned to t′ by the
deterministic automatonA1, i.e., we have wtU (t′, r′) = JA1K(t′). AsA1 is deterministic, the one accepting
run of A1 on t′ is identical on the subtrees below wp and wq. Furthermore, as A1 has at most |Q•| states,
this run loops some sub-Γ-word sn of s|Q•| in a state of A1. We let z be the weight of this loop in A1.
Then we consider the tree t+p obtained by substituting the subtree at wp in t′ by s|Q•|+n(u) and the tree
t+q obtained by substituting the subtree at wq in t′ by s|Q•|+n(u), see also Figure 2. Clearly, we have
JA1K(t+p) = JA1K(t+q) = JA1K(t′) + z.

Moreover, we easily obtain accepting runs r+p, r+q of U on the trees t+p and t+q. Again, since
M = N = 1, the weights of these runs necessarily coincide with JA1K(t+p) and JA1K(t+q). However,
we clearly have wtU (t+p, r+p) = wtU (t′, r′) + nx and wtU (t+q, r+q) = wtU (t′, r′) + ny. We obtain the
contradiction that JA1K(t′) + z = JA1K(t+p) = wtU (t′, r′) + nx = JA1K(t′) + nx and JA1K(t′) + z =
JA1K(t+q) = wtU (t′, r′) + ny = JA1K(t′) + ny, i.e., nx = z = ny.

For M = 1 and N arbitrary, our earlier argument breaks as we cannot guarantee anymore that
exactly one deterministic automaton assigns the maximum weight to the trees t′, t+p, and t+q. There
are two approaches to solve this problem. One is described in [39], the other employs Ramsey’s theorem.
We outline the latter approach as it is easier to generalize to the scenario where M is arbitrary. As

above, we substitute the trees below wp and wq by the tree s|Q•|
N

(u). By considering the runs of all

the deterministic automata on t′ in parallel, we see that some sub-Γ-word sn of s|Q•|
N

loops in all the
deterministic automata in parallel. More precisely, there exist integers m and n such that each automaton

19

t

p q

t′

p q

t+p

p q

t+q

p q

wp

tp

wq
tq s

..
.

s

u

s

..
.

s

u

s

..
.

s

u

s

..
.

s

u

s

..
.

s

u

s

..
.

s

u

p qs|Q•| s|Q•|+n s|Q•|s|Q•| s|Q•| s|Q•|+n

Figure 2: The tree t and the trees obtained by substituting the subtrees at wp and wq by powers of s.

τp τq

move loops

t

τ ′p

τ ′q

insert s
|Ξ|
k

τ ′′p

τ ′q

remove loops
and substitute

τ ′′p

τ ′′′p

t′

Figure 3: The general outline of our proof of case 2.

Ai, after reading sm(u), is in a state qi which loops in sn. For each automaton Ai, we let zi be the
weight of Ai’s loop in sn.

We then consider the Ramsey number R = R(2, N, 4), i.e., every set X of cardinality at least R and
every N -2-coloring of X, there exists a subset Y ⊆ X of cardinality 4 whose 2-subsets are all colored
with the same color. For every 2-subset {ζ1, ζ2} ⊆ {1, . . . , R} with ζ1 < ζ2, we define the tree tζ1,ζ2 by

substituting the subtree below wp by s|Q•|
N+ζ1n(u) and the subtree below wq by s|Q•|

N+ζ2n(u). We let
rζ1,ζ2 be the unique accepting run of U on tζ1,ζ2 and define the color of {ζ1, ζ2} as the smallest index i ∈
{1, . . . , N} such that wtU (tζ1,ζ2 , rζ1,ζ2) = JAiK(tζ1,ζ2). By choice of R, we find 4 integers ζ1 < ζ2 < ζ3 < ζ4
in {1, . . . , R} such that {ζ1, ζ3}, {ζ2, ζ3}, and {ζ1, ζ4} are all colored with the same color i ∈ {1, . . . , N}.
We derive that (ζ2 − ζ1)zi = JAiK(tζ2,ζ3) − JAiK(tζ1,ζ3) = wtU (tζ2,ζ3 , rζ2,ζ3) − wtU (tζ1,ζ3 , rζ1,ζ3) = (ζ2 −
ζ1)nx and similarly (ζ4 − ζ3)zi = JAiK(tζ1,ζ4) − JAiK(tζ1,ζ3) = wtU (tζ1,ζ4 , rζ1,ζ4) − wtU (tζ1,ζ3 , rζ1,ζ3) =
(ζ4 − ζ3)ny. As above, we obtain the contradiction x = y.

Assume that both M and N are arbitrary. For M = 1, we substituted the subtrees below wp and

wq by the same tree s|Q•|
N

(u) to make use of the fact that each deterministic automaton then treats
both subtrees in the same way. However, if M > 1, the subtrees present below wp and wq may be
indispensable to ensure that the weights of the coordinates not in I are small. This is evidenced by the
automaton in Example 3.8, where we cannot simply replace these subtrees. To overcome the problem
of not being able to substitute the subtrees, we employ the properties of U proved in Lemma 3.10 and
construct a run of Ǔ into which we insert powers of distinguishers. The general outline of our approach
is depicted in Figure 3.

First, we realize that it suffices to substitute only one subtree. By Lemma 3.10(v), the subtree tp at
wp is a p-q-reacher. Thus, substituting tp and the subtree tq at wq by a tree of the form sm(tp) allows us
to create a scenario as above while changing the weights below wp only “slightly”, i.e., dependent only
on sm. However, depending on the sizes of tp and tq, this operation may still significantly change the
coordinate-wise weights below wq. This is the case for the automaton from Example 3.8. We thus need
to bound the size of both the substituting and the substituted tree below wq.

Our idea to bound the size of the substituted tree is to move parts of tq from tq to tp, thereby shrinking
tq. More precisely, we want to cut loops from rqq ∈ RunU (tq,q) and insert them into rpp ∈ RunU (tp,p). If
tq is of height at least |Q|2, there exists a loop in rqq, so we can shrink tq to height |Q|2 by moving loops.
However, in order for this to work, the state rqq loops in has to occur in rpp. This is not always the case, as
seen in the automaton from Example 3.8. We resolve this problem as follows. We let rqp ∈ RunU (tp,q)
and rpq ∈ RunU (tq,p), such runs exist by Lemma 3.10(v), and let řpp, ř

q
p, ř

q
q , ř

p
q be the projections of

rpp, r
q
p, r

q
q, r

p
q to the first coordinate. Then from Lemma 3.10(ii), we see that {(řpp(w), řqp(w)) | w ∈

pos(tp)} = {(řpq (w), řqq(w)) | w ∈ pos(tq)}. Thus, if we have a simultaneous loop in rpq and rqq, i.e., two
positions w1 <p w2 in pos(tq) with (rpq(w1), rqq(w1)) = (rpq(w2), rqq(w2)), then this is also a simultaneous
loop in řpq and řqq and there exists a position w ∈ pos(tp) with (řpp(w), řqp(w)) = (řpq (w1), řqq(w1)) at which
we can insert this loop into both runs on tp. This approach would work if we could guarantee that rpq(w1)
and rqq(w1) are never rivals, as then, the simultaneous loops in rpq and rqq coincide on their weights and
removing a loop from rqq and moving the simultaneous loop from řpq to řpp would be weight-preserving.

20

t
p q

wp wq

p/q q/p

tp tq tp tq
rpp rqq

rpp

rqp

rqq

rpq

q/p

q′/p′

vq

∀i∈I
(
ρ
q
q(u),ρ

p
q (u) i-rivals ↔u=ε

)

ρq
q

ρp
q

τq

tq

rqq

rpq

Figure 4: The subtrees tp at wp and tq at wq of t are both p-q-reachers, so there exist runs rpp, r
q
p on

tp reaching p and q, respectively, and runs rpq , r
q
q on tq reaching p and q, respectively. The position

vq ∈ pos(tq) is prefix-maximal among all positions w for which rpq(w) and rqq(w) are i-rivals.

p̌/q̌

p̌′/q̌′

vp

p̌′′/q̌′′

vpup

tp

řpp

řqp

τp

ρ̌pp

ρ̌qp

q̌/p̌

q̌′/p̌′

vq

q̌′′/p̌′′

vquq

tq

řqq

řpq

τq

ρ̌qq

ρ̌pq

p̌′/q̌′

p̌′′/q̌′′

up

p̌′′/q̌′′

s

τ ′p

ρ̌p′p

ρ̌q′p

τp

ρ̌pp

ρ̌qp

q′/p′

q′′/p′′

q′′/p′′

u1

u2

s
ρq

ρp

τq

ρq
q

ρp
q

τ ′q

ρq′
q

ρp′
q

m
ove

wt�i (s,ρp)6=wt�i (s,ρq)→i∈J\I

Figure 5: Left: There exists a position vp ∈ pos(tp) such that (řpp(vp), ř
q
p(vp)) = (řpq (vq), ř

q
q(vq)) and

such that for every uq ∈ pos(tq�vq), there exists a position up ∈ pos(tp�vp) with (řpp(vpup), ř
q
p(vpup)) =

(řpq (vquq), ř
q
q(vquq)). Right: Moving a loop from ρpq and ρqq on τq to ρ̌pp and ρ̌qp on τp.

In fact, our only concern is to not reduce the gap between the weights of the coordinates in I and
the non-broken coordinates. Therefore, we consider all positions w ∈ pos(tq) such that rpq(w) and
rqq(w) are i-rivals for some i ∈ I, let vq be prefix-maximal among these positions, and shrink only the
subtree at vq in the way just described, see also Figure 4. By Lemma 3.10(ii), there exists a position
vp ∈ pos(tp) such that (řpp(vp), ř

q
p(vp)) = (řpq (vq), ř

q
q(vq)) and {(řpp(vpu), řqp(vpu)) | u ∈ pos(tp�vp)} =

{(řpq (vqu), řqq(vqu)) | u ∈ pos(tq�vq)}. We let τq,ρ
p
q ,ρ

q
q, ρ̌

p
q , ρ̌

q
q be the restrictions of tq, r

p
q , r

q
q, ř

p
q , ř

q
q to vq

and we let τp,ρ
p
p,ρ

q
p, ρ̌

p
p, ρ̌

q
p be the restrictions of tp, r

p
p, r

q
p, ř

p
p, ř

q
p to vp. Thus, if we have two positions

u1 <p u2 in pos(τq) with (ρpq(u1),ρqq(u1)) = (ρpq(u2),ρqq(u2)), there exists a position up ∈ pos(τp) with
(ρ̌pp(up), ρ̌

q
p(up)) = (ρ̌pq(u1), ρ̌qq(u1)), see also Figure 5. Moreover, the weights of the simultaneous loops in

ρpq and ρqq now coincide by construction for all coordinates in I and trivially for all coordinates for which
(t, r) is not broken. In particular, removing a loop from ρqq and moving the corresponding simultaneous
loop from ρ̌pq to ρ̌pp does not influence the weights for the coordinates in I. We let J = {j1, . . . , jH} be
the set of all coordinates such that for some position w ∈ pos(τq), the state ρqq(w) is a j-rival. We note
that I ⊆ J due to ε ∈ pos(τq).

Assume that by moving loops as above we have transformed our trees and runs τq, τp, ρ̌
p
p, ρ̌

q
p into

trees and runs τ ′q, τ
′
p, ρ̌

p′
p , ρ̌

q′
p where now height(τ ′q) ≤ |Q|2. Intuitively, we will now shrink the tree τ ′p

and replace τ ′q by the resulting tree. However, we still need to ensure that for every coordinate j ∈ J ,
there exists some position w in pos(τ ′p) such that ρ̌p′p (w) and ρ̌q′p (w) are j-rivals and such that for some
j-ρ̌p′p (w)-ρ̌q′p (w)-distinguisher s, all deterministic automata reach w with a state which can loop in s.
We do so by choosing for every jk ∈ J a position w such that ρ̌p′p (w) and ρ̌q′p (w) are jk-rivals and a

jk-ρ̌p′p (w)-ρ̌q′p (w)-distinguisher sk and inserting s
|Ξ|
k at w, where we recall that Ξ = Q1 × . . . QN × Q̌2.

This results in a tree τ ′′p with runs ρ̌p′′p and ρ̌q′′p . We assume the deterministic automata A1, . . . ,AN
to be complete, so each deterministic automaton An possesses a run ρn on τ ′′p . We consider the runs
ρ1, . . . , ρN , ρ̌

p′′
p , ρ̌

q′′
p in parallel as a quasi-run ρ̄ on τ ′′p with states in Ξ. By pigeon hole principle, for each

jk the quasi-run ρ̄ loops with a state p̄k in a Γ-word s̄k = snk

k with 1 ≤ nk ≤ |Ξ|, see also Figure 6. For
our final substitution, we remove loops from ρ̄ while ensuring that such a removal does not influence the
set of states visited by our quasi-run. This allows us to shrink τ ′′p and ρ̄ to a tree τ ′′′p of height at most
|Ξ|2 and a quasi-run ρ̄′.

In t, we substitute τ ′′p into vp and τ ′′′p into vq to obtain a tree t′ with an accepting run ř′ ∈ AccǓ (t′).
The runs on the substituted subtrees are given by ρ̌p′′p and the last entry of ρ̄′. For every jk ∈ J , there
exist positions upk ∈ pos(τ ′′p) and uqk ∈ pos(τ ′′′p) such that s̄k is a jk-ř′(upk)-ř′(uqk)-distinguisher, each
deterministic automaton An reaches upk and uqk with the same state, and each An loops in this state with

21

sk

.
.
.

sk

.
.
.

sk

.
.
.

sk

uk

up
k

p̄k = ρ̄(ρ1(up
k), . . . , ρN (up

k), ρ̌p′′p (up
k), ρ̌q′′p (up

k))

s̄ks
|Ξ|
k

τ ′′p

ρ̄

uq
k

τ ′′′p

ρ̄′

Figure 6: Some power s̄k of sk loops in all runs ρ1, . . . , ρN , ρ̌
p′′
p , ρ̌

q′′
p simultaneously. Each state p̄k still

occurs in ρ̄′ after removing loops from ρ̄ to obtain from τ ′′p a tree τ ′′′p of height at most |Ξ|2.

s̄k. We then consider the Ramsey number R = R(2|J |,MN, 2|J |+ 2), i.e., for every set X of cardinality
at least R and every MN -2|J |-coloring of X, there exists a subset Y ⊆ X of cardinality 2|J |+ 2 whose
2|J |-subsets are all colored with the same color. For every 2|J |-subset ζ = {ζ1, . . . , ζ2|J|} ⊆ {1, . . . , R}
with ζ1 < . . . < ζ2|J|, we define the tree tζ by inserting s̄

ζ2k−1

k at upk and s̄ζ2kk at uqk for each jk ∈ J .
Then we define the color of ζ as the pair (j, n) ∈ {1, . . . ,M}×{1, . . . , N} such that the unique accepting
run of Ǔ on tζ has its maximum weight in coordinate j and such that An assigns the maximum weight
to tζ among all the deterministic automata. We can show that in fact, all colors assigned this way
are from J × {1, . . . , N}. By choice of R, we find 2|J | + 2 integers ζ1 < · · · < ζ2|J|+2 in {1, . . . , R}
such that {ζ1 < · · · < ζ2|J|+2} \ {ζ2k, ζ2k+2}, {ζ1 < · · · < ζ2|J|+2} \ {ζ2k−1, ζ2k+2}, and {ζ1 < · · · <
ζ2|J|+2} \ {ζ2k, ζ2k+1} are all colored with the same color (jk, n). With the same reasoning as earlier, we
obtain the contradiction that s̄k is not a jk-distinguisher.

We now give a more detailed presentation of the proof. By assumption, there exist two prefix-
independent positions wp, wq ∈ pos(t) with r(wp) = p and r(wq) = q. We may assume that wp <l wq.
We let (tp, r

p
p) = (t, r)�wp

and (tq, r
q
q) = (t, r)�wq

. Furthermore, by Lemma 3.10(v) we may write

p = (p̌, P, V) and q = (q̌, P, V) with p̌, q̌ ∈ Q̌, P ⊆ Q̌, and V ⊆ Q̌4 × P(Q̌2).
By Lemma 3.10(v), there exist runs rqp ∈ RunU (tp,q) and rpq ∈ RunU (tq,p). We consider the set

{w ∈ pos(tq) | rpq(w) and rqq(w) are i-rivals for some i ∈ I} and let vq be a prefix-maximal position from
this set. Note that this set is non-empty as it contains ε. We let τq = tq�vq , ρpq = rpq�vq , and ρqq = rqq�vq .
Furthermore, we let p′ = ρpq(ε), q′ = ρqq(ε), p̌

′ = π1(p′), and q̌′ = π1(q′), see also Figure 4. Also, we let
J = {j ∈ {1, . . . ,M} | there exists u ∈ pos(τq) such that ρpq(u) and ρqq(u) are j-rivals}. Note that p′ and
q′ are i-rivals for some i ∈ I, so by Lemma 3.15 there exists an i-p′-q′-distinguisher of height at most
4|Q|2. Thus, we obtain I ⊆ J from Lemma 3.24.

We let řqq = π1 ◦ rqq, ř
p
q = π1 ◦ rpq , and Y = {(řpq (vqu), řqq(vqu)) ∈ Q̌2 | u ∈ pos(τq)}, then by

Lemma 3.10(ii) we have (p̌, q̌, p̌′, q̌′, Y) ∈ V . Therefore, again by Lemma 3.10(ii), there exist runs
řpp ∈ RunǓ (tp, p̌) and řqp ∈ RunǓ (tp, q̌) and a position vp ∈ pos(tp) with řpp(vp) = p̌′ and řqp(vp) = q̌′ such

that Y = {(řpp(vpu), řqp(vpu)) ∈ Q̌2 | u ∈ pos(tp�vp)}. Since Ǔ is unambiguous, the sets RunǓ (tp, p̌) and
RunǓ (tp, q̌) are singletons. It follows that řpp = π1 ◦ rpp and řqp = π1 ◦ rqp. We let τp = tp�vp , ρ̌pp = řpp�vp ,
and ρ̌qp = řqp�vp . Then in conclusion, we see that for every position uq ∈ pos(τq), there exists a position
up ∈ pos(τp) with (ρ̌pp(up), ρ̌

q
p(up)) = (ρ̌pq(uq), ρ̌

q
q(uq)), see also Figure 5.

♣ We now remove cycles from ρpq and ρqq in parallel as follows. If height(τq) ≤ |Q|2, we do nothing.
Otherwise, by pigeon hole principle, there exist two positions u1, u2 ∈ pos(τq) with u1 <p u2 such that
(ρpq(u1),ρqq(u1)) = (ρpq(u2),ρqq(u2)). On the Γ-word s = τq〈� → u2〉�u1

, we thus obtain two runs looping
in a state by defining ρp(w) = ρpq(u1w) and ρq(w) = ρqq(u1w).

We let ρ̌p = π1 ◦ ρp and ρ̌q = π1 ◦ ρq, then there exists up ∈ pos(τp) with (ρ̌pp(up), ρ̌
q
p(up)) =

(ρ̌p(ε), ρ̌p(ε)). We insert the Γ-word s into τp at up to obtain a tree τ ′p and two runs ρ̌p′p and ρ̌q′p on τ ′p by
(τ ′p, ρ̌

p′
p) = (τp, ρ̌

p
p)〈(s, ρ̌p) . up〉 and (τ ′p, ρ̌

q′
p) = (τp, ρ̌

q
p)〈(s, ρ̌q) . up〉. Moreover, we remove the loops on

s from the runs on τq by (τ ′q,ρ
p′
q) = (τq,ρ

p
q)〈(τq,ρpq)�u2

→ u1〉 and (τ ′q,ρ
q′
q) = (τq,ρ

q
q)〈(τq,ρqq)�u2

→ u1〉.
For every i ∈ {1, . . . ,M} \ J , we have wt�i (s,ρ

p) = wt�i (s,ρ
q). Likewise, by choice of vq, we have

wt�i (s,ρ
p) = wt�i (s,ρ

q) for every i ∈ I. This implies in particular that for every i ∈ I ∪ ({1, . . . ,M} \ J)
we have w̌ti(τ

′
p, ρ̌

p′
p) + wti(τ

′
q,ρ

q′
q) = w̌ti(τp, ρ̌

p
p) + wti(τq,ρ

q
q).

We continue this procedure of moving loops until we arrive at a tree τ ′q with height(τ ′q) ≤ |Q|2.

22

We then have two runs ρp′q ∈ RunU (τ ′q,p
′) and ρq′q ∈ RunU (τ ′q,q

′) on τ ′q and a tree τ ′p with runs
ρ̌p′p ∈ RunǓ (τ ′p, p̌

′) and ρ̌q′p ∈ RunǓ (τ ′p, q̌
′).

♣ We let j1, . . . , jH be an enumeration of J . We let k ∈ {1, . . . ,H} and let u ∈ pos(τq) be position
such that ρpq(u) and ρqq(u) are jk-rivals. Then by Lemma 3.15, there exists a jk-ρpq(u)-ρqq(u)-distinguisher
sk with height(sk) ≤ 4|Q|2. We let rpk ∈ Run�U (ρpq(u), sk,ρ

p
q(u)) and rqk ∈ Run�U (ρqq(u), sk,ρ

q
q(u)).

Furthermore, we let uk ∈ τ ′p be a position with (ρ̌p′p (uk), ρ̌q′p (uk)) = (ρ̌pq(u), ρ̌qq(u)). We know that such a
position exists from the way we obtained τ ′p, ρ̌

p′
p , and ρ̌q′p from τp, ρ̌

p
p, and ρ̌qp.

We may assume that j1, . . . , jH are ordered such that u1 ≤l . . . ≤l uH . Then for every k ∈ {1, . . . ,H},
we insert (sk, π1◦rpk)|Ξ| into (τ ′p, ρ̌

p′
p) and (sk, π1◦rqk)|Ξ| into (τ ′p, ρ̌

q′
p) at uk by (τ ′′p , ρ̌

p′′
p) = (τ ′p, ρ̌

p′
p)〈(sH , π1◦

rpH)|Ξ| . uH〉 · · · 〈(s1, π1◦rp1)|Ξ| . u1〉 and (τ ′′p , ρ̌
q′′
p) = (τ ′p, ρ̌

q′
p)〈(sH , π1◦rqH)|Ξ| . uH〉 · · · 〈(s1, π1◦rq1)|Ξ| . u1〉.

For sake of simplicity, we assume that the Γ-words we inserted are still below the positions u1, . . . , uH .
♣ We assume that the deterministic automata A1, . . . ,AN are all complete, thus for every n ∈

{1, . . . , N} there exists a run ρn ∈ RunAn(τ ′′p). We define ρ̄ : pos(τ ′′p)→ Ξ by ρ̄(w) = (ρ1(w), . . . , ρN (w), ρ̌p′′p (w), ρ̌q′′p (w))
and let vk = ♦1(sk). For every k ∈ {1, . . . ,H}, we can find by pigeon hole principle two integers m,n ∈
{0, . . . , |Ξ|} with m < n such that ρ̄(ukv

m
k) = ρ̄(ukv

n
k). We let upk = ukv

m
k , p̄k = ρ̄(ukv

m
k), nk = m − n,

and s̄k = snk

k , see also Figure 6. We remove loops from τ ′′p and ρ̄ as follows. If height(τ ′′p) ≤ |Ξ|2,
we do nothing. Otherwise, we let seen(w) = {ρ̄(ww′) | w′ ∈ pos(τ ′′p �w)} for w ∈ pos(τ ′′p) and choose
w ∈ pos(τ ′′p) with |w| = height(τ ′′p) > |Ξ|2. Then for every two positions w1, w2 ∈ pos(τ ′′p) with
w1 <p w2, we have ∅ 6= seen(w2) ⊆ seen(w1) ⊆ Ξ. Thus, there exist by pigeon hole principle two
positions w1, w2 ∈ pos(τ ′′p) such that w1 <p w2 ≤p w and (ρ̄(w1), seen(w1)) = (ρ̄(w2), seen(w2)). We cut
this cycle from τ ′′p by defining (τ ′′′p , ρ̄

′) = (τ ′′p , ρ̄)〈(τ ′′p , ρ̄)�w2
→ w1〉. We continue this procedure until we

obtain a tree τ ′′′p with height(τ ′′′p) ≤ |Ξ|2 together with a quasi-run ρ̄′. We note that by construction, we
have ρ̄′(pos(τ ′′′p)) = ρ̄(pos(τ ′′p)), so for every k ∈ {1, . . . ,H}, there exists uqk ∈ pos(τ ′′′p) with ρ̄′(uqk) = p̄k.
We denote the projections on Ξ to the respective coordinates by π1, . . . , πN+2. Then we also have
πn ◦ ρ̄′ ∈ RunAn(τ ′′′p) for every n ∈ {1, . . . , N}, πN+1 ◦ ρ̄′ ∈ RunǓ (τ ′′′p , p̌

′), and πN+2 ◦ ρ̄′ ∈ RunǓ (τ ′′′p , q̌
′).

We now consider the tree t′ and the accepting run ř′ ∈ AccǓ (t′) defined by (t′, ř′) = (t, π1 ◦
r)〈(τ ′′p , ρ̌p′′p)→ wpvp〉〈(τ ′′′p , πN+2 ◦ ρ̄′)→ wqvq〉. Let k ∈ {1, . . . ,H}. We have (ř′(wpvpu

p
k), ř′(wqvqu

q
k)) =

(πN+1 ◦ ρ̄(upk), πN+2 ◦ ρ̄′(uqk)) = (π1 ◦ rpk(ε), π1 ◦ rqk(ε)). Moreover, for every n ∈ {1, . . . , N} we see
that for the unique run rn of An on t′ we have (rn(wpvpu

p
k), rn(wqvqu

q
k)) = (πn ◦ ρ̄(upk), πn ◦ ρ̄′(uqk)) =

(πn(p̄k), πn(p̄k)). Also, the Γ-word s̄k loops in πn(p̄k).
We consider the weight of ř′ on t′. By construction, we have for every i ∈ {1, . . . ,M} that

wti(t, r)− w̌ti(τp, ρ̌
p
p)− w̌ti(τq, ρ̌

q
q) = w̌ti(t

′, ř′)− w̌ti(τ
′′
p , ρ̌

p′′
p)− w̌ti(τ

′′′
p , πN+2 ◦ ρ̄′).

Let i ∈ I ∪ ({1, . . . ,M} \ J), then we have

w̌ti(τ
′
p, ρ̌

p′
p) + wti(τ

′
q,ρ

q′
q) = w̌ti(τp, ρ̌

p
p) + wti(τq,ρ

q
q)

and

|w̌ti(τ
′
p, ρ̌

p′
p)− w̌ti(τ

′′
p , ρ̌

p′′
p)| ≤ µmax

H∑
k=1

|Ξ| · |sk| ≤ µmaxM |Ξ|Υ.

Thus, we see that

|w̌ti(t
′, ř′)−wti(t, r)| = |w̌ti(t

′, ř′)− w̌ti(τ
′′
p , ρ̌

p′′
p)− w̌ti(τ

′′′
p , πN+2 ◦ ρ̄′)

+ w̌ti(τ
′′
p , ρ̌

p′′
p) + w̌ti(τ

′′′
p , πN+2 ◦ ρ̄′)

−wti(t, r) + w̌ti(τp, ρ̌
p
p) + w̌ti(τq, ρ̌

q
q)

− w̌ti(τp, ρ̌
p
p)− w̌ti(τq, ρ̌

q
q)|

= |w̌ti(τ
′′
p , ρ̌

p′′
p) + w̌ti(τ

′′′
p , πN+2 ◦ ρ̄′)

− w̌ti(τp, ρ̌
p
p)− w̌ti(τq, ρ̌

q
q)|

= |w̌ti(τ
′′
p , ρ̌

p′′
p) + w̌ti(τ

′′′
p , πN+2 ◦ ρ̄′)

− w̌ti(τ
′
p, ρ̌

p′
p)−wti(τ

′
q,ρ

q′
q)|

≤ µmax(Υ + Υ′ +M |Ξ|Υ).

We write (κ1, . . . , κM) = wtǓ (t′, ř′) and recall that I ⊆ J . Then for every i ∈ I and i′ ∈ {1, . . . ,M} \ J ,

23

we have by choice of C that

κi′ − κi = (κi′ −wti′(t, r)) + (wti′(t, r)−wti(t, r)) + (wti(t, r)− κi)
≤ (wti′(t, r)−wti(t, r)) + 2µmax(Υ + Υ′ +M |Ξ|Υ)

≤ −4µmaxM |Ξ|ΥR̄− 1.

We consider the Ramsey number RH as above and the set {1, . . . , RH}. For every 2H-subset ζ ⊆
{1, . . . , RH}, we define a color in {1, . . . ,M} × {1, . . . , N} as follows. We assume that ζ = {ζ1, . . . , ζ2H}
with ζ1 < . . . < ζ2H and let tζ be the tree obtained from t′ by inserting the context s̄

ζ2k−1

k at wpvpu
p
k

and the context s̄ζ2kk at wqvqu
q
k for every k ∈ {1, . . . ,H}. Then writing JǓK(tζ) = (κζ1, . . . , κ

ζ
M), we let

the color of ζ be the pair (j, n) consisting of the smallest j ∈ {1, . . . ,M} with κζj = max{κζ1, . . . , κ
ζ
M}

and the smallest n ∈ {1, . . . , N} with JAnK(tζ) = κζj . We note that for every i ∈ {1, . . . ,M}, we have

|κi − κζi | ≤ µmax

H∑
k=1

|s̄k|(ζ2k−1 + ζ2k)

≤ µmaxM |Ξ|Υ · 2R̄.

Thus, for every i ∈ I and i′ ∈ {1, . . . ,M} \ J , we have

κζi′ = (κζi′ − κi′) + (κi′ − κi) + (κi − κζi) + κζi

≤ 2µmaxM |Ξ|ΥR̄− 4µmaxM |Ξ|ΥR̄− 1 + 2µmaxM |Ξ|ΥR̄+ κζi

= κζi − 1.

In particular, all 2H-subsets are colored with a color from J × {1, . . . , N}.
By assumption on RH , there now exists a subset Y ⊆ {1, . . . , RH} of cardinality 2H + 2 whose

2H-subsets are all colored with the same color. Let ζ1 < . . . < ζ2H+2 be the an enumeration of Y and
let (j, n) ∈ J × {1, . . . , N} such that all 2H-subsets of Y are colored by (j, n).

We let k ∈ {1, . . . ,H} with jk = j and let ζ = {ζ1, . . . , ζ2H+2} \ {ζ2k, ζ2k+2}. Furthermore, we let
ζ+p = {ζ2k} ∪ ζ \ {ζ2k−1} and ζ+q = {ζ2k+2} ∪ ζ \ {ζ2k+1}. With z = wt�An

(πn(p̄k), s̄k, πn(p̄k)), we then
have

(ζ2k − ζ2k−1)z = JAnK(tζ+p)− JAnK(tζ)

= κζ
+p

j − κζj
= (ζ2k − ζ2k−1)nkwtj(sk, r

p
k)

and

(ζ2k+2 − ζ2k+1)z = JAnK(tζ+q)− JAnK(tζ)

= κζ
+q

j − κζj
= (ζ2k+2 − ζ2k+1)nkwtj(sk, r

q
k).

Thus, we obtain nkwtj(sk, r
p
k) = z = nkwtj(sk, r

q
k), which is a contradiction to the choice of sk.

3.3 Sufficiency

In this section, we show that if U is not broken, then JAK is finitely sequential. Although our approach
is inspired by an idea in [3], we are not sure whether we employ this idea in the same way. Our
general strategy is to show that, if U is not broken, then we can construct M unambiguous max-plus-
WTA which all do not satisfy the tree fork property and whose pointwise maximum is equivalent to
JAK. By Theorem 3.2, we obtain a finitely sequential representation of A by constructing one for each
of the unambiguous max-plus-WTA. We essentially construct the unambiguous automata by removing
problematic runs from U and then projecting to the coordinates 1, . . . ,M .

Our fundamental idea is the following. Assume that p and q are i-rivals, that (t, r) is i-p-q-broken,
and that the maximum of wtU (t, r) is in coordinate i. Furthermore, assume that in r, some i-p-q-
distinguisher s loops N times in p, where N ∈ N is some integer, and that s loops in p with a smaller

24

(i,p,q, s)-fork-broken

q
q

q
p

p
p

vq

uq
wq

wp
vp

up

(s, rq)N+1

p-q-fork

(s, rp)N+1

(i,p,q, s)-split-broken

p q

vp vq
p q

up uq

(s, rp)N+1 (s, rq)N+1

Figure 7: An illustration of (i,p,q, s)-fork-brokenness and (i,p,q, s)-split-brokenness.

weight, in coordinate i, than in q. By removing the loops of s in p from (t, r) and inserting them back
as loops in q, we increase the weight of coordinate i, but leave the weights of all non-broken coordinates
unchanged. If height(s) ≤ 4|Q|2, we can even assert that the weight of coordinate i increases by Nξ,
where ξ is defined as in Section 3.2. Thus, in this latter case, coordinate i then dominates all non-broken
coordinates by a margin of at least Nξ. We know that i cannot dominate all non-broken coordinates by
an arbitrarily large margin, so N cannot be arbitrarily large. In turn, this means that if N is sufficiently
large, then wtU (t, r) cannot take its maximum weight in coordinate i. This implies that the weight of
coordinate i can be discarded if some distinguisher loops in both of its rivals too many times.

We employ this idea in the following way. First, we identify an integer N such that looping in an
i-distinguisher more than N times ensures coordinate i to be dominated by other coordinates. Then we
construct for every every coordinate an automaton which checks every run of U for i-brokenness and
detects for every i-distinguisher of height at most 4|Q|2 whether it is looped N + 1 times. Finally, we
restrict the runs of U to those which are not detected, simply using a product construction, and apply the
i-th projection to all weight vectors. As we will show, the resulting automata are unambiguous and do
not satisfy the tree fork property. We do not need to detect loops of arbitrarily large distinguishers since
by Lemma 3.15, every large distinguisher contains a distinguisher of height at most 4|Q|2 by truncating.
We begin by introducing the following notions.

We define the set R = {(i,p,q, s) ∈ {1, . . . ,M}×Q2×TΓ� | i ∈ {1, . . . ,M}, s is an i-p-q-distinguisher,
height(s) ≤ 4|Q|2}, let C̃ be as in Theorem 3.22, let ξ be as in Section 3.2, and define the constant

N =
⌈
MC̃ξ−1

⌉
. We note that R is computable, as by Lemma 3.16, we can decide for every two states

p,q ∈ Q whether they are rivals or not.

Definition 3.26. Let t ∈ TΓ, r ∈ RunU (t), (i,p,q, s) ∈ R, rp ∈ Run�U (p, s,p), and rq ∈ Run�U (q, s,q).
We call (t, r)

• (i,p,q, s)-fork-broken if there exist positions up, vp, wp, wq, uq, vq ∈ pos(t) with vq <p uq ≤p

wq <p wp ≤p vp <p up such that (t, r)〈� → up〉�vp (s, rp)N+1, (t, r)〈� → uq〉�vq (s, rq)N+1,
r(wp) = p, r(wq) = q, and t〈� → wp〉�wq

is a p-q-fork.

• (i,p,q, s)-split-broken if there exist positions up, vp, uq, vq ∈ pos(t) such that vp <p up, vq <p

uq, vp and vq are prefix-independent, (t, r)〈� → up〉�vp (s, rp)N+1, and (t, r)〈� → uq〉�vq
(s, rq)N+1.

For an illustration, see also Figure 7.

The first observation we make is that if some (t, r) is (i,p,q, s)-broken for a a tuple (i,p,q, s) ∈ R,
then the weight of coordinate i is strictly dominated by another coordinate.

Lemma 3.27. Let t ∈ TΓ and r ∈ AccU (t). If (t, r) is (i,p,q, s)-broken for some (i,p,q, s) ∈ R, then
wti(t, r) < JAK(t).

Proof. Let t ∈ TΓ and r ∈ AccU (t) be such that (t, r) is (i,p,q, s)-broken for (i,p,q, s) ∈ R. Fur-
thermore, let up, vp, uq, vq ∈ pos(t) be as in the definition of (i,p,q, s)-brokenness. We may assume
that wt�i (p, s,p) < wt�i (q, s,q), let rp ∈ Run�U (p, s,p), rq ∈ Run�U (q, s,q), and let g : pos(sN+1) →
pos((t, r)〈� → up〉�vp) be as in the definition of a truncation. We let (s1, r1), . . . , (sn, rn) be an enu-

meration of the set {(t, r)〈� → vpg(wl)〉�vpg(w)l | w ∈ pos(sN+1), l ∈ {1, . . . , rkΓ(sN+1(w))}} and we let

(t′, r′) = (t, r)〈(t, r)�up
→ vp〉. Then wtU (t, r) = wtU (t′, r′) + (N + 1)wt�U (s, rp) +

∑n
k=1 wt�U (sk, rk).

Note that by the definition of a truncation, we have rk(ε) = rk(♦1(sk)) for all k ∈ {1, . . . , n}. By

25

construction, for every k ∈ {1, . . . , n}, there exists a position uk ∈ pos(s) such that rk(ε) = rp(uk). We
may assume that u1 ≤l . . . ≤l un and let (s′, r′p) = (s, rp)〈(sn, rn) . un〉 · · · 〈(s1, r1) . u1〉. Then with
(t′′, r′′) = (t′, r′)〈(s′, r′p) . vp〉 we have wtU (t, r) = wtU (t′′, r′′) +Nwt�U (s, rp).

By choice of t and r, there exists a position v ∈ pos(t′′) with r′′(v) = q. We let (t′′′, r′′′) =
(t′′, r′′)〈(s, rq)N . v〉. Then we have wti(t

′′′, r′′′) = wti(t, r)+N(wt�i (q, s,q)−wt�i (p, s,p)) ≥ wti(t, r)+

MC̃. Since r′′′ ∈ AccU (t′′′), (t′′′, r′′′) is i-p-q-broken, and we assume U to not be broken, there exists
a coordinate j ∈ {1, . . . ,M} such that (t′′′, r′′′) is not j-broken and wtj(t

′′′, r′′′) > wti(t
′′′, r′′′) −MC̃;

otherwise, we could construct a C̃-separable set I like in the proof of Lemma 3.24, which by Theorem 3.22
would imply that U is broken. Since (t, r′′′) is not j-p-q-broken, we have wtj(t, r) = wtj(t

′′′, r′′′) >

wti(t
′′′, r′′′)−MC̃ ≥ wti(t, r).

Next, we show that for every i ∈ {1, . . . ,M}, it is a recognizable property whether for a run r ∈
RunU (t) on a tree t ∈ TΓ, (t, r) is (i,p,q, s)-broken for some (i,p,q, s) ∈ R. More precisely, we show
the following lemma.

Lemma 3.28. For every i ∈ {1, . . . ,M}, there exists a complete and deterministic FTA Bi over the
alphabet Γ×Q which accepts a tree (t, r) ∈ TΓ×Q if and only if there does not exist (i,p,q, s) ∈ R such
that (t, r) is (i,p,q, s)-broken.

Proof. We employ the generalization of Büchi’s theorem to trees [49, 14, 12], namely that a tree language
is definable using the MSO logic given by the grammar

β ::= label(a,p)(x) | edgel(x, y) | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β

if and only if it is recognizable by a (complete and deterministic) FTA over Γ×Q. Here (a,p) ∈ Γ×Q,
l ∈ {1, . . . , rk(Γ)}, x, y are first order variables, and X is a second order variable, and (t, r) as above
corresponds to the structure with universe pos(t) where the interpretation of label(a,p) is the set {w ∈
pos(t) | (t(w), r(w)) = (a,p)} and the interpretation of edgel is the set {(w,wl) | w,wl ∈ pos(t)} for
every l ∈ {1, . . . , rk(Γ)}. We note that the orderings ≤p and ≤l are both definable using this logic, so
we may use them as well as their strict versions <p and <l in our formulas.

We let (i,p,q, s) ∈ R, rp ∈ Run�U (p, s,p), and rq ∈ Run�U (q, s,q). We let (s′, r′p) = (s, rp)N+1

and (s′, r′p) = (s, rq)N+1. We let d1, . . . , d|D| be an enumeration of D = {d ∈ ∆U | µ(d) ∈ QM} and
let w1, . . . , wn be an enumeration of pos(s′). Furthermore, we let D(q) = {(q1, . . . ,qm, a,q) ∈ D} and
Dl(q) = {(q1, . . . ,qm, a,q0) ∈ D | ql = q} for q ∈ Q and l ∈ {1, . . . , rk(Γ)}. We first define a formula
fork(yq, yp) which checks for two positions yq, yp ∈ pos(t) that r(yq) = q, r(yp) = p, and that p can
loop in the Γ-word t〈� → yp〉�yq by

(yq <p yp) ∧
∨
a,b∈Γ

label(a,p)(yp) ∧ label(b,q)(yq)

∧ ∃Yd1
. . . ∃Yd|D|∀y

(
(yq ≤p y ∧ ¬(yp <p y))→

(
∨

d=(q̄,a,q0)∈D

∨
p0∈Q

(y ∈ Yd ∧ label(a,p0)(y) ∧ ¬
∨

d′∈D\{d}

y ∈ Yd′))

∧ ∀x
∧

q0∈Q

rk(Γ)∧
l=1

∧
d∈Dl(q0)

(
(y ∈ Yd ∧ edgel(y, x) ∧ ¬(yp <p x))→

∨
d′∈D(q0)

x ∈ Yd′
))
.

Then we define the formula ϕ(s,p,q) to check for (i,p,q, s)-brokenness by

∃zw1
. . . ∃zwn

∃xw1
. . . ∃xwn

(∧
u,v∈pos(s′)

u<lv

(zu <l zv) ∧ (xu <l xv) ∧
∧

u,v∈pos(s′)
u<pv

(zu <p zv) ∧ (xu <p xv)

∧
∧

u,v∈pos(s′)
¬(u<pv)

¬(zu <p zv) ∧ ¬(xu <p xv)

∧
∧

w∈pos(s′)

(
label(s′(w),r′q(w))(zw) ∧ label(s′(w),r′p(w))(xw)

∧
rkΓ(s′(w))∧

l=1

∀z∀x(edgel(zw, z) ∧ edgel(xw, x)→∨
a,b∈Γ

label(a,r′q(wl))(z) ∧ label(b,r′p(wl))(x))
)

26

∧
(
(¬(xε ≤p zε) ∧ ¬(zε ≤p xε)) ∨ ∃yq∃yp(fork(yq, yp) ∧ z♦1(s′) ≤p yq ∧ yp ≤p xε)

))
.

Finally, we let ϕi = ¬
∨

(i,p,q,s)∈R ϕ(s,p,q) and we let Bi be a complete and deterministic FTA with

L(ϕi) = L(Bi), then Bi accepts (t, r) if and only if there does not exist (i,p,q, s) ∈ R such that (t, r) is
(i,p,q, s)-broken.

In the following, we define M max-plus-WTA C1, . . . , CM over Γ which we claim to all not satisfy the
tree fork property and whose pointwise maximum we claim to be equivalent to JAK.

Construction 3.29. For i ∈ {1, . . . ,M}, we let Bi = (Bi,Γ × Q, δi, Fi) be the automaton we find
by Lemma 3.28. We define Ci = (Ci,Γ, µi, νi) over Qmax as the trim part of the automaton C′i =
(Q×Bi,Γ, µ′i, ν′i) defined for a ∈ Γ with rkΓ(a) = m and (q0, b0), . . . , (qm, bm) ∈ Q×Bi by

µ′i((q1, b1), . . . , (qm, bm), a, (q0, b0)) ={
πi(µ(q1, . . . ,qm, a,q0)) if (b1, . . . , bm, (a,q0), b0) ∈ δi and b0 ∈ Fi
−∞ otherwise

ν′i(q0, b0) = πi(ν(q0)).

We let πQ : Q×Bi → Q and πBi
: Q×Bi → Bi be the projections.

We make the following observations about C1, . . . , CM .

Proposition 3.30. For every tree t ∈ TΓ and every r ∈ RunCi(t), we have πQ◦r ∈ RunU (t), wtCi(t, r) =
wti(t, πQ◦r), and πBi◦r is the unique run of Bi on (t, πQ◦r). In particular, we have JCiK(t) ≤ πi(JUK(t)).

We first show that maxMi=1JCiK = JAK.

Lemma 3.31. For every t ∈ TΓ, we have maxMi=1JCiK(t) = JAK(t).

Proof. Let t ∈ TΓ. By construction of U we have JAK(t) = maxMi=1 πi(JUK(t)). If JAK(t) = −∞, we have
−∞ = maxMi=1 πi(JUK(t)) ≥ maxMi=1JCiK(t). If JAK(t) 6= −∞, there exists a run r ∈ RunU (t) and an
index j ∈ {1, . . . ,M} with wtj(t, r) = πj(JUK(t)) = JAK(t). By Lemma 3.27, this implies that (t, r) is
not (j,p,q, s)-broken for any (j,p,q, s) ∈ R. From the definition of (j,p,q, s)-brokenness, it is easy to
see that the same is true for every subtree (t, r)�w with w ∈ pos(t). As Bj is complete, there exists a run
rBj ∈ RunBj (t, r). As Bj is deterministic and accepts every subtree of (t, r), it follows that rBj (w) ∈ Fj
for every w ∈ pos(t). Thus, we can define a run rj ∈ RunCj (t) by rj(w) = (r(w), rBj (w)) and for this
run we have wtCi(t, rj) = wtj(t, r) = JAK(t). Thus, we have JCjK(t) ≥ wtCj (t, rj) = JAK(t) and we have
JCiK(t) ≤ πi(JUK(t)) ≤ JAK(t) by construction for every i ∈ {1, . . . ,M}. Therefore, maxMi=1JCiK(t) =
JAK(t).

Finally, we show that the automata C1, . . . , CM do not satisfy the tree fork property and therefore
possess finitely sequential representations.

Lemma 3.32. The automata C1, . . . , CM do not satisfy the tree fork property.

Proof. We prove the statement by contradiction and assume that for some i ∈ {1, . . . ,M}, the automaton
Ci satisfies the tree fork property. Then there exist rivals (p, b), (q, c) ∈ Q×Bi which satisfy one of the
conditions of the tree fork property together with a (p, b)-(q, c)-distinguisher s ∈ TΓ� . From the definition
of Ci, it is easy to see that s is now also an i-p-q-distinguisher of U . We let rp ∈ Run�U (p, s,p) and
rq ∈ Run�U (q, s,q). Then by Lemma 3.15, there exists an i-p-q-distinguisher s′ ∈ TΓ� with height(s′) ≤
4|Q|2 and with runs r′p ∈ Run�U (p, s′,p) and r′q ∈ Run�U (q, s′,q) such that (s, rp) (s′, r′p) and

(s, rq) (s′, r′q). We then also have (s, rp)N+1 (s′, r′p)N+1 and (s, rq)N+1 (s′, r′q)N+1. Moreover,
by trimness, there exists a reacher u ∈ TΓ with RunCi(u, (p, b)) 6= ∅ and RunCi(u, (q, c)) 6= ∅. We consider
two cases.

If Ci satisfies condition (i) of the tree fork property for (p, b) and (q, c), there exists a (p, b)-(q, c)-
fork f ∈ TΓ� . Then f is also an i-p-q-fork in U . We let t = sN+1(f(sN+1(u))), vq = ε, wq = uq =
♦1(s)N+1, wp = vp = wq♦1(f), and up = vp♦1(s)N+1. By assumption, the sets RunCi((p, b), s, (p, b)),
RunCi((q, c), s, (q, c)), and RunCi((p, b), f, (q, c)) are all non-empty, so there exists a unique run ri ∈
RunCi(t, (q, c)). We consider the run r = πQ ◦ ri, then we have (t, r)〈� → up〉�vp (s′, r′p)N+1,

(t, r)〈� → uq〉�vq (s′, r′q)N+1, r(wp) = p, r(wq) = q, and t〈� → wp〉�wq
is a p-q-fork. Thus, (t, r)

27

is (i,p,q, s′)-broken and for the unique run rBi
∈ RunBi

(t, r), we have rBi
(ε) /∈ Fi. It follows that

πBi
◦ ri(ε) /∈ Fi which implies that ri is not valid in contradiction to our assumption.
If Ci satisfies condition (ii) of the tree fork property for (p, b) and(q, c), there exists a 2-Γ-context

t′ ∈ TΓ� and a run r′i ∈ Run�Ci(t
′) with r′i(♦1(t′)) = (p, b) and r′i(♦2(t′)) = (q, c). We let t =

t′(sN+1(u), sN+1(u)), vp = ♦1(t′), vq = ♦2(t′), up = vp♦1(s)N+1, and uq = vq♦1(s)N+1. By our
assumptions, there exists a unique run ri ∈ RunCi(t) with ri(ε) = r′i(ε). We consider the run r = πQ ◦ri,
then vp and vq are prefix-independent and we have (t, r)〈� → up〉�vp (s′, r′p)N+1 and (t, r)〈� →
uq〉�vq (s′, r′q)N+1. As in the previous case, we see that (t, r) is (i,p,q, s′)-broken and thus for the
unique run rBi

∈ RunBi
(t, r), we have rBi

(ε) /∈ Fi. Therefore, πBi
◦ ri(ε) /∈ Fi which implies that ri is

not valid in contradiction to our assumption.

To conclude, the proof of Theorem 3.12, we construct for every i ∈ {1, . . . ,M} deterministic max-

plus-WTA A(i)
1 , . . . ,A(i)

ni with maxni
j=1JA

(i)
j K = JCiK, which is possible by Theorem 3.2. Then we have

JAK = maxMi=1JCiK = maxMi=1 maxni
j=1JA

(i)
j K, so JAK is finitely sequential.

References

[1] A. Alexandrakis and S. Bozapalidis. Weighted grammars and Kleene’s theorem. Information Pro-
cessing Letters, 24(1):1–4, 1987.

[2] C. Allauzen and M. Mohri. Efficient algorithms for testing the twins property. Journal of Automata,
Languages and Combinatorics, 8(2):117–144, 2003.

[3] S. Bala. Which finitely ambiguous automata recognize finitely sequential functions? (extended
abstract). In K. Chatterjee and J. Sgall, editors, 38th International Symposium on Mathematical
Foundations of Computer Science (MFCS), volume 8087 of Lecture Notes in Computer Science,
pages 86–97. Springer, 2013.

[4] S. Bala and A. Koniński. Unambiguous automata denoting finitely sequential functions. In A. Dediu,
C. Mart́ın-Vide, and B. Truthe, editors, 7th International Conference on Language and Automata
Theory and Applications (LATA), volume 7810 of Lecture Notes in Computer Science, pages 104–
115. Springer, 2013.

[5] J. Berstel and C. Reutenauer. Recognizable formal power series on trees. Theoretical Computer
Science, 18:115–148, 1982.

[6] J. Berstel and C. Reutenauer. Rational Series and Their Languages, volume 12 of EATCS Mono-
graphs in Theoretical Computer Science. Springer, 1988.

[7] J. Björklund, F. Drewes, and N. Zechner. An efficient best-trees algorithm for weighted tree au-
tomata over the tropical semiring. In A. Dediu, E. Formenti, C. Mart́ın-Vide, and B. Truthe, editors,
9th International Conference on Language and Automata Theory and Applications (LATA), volume
8977 of Lecture Notes in Computer Science, pages 97–108. Springer, 2015.

[8] M. Blattner and T. Head. Automata that recognize intersections of free submonoids. Information
and Control, 35(3):173–176, 1977.

[9] A. Bockmayr, V. Weispfenning, and M. Maher. Solving numerical constraints. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume 1, chapter 12, pages 751 – 842.
Elsevier and MIT Press, 2001.

[10] B. Borchardt. A pumping lemma and decidability problems for recognizable tree series. Acta
Cybernetica, 16(4):509–544, 2004.

[11] M. Büchse, J. May, and H. Vogler. Determinization of weighted tree automata using factorizations.
Journal of Automata, Languages and Combinatorics, 15(3/4):229–254, 2010.

[12] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, C. Löding, D. Lugiez, S. Tison, and
M. Tommasi. Tree Automata Techniques and Applications. Available on: http://www.grappa.

univ-lille3.fr/tata, 2008.

28

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

[13] L. Daviaud, P. Guillon, and G. Merlet. Comparison of max-plus automata and joint spectral radius
of tropical matrices. In Larsen et al. [32], pages 19:1–19:14.

[14] J. Doner. Tree acceptors and some of their applications. Journal of Computer and System Sciences,
4(5):406–451, 1970.

[15] M. Droste and P. Gastin. Aperiodic weighted automata and weighted first-order logic. In P. Ross-
manith, P. Heggernes, and J. Katoen, editors, 44th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS), volume 138 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 76:1–76:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[16] M. Droste, W. Kuich, and H. Vogler, editors. Handbook of Weighted Automata. EATCS Monographs
in Theoretical Computer Science. Springer, 2009.

[17] Z. Ésik and W. Kuich. Formal tree series. Journal of Automata, Languages and Combinatorics,
8(2):219–285, 2003.

[18] J. Esparza, P. Ganty, S. Kiefer, and M. Luttenberger. Parikh’s theorem: A simple and direct
automaton construction. Information Processing Letters, 111(12):614–619, 2011.

[19] E. Filiot, I. Jecker, N. Lhote, G. A. Pérez, and J. Raskin. On delay and regret determinization of
max-plus automata. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1–12. IEEE Computer Society, 2017.

[20] Z. Fülöp and H. Vogler. Weighted tree automata and tree transducers. In Droste et al. [16], chapter 9,
pages 313–403.

[21] F. Gécseg and M. Steinby. Tree Automata. 2015.

[22] K. Hashiguchi. Algorithms for determining relative star height and star height. Information and
Computation, 78(2):124–169, 1988.

[23] K. Hashiguchi, K. Ishiguro, and S. Jimbo. Decidability of the equivalence problem for finitely
ambiguous finance automata. International Journal of Algebra and Computation, 12(3):445–461,
2002.

[24] D. Kirsten. A Burnside approach to the termination of Mohri’s algorithm for polynomially ambigu-
ous min-plus-automata. Informatique Théorique et Applications, 42(3):553–581, 2008.

[25] D. Kirsten and S. Lombardy. Deciding unambiguity and sequentiality of polynomially ambiguous
min-plus automata. In S. Albers and J. Marion, editors, 26th International Symposium on The-
oretical Aspects of Computer Science (STACS), volume 3 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 589–600. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2009.

[26] I. Klimann, S. Lombardy, J. Mairesse, and C. Prieur. Deciding unambiguity and sequentiality from
a finitely ambiguous max-plus automaton. Theoretical Computer Science, 327(3):349–373, 2004.

[27] J. Komenda, S. Lahaye, J. Boimond, and T. van den Boom. Max-plus algebra in the history of
discrete event systems. Annual Reviews in Control, 45:240–249, 2018.

[28] A. Koprowski and J. Waldmann. Max/plus tree automata for termination of term rewriting. Acta
Cybernetica, 19(2):357–392, 2009.

[29] S. Kreutzer and C. Riveros. Quantitative monadic second-order logic. In 28th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 113–122. IEEE Computer Society, 2013.

[30] D. Krob. The equality problem for rational series with multiplicities in the tropical semiring is
undecidable. International Journal of Algebra and Computation, 4(3):405–426, 1994.

[31] W. Kuich and A. Salomaa. Semirings, Automata, Languages, volume 5 of EATCS Monographs in
Theoretical Computer Science. Springer, 1986.

[32] K. G. Larsen, H. L. Bodlaender, and J. Raskin, editors. 42nd International Symposium on Mathe-
matical Foundations of Computer Science (MFCS), volume 83 of Leibniz International Proceedings
in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

29

[33] F. Mazowiecki and C. Riveros. Pumping lemmas for weighted automata. In R. Niedermeier and
B. Vallée, editors, 35th Symposium on Theoretical Aspects of Computer Science (STACS), volume 96
of Leibniz International Proceedings in Informatics (LIPIcs), pages 50:1–50:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2018.

[34] M. Mohri. Finite-state transducers in language and speech processing. Computational Linguistics,
23(2):269–311, 1997.

[35] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons,
1988.

[36] R. J. Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.

[37] E. Paul. On finite and polynomial ambiguity of weighted tree automata. In S. Brlek and
C. Reutenauer, editors, 20th International Conference on Developments in Language Theory (DLT),
volume 9840 of Lecture Notes in Computer Science, pages 368–379. Springer, 2016.

[38] E. Paul. The equivalence, unambiguity and sequentiality problems of finitely ambiguous max-plus
tree automata are decidable. In Larsen et al. [32], pages 53:1–53:13.

[39] E. Paul. Finite sequentiality of unambiguous max-plus tree automata. In R. Niedermeier and C. Paul,
editors, 36th International Symposium on Theoretical Aspects of Computer Science (STACS), vol-
ume 126 of Leibniz International Proceedings in Informatics (LIPIcs), pages 55:1–55:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

[40] S. Petrov. Latent variable grammars for natural language parsing. In Coarse-to-Fine Natural
Language Processing, Theory and Applications of Natural Language Processing, chapter 2, pages
7–46. Springer, 2012.

[41] M. O. Rabin and D. S. Scott. Finite automata and their decision problems. IBM Journal of Research
and Development, 3(2):114–125, 1959.

[42] F. P. Ramsey. On a problem of formal logic. Proceedings of the London Mathematical Society, series
2, 30:264–286, 1930.

[43] J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.

[44] A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series. Texts and
Monographs in Computer Science. Springer, 1978.

[45] M.-P. Schützenberger. On the definition of a family of automata. Information and Control, 4(2-
3):245–270, 1961.

[46] H. Seidl. On the finite degree of ambiguity of finite tree automata. Acta Informatica, 26(6):527–542,
1989.

[47] I. Simon. Limited subsets of a free monoid. In 19th Annual Symposium on Foundations of Computer
Science (FOCS), pages 143–150. IEEE Computer Society, 1978.

[48] I. Simon. Recognizable sets with multiplicities in the tropical semiring. In M. P. Chytil, L. Janiga,
and V. Koubek, editors, 13th International Symposium on Mathematical Foundations of Computer
Science (MFCS), volume 324 of Lecture Notes in Computer Science, pages 107–120. Springer, 1988.

[49] J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an application to a
decision problem of second-order logic. Mathematical Systems Theory, 2(1):57–81, 1968.

[50] J. Waldmann. Weighted automata for proving termination of string rewriting. Journal of Automata,
Languages and Combinatorics, 12(4):545–570, 2007.

[51] A. Weber and H. Seidl. On the degree of ambiguity of finite automata. Theoretical Computer
Science, 88(2):325–349, 1991.

30

	Introduction
	Preliminaries
	The Criterion for Finite Sequentiality
	Decidability
	Necessity
	Sufficiency

