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Abstract. We consider finite and polynomial ambiguity of weighted tree
automata. Concerning finite ambiguity, we show that a finitely ambigu-
ous weighted tree automaton can be decomposed into a sum of unam-
biguous automata. For polynomial ambiguity, we show how to decompose
a polynomially ambiguous weighted tree automaton into simpler poly-
nomially ambiguous automata and then analyze the structure of these
simpler automata. We also outline how these results can be used to cap-
ture the ambiguity of weighted tree automata with weighted logics.
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1 Introduction

Weighted automata, a generalization of non-deterministic finite automata (NFA),
have first been investigated by Schützenberger [22]. Since then, a large amount
of further research has been conducted on them, cf. [21,18,3,9]. When consid-
ering complexity and decidability problems for these automata, the concept of
ambiguity plays a large role. For instance, in [13] the equivalence problem for
finitely ambiguous automata over the max-plus semiring is shown to be decid-
able, whereas for general non-deterministic automata over the max-plus semiring
this problem is undecidable [17]. The ambiguity of an automaton is a measure
for the maximum number of accepting runs on a given input. For example, if
the number of accepting paths is bounded by a global constant for every word,
we say that the automaton is finitely ambiguous. In the case that the number
of accepting paths is bounded polynomially in the word length, we speak of
polynomial ambiguity.

In this paper, we investigate these two types of ambiguity for weighted tree
automata (WTA), a weighted automata model with trees as input. Our main
results are the following:

• A finitely ambiguous WTA can be decomposed into a sum of several unam-
biguous WTA.
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• A polynomially ambiguous WTA can be decomposed into a sum of “simpler”
polynomially ambiguous WTA. Here, for each of these simpler automata we
can identify a set of transitions such that, intuitively speaking, in every run
on any tree each of these transitions occurs at exactly one position of the
tree. Furthermore, the possible number of runs on any tree is bounded if we
specify the position of each of these transitions. The bound does not depend
on the given tree.

• To each of the classes of unambiguous, finitely ambiguous and polynomially
ambiguous WTA, we relate a class of sentences from a weighted MSO logic
expressively equivalent to it.

Weighted tree automata have been considered by a number of researchers
[2,4,19], see [12] for a survey. Likewise, the ambiguity of finite automata has been
studied numerous times. For example, [24,23,1] present criteria for ambiguity and
algorithms to determine the ambiguity of automata. For weighted automata on
words (WA), it has also been shown that expressive power increases with growing
degree of ambiguity. It is shown in [15] that the inclusions deterministic WA (
unambiguous WA ( finitely ambiguous WA are strict and in [14] it is shown that
the inclusion finitely ambiguous WA ( polynomially ambiguous WA is strict.

Our first two results give a deeper insight into the structure of WTA and
generalize results by Seidl and Weber [24] and Klimann et al. [15] from words
to trees. As trees do not have the linear structure of words, however, the cor-
responding proofs from the word case can not be adapted to the tree case in a
trivial way. Both results are new even for WTA over the boolean semiring, i.e.
for tree automata without weights.

The initial motivation for our investigations lies with logics and the third
result. Weighted logics can be used to describe weighted automata over words
and trees, as was shown by Droste, Gastin and Vogler [8,10]. Kreutzer and
Riveros [16] later showed that weighted logics can even be used to characterize
different degrees of ambiguity of weighted automata over words. With the help of
the first two results, we can generalize Kreutzer’s and Riveros’s result to WTA.
For polynomial ambiguity, we even obtain a stronger result, as we are able to
capture the polynomial degree of a WTA not only in the boolean semiring, but
in any commutative semiring.

2 Weighted Tree Automata

Let N = {0, 1, 2, . . .}. A ranked alphabet is a pair (Γ, rkΓ ), often abbreviated
by Γ , where Γ is a finite set and rkΓ : Γ → N. For every m ≥ 0 we define
Γ (m) = rk−1Γ (m) as the set of all symbols of rank m. The rank rk(Γ ) of Γ
is defined as max{rkΓ (a) | a ∈ Γ}. The set of (finite, labeled and ordered) Γ -
trees, denoted by TΓ , is the smallest subset T of (Γ ∪ {(, )} ∪ {, })∗ such that
if a ∈ Γ (m) with m ≥ 0 and s1, . . . , sm ∈ T , then a(s1, . . . , sm) ∈ T . In case
m = 0, we identify a() with a.

We define the set of positions in a tree by means of the mapping pos : TΓ →
P(N∗) inductively as follows: (i) if t ∈ Γ (0), then pos(t) = {ε}, and (ii) if
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t = a(s1, . . . , sm) where a ∈ Γ (m), m ≥ 1 and s1, . . . , sm ∈ TΓ , then pos(t) =
{ε} ∪ {iv | 1 ≤ i ≤ m, v ∈ pos(si)}. Note that pos(t) is partially ordered by the
prefix relation ≤p and totally ordered with respect to the lexicographic ordering
≤l. We also refer to the elements of pos(t) as nodes, to ε as the root of t and to
prefix-maximal nodes as leaves.

Now let t, s ∈ TΓ , w ∈ pos(t) and t = a(s1, . . . , sm) for some a ∈ Γ (m) with
m ≥ 0 and s1, . . . , sm ∈ TΓ . The label of t at w and the subtree of t at w, denoted
by t(w) and t|w, respectively, are defined inductively as follows: t(ε) = a and
t|ε = t, and if w = iv and 1 ≤ i ≤ m, then t(w) = si(v) and t|w = si|v.

A commutative semiring is a tuple (K,⊕,�,0,1), abbreviated by K, with
operations sum ⊕ and product � and constants 0 and 1 such that (K,⊕,0) and
(K,�,1) are commutative monoids, multiplication distributes over addition, and
k� 0 = 0� k = 0 for every k ∈ K. In this paper, we only consider commutative
semirings. Important examples of semirings are

– the boolean semiring B = ({0, 1},∨,∧, 0, 1) with disjunction ∨ and conjunc-
tion ∧

– the semiring of natural numbers (N,+, ·, 0, 1), abbreviated by N, with the
usual addition and multiplication

– the tropical semiring Trop = (N∪{∞},min,+,∞, 0) where the sum and the
product operations are min and +, respectively, extended to N∪{∞} in the
usual way.

A (formal) tree series is a mapping S : TΓ → K. The set of all tree series
(over Γ and K) is denoted by K〈〈TΓ 〉〉. For two tree series S, T ∈ K〈〈TΓ 〉〉 and
k ∈ K, the sum S⊕T , the Hadamard product S�T , and the product k�S are
each defined pointwise.

Let (K,⊕,�,0,1) be a commutative semiring. A weighted bottom-up finite
state tree automaton (short: WTA) over K and Γ is a tuple A = (Q,Γ, µ, γ)
where Q is a finite set (of states), Γ is a ranked alphabet (of input symbols),

µ :
⋃rk(Γ )
m=0 Qm × Γ (m) × Q → K (the weight function) and γ : Q → K (the

function of final weights). We set ∆A =
⋃rk(Γ )
m=0 Qm×Γ (m)×Q. A tuple (~p, a, q) ∈

∆A is called a transition and (~p, a, q) is called valid if µ(~p, a, q) 6= 0. The state
q is referred to as the parent state of the transition and the states from ~p are
referred to as the child states of the transition. A state q ∈ Q is called final if
γ(q) 6= 0.

A mapping r : pos(t) → Q is called a quasi-run of A on t. For t ∈ TΓ , a
quasi-run r and w ∈ pos(t) with t(w) = a ∈ Γ (m), the tuple

t(r, w) = (r(w1), . . . , r(wm), a, r(w))

is called the transition with base point w or transition at w. The quasi-run r is
called a (valid) run if for every w ∈ pos(t) the transition t(r, w) is valid with
respect to A. We call a run r accepting if r(ε) is final. If r(ε) = q then a run r
is also called a q-run. By RunA(t), RunA,q(t), RunA,F(t) we denote the sets of
all runs, all q-runs and all accepting runs of A on t, respectively.
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For r ∈ RunA(t) the weight of r is defined by

wtA(t, r) =
⊙

w∈pos(t)

µ(t(r, w)).

The tree series accepted by A, denoted by JAK ∈ K〈〈TΓ 〉〉, is the tree series de-
fined for every t ∈ TΓ by JAK(t) =

⊕
r∈RunA,F(t)

wtA(t, r) � γ(r(ε)) where the
sum over the empty set is 0 by convention.

An automaton A is called trim if (i) for every q ∈ Q there exist t ∈ TΓ ,
r ∈ RunA,F(t) and w ∈ pos(t) such that q = r(w) and (ii) for every valid d ∈ ∆A
there exist t ∈ TΓ , r ∈ RunA,F(t) and w ∈ pos(t) such that d = t(r, w). The
trim part of A is the automaton obtained by removing all states q ∈ Q which
do not satisfy (i) and setting µ(d) = 0 for all valid d ∈ ∆A which do not satisfy
(ii). This process obviously has no influence on JAK.

An automaton A is called deterministic if for every m ≥ 0, a ∈ Γ (m) and ~p ∈
Qm there exists at most one q ∈ Q with µ(~p, a, q) 6= 0. We callA (k-)polynomially
ambiguous if |RunA,F(t)| ≤ P (|pos(t)|) for some polynomial P (of degree k) and
every t ∈ TΓ . If P can be chosen constant, i.e. P ≡ m, we call A finitely
ambiguous or m-ambiguous. If we can put P ≡ 1, we call A unambiguous.

Example 1. We consider the alphabet Γ = {a, b} where rkΓ (a) = 2 and rkΓ (b) =
0. Over the tropical semiring (N∪ {∞},min,+,∞, 0) we construct a WTA A =
(Q,Γ, µ, γ) with the following idea in mind. Given a tree t ∈ TΓ , there should
be exactly one run of A on t for every leaf b in t, given by mapping all nodes
between this leaf and the root to a state q and all other nodes to a filler state p.

We let Q = {p, q} and set γ(q) = 0, γ(p) =∞,

1 = µ(p, q, a, q) = µ(q, p, a, q)

0 = µ(p, p, a, p) = µ(b, p) = µ(b, q)

and all other weights to∞. It is easy to see that this automaton assigns to every
tree the minimum amount of a’s we have to visit to reach any leaf b starting
from the root. As there is a bijection between the runs of A on a tree t and the
leaves of t, A is polynomially ambiguous, but not finitely ambiguous.

3 Finite Ambiguity

We come to our first main result, namely that a finitely ambiguous WTA can
be written as a sum of unambiguous WTA.

Theorem 2. Let A = (Q,Γ, µ, γ) be a finitely ambiguous weighted bottom-up
finite state tree automaton. Then there exist finitely many unambiguous weighted
bottom-up finite state tree automata A1, . . . ,An satisfying

JAK = JA1K⊕ . . .⊕ JAnK.
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While the basic idea for the proof is taken from [15, Section 4], we have to
follow a different line of argumentation due to the non-linear structure of trees.
In the first step, we add a deterministic coordinate to our automaton . On the
transitions of this new automaton we then define an equivalence relation. Here,
two transitions will be equivalent in the following sense. If a run r on a tree t
has transition d at some position w, then for every transition d′ equivalent to
d we can modify r on the subtree at w such that we obtain a new run with
transition d′ at w. It follows from this that every transition whose equivalence
class contains at least two transitions can not occur more than m times in any
single run, if A is m-ambiguous. This contrasts to the word case, where such
transitions could occur at most once per run instead of at most m times. For
two different runs on the same tree, sorting all transitions occurring in each run
first by equivalence class and then lexicographically, shows a difference for at
least one equivalence class. This property is the key to the decomposition.

For Γ and m fixed, the number n is exponential in the number of states.

4 Polynomial Ambiguity

We now come to the tree series definable by polynomially ambiguous WTA.
Given a polynomially ambiguous WTA A we define the function rA : N → N
that counts the maximum number of possible runs for all trees with a limited
number of nodes, i.e. rA(n) = max{|RunA,F(t)| | t ∈ TΓ , |pos(t)| ≤ n}. We then
define the degree of polynomial ambiguity of A by

degree(A) = min{k ∈ N | A is k-polynomially ambiguous}
= min{k ∈ N | rA ∈ O(nk)}.

This is well defined if A is polynomially ambiguous.
We will show that the runs of a polynomially ambiguous WTA have a very

characteristic structure. Consequently, this structure naturally induces a sort of
standard form for polynomially ambiguous WTA. For automata in this standard
form it is then much easier to grasp the fundamental principle of polynomial
ambiguity for tree automata. A first basic tool we will need for all of this is
a form of reachability between states. The second is the degree of a state. For
notational purposes we also need a more elaborate concept for runs.

4.1 General Definitions and Observations

For now let A = (Q,Γ, µ, γ) be a polynomially ambiguous WTA. The sets

RunA(t; ~w, ~q) and RunA(t; ~w, ~d) shall denote the sets of all runs of A on a tree t
such that at the positions w1, . . . , wn we have the states q1, . . . , qn or transitions
d1, . . . , dn, respectively.

Definition 3. Let t ∈ TΓ , ~w = (w1, . . . , wn) ∈ pos(t)n, ~q = (q1, . . . , qn) ∈ Qn
and ~d = (d1, . . . , dn) ∈ ∆n

A. Then we let

RunA(t; ~w, ~q) = {r ∈ RunA(t) | r(wi) = qi for all i = 1, . . . , n}
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RunA(t; ~w, ~d) = {r ∈ RunA(t) | t(r, wi) = di for all i = 1, . . . , n}.

The sets RunA,F(t; ~w, ~q), RunA,q(t; ~w, ~q), RunA,F(t; ~w, ~d) and RunA,q(t; ~w, ~d) for
q ∈ Q are defined in a similar manner to these and RunA,F(t) and RunA,q(t).

We define the concept of reachability through a relation 4. Intuitively, q1 4 q2
means that there is a “path” from q1 down to q2.

Definition 4. We define two relations 4 and ≈ on Q by letting

q1 4 q2 ⇔ ∃t ∈ TΓ ∃w ∈ pos(t) : RunA,q1(t;w, q2) 6= ∅
q1 ≈ q2 ⇔ q1 4 q2 ∧ q2 4 q1.

The relation 4 is reflexive and transitive. Hence, the relation ≈ is an equivalence
relation inducing equivalence classes [q]≈ ∈ Q/≈. One may think of the classes
as strongly connected components of states. We set C(q) = [q]≈ and Q = Q/≈
and refer to C(q) as the component of q and to Q as the components of Q. Then
again, 4 induces a partial order 4 on Q, defined by C(q1) 4 C(q2)⇔ q1 4 q2.

We also need the notion of a bridge, similar to the one used in [24]. A bridge
is basically a transition which, from a top-down perspective, leaves a component
of Q.

Definition 5. A valid transition b = (p1, . . . , pm, a, q) ∈ ∆A is called a bridge
out of C(q) if C(pi) 6= C(q) for all i ∈ {1, . . . ,m}. Notice that all valid transitions
of the form (a, q) with a ∈ Γ (0) and q ∈ Q are bridges.

We now define the degree of a state as the degree of the automaton resulting,
intuitively, from making this state the only new final state of A = (Q,Γ, µ, γ).

Definition 6. For every p ∈ Q we define the WTA Fp = (Q,Γ, µ, γp) with
γp(p) = 1 and γp(q) = 0 for q ∈ Q, q 6= p.

The intuition is that for t ∈ TΓ the accepting runs of the automaton Fp on t are
exactly the p-runs of A on t, i.e. the ones that “begin” with p at the root.

Definition 7. For a state p ∈ Q we define degreeA(p) = degree(Fp) and
we define degreeA(C(p)) = degreeA(p). We will simply write degree(p) and
degree(C(p)) if the automaton A considered is clear from the context.

This is well defined, as for p ≈ q one can show that degreeA(p) = degreeA(q).

It is now easy to show that every valid transition with a parent state q of
degree greater than 0 is either (i) a bridge or (ii) exactly one child state belongs
to the component of q and all other child states have degree 0. Applying this to
a given run r on a tree t ∈ TΓ , we see that states of degree greater than 0 follow
branches in the tree. More formally, for w ∈ pos(t) with degree(t(w)) > 0 we
have {v ∈ pos(t) |w ≤p v ∧ r(v) ≈ r(w)} = {v ∈ pos(t) |w ≤p v ≤p w′} for some
w′ ∈ pos(t).

However, for a given component c ∈ Q it may still be possible to find a tree
t and a run r on t where for two prefix independent positions w and w′ we have
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r(w) ∈ c and r(w′) ∈ c, or where r(w) ∈ c holds for no position w. For a WTA in
polynomial standard form, both of these possibilities will be ruled out: for every
component c it holds that {v ∈ pos(t) | r(v) ∈ c} = {v ∈ pos(t) |w1 ≤p v ≤p w2}
for some w1, w2 ∈ pos(t), and this set is non-empty.

4.2 Decomposition into a Sum of Standardized Automata

Definition 8. We call a (polynomially ambiguous) WTA A = (Q,Γ, µ, γ) stan-
dardized or say it is in polynomial standard form if

(i) A is polynomially ambiguous, trim and possesses only one final state qf ∈ Q
and

(ii) for every p ∈ Q with degreeA(p) > 0 there is exactly one bridge out of C(p)
and this bridge occurs exactly once in every accepting run r. Formally

{d ∈ ∆A | d is a bridge out of C(p)} = {b(p)}

for some b(p) ∈ ∆A and

∀t ∈ TΓ ∀r ∈ RunA,F(t) : |{w ∈ pos(t) | t(r, w) = b(p)}| = 1.

The fundamental concept of standardized WTA is close to the notion of chain
NFAs as introduced in [24].

Theorem 9. Let A = (Q,Γ, µ, γ) be a polynomially ambiguous WTA. Then
there exist n ∈ N and WTA A1, . . . ,An in polynomial standard form such that
degree(Ai) ≤ degree(A) for all i ∈ {1, . . . , n} and

JAK =

n⊕
i=1

JAiK.

For a fixed alphabet the number n of automata needed for this is double expo-
nential in the number of states.

Example 10. The WTA from Example 1 is in polynomial standard form. There
are two components, {p} and {q}, and the transitions (b, p) and (b, q) are the
only bridges. We have degree(p) = 0 and degree(q) = 1.

Proof. (sketch) The theorem is proved in two steps. In the first, we add an
entry containing words of bounded length over {1, . . . , rk(Γ )} to the states of
A. For any such word u and any bridge (p1, . . . , pm, a, p) in A, we will then have
a transition ((p1, u1), . . . , (pm, um), a, (p, u)) in the new automaton A′. For the
other transitions, we do the same with the difference that the child states will
contain the same word as the parent state.

In the second step, we make copies of A′ and “remove” bridges in the copies
appropriately, i.e. we leave at most one bridge out of each component and then
trim the automata. The modified copies then fulfill Theorem 9.
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4.3 Analysis of the Polynomial Standard Form

Now assume a WTA A = (Q,Γ, µ, γ) in polynomial standard form. We can
show that there exist degree(A) many bridges in A such that, given any tree,
the number of runs on that tree is bounded by a constant if we fix the position
of these bridges. The constant does not depend on the given tree. This property
gives a rather intuitive understanding of what polynomial ambiguity means: if
our automaton has degree n, then fixing the positions of n predetermined tran-
sitions will determine every run up to a bounded number of possibilities.

We consider the set Λ of all bridges that leave components of non-trivial
degree, defined as follows.

Definition 11. Fix p ∈ Q with degreeA(p) > 0. As there is exactly one bridge
b ∈ ∆A out of C(p) we define b(C(p)) = b and b(p) = b as this bridge. We set
Λ = {b(q) | q ∈ Q, degreeA(q) > 0}.

The degree inherent to an automaton in standard form can now be captured
in the following way.

Theorem 12. Let p ∈ Q with l = degreeA(p) ≥ 0.

(I) There exists a set N(p) = {b1, . . . , bl} ⊆ Λ and a constant C > 0 such that
for all t ∈ TΓ and w1, . . . , wl ∈ pos(t) we have

|RunA,p(t;w1, . . . , wl, b1, . . . , bl)| ≤ C.

(II) Furthermore there exists a sequence of trees (tn)n∈N in TΓ and a constant
C ′ > 0 such that for all n ∈ N:
– |pos(tn)| ≤ C ′ · n and
– |RunA,p(tn)| ≥ nl.

That is, we can show that if the WTA Fp (cf. Definition 6) is of degree l,
then for all trees the runs of Fp on those trees are determined up to a constant
C by fixing the location of l bridges. Furthermore, the degree of Fp is not only
an upper bound on the amount of runs for a given tree, but also a lower bound.
By considering this theorem for the only final state of A, we easily see that it is
true for the whole automaton A as well.

Example 13. In the WTA from Example 1 we have N(p) = ∅ and N(q) = {(b, q)}.
By choosing which leaf to “mark” with q, we uniquely determine a run. Therefore,
(I) clearly holds for both p and q in this automaton.

For (II) in the case of q we consider the trees t0 = b() and tn+1 = a(tn, b)
for n ≥ 0. We have |pos(tn)| = 2n + 1 and one run for every leaf in a tree, i.e.
|RunA,q(tn)| = n+ 1.

As a corollary of Theorem 12 we also get that the ambiguity of a WTA A is
either bounded below and above by a fixed polynomial or has a lower exponential
bound. While this is a well known result for word automata [24], we could not
find a similar result for tree automata in the literature.
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Corollary 14. Let A = (Q,Γ, µ, γ) be a weighted bottom-up finite state tree au-
tomaton. Either A is polynomially ambiguous and rA ∈ Θ(nk) for k = degree(A)
or there exists a sequence of trees (tn)n∈N in TΓ and a constant C > 0 such that
for all n ∈ N (i) |pos(tn)| ≤ C · n and (ii) |RunA,F(tn)| ≥ 2n.

5 Application: Weighted Logics

As stated in the introduction, our investigations were part of the attempt to
characterize weighted tree automata with weighted logics. Therefore, we briefly
outline how our weighted logic works, which results we obtained with it and
what the significance of our investigations is to these results. For further details
see [8,10,20].

The standard MSO-logic for trees is given by the following grammar.

ϕ ::= labela(x) | edgei(x, y) | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Γ , x, y are first order variables, 1 ≤ i ≤ rk(Γ ), and X is a second
order variable. The set of free variables of ϕ is denoted by Free(ϕ). Let t ∈ TΓ be
a tree and V be a set of first order and second order variables with Free(ϕ) ⊆ V.
A mapping which assigns to every first order variable x ∈ V a position w ∈ pos(t)
and to every second order variable X ∈ V a set of positions I ⊆ pos(t) is called a
(V, t)-assignment. For a first order variable x ∈ V and a position w ∈ pos(t) we
write ρ[x→ w] to denote the (V ∪ {x}, t)-assignment given by ρ[x→ w](x) = w
and ρ[x → w](y) = ρ(y) for all variables y 6= x. The assignment ρ[X → I],
where X is a second-order variable and I ⊆ pos(t), is defined analogously. We
write (t, ρ) |= ϕ if (t, ρ) satisfies ϕ using standard MSO-semantics. We then
have the generalization of Büchi’s and Elgot’s fundamental theorems [5,11] to
trees, namely that MSO-definable tree languages are exactly the recognizable
tree languages [25,7].

On top of the MSO-logic we construct a weighted logic, called wMSO-logic,
with the following grammar.

θ ::= ϕ | k | θ ⊕ θ | θ � θ | Σx.θ | ΣX.θ | Πx.θ

where ϕ ∈ MSO(Γ ), k ∈ K, x is a first order variable and X is a second order
variable. The operators Σx and ΣX are referred to as first order sum quan-
tification and second order sum quantification, respectively, and Πx is referred
to as (first order) product quantification. Moreover, the operators Σx, ΣX and
Πx also bind the variables x and X, respectively. A wMSO-formula without free
variables is also called a sentence.

For a formula θ ∈ wMSO(Γ ), a tree t ∈ TΓ , a set V of first and second order
variables with Free(θ) ⊆ V and a (V, t)-assignment ρ we define the value JθK(t, ρ)
inductively in the following way.

JθK(t, ρ) =

{
1 if (t, ρ) |= θ

0 otherwise
for θ ∈ MSO(Γ )
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JkK(t, ρ) = k

Jθ1 ⊕ θ2K(t, ρ) = Jθ1K(t, ρ)⊕ Jθ2K(t, ρ)

Jθ1 � θ2K(t, ρ) = Jθ1K(t, ρ)� Jθ2K(t, ρ)

JΣx.τK(t, ρ) =
⊕

w∈pos(t)

JτK(t, ρ[x→ w])

JΠx.τK(t, ρ) =
⊙

w∈pos(t)

JτK(t, ρ[x→ w])

JΣX.τK(t, ρ) =
⊕

I⊆pos(t)

JτK(t, ρ[X → I])

where k ∈ K and θ1, θ2, τ ∈ wMSO(Γ ).

Example 15. We consider the semiring (N,+, ·, 0, 1) and the alphabet Γ = {a, b}
where rkΓ (a) = 2 and rkΓ (b) = 0. The following formula outputs for every
t ∈ TΓ the amount of a’s taking two b’s as child nodes.

Σx.
(

labela(x) ∧ ∃y.
(
edge1(x, y) ∧ labelb(y)

)
∧ ∃y.

(
edge2(x, y) ∧ labelb(y)

))
In order to characterize different degrees of ambiguity, we use restrictions of
above logic. The formulas given by the grammar

θb ::= ϕ | k | θb ⊕ θb | θb � θb
with ϕ ∈ MSO(Γ ) and k ∈ K are called almost boolean and define so-called
recognizable step functions [8,10]. We call a formula unambiguous if it is almost
boolean, a product quantifier followed by an almost boolean formula or a finite
product of such formulas. A formula containing no sum quantifiers, and in which
for every subformula Π.θ the formula θ is almost boolean, is called finitely am-
biguous. This class of formulas is actually the closure of unambiguous formulas
under ⊕ and �. Finally, a formula is called polynomially ambiguous if it does
not contain second order sum quantification and for every subformula Π.θ the
formula θ is almost boolean. We have the following theorem.

Theorem 16. The following classes of automata and sets of sentences are ex-
pressively equivalent:

(a) unambiguous WTA and unambiguous sentences
(b) finitely ambiguous WTA and finitely ambiguous sentences
(c) polynomially ambiguous WTA of polynomial degree k and polynomially am-

biguous formulas with first order sum quantifier depth k.

Example 17. The WTA from Example 1, calculating the minimum amount of
a’s between the root and any leaf, is described by the formula

Σx.Πy. (labelb(x)� ((1� (labela(y) ∧ y ≤p x))⊕ ¬(labela(y) ∧ y ≤p x))) .

The prefix relation is MSO-definable [6, Section 3.3].

A result similar to Theorem 16 has been shown by Kreutzer and Riveros
[16]to hold true for weighted automata over words. Most of their proofs can
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easily be adapted to work for tree automata, but not all. To be precise, we need
the results of Sections 3 and 4 for the translation of automata to logics in (b)
and (c). For polynomial ambiguity, we even obtain a stronger result, as we are
able to capture polynomial degree not only in the boolean semiring, but in any
commutative semiring. For this, we show by induction on the polynomial degree
that for a WTA in polynomial standard form, first order sum quantifiers can be
used to sum over all possible positions for the bridges identified in Theorem 12
(I). Having specified the positions of all these bridges, we are then essentially in
the case of finite ambiguity, and can apply (b). The number of first order sum
quantifiers needed to describe the WTA with a wMSO-formula hence equals its
polynomial degree.

6 Conclusion

As shown, our results about the structure of weighted tree automata have proven
to be useful in the context of weighted logics for trees. Two questions now arise.
First, which other problems could be tackled with the newly gained knowledge?
Decidability problems for WTA are an obvious candidate here. Second, can we
get similar results for other automata models? For example, one might intuitively
assume picture automata and graph acceptors to behave in a similar manner,
but this is in no way obvious and calls for further investigation.
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12. Fülöp, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Droste,
M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata, chap. 9, pp.
313–403. Monogr. Theoret. Comput. Sci. EATCS Ser., Springer (2009)

13. Hashiguchi, K., Ishiguro, K.: Decidability of the equivalence problem for finitely
ambiguous finance automata. Surikaisekikenkyusho Kokyuroku 960, 23–36 (1996)

14. Kirsten, D.: A Burnside approach to the termination of Mohri’s algorithm for
polynomially ambiguous min-plus-automata. RAIRO-Inf. Theor. Appl. 42(3), 553–
581 (2008)

15. Klimann, I., Lombardy, S., Mairesse, J., Prieur, C.: Deciding unambiguity and
sequentiality from a finitely ambiguous max-plus automaton. Theor. Comput. Sci.
327(3), 349–373 (2004)

16. Kreutzer, S., Riveros, C.: Quantitative monadic second-order logic. In: 28th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS. pp. 113–122. IEEE
Computer Society (2013)

17. Krob, D.: The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. Int. J. of Algebr. Comput. 04(03), 405–425 (1994)

18. Kuich, W., Salomaa, A.: Semirings, Automata, Languages, Monogr. Theoret. Com-
put. Sci. EATCS Ser., vol. 5. Springer Berlin Heidelberg (1986)

19. Maletti, A.: Relating tree series transducers and weighted tree automata. Internat.
J. Found. Comput. Sci. 16(4), 723–741 (2005)

20. Rahonis, G.: Weighted Muller tree automata and weighted logics. J. Autom. Lang.
Comb. 12(4), 455–483 (2007)

21. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Texts Monogr. Comput. Sci., Springer New York (1978)

22. Schützenberger, M.: On the definition of a family of automata. Information and
Control 4(2–3), 245 – 270 (1961)

23. Seidl, H.: On the finite degree of ambiguity of finite tree automata. Acta Inform.
26(6), 527–542 (1989)

24. Seidl, H., Weber, A.: On the degree of ambiguity of finite automata. Theor. Com-
put. Sci. 88(2), 325–349 (1991)

25. Thatcher, J., Wright, J.: Generalized finite automata theory with an application
to a decision problem of second-order logic. Math. Syst. Theory 2(1), 57–81 (1968)


	On Finite and Polynomial Ambiguity of Weighted Tree Automata

