
A Feferman-Vaught Decomposition Theorem for Weighted MSO

Logic

Manfred Droste, Erik Paul

January 12, 2020

Abstract

We prove a weighted Feferman-Vaught decomposition theorem for disjoint unions and products of
finite structures. The classical Feferman-Vaught Theorem describes how the evaluation of a first
order sentence in a generalized product of relational structures can be reduced to the evaluation of
sentences in the contributing structures and the index structure. The logic we employ for our weighted
extension is based on the weighted MSO logic introduced by Droste and Gastin to obtain a Büchi-
type result for weighted automata. We show that for disjoint unions and products of structures, the
evaluation of formulas from two respective fragments of the logic can be reduced to the evaluation of
formulas in the contributing structures. We also prove that the respective restrictions are necessary.
Surprisingly, for the case of disjoint unions, the fragment is the same as the one used in the Büchi-
type result of weighted automata. In fact, even the formulas used to show that the respective
restrictions are necessary are the same in both cases. However, here proving that they do not allow
for a Feferman-Vaught-like decomposition is more complex and employs Ramsey’s Theorem. We also
show how translation schemes can be applied to go beyond disjoint unions and products.

1 Introduction

The Feferman-Vaught Theorem [10] is one of the fundamental theorems in model theory. The theorem
describes how the computation of the truth value of a first order sentence in a generalized product of
relational structures can be reduced to the computation of truth values of first order sentences in the
contributing structures and the evaluation of a monadic second order sentence in the index structure.
The theorem itself has a long-standing history. It builds upon work of Mostowski [22], and was later
shown to hold true for monadic second order logic (MSO logic) as well [7, 12, 13, 17, 27]. For a survey
and more background information, see [18].

In this paper, we show that under appropriate assumptions, the Feferman-Vaught Theorem also
holds true for a weighted MSO logic with arbitrary commutative semirings as weight structure. The
logic we employ is based on the weighted logic by Droste and Gastin [4]. In this logic, formulas can
take values which convey a quantitative meaning. The logic’s connectives and quantifiers hence also
adopt quantitative roles. The disjunction becomes a sum, the conjunction a product. The existential
quantifier, instead of only verifying whether some element with a certain property exists, now takes
the truth value of this property for every element in the universe and sums over these values. Under
appropriate assumptions, the result of this summation can for instance be the exact number of elements
that satisfy the given property. One example of a property which can be expressed using this logic is the
number of cliques of a given size in an undirected graph. In [4], the authors prove a Büchi-like result for a
specific fragment of the MSO logic, showing that for finite and infinite words, this fragment is expressively
equivalent to semiring-weighted automata [26]. The study of a weighted Feferman-Vaught Theorem for
disjoint unions, employing the same logic as we do, was initiated by Ravve et al. in [25], where the
authors also point out several algorithmic uses and possible applications of a weighted Feferman-Vaught
Theorem.

The classical Feferman-Vaught Theorem considers finite and infinite structures without any need for
distinction between them. This results from the fact that, in the Boolean setting, infinite joins and meets
are well-defined. In particular, existential and universal quantification, which are essentially joins and
meets ranging over the whole universe of a structure, are well-defined for finite and infinite structures
alike. However, for arbitrary semirings, infinite sums and products are usually not defined. To allow for
infinite structures, we therefore also consider bicomplete semirings, which are equipped with infinite sum
and product operations. Our main results are the following.

1



• We provide a Feferman-Vaught Theorem for disjoint unions of structures with our weighted MSO
logic, where the first order product quantifier is restricted to quantify only over formulas which
do not contain any sum or product quantifier themselves. Surprisingly, this restriction and the
resulting fragment are the same as the one working for the Büchi-like result of [4].

• We show that no similar theorem can hold for disjoint unions if the first order product quantifier
is not restricted. The formulas we employ for this in fact also occurred in [4] and [5] as examples
of weighted formulas whose semantics cannot be described by weighted automata. While in these
papers, it was elementary to show that the formulas given define weighted languages not recog-
nizable by weighted automata, here proving that they do not allow for a Feferman-Vaught-like
decomposition is more complex and employs a weak version of Ramsey’s Theorem [24].

• We show that a Feferman-Vaught Theorem also holds for products of structures for the product-
quantifier-free first order fragment of our logic.

• We show that no similar theorem can hold for products if we include the first order product
quantifier.

• We show that our theorems are also true for more general disjoint unions and products defined by
translation schemes [18, 23, 3].

With respect to our proofs, here we just note that in comparison to the universal quantifier of the Boolean
setting, the product quantifier requires a separate and new consideration. While universal quantification
can simply be expressed using negation and existential quantification, it is in general not possible to
express multiplication by addition.

Translation schemes are a model theoretic tool to “translate” structures over one logical signature
into structures over another signature in a well behaved fashion, namely in an MSO-defined fashion.
They can be applied, for example, to translate between texts and trees [15], and between nested words,
alternating texts, and hedges [21, 20, 19]. These particular translations were employed in [19] to prove
that weighted automata over texts, hedges, and nested words are expressively equivalent to weighted
logics over these structures. Translation schemes are a rather natural concept and therefore they have
been frequently rediscovered and named differently [18, 23, 3]. Our notion of a translation scheme is
mostly due to [18].

Related work. A concept related to weighted logics is that of many-valued logics. In both models the
evaluation of a formula on a structure produces a quantitative piece of information. In many approaches
to many-valued logics, values are taken in the interval [0, 1], cf. [14, 11]. In contrast to this, weights in
weighted logics are taken from a semiring and may occur as atomic formulas which enables the modeling
of quantitative properties.

2 Preliminaries

Let N = {0, 1, 2, . . .} and N+ = {1, 2, 3, . . .}. For a set X, we denote the power set of X by P(X) and
the cardinality of X by |X|. For two sets X and Y and a mapping f : X → Y , we call X the domain of
f , denoted by dom(f), and Y the range of f , denoted by range(f). For a subset X ′ ⊆ X, we call the
set f(X ′) := {y ∈ Y | ∃x ∈ X ′ : f(x) = y} the image or range of X ′ under f . The restriction of f to
X ′, denoted by f�X′ , is the mapping f�X′ : X

′ → Y defined by f�X′(x) := f(x) for every x ∈ X ′. We
also call a mapping g : X ′ → Y a partial mapping from X to Y , denoted by g : X 9 Y . For a subset
Y ′ ⊆ Y , we call the set f−1(Y ′) := {x ∈ X | f(x) ∈ Y ′} the preimage of Y ′ under f . For an element
y ∈ Y , we define the preimage of y under f by f−1(y) := f−1({y}). For a second mapping h : X → Y ,
we write f = h if for all x ∈ X we have f(x) = h(x).

A signature σ is a pair (Relσ, arσ) where Relσ is a set of relation symbols and arσ : Relσ → N+ the
arity function. A σ-structure A is a pair (UA, IA) where UA is a set, called the universe of A, and IA is

an interpretation, which maps every symbol R ∈ Relσ to a set RA ⊆ Uarσ(R)
A . A structure is called finite

if its universe is a finite set. By Str(σ) we denote the class of all σ-structures.
For two σ-structures A = (A, IA) and B = (B, IB), we define the product A × B ∈ Str(σ) of

A and B and the disjoint union A t B ∈ Str(σ) of A and B as follows. For the product, we let
A×B = (A×B, IA×B) with RA×B = {((a1, b1), . . . , (ak, bk)) | (a1, . . . , ak) ∈ RA and (b1, . . . , bk) ∈ RB}.
For the disjoint union, we let A tB be the disjoint union (i.e., the set theoretic coproduct) of A and B
with inclusions ιA and ιB . Then we define A tB := (A tB, IAtB) by RAtB := {(ιA(a1), . . . , ιA(ak)) |

2



(a1, . . . , ak) ∈ RA}∪{(ιB(b1), . . . , ιA(bk)) | (b1, . . . , bk) ∈ RB}. Throughout the paper, we identify a ∈ A
with ιA(a) ∈ A tB and b ∈ B with ιB(b) ∈ A tB.

A commutative semiring is a tuple (K,+, ·,0,1), abbreviated by K, with operations sum + and
product · and constants 0 and 1 such that (K,+,0) and (K, ·,1) are commutative monoids, multiplication
distributes over addition, and κ · 0 = 0 for every κ ∈ K.

Next, assume that the semiring K is equipped, for every index set I, with an infinitary sum operation∑
I : KI → K such that for every family (κi)i∈I of elements of K and κ ∈ K we have∑

i∈∅

κi = 0,
∑
i∈{j}

κi = κj ,
∑
i∈{j,l}

κi = κj + κl for j 6= l, (2.1)

∑
j∈J

(∑
i∈Ij

κi

)
=
∑
i∈I

κi, if
⋃
j∈J Ij = I and Ij ∩ Ij′ = ∅ for j 6= j′, (2.2)

∑
i∈I

(κ · κi) = κ ·
(∑
i∈I

κi

)
,
∑
i∈I

(κi · κ) =
(∑
i∈I

κi

)
· κ. (2.3)

Then the semiring K together with the operations
∑
I is called complete [8, 16].

If in addition, K is endowed, for every index set I, with an infinitary product operation
∏
I : KI → K

such that for every family (κi)i∈I of elements of K we have∏
i∈∅

κi = 1,
∏
i∈{j}

κi = κj ,
∏

i∈{j,l}

κi = κj · κl for j 6= l,
∏
i∈I

1 = 1, (2.4)

∏
j∈J

( ∏
i∈Ij

κi

)
=
∏
i∈I

κi, if
⋃
j∈J Ij = I and Ij ∩ Ij′ = ∅ for j 6= j′, (2.5)

then we call K bicomplete. We just want to mention here that there exists a different notion of semirings
with infinite sums and products, namely the notion of totally complete semirings [9]. The main difference
between these two notions lies in the definition of infinite products. For totally complete semirings, only
products over countable index sets need to be defined, but the infinite products are required to be
completely distributive over the infinite sums. We do not require this infinitary distributivity here.

Example 1. Examples of bicomplete semirings include

• the Boolean semiring B = ({0, 1},∨,∧, 0, 1),

• the max-plus or arctic semiring Arct = (R ∪ {−∞},max,+,−∞, 0) and the min-plus or tropical
semiring Trop = (R ∪ {∞},min,+,∞, 0), where R denotes the set of real numbers,

• the semiring of extended natural numbers (N ∪ {∞},+, ·, 0, 1) where 0 · ∞ = 0,

• any complete distributive lattice (L,∨,∧, 0, 1) which satisfies the distributivity law (2.3). For
instance, every complete Boolean algebraB satisfies (2.3) (see [1, page 167]), so thenB is bicomplete
but may not be completely distributive and therefore not totally complete.

The following definitions are due to [4] in the form of [2]. We provide a countable set V of first
and second order variables, where lower case letters like x and y denote first order variables and capital
letters like X and Y denote second order variables. We define first order formulas β over a signature σ
and weighted first order formulas ϕ over σ and a semiring K, respectively, by the grammars

β ::= false | R(x1, . . . , xn) | ¬β | β ∨ β | ∃x.β
ϕ ::= β | κ | ϕ⊕ ϕ | ϕ⊗ ϕ |

⊕
x.ϕ |

⊗
x.ϕ,

where R ∈ Relσ, n = arσ(R), x, x1, . . . , xn ∈ V are first order variables, and κ ∈ K. Likewise, we define
monadic second order formulas β over σ and weighted monadic second order formulas ϕ over σ and K
through

β ::= false | R(x1, . . . , xn) | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β
ϕ ::= β | κ | ϕ⊕ ϕ | ϕ⊗ ϕ |

⊕
x.ϕ |

⊗
x.ϕ |

⊕
X.ϕ |

⊗
X.ϕ,

with R ∈ Relσ, n = arσ(R), x, x1, . . . , xn ∈ V first order variables, X ∈ V a second order variable, and
κ ∈ K. We also allow the usual abbreviations ∧, ∀, →, ←→, and true. By FO(σ) and wFO(σ,K) we

3



denote the sets of all first order formulas over σ and all weighted first order formulas over σ and K,
respectively, and by MSO(σ) and wMSO(σ,K) we denote the sets of all monadic second order formulas
over σ and all weighted monadic second order formulas over σ and K, respectively.

The notion of free variables is defined as usual, i.e., the operators ∃,∀,
⊕

, and
⊗

bind variables.
We let Free(ϕ) be the set of all free variables of ϕ. A formula ϕ with Free(ϕ) = ∅ is called a sentence.
For a tuple ϕ̄ = (ϕ1, . . . , ϕn) ∈ wMSO(σ,K)n, we define the set of free variables of ϕ̄ as Free(ϕ̄) =⋃n
i=1 Free(ϕi).

We define the semantics of MSO and wMSO as follows. Let σ be a signature, A = (A, IA) a σ-
structure, and V a set of first and second order variables. A (V,A)-assignment ρ is a partial function
ρ : V 9 A ∪ P(A) such that, whenever x ∈ V is a first order variable and ρ(x) is defined, we have
ρ(x) ∈ A, and whenever X ∈ V is a second order variable and ρ(X) is defined, we have ρ(X) ⊆ A. The
reason we consider partial functions is that in our Feferman-Vaught theorems for the disjoint union of
structures we want to be able to restrict the range of a variable assignment to a subset of the universe.
For a first order variable, this restriction may cause the variable to become undefined. Let dom(ρ) be
the domain of ρ. For a first order variable x ∈ V and an element a ∈ A, the update ρ[x → a] is defined
through dom(ρ[x→ a]) = dom(ρ) ∪ {x}, ρ[x→ a](X ) = ρ(X ) for all X ∈ V \ {x}, and ρ[x→ a](x) = a.
For a second order variable X ∈ V and a set I ⊆ A, the update ρ[X → I] is defined in a similar fashion.
By AV we denote the set of all (V,A)-assignments.

For ρ ∈ AV and a formula β ∈ MSO(σ) the relation “(A, ρ) satisfies β”, denoted by (A, ρ) |= β, is
defined as

(A, ρ) |= false never holds

(A, ρ) |= R(x1, . . . , xn) ⇐⇒ x1, . . . , xn ∈ dom(ρ) and (ρ(x1), . . . , ρ(xn)) ∈ RA

(A, ρ) |= x ∈ X ⇐⇒ x,X ∈ dom(ρ) and ρ(x) ∈ ρ(X)

(A, ρ) |= ¬β ⇐⇒ (A, ρ) |= β does not hold

(A, ρ) |= β1 ∨ β2 ⇐⇒ (A, ρ) |= β1 or (A, ρ) |= β2

(A, ρ) |= ∃x.β ⇐⇒ (A, ρ[x→ a]) |= β for some a ∈ A
(A, ρ) |= ∃X.β ⇐⇒ (A, ρ[X → I]) |= β for some I ⊆ A.

Example 2. Let σ is the signature of a graph, i.e., Relσ = {edge} with edge binary. We call a graph
G ∈ Str(σ) undirected if its interpretation of edge is a symmetric relation on the universe of G. For every
undirected graph G ∈ Str(σ) and a subset I of its universe, we can check whether the nodes from I form
a clique in G using the MSO formula

clique(X) := ∀x∀y
((
x ∈ X ∧ y ∈ X ∧ x 6= y

)
→ edge(x, y)

)
.

Here, the formula x 6= y is an abbreviation for ∃Y (y ∈ Y ∧ ¬(x ∈ Y )). We have that (G, [X → I])
satisfies clique(X) if and only if I is a clique in G.

In the following, for all sums and products to be well-defined, we assume that either the universe
A is finite, or that K is bicomplete. For a formula ϕ ∈ wMSO(σ,K) and a structure A ∈ Str(σ), the
(weighted) semantics of ϕ is a mapping JϕK(A, ·) : AV → K inductively defined as

JβK(A, ρ) =

{
1 if (A, ρ) |= β

0 otherwise

JκK(A, ρ) = κ

Jϕ1 ⊕ ϕ2K(A, ρ) = Jϕ1K(A, ρ) + Jϕ2K(A, ρ)

Jϕ1 ⊗ ϕ2K(A, ρ) = Jϕ1K(A, ρ) · Jϕ2K(A, ρ)

J
⊕
x.ϕK(A, ρ) =

∑
a∈A

JϕK(A, ρ[x→ a])

J
⊗
x.ϕK(A, ρ) =

∏
a∈A

JϕK(A, ρ[x→ a])

J
⊕
X.ϕK(A, ρ) =

∑
I⊆A

JϕK(A, ρ[X → I])

J
⊗
X.ϕK(A, ρ) =

∏
I⊆A

JϕK(A, ρ[X → I]).

4



We will usually identify a pair (A, ∅) with A. For a tuple of formulas ϕ̄ ∈ wMSO(σ,K)n, we define
Jϕ̄K(A, ρ) = (Jϕ1K(A, ρ), . . . , JϕnK(A, ρ)) ∈ Kn.

We give some examples of how weighted formulas can be interpreted. For more examples, see also
[25].

Example 3. If K = B is the Boolean semiring, we obtain the classical Boolean logic.

Example 4. Using the arctic semiring Arct = (R ∪ {−∞},max,+,−∞, 0), we can describe the size
of the largest clique in a graph as follows. We reuse the signature σ of a graph and the MSO formula
clique(X) from Example 2 and define a wMSO formula as follows.

ϕ :=
⊕

X.
(

clique(X)⊗
⊗

x.
(
0⊕ (1⊗ x ∈ X)

))
Then for every undirected graph G ∈ Str(σ), we have that JϕK(G) is the size of the largest clique in G.

Example 5. Assume that K = (Q,+, ·, 0, 1) is the field of rational numbers and that σ is the signature
from the previous example. Then for every fixed n ∈ N+, we can count the number of n-cliques of an
undirected graph G ∈ Str(σ) using the wMSO formula

ϕn :=
1

n!
⊗
⊕
x1 . . .

⊕
xn.

∧
i6=j

(
(xi 6= xj) ∧ edge(xi, xj)

)
.

Here, xi 6= xj again is an abbreviation for ∃Y (xj ∈ Y ∧ ¬(xi ∈ Y )).

Example 6. We consider the minimum cut of directed acyclic graphs. For this, we interpret these graphs
as flow networks in the following way. Every vertex which does not have a predecessor is considered
a source, every vertex without successors is considered a drain, and every edge is assumed to have a
capacity of 1. Let G = (V,E) be a directed acyclic graph where V is the set of vertices and E ⊆ V × V
the set of edges. A cut (S,D) of G is a partition of V , i.e., S ∪ D = V and S ∩ D = ∅, such that all
sources of G are in S, and all drains of G are in D. The minimum cut of G is the smallest number
|E ∩ (S ×D)| such that (S,D) is a cut of G.

We can express the minimum cut of directed acyclic graphs by a weighted formula as follows. We let
σ be the signature from the previous two examples and as our semiring, we choose the tropical semiring
Trop = (R ∪ {∞},min,+,∞, 0). Then using the abbreviation

cut(X,Y ) := ∀x.
(

(x ∈ X ↔ ¬(x ∈ Y )) ∧ (∃y.edge(y, x) ∨ x ∈ X) ∧ (∃y.edge(x, y) ∨ x ∈ Y )
)

we can express the minimum cut of a directed acyclic graph G ∈ Str(σ) using the formula

ϕ :=
⊕
X.
⊕
Y.
(

cut(X,Y )⊗
⊗
x.
⊗
y.(1⊕ ¬(x ∈ X ∧ y ∈ Y ∧ edge(x, y)))

)
.

Example 7 ([4]). Let K = (N,+, ·, 0, 1) be the semiring of natural numbers and let ϕ ∈ wMSO(σ,K)
be a formula which does not contain any constants κ ∈ K. Then we may understand JϕK(A, ρ) as the
number of proofs we have that (A, ρ) satisfies ϕ assuming that we interpret the weighted operators in the
following way. For Boolean formulas, we simply consider satisfaction to give us one proof, and otherwise
we have no proof. The sum Jϕ1 ⊕ ϕ2K is the number of proofs we have that ϕ1 ∨ ϕ2 is true. This says
that, if we have n proofs for ϕ1 and m proofs for ϕ2, then we interpret this as having n+m proofs for
the fact that ϕ1 ∨ ϕ2 is true. Likewise, we interpret the product Jϕ1 ⊗ ϕ2K as the number of proofs we
have that ϕ1 ∧ ϕ2 is true. Similar interpretations apply for the weighted quantifiers.

For ϕ ∈ wMSO(σ,K) and a first order variable x which does not appear in ϕ as a bound variable,
we define ϕ−x as the formula obtained from ϕ by replacing all atomic subformulas containing x, i.e., all
subformulas of the form x ∈ X and R(. . . , x, . . .) for R ∈ Relσ, by false. It is easy to show by induction
that for all σ-structures A = (A, IA) and (V,A)-assignments ρ with x /∈ dom(ρ) we have

JϕK(A, ρ) = Jϕ−xK(A, ρ).

As in the sequel we will deal with disjoint unions and products of structures, we need to define the
restrictions of a variable assignment to the contributing structures of the disjoint union or product. Fix

5



two structures A,B ∈ Str(σ) with universes A and B. For a (V,A t B)-assignment ρ, we define the
restriction ρ�A : V 9 A as

ρ�A(X ) =


ρ(X ) ∩A if X is a second order variable

ρ(X ) if X is a first order variable and ρ(X ) ∈ A
undefined if X is a first order variable and ρ(X ) /∈ A.

The restriction ρ�B is defined similarly.
For a (V,A ×B)-assignment ρ, we define the restrictions ρ�A and ρ�B by projection on the corre-

sponding entries. That is, we let πA be the projection on the first and πB be the projection on the second
entry of A×B and let ρ�A = πA ◦ ρ and ρ�B = πB ◦ ρ.

The union of two assignments ρ and ς with dom(ρ) ∩ dom(ς) = ∅, denoted by ρ ∪ ς, is defined by
dom(ρ∪ς) = dom(ρ)∪dom(ς), (ρ∪ς)(X ) = ρ(X ) for X ∈ dom(ρ) and (ρ∪ς)(X ) = ς(X ) for X ∈ dom(ς).

Fix two disjoint sets of variables (xi)i∈N and (yi)i∈N. For n ∈ N+, we define the set of expressions
Expn(K) over a semiring K by the grammar

E ::= xi | yi | E ⊕ E | E ⊗ E,

where i ∈ {1, . . . , n}. The (weighted) semantics of an expression E ∈ Expn(K) is a mapping 〈〈E〉〉 : Kn×
Kn → K defined for κ̄, λ̄ ∈ Kn inductively by

〈〈xi〉〉(κ̄, λ̄) = κi

〈〈yi〉〉(κ̄, λ̄) = λi

〈〈E1 ⊕ E2〉〉(κ̄, λ̄) = 〈〈E1〉〉(κ̄, λ̄) + 〈〈E2〉〉(κ̄, λ̄)

〈〈E1 ⊗ E2〉〉(κ̄, λ̄) = 〈〈E1〉〉(κ̄, λ̄) · 〈〈E2〉〉(κ̄, λ̄).

For expressions over the Boolean semiring B = ({false, true},∨,∧, false, true) we will usually write
∨ instead of ⊕ and ∧ instead of ⊗.

Construction 8. We call an expression E ∈ Expn(K) a pure product if

E = x1 ⊗ . . .⊗ xl ⊗ y1 ⊗ . . .⊗ ym

with xi ∈ {x1, . . . , xn} for i ∈ {1, . . . , l} and yj ∈ {y1, . . . , yn} for j ∈ {1, . . . ,m}. We define a substitution
procedure as follows. Let ϕ̄1, ϕ̄2 ∈ wMSO(σ,K)n be given. Let i ∈ {1, . . . , l} and assume xi = xk for
some k, then we define ξi = ϕ1

k. Likewise, for j ∈ {1, . . . ,m} and yj = yk, we define θj = ϕ2
k. We let

ξ = ξ1 ⊗ . . . ⊗ ξl and θ = θ1 ⊗ . . . ⊗ θm. Then for A,B ∈ Str(σ), every (V,A)-assignment ρ, and every
(V,B)-assignment ς we have

〈〈E〉〉(Jϕ̄1K(A, ρ), Jϕ̄2K(B, ς))
= Jξ1K(A, ρ) · . . . · JξlK(A, ρ) · Jθ1K(B, ς) · . . . · JθmK(B, ς)
= JξK(A, ρ) · JθK(B, ς).

We define PRD1(E, ϕ̄1, ϕ̄2) = ξ and PRD2(E, ϕ̄1, ϕ̄2) = θ.
Pure products B ∈ Expn(B) are also called pure conjunctions. For a pure conjunction B ∈ Expn(B),

formulas ϕ̄1, ϕ̄2 ∈ MSO(σ) and ξi, θj as above, we define the MSO(σ)-formulas CON1(B, ϕ̄1, ϕ̄2) = ξ =
ξ1 ∧ . . . ∧ ξl and CON2(B, ϕ̄1, ϕ̄2) = θ = θ1 ∧ . . . ∧ θm. We then have

〈〈B〉〉(Jϕ̄1K(A, ρ), Jϕ̄2K(B, ς)) = true iff (A, ρ) |= ξ and (B, ς) |= θ. ♦

We say that an expression E ∈ Expn(K) is in normal form if

E = E1 ⊕ . . .⊕ Em

for some m ≥ 1 and pure products Ei. By applying the laws of distributivity of the semiring K, every
expression E ∈ Expn(K) can be transformed into normal form. More precisely, we have the following
lemma.

Lemma 9. For every E ∈ Expn(K) there exists an expression E′ ∈ Expn(K) in normal form with the
same semantics as E.

6



Proof. We proceed by induction. Let E ∈ Expn(K). If E = xi or E = yi for some i ∈ {1, . . . , n}, then
E is in normal form. If E is of the form E1 ⊕ E2 or E1 ⊗ E2 for two expressions E1, E2 ∈ Expn(K),
we can find by induction two expressions E′1, E

′
2 ∈ Expn(K) in normal form with 〈〈E1〉〉 = 〈〈E′1〉〉 and

〈〈E2〉〉 = 〈〈E′2〉〉. In the first case, we see that E′ := E′1 ⊕ E′2 is also in normal form and we have
〈〈E〉〉 = 〈〈E′〉〉.

For the case that E = E1 ⊗ E2, we write E′1 = E
(1)
1 ⊕ · · · ⊕ E(1)

l and E′2 = E
(2)
1 ⊕ · · · ⊕ E(2)

m with

E
(1)
1 , · · · , E(1)

l and E
(2)
1 , · · · , E(2)

m pure products. Then we see that E′ :=
⊕l

i=1

⊕m
j=1E

(1)
i ⊗ E(2)

j is in
normal form and due to the distributivity of K, we have 〈〈E〉〉 = 〈〈E′〉〉.

3 The classical Feferman-Vaught Theorem

For convenience, we recall the Feferman-Vaught Theorem for disjoint unions and products of two struc-
tures and prove both cases. For this section, let σ be a signature.

3.1 A Feferman-Vaught Decomposition Theorem for disjoint unions

First, we state and prove the classical Feferman-Vaught Theorem for disjoint unions in the framework
we will also employ for our weighted extension.

Theorem 10 ([10]). Let V be a set of first and second order variables and β ∈ MSO(σ) with variables
from V. Then there exist n ≥ 1, tuples of formulas β̄1, β̄2 ∈ MSO(σ)n, and an expression Bβ ∈
Expn(B) such that Free(β̄1)∪Free(β̄2) ⊆ Free(β) and for all structures A,B ∈ Str(σ) and all (V,AtB)-
assignments ρ:

(A tB, ρ) |= β iff 〈〈Bβ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = true.

Proof. We proceed by induction.

� β = R(x1, . . . , xk) for a relation symbol R ∈ Relσ of arity k
Set n = 1, β1

1 = β2
1 = R(x1, . . . , xk), and Bβ = x1 ∨ y1.

� β = (x ∈ X)
Set n = 1, β1

1 = β2
1 = (x ∈ X), and Bβ = x1 ∨ y1.

� β = ¬α
Assume the theorem is true for α with ᾱ1, ᾱ2 ∈ MSO(σ)l and Bα ∈ Expl(B). We may assume that
Bα = B1 ∨ . . .∨Bm is in normal form with all Bi pure conjunctions. We let γi = CON1(Bi, ᾱ

1, ᾱ2) and
δi = CON2(Bi, ᾱ

1, ᾱ2) (see Construction 8) and set

β̄1 = (¬γ1, . . . ,¬γm)

β̄2 = (¬δ1, . . . ,¬δm)

Bβ =

m∧
i=1

(xi ∨ yi).

Then we have

(A tB, ρ) |= β ⇔ (A tB, ρ) |= α does not hold

⇔ 〈〈Bα〉〉(Jᾱ1K(A, ρ�A), Jᾱ2K(B, ρ�B)) = false

⇔ 〈〈Bi〉〉(Jᾱ1K(A, ρ�A), Jᾱ2K(B, ρ�B)) = false for all i ∈ {1, . . . ,m}
⇔ (A, ρ�A) |= γi does not hold or (B, ρ�B) |= δi does not hold for all i ∈ {1, . . . ,m}
⇔ 〈〈Bβ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = true.

Furthermore,

Free(β̄1) ∪ Free(β̄2) ⊆ Free(ᾱ1) ∪ Free(ᾱ2) ⊆ Free(α) = Free(β).

� β = α ∨ γ
Assume the theorem is true for α with ᾱ1, ᾱ2 ∈ MSO(σ)l and Bα ∈ Expl(B), and for γ with γ̄1, γ̄2 ∈

7



MSO(σ)m and Bγ ∈ Expm(B). Then we set β̄1 = (α1
1 , . . . , α

1
l , γ

1
1 , . . . , γ

1
m), β̄2 = (α2

1 , . . . , α
2
l , γ

2
1 , . . . , γ

2
m),

and Bβ = Bα∨B′γ , where B′γ is obtained from Bγ by replacing every variable xi by xi+l and every variable
yi by yi+l. Then we have

(A tB, ρ) |= β

⇔ (A tB, ρ) |= α or (A tB, ρ) |= γ

⇔ 〈〈Bα〉〉(Jᾱ1K(A, ρ�A), Jᾱ2K(B, ρ�B)) = true or 〈〈Bγ〉〉(Jγ̄1K(A, ρ�A), Jγ̄2K(B, ρ�B)) = true

⇔ 〈〈Bα〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = true or 〈〈B′γ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = true

⇔ 〈〈Bβ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = true.

Also,

Free(ᾱ1) ∪ Free(ᾱ2) ∪ Free(γ̄1) ∪ Free(γ̄2) ⊆ Free(α) ∪ Free(γ) = Free(β).

� β = ∃x.α
Assume the theorem is true for α with ᾱ1, ᾱ2 ∈ MSO(σ)l and Bα ∈ Expl(B). We may assume that
Bα = B1∨ . . .∨Bm is in normal form with all Bi pure conjunctions and that x does no occur as a bound
variable in any of the α1

i or α2
i . We let γi = CON1(Bi, ᾱ

1, ᾱ2) and δi = CON2(Bi, ᾱ
1, ᾱ2) and set

β̄1 = (∃x.γ1, . . . ,∃x.γm, γ−x1 , . . . , γ−xm )

β̄2 = (∃x.δ1, . . . ,∃x.δm, δ−x1 , . . . , δ−xm )

Bβ =

m∨
i=1

((xi ∧ ym+i) ∨ (xm+i ∧ yi)).

Then we have

(A tB, ρ) |= β

⇔ (A tB, ρ[x→ c]) |= α for some c ∈ A tB let ρc = ρ[x→ c]

⇔ 〈〈Bα〉〉(Jᾱ1K(A, ρc�A), Jᾱ2K(B, ρc�B)) = true for some c ∈ A tB
⇔ 〈〈Bi〉〉(Jᾱ1K(A, ρc�A), Jᾱ2K(B, ρc�B)) = true for some c ∈ A tB and i ∈ {1, . . . ,m}
⇔ (A, ρc�A) |= γi and (B, ρc�B) |= δi for some c ∈ A tB and i ∈ {1, . . . ,m}
⇔ (A, ρ�A[x→ a]) |= γi and (B, ρ�B) |= δ−xi for some a ∈ A and i ∈ {1, . . . ,m} or

(A, ρ�A) |= γ−xi and (B, ρ�B[x→ b]) |= δi for some b ∈ B and i ∈ {1, . . . ,m}
⇔ (A, ρ�A) |= ∃x.γi and (B, ρ�B) |= δ−xi for some i ∈ {1, . . . ,m} or

(A, ρ�A) |= γ−xi and (B, ρ�B) |= ∃x.δi for some i ∈ {1, . . . ,m}
⇔ 〈〈Bβ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = true.

Furthermore,

Free(β̄1) ∪ Free(β̄2) ⊆ (Free(ᾱ1) ∪ Free(ᾱ2)) \ {x}
⊆ Free(α) \ {x}
= Free(β).

� β = ∃X.α
We reuse the notation from first order existential quantification and set

β̄1 = (∃X.γ1, . . . ,∃X.γm)

β̄2 = (∃X.δ1, . . . ,∃X.δm)

Bβ =

m∨
i=1

(xi ∧ yi).

Then we have

(A tB, ρ) |= β

8



⇔ (A tB, ρ[X → I]) |= α for some I ⊆ A tB let ρI = ρ[X → I]

⇔ 〈〈Bα〉〉(Jᾱ1K(A, ρI�A), Jᾱ2K(B, ρI�B)) = true for some I ⊆ A tB
⇔ 〈〈Bi〉〉(Jᾱ1K(A, ρI�A), Jᾱ2K(B, ρI�B)) = true for some I ⊆ A tB and i ∈ {1, . . . ,m}
⇔ (A, ρI�A) |= γi and (B, ρI�B) |= δi for some I ⊆ A tB and i ∈ {1, . . . ,m}
⇔ (A, ρ�A[X → I]) |= γi and (B, ρ�B[X → J ]) |= δi for some I ⊆ A, J ⊆ B, and i ∈ {1, . . . ,m}
⇔ (A, ρ�A) |= ∃X.γi and (B, ρ�B) |= ∃X.δi for some i ∈ {1, . . . ,m}
⇔ 〈〈Bβ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = true.

In the same way as for first order existential quantification, we obtain Free(β̄1)∪Free(β̄2) ⊆ Free(β).

3.2 A Feferman-Vaught Decomposition Theorem for products

Here, we state and prove the classical Feferman-Vaught Theorem for products in the framework we will
also employ for our weighted extension.

Theorem 11 ([10]). Let V be a set of first and second order variables and β ∈ FO(σ) with variables from
V. Then there exist n ≥ 1, tuples of formulas β̄1, β̄2 ∈ FO(σ)n, and an expression Bβ ∈ Expn(B) such
that Free(β̄1) ∪ Free(β̄2) ⊆ Free(β) and for all structures A,B ∈ Str(σ) and all (V,A×B)-assignments
ρ:

(A×B, ρ) |= β iff 〈〈Bβ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = true.

Proof. We proceed by induction.

� β = R(x1, . . . , xk) for a relation symbol R ∈ Relσ of arity k
Set n = 1, β1

1 = β2
1 = R(x1, . . . , xk), and Bβ = x1 ∧ y1.

� The proofs for β = ¬α and β = α ∨ γ are the same as in Theorem 10.

� β = ∃x.α
We reuse the notation from first order existential quantification of Theorem 10 and set

β̄1 = (∃x.γ1, . . . ,∃x.γm)

β̄2 = (∃x.δ1, . . . ,∃x.δm)

Bβ =

m∨
i=1

(xi ∧ yi).

Then we have

(A×B, ρ) |= β

⇔ (A×B, ρ[x→ c]) |= α for some c ∈ A×B let ρc = ρ[x→ c]

⇔ 〈〈Bα〉〉(Jᾱ1K(A, ρc�A), Jᾱ2K(B, ρc�B)) = true for some c ∈ A×B
⇔ 〈〈Bi〉〉(Jᾱ1K(A, ρc�A), Jᾱ2K(B, ρc�B)) = true for some c ∈ A×B and i ∈ {1, . . . ,m}
⇔ (A, ρc�A) |= γi and (B, ρc�B) |= δi for some c ∈ A×B and i ∈ {1, . . . ,m}
⇔ (A, ρ�A[x→ a]) |= γi and (B, ρ�B[x→ b]) |= δi for some a ∈ A, b ∈ B, and i ∈ {1, . . . ,m}
⇔ (A, ρ�A) |= ∃x.γi and (B, ρ�B) |= ∃x.δi for some i ∈ {1, . . . ,m}
⇔ 〈〈Bβ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = true.

Again, we easily obtain Free(β̄1) ∪ Free(β̄2) ⊆ Free(β).

4 Translation schemes

Theorems 10 and 11 consider disjoint unions and products only. So far, there is no interaction between the
two constituting structures. Translation schemes allow us to create such interactions in an MSO-defined
manner. More precisely, translation schemes “translate” structures over one signature into structures

9



over another signature. Applying this to disjoint unions and products, we can extend Theorems 10 and
11 to more complex constructs. The usefulness of such extensions by translation schemes was discussed
in [18], which we follow here.

Let σ and τ be two signatures, Z = {z, z1, z2, . . .} be a set of distinguished first order variables, and
W be a set of first and second order variables with W ∩ Z = ∅. A σ-τ -translation scheme Φ over W
and Z is a pair (φU , (φT )T∈Relτ ) where φU , φT ∈ MSO(σ), φU has variables from W ∪ {z}, and φT has
variables from W ∪ {z1, . . . , zarτ (T )}. The variables from Z may not be used for quantification, i.e., all
variables from Z must be free.

Intuitively, the formula φU is a filter for the new universe, i.e., the universe of our new τ -structure
will contain all elements a of our σ-structure which satisfy φU when z is mapped to a. Likewise, every
formula φT defines the relation T of our new τ -structure, i.e., the interpretation of T will contain all
tuples (a1, . . . , aarτ (T )) which satisfy φT when each zi is mapped to ai.

We set Free(Φ) = Free(φU ) ∪
⋃
T∈Relτ

Free(φT ). The formulas φU and (φT )T∈Relτ depend on Z in
the following way. For a first order variable x not occurring in φU , the formula φU (x) is obtained from
φU by replacing all occurrences of z by x. Similarly, for T ∈ Relτ and first order variables x1, . . . , xarτ (T )

not occurring in φT , the formula φT (x1, . . . , xarτ (T )) is obtained from φT by replacing all occurrences of
zi by xi for i ∈ {1, . . . , arτ (T )}.

For a σ-structure A = (A, IA) and a (W,A)-assignment ς, we define the Φ-induced τ -structure of A
and ς, denoted by Φ?(A, ς), as a τ -structure with universe UC and interpretation IC as follows.

UC = {a ∈ A | (A, ς[z → a]) |= φU}

IC(T ) = {c̄ ∈ Uarτ (T )
C | (A, ς[z̄ → c̄]) |= φT }

Example 12. We can use a translation scheme to connect a specified vertex in a graph to a set of
vertices of the graph. For this let σ = τ = ({edge}, edge 7→ 2) be the signature of a directed graph like
in Example 2. We define a σ-σ-translation scheme Φ = (φU , φedge) through

φU = true

φedge = edge(z1, z2) ∨ (z1 = x ∧ z2 ∈ X),

where z1 = x is an abbreviation for ∀Y (z1 ∈ Y → x ∈ Y ). Let G = (V, edge 7→ E) ∈ Str(σ) be a graph,
v ∈ V a vertex, and I ⊆ V a set of vertices. Then the graph Φ∗(G, {x 7→ v,X 7→ I}) is exactly the graph
G with an edge added between v and every vertex v′ ∈ I.

Example 13. A translation scheme can also be used to cut a subtree from a given tree at a specified
vertex in the tree. As in the previous example, let σ be the signature of a directed graph. For a graph
G = (V, edge 7→ E) ∈ Str(σ), let E′ be the transitive closure of the relation E ⊆ V × V . We say that G
is a directed rooted tree with root r ∈ V if (1) E′ is irreflexive, (2) (r, v) ∈ E′ for all v ∈ V \ {r} and
(3) for all v ∈ V \ {r} there is exactly one v′ ∈ V with (v′, v) ∈ E. We define the following abbreviation
which describes the reflexive transitive closure of E.

(x ≤ y) = ∀X (x ∈ X ∧ (∀z.(∃z′.z′ ∈ X ∧ edge(z′, z))→ z ∈ X))→ y ∈ X

We define a σ-σ-translation scheme Φ = (φU , φedge) through

φU = (x ≤ z)
φedge = edge(z1, z2).

Then with G as above and v ∈ V , the graph C = Φ∗(G, x 7→ v) is the subtree of G at the vertex v, i.e.,

UC = {v} ∪ {v′ ∈ V | (v, v′) ∈ E′}
IC = E ∩ (UC × UC).

We have the following fundamental property of translation schemes [18].

Lemma 14 ([18]). Let Φ = (φU , (φT )T∈Relτ ) be a σ-τ -translation scheme over W and Z, V be a set
of first and second order variables such that V, W, and Z are pairwise disjoint, and β ∈ MSO(τ) with
variables from V. Then there exists a formula α ∈ MSO(σ) such that Free(α) ⊆ Free(β) ∪ Free(Φ) and
for all structures A ∈ Str(σ), all (W,A)-assignments ς, and all (V,Φ?(A, ς))-assignments ρ:

(Φ?(A, ς), ρ) |= β iff (A, ς ∪ ρ) |= α.

10



Proof. We indicate the proof for the convenience of the reader. We proceed by induction. In the follow-
ing, we will assume that for formulas β′, β1, and β2, the theorem holds by induction with the formulas
α′, α1 and α2, respectively.

For β = (x ∈ X), we let α = (x ∈ X). For β = T (x1, . . . , xk) for some T ∈ Relτ , we let α =
φT (x1, . . . , xk). For β = ¬β′, we let α = ¬α′. For β = β1 ∨ β2, we let α = α1 ∨ α2. For β = ∃x.β′, we
let α = ∃x.(α′ ∧ φU (x)) and for β = ∃X.β′, we let α = ∃X.(α′ ∧ ∀x.(x ∈ X → φU (x))).

Together with Theorems 10 and 11, this gives us the following Feferman-Vaught decomposition the-
orems for disjoint unions and products with translations schemes.

Theorem 15 ([18]). Let Φ = (φU , (φT )T∈Relτ ) be a σ-τ -translation scheme over W and Z, V be a set
of first and second order variables such that V, W, and Z are pairwise disjoint, and β ∈ MSO(τ) with
variables from V. Then there exist n ≥ 1, tuples of formulas β̄1, β̄2 ∈ MSO(σ)n, and an expression
Bβ ∈ Expn(B) such that Free(β̄1) ∪ Free(β̄2) ⊆ Free(β) ∪ Free(Φ) and for all structures A,B ∈ Str(σ),
all (W,A tB)-assignments ς, and all (V,Φ?(A tB, ς))-assignments ρ:

(Φ?(A tB, ς), ρ) |= β iff 〈〈Bβ〉〉(Jβ̄1K(A, (ς ∪ ρ)�A), Jβ̄2K(B, (ς ∪ ρ)�B)) = true.

Proof. By Lemma 14 we know that there is a formula α ∈ MSO(σ) such that

(Φ?(A tB, ς), ρ) |= β iff (A tB, ς ∪ ρ) |= α.

We then use Theorem 10 for the formula α to obtain n ≥ 1, tuples of formulas β̄1, β̄2 ∈ MSO(σ)n, and
an expression Bβ ∈ Expn(B) as required.

Theorem 16 ([18]). Let Φ = (φU , (φT )T∈Relτ ) be a σ-τ -translation scheme over W and Z, V be a
set of first and second order variables such that V, W, and Z are pairwise disjoint, and β ∈ FO(τ)
with variables from V. Then there exist n ≥ 1, tuples of formulas β̄1, β̄2 ∈ FO(σ)n, and an expression
Bβ ∈ Expn(B) such that Free(β̄1) ∪ Free(β̄2) ⊆ Free(β) ∪ Free(Φ) and for all structures A,B ∈ Str(σ),
all (W,A tB)-assignments ς, and all (V,Φ?(A×B, ς))-assignments ρ:

(Φ?(A×B, ς), ρ) |= β iff 〈〈Bβ〉〉(Jβ̄1K(A, (ς ∪ ρ)�A), Jβ̄2K(B, (ς ∪ ρ)�B)) = true.

Proof. We proceed as in the proof of Theorem 15 and combine Lemma 14 and Theorem 11.

Example 17. We consider the signature σ of a labeled graph, i.e., Relσ = {edge, labela, labelb} where
edge has arity 2 and labela, labelb both have arity 1. Given two directed rooted labeled trees G1,G2 in
this signature (see Example 13), we can use a translation scheme to add edges between all leaves of G1

and the root of G2 in G1 tG2. For this scenario, we have to distinguish between the vertices from the
first and the second graph, so the use of an intermediate signature is necessary. We define the signature
σ′ to be σ extended by the relation symbols G1 and G2 of arity 1. Then for i ∈ {1, 2}, we define a
σ-σ′-translation scheme Φi = (φU , φ

′
edge, φlabela , φlabelb , φ

i
G1
, φiG2

) as

φU = true

φ′edge = edge(z1, z2)

φlabela = labela(z1)

φlabelb = labelb(z1)

φiGj =

{
true if i = j

false otherwise.

With the abbreviations

root(x) = ¬∃y.edge(y, x)

leaf(x) = ¬∃y.edge(x, y)

we then define the σ′-σ-translation scheme Φ = (φU , φedge, φlabela , φlabelb) through

φedge = edge(z1, z2) ∨ (G1(z1) ∧G2(z2) ∧ leaf(z1) ∧ root(z2)).

11



Then G = Φ∗(Φ∗1(G1) t Φ∗2(G2)) is exactly G1 t G2 with the leaves of G1 connected to the root of G2.
We now consider the formula

β = ∃x.∃y.(edge(x, y) ∧ labela(x) ∧ labelb(y))

which asks whether there is some edge between an a-labeled and a b-labeled vertex. We can apply Lemma
14 and Theorem 15 to obtain the following decomposition of β. Let

β̄1 = (β,∃x.labela(x) ∧ leaf(x))

β̄2 = (β,∃y.labelb(y) ∧ root(y))

Bβ = x1 ∨ y1 ∨ (x2 ∧ y2).

Then we have

G |= β iff 〈〈Bβ〉〉(Jβ̄1K(G1), Jβ̄2K(G2)) = true.

5 Weighted Feferman-Vaught Decomposition Theorems

Our goal is to prove weighted versions of Theorems 15 and 16. That is, we would like to replace FO by
wFO and MSO by wMSO in those theorems. This, however, is not possible as we will see in Sections 5.2
and 5.3. For disjoint unions, we have to restrict the use of the first order product quantifier and entirely
remove the second order product quantifier in wMSO. For products, it is not possible to include the first
order product quantifier at all.

5.1 Formulation of the theorems

Let σ be a signature and K a commutative semiring. We define two fragments of our logic and formulate
our weighted versions of Theorems 15 and 16 for these fragments.

Definition 18 (Product-free weighted first order logic). We define the product-free first order fragment
of our logic through the grammar

ϕ ::= β | κ | ϕ⊕ ϕ | ϕ⊗ ϕ |
⊕
x.ϕ,

where β ∈ FO(σ) is a first order formula, κ ∈ K, and x is a first order variable. By wFO
⊗

-free(σ,K), we

denote the set of all such formulas. In fact, wFO
⊗

-free(σ,K) is the set of all formulas from wFO(σ,K)
which do not contain any first order product quantifier. Using this fragment, we will formulate a weighted
Feferman-Vaught decomposition theorem for products of structures.

Definition 19 (Product-restricted weighted monadic second order logic). In order to define the product-
restricted fragment of our weighted monadic second order logic, we first define the fragment of so-called
almost-Boolean formulas through the grammar

ψ ::= β | κ | ψ ⊕ ψ | ψ ⊗ ψ,

where β ∈ MSO(σ) is a monadic second order formula and κ ∈ K. This fragment, which we denote by
wMSOa-bool(σ,K), already appeared in [4] in the form of recognizable step functions. To obtain the main
theorem of [4], the product quantifier was restricted to quantify only over recognizable step functions.
We employ the same restriction and define the product-restricted fragment of our logic through the
grammar

ϕ ::= β | κ | ϕ⊕ ϕ | ϕ⊗ ϕ |
⊕
x.ϕ |

⊗
x.ψ |

⊕
X.ϕ,

where β ∈ MSO(σ) is a monadic second order formula, κ ∈ K, x is a first order variable, X is a second

order variable, and ψ ∈ wMSOa-bool(σ,K) is an almost-Boolean formula. By wMSO
⊗

-res(σ,K) we

denote the set of all such formulas. The set wMSO
⊗

-res(σ,K) contains all formulas from wMSO(σ,K)
which do not contain any second order quantifier and where for every subformula of the form

⊗
x.ψ we

have that ψ is an almost-Boolean formula. Our weighted Feferman-Vaught decomposition theorem for
disjoint unions of structures will be formulated for this fragment. In [4] it was shown that for finite and
infinite words, this fragment is expressively equivalent to weighted finite automata.

12



We note that the restrictions we impose on the product quantifier are necessary as we will show in
Sections 5.2 and 5.3. We formulate the weighted versions of Theorems 15 and 16 as follows.1 Let τ , W,
and Z be as in Section 4.

Theorem 20. Let K be a commutative semiring. Let Φ = (φU , (φT )T∈Relτ ) be a σ-τ -translation scheme
over W and Z, V be a set of first and second order variables such that V, W, and Z are pairwise disjoint,
and ϕ ∈ wMSO

⊗
-res(τ,K) with variables from V. Then there exist n ≥ 1, tuples of formulas ϕ̄1, ϕ̄2 ∈

wMSO
⊗

-res(σ,K)n with Free(ϕ̄1) ∪ Free(ϕ̄2) ⊆ Free(ϕ) ∪ Free(Φ), and an expression Eϕ ∈ Expn(K)
such that the following holds. For all finite structures A,B ∈ Str(σ), or, for all structures A,B ∈ Str(σ)
if K is bicomplete, all (W,A tB)-assignments ς, and all (V,Φ?(A tB, ς))-assignments ρ we have

JϕK(Φ?(A tB, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, (ς ∪ ρ)�A), Jϕ̄2K(B, (ς ∪ ρ)�B)).

Theorem 21. Let K be a commutative semiring. Let Φ = (φU , (φT )T∈Relτ ) be a σ-τ -translation scheme
over W and Z, V be a set of first and second order variables such that V, W, and Z are pairwise disjoint,
and ϕ ∈ wFO

⊗
-free(τ,K) with variables from V. Then there exist n ≥ 1, tuples of formulas ϕ̄1, ϕ̄2 ∈

wFO
⊗

-free(σ,K)n with Free(ϕ̄1)∪Free(ϕ̄2) ⊆ Free(ϕ)∪Free(Φ), and an expression Eϕ ∈ Expn(K) such
that the following holds. For all finite structures A,B ∈ Str(σ), or, for all structures A,B ∈ Str(σ) if K
is bicomplete, all (W,A×B)-assignments ς, and all (V,Φ?(A×B, ς))-assignments ρ we have

JϕK(Φ?(A×B, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, (ς ∪ ρ)�A), Jϕ̄2K(B, (ς ∪ ρ)�B)).

The proofs of both theorems are deferred to Section 5.4. For formulas without free variables and a
trivial translation scheme, i.e., σ = τ , φU = true, and φT = T (z1, . . . , zarτ (T )) for all T ∈ Relτ , the
theorems reduce to the following, simplified versions.

Theorem 22. Let K be a commutative semiring and ϕ ∈ wMSO
⊗

-res(σ,K) be a sentence. Then there

exist n ≥ 1, tuples of sentences ϕ̄1, ϕ̄2 ∈ wMSO
⊗

-res(σ,K)n, and an expression Eϕ ∈ Expn(K) such
that the following holds. For all finite structures A,B ∈ Str(σ), or, for all structures A,B ∈ Str(σ) if K
is bicomplete, we have

JϕK(A tB) = 〈〈Eϕ〉〉(Jϕ̄1K(A), Jϕ̄2K(B)).

Theorem 23. Let K be a commutative semiring and ϕ ∈ wFO
⊗

-free(σ,K) be a sentence. Then there

exist n ≥ 1, tuples of sentences ϕ̄1, ϕ̄2 ∈ wFO
⊗

-free(σ,K)n, and an expression Eϕ ∈ Expn(K) such that
the following holds. For all finite structures A,B ∈ Str(σ), or, for all structures A,B ∈ Str(σ) if K is
bicomplete, we have

JϕK(A×B) = 〈〈Eϕ〉〉(Jϕ̄1K(A), Jϕ̄2K(B)).

Example 24. To illustrate Theorem 22, we consider the semiring of natural numbers (N,+, ·, 0, 1) and
the signature σ of a labeled graph, i.e., Relσ = {edge, labela, labelb} with edge binary and labela, labelb
both unary. Consider the following formula which multiplies the number of vertices labeled a with the
number of edges between two vertices labeled b.⊕x.labela(x)︸ ︷︷ ︸

=ϕa

⊗
⊕x.

⊕
y.edge(x, y) ∧ labelb(x) ∧ labelb(y)︸ ︷︷ ︸

=ϕb


The formula can be decomposed as follows. Let

ϕ̄1 = ϕ̄2 = (ϕa, ϕb)

Eϕ = (x1 ⊕ y1)⊗ (x2 ⊕ y2).

Then for every two σ-structures G1,G2 we have

JϕK(G1 tG2) = 〈〈Eϕ〉〉(Jϕ̄1K(G1), Jϕ̄2K(G2)).

1In [25] a weighted version of Theorem 15 similar to ours is stated (without proof) to hold without any restriction on the
first order product quantifier. However, in Subsection 5.2 we show that a restriction on the product quantifier is necessary.

13



Example 25. In Example 7, we interpreted JϕK(A, ρ) as the number of proofs we have that (A, ρ)
satisfies ϕ, assuming that ϕ does not contain constants. Applying Theorem 20 in this scenario means
that the number of proofs that (A tB, ρ) satisfies a formula ϕ can be computed from the number of
proofs we have that (A, ρ�A) satisfies some formulas ϕ1

1, . . . , ϕ
1
n and the number of proofs we have that

(B, ρ�B) satisfies some formulas ϕ2
1, . . . , ϕ

2
n by combining these numbers only through an expression.

Example 26. In [25], it is discussed how translation schemes can be applied for Feferman-Vaught-like
decompositions of weighted properties. Theorems 20 and 21 show that this is possible for all properties
which can be expressed by formulas in our weighted logic fragments.

5.2 Necessity of restricting the logic for disjoint unions

In this section, we show that the restrictions we impose on the product quantifiers are indeed necessary.
For disjoint unions, we will prove that already Theorem 22 does not hold over the tropical semiring
Trop = (R ∪ {∞},min,+,∞, 0) and over the arctic semiring Arct = (R ∪ {−∞},max,+,−∞, 0) for the
formulas

⊗
x.
⊗
y.1 and

⊗
X.1. To prove this, we employ Ramsey’s Theorem. Then we show that for

the formula
⊗
x.
⊕
y.1, Theorem 22 does not hold over the semiring (N,+, ·, 0, 1). We note that these

types of formulas also occurred in [4] and [5] as examples of weighted formulas whose semantics could
not be described by weighted automata.

We will employ the following version of Ramsey’s Theorem. For a set X, we denote by
[
X
2

]
the set

of all subsets of X of size 2.

Theorem 27 ([24]). Let X be an infinite set, k ≥ 1 a positive integer, and f :
[N

2

]
→ {1, . . . , k} a

mapping. Then there exists an infinite subset E ⊆ N such that f�[E2 ] ≡ i for some i ∈ {1, . . . , k}.

Theorem 28. Let K ∈ {Trop,Arct}, σ = (∅, ∅) be the empty signature, and for l ∈ N+ consider
the σ-structures Sl = ({1, . . . , l}, ∅). Then for ϕ =

⊗
x.
⊗
y.1 there do not exist n ≥ 1, ϕ̄1, ϕ̄2 ∈

(wMSO(σ,K))n, and Eϕ ∈ Expn(K) such that for all l,m ∈ N+ we have

JϕK(Sl tSm) = 〈〈Eϕ〉〉(Jϕ̄1K(Sl), Jϕ̄2K(Sm)). (5.1)

Proof. First, consider K = Trop. For contradiction, suppose that n, ϕ̄1, ϕ̄2, and Eϕ as above satisfying
(5.1) exist. We may assume that Eϕ = E1 ⊕ . . .⊕ Ek is in normal form with all Ei pure products. For
l ≥ 1 and i ∈ {1, . . . , k} we let ali = JPRD1(Ei, ϕ̄

1, ϕ̄2)K(Sl) and bli = JPRD2(Ei, ϕ̄
1, ϕ̄2)K(Sl). Then

by assumption we have

(l +m)2 = JϕK(Sl tSm) =
k

min
i=1

(ali + bmi). (5.2)

Given l ≥ 1 and m ≥ 1, for at least one index j ∈ {1, . . . , k} we have (l + m)2 = alj + bmj . We define

jlm as the smallest such index. Then we define a function f :
[
N+

2

]
→ {1, . . . , k} by f({l,m}) = jlm for

l < m. Then we take E ⊆ N+ according to Ramsey’s Theorem. As E is infinite, there are l, λ,m, µ ∈ E
with l < λ < m < µ. With j = jlm, we thus have

(l +m)2 = alj + bmj

(λ+m)2 = aλj + bmj

(l + µ)2 = alj + bµj

(λ+ µ)2 = aλj + bµj .

This implies that

(λ+ µ)2 = (λ+m)2 + (l + µ)2 − (l +m)2

= λ2 + µ2 + 2λm+ 2lµ− 2lm

= (λ+ µ)2 − 2(λ− l)(µ−m)

< (λ+ µ)2,

a contradiction. Therefore, n, ϕ̄1, ϕ̄2, and Eϕ as chosen cannot exist.
The proof for the arctic semiring is in fact identical, the only difference is that equations (5.2) become

(l +m)2 = JϕK(Sl tSm) =
k

max
i=1

(ali + bmi).

14



Theorem 29. Let K ∈ {Trop,Arct}, σ = (∅, ∅) be the empty signature, and for l ∈ N+ consider the σ-
structures Sl = ({1, . . . , l}, ∅). Then for ϕ =

⊗
X.1 there do not exist n ≥ 1, ϕ̄1, ϕ̄2 ∈ (wMSO(σ,K))n,

and Eϕ ∈ Expn(K) such that for all l,m ∈ N+ we have

JϕK(Sl tSm) = 〈〈Eϕ〉〉(Jϕ̄1K(Sl), Jϕ̄2K(Sm)).

Proof. We proceed as in the proof of Theorem 28 and by contradiction obtain a system of equations

2l+m = JϕK(Sl tSm) =
k

min
i=1

(ali + bmi).

Also employing Ramsey’s Theorem in the same way, we obtain l < λ < m < µ and j ∈ {1, . . . , k} such
that

2l+m = alj + bmj

2λ+m = aλj + bmj

2l+µ = alj + bµj

2λ+µ = aλj + bµj ,

which gives us the equality

2λ+µ = 2λ+m + 2l+µ − 2l+m.

By dividing by 2l+m we obtain

2(λ−l)+(µ−m) = 2λ−l + 2µ−m − 1. (5.3)

However, we have

2(λ−l)+(µ−m) ≥ 2λ−l + 2µ−m

> 2λ−l + 2µ−m − 1,

which contradicts equation (5.3).

Theorem 30. Let K = (N,+, ·, 0, 1), σ = (∅, ∅) be the empty signature, and for l ∈ N+ consider
the σ-structures Sl = ({1, . . . , l}, ∅). Then for ϕ =

⊗
x.
⊕
y.1 there do not exist n ≥ 1, ϕ̄1, ϕ̄2 ∈

(wMSO(σ,N))n, and Eϕ ∈ Expn(N) such that for all l,m ∈ N+ we have

JϕK(Sl tSm) = 〈〈Eϕ〉〉(Jϕ̄1K(Sl), Jϕ̄2K(Sm)). (5.4)

Proof. We proceed by contradiction and assume n, ϕ̄1, ϕ̄2, and Eϕ as above satisfying (5.4) exist. We may
assume that Eϕ = E1⊕ . . .⊕Ek is in normal form with all Ei pure products. For l ≥ 1 and i ∈ {1, . . . , k}
we let ali = JPRD1(Ei, ϕ̄

1, ϕ̄2)K(Sl) and bli = JPRD2(Ei, ϕ̄
1, ϕ̄2)K(Sl). Then by assumption we have

(l +m)(l+m) = JϕK(Sl tSm) =

k∑
i=1

(ali · bmi). (5.5)

For every j ∈ {1, . . . , k} we choose Lj ≥ 1 such that aLjj 6= 0, or let Lj := 0 if for all l ≥ 1 we have
alj = 0. Assume m ≥ 1 and j ∈ {1, . . . , k} with Lj 6= 0, then aLjj ≥ 1, hence

(Lj +m)(Lj+m) =

k∑
i=1

(aLji · bmi) ≥ (aLjj · bmj) ≥ bmj .

In particular, with L := max{Li | i ∈ {1, . . . , k}}, we have that for every j ∈ {1, . . . , k} either (i)
bmj ≤ (L + m)(L+m) for all m ≥ 1 or (ii) alj = 0 for all l ≥ 1. Note that from equation (5.5) it follows
that L = 0 is impossible. In the same fashion, we can find M ≥ 1 such that for every l ≥ 1 and every
j ∈ {1, . . . , k} either (i) alj ≤ (l +M)(l+M) for all l ≥ 1 or (ii) bmj = 0 for all m ≥ 1.

Now, for arbitrary l ≥ 1, consider the special case

(l + l)(l+l) =

k∑
i=1

(ali · bli).

15



If j ∈ {1, . . . , k} such that either alj = 0 for all l ≥ 1 or bmj = 0 for all m ≥ 1, then clearly also
(alj · blj) = 0. If j is not like this, we have

(alj · blj) ≤ (l +M)(l+M) · (L+ l)(L+l) ≤ (l + C)2(l+C)

for C := max{L,M}. In summary, we have

(2l)2l ≤ k(l + C)2(l+C)

for every l ≥ 1. Now if l is of the form NC for some N ∈ N, we have

(2l)2l ≤ k(l + C)2(l+C)

⇔ (2NC)NC ≤
√
k((N + 1)C)(N+1)C

⇔ (2N)N ≤ 2C
√
kC(N + 1)(N+1)

⇔ 2N

N + 1

(
N

N + 1

)N
≤ 2C
√
kC.

However, this inequality cannot hold for all N ∈ N, as

2N

N + 1

N→∞−−−−→ +∞ and

(
N

N + 1

)N
N→∞−−−−→ e−1.

5.3 Necessity of restricting the logic for products

The proof of Theorem 28 can also be used to show that no Feferman-Vaught-like theorem holds for
products if the first order product quantifier is included in the weighted logic. More precisely, already
Theorem 23 does not hold over the tropical and arctic semirings for the formula ϕ =

⊗
x.1 even if ϕ̄1

and ϕ̄2 are allowed to be from wMSO(σ,K).

Theorem 31. Let K ∈ {Trop,Arct}, σ = (∅, ∅) be the empty signature, and for l ∈ N+ consider the
σ-structures Sl = ({1, . . . , l}, ∅). Then for ϕ =

⊗
x.1 there do not exist n ≥ 1, ϕ̄1, ϕ̄2 ∈ (wMSO(σ,K))n,

and Eϕ ∈ Expn(K) such that for all l,m ∈ N+ we have

JϕK(Sl ×Sm) = 〈〈Eϕ〉〉(Jϕ̄1K(Sl), Jϕ̄2K(Sm)).

Proof. Like in the proof of Theorem 28, for K = Trop we reduce the problem to a system of equations

lm = JϕK(Sl ×Sm) =
k

min
i=1

(ali + bmi).

Employing Ramsey’s Theorem, we again obtain l < λ < m < µ and j ∈ {1, . . . , k} such that

lm = alj + bmj

λm = aλj + bmj

lµ = alj + bµj

λµ = aλj + bµj .

Thus, we have

λµ = λm+ lµ− lm
= λµ− (λ− l)(µ−m)

< λµ,

which is a contradiction. For K = Arct, the proof is again analogous.

16



5.4 Proofs of Theorems 20 and 21

We now turn to the proof of Theorems 20 and 21. We can reduce the proofs to the case where the
translation scheme is the identity.

Lemma 32. Let Φ = (φU , (φT )T∈Relτ ) be a σ-τ -translation scheme over W and Z, V be a set of first
and second order variables such that V, W, and Z are pairwise disjoint, and ϕ ∈ wMSO(τ,K) with
variables from V. Then there exists a formula ψ ∈ wMSO(σ,K) with Free(ψ) ⊆ Free(ϕ) ∪ Free(Φ) such
that the following holds. For all finite structures A ∈ Str(σ), or, for all structures A ∈ Str(σ) if K is
bicomplete, all (W,A)-assignments ς, and all (V,Φ?(A, ς))-assignments ρ we have

JϕK(Φ?(A, ς), ρ) = JψK(A, ς ∪ ρ).

If ϕ is from wMSO
⊗

-res(τ,K) or wFO
⊗

-free(τ,K), then ψ can also be chosen as a formula from

wMSO
⊗

-res(σ,K) or wFO
⊗

-free(σ,K), respectively.

Proof. We proceed by induction. In the sequel we will assume that for formulas ϕ′, ϕ1, and ϕ2, the
lemma holds by induction with the formulas ψ′, ψ1, and ψ2, respectively.

For ϕ = β ∈ MSO(τ), we obtain ψ by applying Lemma 14 to β. For ϕ = κ ∈ K, we let ψ = κ. For
ϕ = ϕ1 ⊕ ϕ2 or ϕ = ϕ1 ⊗ ϕ2, we define ψ = ψ1 ⊕ ψ2 or ψ = ψ1 ⊗ ψ2, respectively.
For ϕ =

⊕
x.ϕ′, we let ψ =

⊕
x.(ψ′ ⊗ φU (x)).

For ϕ =
⊕
X.ϕ′, we let ψ =

⊕
X.(ψ′ ⊗ ∀x.(x ∈ X → φU (x))).

For ϕ =
⊗
x.ϕ′, we let ψ =

⊗
x.((ψ′ ⊗ φU (x))⊕ ¬φU (x)).

For ϕ =
⊗
X.ϕ′, we define β = ∀x.(x ∈ X → φU (x)) and let ψ =

⊗
X.((ψ′ ⊗ β)⊕ ¬β).

Note that for the cases of infinite sums and products, we need that
∏
I 1 = 1 and

∑
I 0 = 0 for every

index set I. The first is an axiom of our infinite products, the latter follows from the distributivity of
the infinite sum.

Proof of Theorem 20. We proceed by induction. By Lemma 32, it suffices to prove the case τ = σ and
Φ?(A tB, ς) = A tB.

� ϕ = β for some β ∈ MSO(σ)
We apply Theorem 10 to the formula β and obtain l ≥ 1, tuples of formulas β̄1, β̄2 ∈ MSO(σ)l, and an
expression Bβ ∈ Expl(B) such that

(A tB, ρ) |= β iff 〈〈Bβ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = true.

We may assume that Bβ = B1 ∨ . . . ∨ Bm is in normal form with all Bi pure conjunctions. We let
γi = CON1(Bi, β̄

1, β̄2) and δi = CON2(Bi, β̄
1, β̄2) for i ∈ {1, . . . ,m} (see Construction 8). We set

n = 2m and define

ϕ̄1 = (γ1, . . . , γm,¬γ1, . . . ,¬γm)

ϕ̄2 = (δ1, . . . , δm,¬δ1, . . . ,¬δm).

Intuitively, we would now define the expression Eϕ as (x1 ⊗ y1) ⊕ . . . ⊕ (xm ⊗ ym), but this expression
is not necessarily evaluated to 1 in K if γi ∧ δi is true for more than one index i. Instead, we define
expressions Ek ∈ Expn(K) for k ∈ {1, . . . ,m} inductively by E1 = x1 ⊗ y1 and

Ek = (Ek−1 ⊗ ((xk+m ⊗ yk)⊕ yk+m))⊕ (xk ⊗ yk)

for k ≥ 2 and set Eϕ = Em. The expression Ek is evaluated to 1 if γk ∧ δk holds, and otherwise, if either
γk or δk does not hold, it is evaluated to Ek−1. We show by induction that for all k ∈ {1, . . . ,m} we
have

〈〈Ek〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B)) ={
1 if 〈〈Bi〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = true for some i ∈ {1, . . . , k}
0 otherwise.

Let κ̄ = Jϕ̄1K(A, ρ�A) and λ̄ = Jϕ̄2K(B, ρ�B). For k = 1 we have, due to the fact that κ̄, λ̄ ∈ {0,1}2m,

〈〈x1 ⊗ y1〉〉(κ̄, λ̄) = 1

17



⇔ κ1 = 1 and λ1 = 1

⇔ (A, ρ�A) |= γ1 and (B, ρ�A) |= δ1

⇔ 〈〈B1〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = true

and 〈〈E1〉〉(κ̄, λ̄) = 0 otherwise. For k > 1 and 〈〈Bi〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = false for all i ∈
{1, . . . , k}, we have 〈〈Ek−1〉〉(κ̄, λ̄) = 0 by induction and at least one of κk, λk is 0. It is easy to see that in
this case 〈〈Ek〉〉(κ̄, λ̄) = 0. Otherwise either 〈〈Ek−1〉〉(κ̄, λ̄) = 1 by induction or κk = λk = 1. Taking into
account that the values for xk, xk+m and yk, yk+m are always “dual”, a simple case distinction shows
that in this case 〈〈Ek〉〉(κ̄, λ̄) = 1. In conclusion, we have JϕK(A tB, ρ) ∈ {0,1} and

JϕK(A tB, ρ) = 1

⇔ (A tB, ρ) |= β

⇔ 〈〈Bβ〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = true

⇔ 〈〈Bi〉〉(Jβ̄1K(A, ρ�A), Jβ̄2K(B, ρ�B)) = true for some i ∈ {1, . . . ,m}
⇔ 〈〈Eϕ〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B)) = 1,

hence JϕK(A tB, ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B)).

� ϕ = κ for some κ ∈ K
We let n = 1, ϕ1

1 = ϕ2
1 = κ and Eϕ = x1.

� ϕ = ζ ⊕ η
We assume the theorem is true for ζ with ζ̄1, ζ̄2 ∈ wMSO

⊗
-res(σ,K)l and Eζ ∈ Expl(K), and for η

with η̄1, η̄2 ∈ wMSO
⊗

-res(σ,K)m and Eη ∈ Expm(K). We let ϕ̄1 = (ζ1
1 , . . . , ζ

1
l , η

1
1 , . . . , η

1
m), ϕ̄2 =

(ζ2
1 , . . . , ζ

2
l , η

2
1 , . . . , η

2
m), and Eϕ = Eζ ⊕ E′η, where E′η is obtained from Eη by replacing every variable

xi by xi+l and every variable yi by yi+l. We have

JϕK(A tB, ρ)

= JζK(A tB, ρ) + JηK(A tB, ρ)

= 〈〈Eζ〉〉(Jζ̄1K(A, ρ�A), Jζ̄2K(B, ρ�B)) + 〈〈Eη〉〉(Jη̄1K(A, ρ�A), Jη̄2K(B, ρ�B))

= 〈〈Eζ〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B)) + 〈〈E′η〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B))

= 〈〈Eϕ〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B)).

� ϕ = ζ ⊗ η
The proof is the same as for the previous case, only that here we define Eϕ = Eζ ⊗ E′η.

� ϕ =
⊕
x.ζ

We assume the theorem is true for ζ with ζ̄1, ζ̄2 ∈ wMSO
⊗

-res(σ,K)l and Eζ ∈ Expl(K). We may
assume that Eζ = E1 ⊕ . . .⊕ Em is in normal form with all Ei pure products and that x does no occur
as a bound variable in any of the ζ1

i or ζ2
i . We let ξi = PRD1(Ei, ζ̄

1, ζ̄2) and θi = PRD2(Ei, ζ̄
1, ζ̄2). We

set n = 2m and define

ϕ̄1 = (
⊕
x.ξ1, . . . ,

⊕
x.ξm, ξ

−x
1 , . . . , ξ−xm )

ϕ̄2 = (
⊕
x.θ1, . . . ,

⊕
x.θm, θ

−x
1 , . . . , θ−xm )

Eϕ =
⊕m

i=1((xi ⊗ ym+i)⊕ (xm+i ⊗ yi)).

Then we have

JϕK(A tB, ρ)

=
∑

c∈AtB
JζK(A tB, ρ[x→ c])

=
∑

c∈AtB
〈〈Eζ〉〉(Jζ̄1K(A, ρ[x→ c]�A), Jζ̄2K(B, ρ[x→ c]�B))

=
∑

c∈AtB

m∑
i=1

〈〈Ei〉〉(Jζ̄1K(A, ρ[x→ c]�A), Jζ̄2K(B, ρ[x→ c]�B))

18



=
∑

c∈AtB

m∑
i=1

JξiK(A, ρ[x→ c]�A) · JθiK(B, ρ[x→ c]�B)

=
∑
a∈A

m∑
i=1

JξiK(A, ρ�A[x→ a]) · Jθ−xi K(B, ρ�B) +
∑
b∈B

m∑
i=1

Jξ−xi K(A, ρ�A) · JθiK(B, ρ�B[x→ b])

=

m∑
i=1

(∑
a∈A

JξiK(A, ρ�A[x→ a])

)
· Jθ−xi K(B, ρ�B) + Jξ−xi K(A, ρ�A) ·

(∑
b∈B

JθiK(B, ρ�B[x→ b])

)

=

m∑
i=1

J
⊕
x.ξiK(A, ρ�A) · Jθ−xi K(B, ρ�B) + Jξ−xi K(A, ρ�A) · J

⊕
x.θiK(B, ρ�B)

= 〈〈Eϕ〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B)).

� ϕ =
⊕
X.ζ

As for the first order sum quantifier, we assume that the theorem is true for ζ with ζ̄1, ζ̄2 ∈ wMSO
⊗

-res(σ,K)l

and Eζ ∈ Expl(K) such that Eζ = E1 ⊕ . . . ⊕ Em is in normal form with all Ei pure products. We let
ξi = PRD1(Ei, ζ̄

1, ζ̄2) and θi = PRD2(Ei, ζ̄
1, ζ̄2). We set n = m and define

ϕ̄1 = (
⊕
X.ξ1, . . . ,

⊕
X.ξm)

ϕ̄2 = (
⊕
X.θ1, . . . ,

⊕
X.θm)

Eϕ =
⊕m

i=1(xi ⊗ yi).

Then we have

JϕK(A tB, ρ)

=
∑

I⊆AtB

JζK(A tB, ρ[X → I])

=
∑

I⊆AtB

〈〈Eζ〉〉(Jζ̄1K(A, ρ[X → I]�A), Jζ̄2K(B, ρ[X → I]�B))

=
∑

I⊆AtB

m∑
i=1

JξiK(A, ρ[X → I]�A) · JθiK(B, ρ[X → I]�B)

=

m∑
i=1

∑
I⊆A

∑
J⊆B

JξiK(A, ρ�A[X → I]) · JθiK(B, ρ�B[X → J ])

=

m∑
i=1

∑
I⊆A

JξiK(A, ρ�A[X → I])

 ·
∑
J⊆B

JθiK(B, ρ�B[X → J ])


=

m∑
i=1

J
⊕
X.ξiK(A, ρ�A) · J

⊕
X.θiK(B, ρ�B)

= 〈〈Eϕ〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B)).

� ϕ =
⊗
x.ζ with ζ ∈ wMSOa-bool(σ,K) almost Boolean

Using the laws of distributivity in K and the fact that for two MSO formulas α, β ∈ MSO(σ) we have
Jα ⊗ βK = Jα ∧ βK, we may assume that ζ = (κ1 ⊗ β1) ⊕ . . . ⊕ (κl ⊗ βl) for some l ≥ 1, κi ∈ K, and
βi ∈ MSO(σ). First, we will show that we may even assume that β1, . . . , βl form a partition, i.e., that
for every (V,A tB)-assignment ρ′ there is exactly one i ∈ {1, . . . , l} with (A tB, ρ′) |= βi.

For this, let Ω = {β1,¬β1} × . . .× {βl,¬βl}. For every ω̄ = (ω1, . . . , ωl) ∈ Ω we define a formula αω̄
and κω̄ ∈ K as follows.

αω̄ =

l∧
i=1

ωi κω̄ =
∑

1≤i≤l
ωi=βi

κi

The empty sum is 0 by convention. It is clear that for every (V,A t B)-assignment ρ′ there exists a
unique ω̄ ∈ Ω with (AtB, ρ′) |= αω̄. Moreover, for i ∈ {1, . . . , l} we have (AtB, ρ′) |= βi if and only if

19



(A tB, ρ′) |= αω̄ for some ω̄ ∈ Ω with ωi = βi, and in this case ω̄ is unique. We therefore have

JζK(A tB, ρ′) =

l∑
i=1

κi · JβiK(A tB, ρ′)

=

l∑
i=1

κi ·
∑
ω̄∈Ω
ωi=βi

Jαω̄K(A tB, ρ′)

=

l∑
i=1

∑
ω̄∈Ω
ωi=βi

κi · Jαω̄K(A tB, ρ′)

=
∑
ω̄∈Ω

 ∑
1≤i≤l
ωi=βi

κi

 · Jαω̄K(A tB, ρ′)

=
∑
ω̄∈Ω

κω̄ · Jαω̄K(A tB, ρ′).

Thus, JζK = J
⊕

ω̄∈Ω κω̄ ⊗ αω̄K and the family (αω̄)ω̄∈Ω forms a partition in the above sense. In the
following, we simply assume that ζ = (κ1 ⊗ β1)⊕ . . .⊕ (κl ⊗ βl) and that β1, . . . , βl form a partition.

For every i ∈ {1, . . . , l}, let Xi ∈ V be a second order variable not occurring in ζ. We define the
abbreviation

((x ∈ Xi)B κi) := ((x ∈ Xi)⊗ κi)⊕ ¬(x ∈ Xi).

We write all of the Xi into a tuple X̄ and for sets Ii ⊆ AtB (i ∈ {1, . . . , l}), we let Ī be the corresponding
tuple of sets. Then for c ∈ A tB and sets Ii ⊆ A tB we have

J(x ∈ Xi)B κiK(A tB, ρ[X̄ → Ī , x→ c]) =

{
κi if c ∈ Ii
1 otherwise.

Now consider the formula(
l∧
i=1

∀x.(x ∈ Xi ↔ βi)

)
⊗

l⊗
i=1

⊗
x.((x ∈ Xi)B κi).

For sets Ii ⊆ A tB (i ∈ {1, . . . , l}) we have

J
l∧
i=1

∀x.(x ∈ Xi ↔ βi)K(A tB, ρ[X̄ → Ī])

=

{
1 if for all c ∈ A tB and all i ∈ {1, . . . , l} : c ∈ Ii iff (A tB, ρ[x→ c]) |= βi

0 otherwise.

Hence, the above is evaluated to 1 if and only if Ii = {c ∈ A t B | (A t B, ρ[x → c]) |= βi} for all
i ∈ {1, . . . , l}. In this case, the family (Ii)1≤i≤l is a partition of A tB, since the family (βi)1≤i≤l forms
a partition. Therefore, in this case we have

J
l⊗
i=1

⊗
x.((x ∈ Xi)B κi)K(A tB, ρ[X̄ → Ī])

=

l∏
i=1

∏
c∈Ii

κi

=
∏

c∈AtB

l∑
i=1

κi · JβiK(A tB, ρ[x→ c])

=
∏

c∈AtB
JζK(A tB, ρ[x→ c])

20



= JϕK(A tB, ρ).

In conclusion, we have

JϕK = J
⊕
X1.
⊕
X2 . . .

⊕
Xl.

(
l∧
i=1

∀x.(x ∈ Xi ↔ βi)

)
⊗

l⊗
i=1

⊗
x.((x ∈ Xi)B κi)K.

Therefore, it suffices to show this case of the induction for formulas of the form

ϕ =
⊗
x.((x ∈ X)B κ).

We let n = 1 and define ϕ̄1 = ϕ̄2 = (
⊗
x.((x ∈ X)B κ)) and Eϕ = x1 ⊗ y1. Then we have

J
⊗
x.((x ∈ X)B κ)K(A tB, ρ)

= J
⊗
x.((x ∈ X)B κ)K(A, ρ�A) · J

⊗
x.((x ∈ X)B κ)K(B, ρ�B)

= 〈〈Eϕ〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B)).

Proof of Theorem 21. Again we proceed by induction and assume that τ = σ and Φ?(A×B, ς) = A×B.
The proofs for the cases ϕ = β, ϕ = κ, ϕ = ζ ⊕ η, and ϕ = ζ ⊗ η are identical to the ones used in the
proof of Theorem 20 for the corresponding cases.

For the case ϕ =
⊕
x.ζ we proceed as for the case ϕ =

⊕
X.ζ in the proof of Theorem 20 as follows.

We assume that the theorem is true for ζ with ζ̄1, ζ̄2 ∈ wMSO
⊗

-res(σ,K)l and Eζ = E1 ⊕ . . . ⊕ Em is
in normal form with all Ei pure products. We let ξi = PRD1(Ei, ζ̄

1, ζ̄2) and θi = PRD2(Ei, ζ̄
1, ζ̄2). We

set n = m and define

ϕ̄1 = (
⊕
x.ξ1, . . . ,

⊕
x.ξm)

ϕ̄2 = (
⊕
x.θ1, . . . ,

⊕
x.θm)

Eϕ =
⊕m

i=1(xi ⊗ yi).

Then we have

JϕK(A×B, ρ)

=
∑

c∈A×B
JζK(A×B, ρ[x→ c])

=
∑

c∈A×B
〈〈Eζ〉〉(Jζ̄1K(A, ρ[x→ c]�A), Jζ̄2K(B, ρ[x→ c]�B))

=
∑

c∈A×B

m∑
i=1

JξiK(A, ρ[x→ c]�A) · JθiK(B, ρ[x→ c]�B)

=

m∑
i=1

∑
a∈A

∑
b∈B

JξiK(A, ρ�A[x→ a]) · JθiK(B, ρ�B[x→ b])

=

m∑
i=1

(∑
a∈A

JξiK(A, ρ�A[x→ a])

)
·

(∑
b∈B

JθiK(B, ρ�B[x→ b])

)

=

m∑
i=1

J
⊕
x.ξiK(A, ρ�A) · J

⊕
x.θiK(B, ρ�B)

= 〈〈Eϕ〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B)).

This concludes the proofs of Theorems 20 and 21.

21



5.5 De Morgan algebras

In this section, we want to consider the special case where our semiring can be extended by a unary
operation ¬ to form a De Morgan algebra (L,∨,∧,¬, 0, 1). A tuple (L,∨,∧,¬, 0, 1) is called a De Morgan
algebra if (L,∨,∧, 0, 1) is a bounded distributive lattice and ¬ : L → L is an involution satisfying De
Morgan’s laws, i.e., we have ¬(x∨y) = ¬x∧¬y, ¬(x∧y) = ¬x∨¬y, and ¬¬x = x for all x, y ∈ L. If≤ is the
induced order of the lattice (L,∨,∧, 0, 1), it follows that ¬ : (L,≤)→ (L,≤) is an order-antiisomorphism.
In particular, ¬0 = 1 and ¬1 = 0. A De Morgan algebra is called complete if (L,∨,∧, 0, 1) is a complete
lattice. Since ¬ is an order-antiisomorphism, it follows that the equalities ¬

∧
x∈X x =

∨
x∈X ¬x and

¬
∨
x∈X x =

∧
x∈X ¬x hold for every subset X ⊆ L of a complete lattice L.

Example 33. Examples of De Morgan algebras include

• all Boolean algebras, in particular, the two element Boolean algebra B,

• Kleene or Priest logic, i.e., the three element Kleene algebra ({F, I, T},∨,∧,¬, F, T ) where F ≤
I ≤ T describes the lattice and ¬I = I, ¬F = T the negation,

• Belnap or Dunn logic ({F,B,N, T},∨,∧,¬, F, T ) where F ≤ B ≤ T , F ≤ N ≤ T , and B and N
are incomparable, and the negation is given by ¬B = B, ¬N = N , ¬F = T , and

• the  Lukasiewicz logics, for example L∞ = ([0, 1],max,min,¬, 0, 1) where ¬x = 1− x.

Whenever we are dealing with a De Morgan algebra, we can include the operator ¬ into our weighted
logic.

Definition 34 (De Morgan-extension). Let σ be a signature. We define the De Morgan-extensions of
our weighted first order and monadic second order logics through the grammars

ϕ ::= β | κ | ¬ϕ | ϕ⊕ ϕ | ϕ⊗ ϕ |
⊕
x.ϕ |

⊗
x.ϕ,

where β ∈ FO(σ) is a first order formula, κ ∈ L, and x is a first order variable, and

ϕ ::= β | κ | ¬ϕ | ϕ⊕ ϕ | ϕ⊗ ϕ |
⊕
x.ϕ |

⊗
x.ϕ |

⊕
X.ϕ |

⊗
X.ϕ,

where β ∈ MSO(σ) is a monadic second order formula, κ ∈ L, x is a first order variable, and X is a
second order variable, respectively. The semantics of ¬ϕ is defined by J¬ϕK(A, ρ) = ¬JϕK(A, ρ) for a
σ-structure A and a variable assignment ρ. By wFO¬(σ, L) and wMSO¬(σ, L), we denote the sets of all
such formulas, respectively. Weighted logics for words over bounded lattices were also considered in [6],
where the authors showed that Kleene-type and Büchi-like results hold for these logics.

Since L is a De Morgan algebra, it is easy to see that for every formula ϕ ∈ wMSO¬(σ, L) the
formulas

⊗
x.ϕ and ¬

⊕
x.¬ϕ are semantically equivalent. The same holds true for the formulas

⊗
X.ϕ

and ¬
⊕
X.¬ϕ. Therefore, in this scenario we do not need any restriction to formulate weighted Feferman-

Vaught decomposition theorems. Let τ , W, and Z be as in Section 4.

Theorem 35. Let L be a De Morgan algebra, Φ = (φU , (φT )T∈Relτ ) be a σ-τ -translation scheme over
W and Z, V be a set of first and second order variables such that V, W, and Z are pairwise disjoint,
and ϕ ∈ wMSO¬(τ, L) with variables from V. Then there exist n ≥ 1, tuples of formulas ϕ̄1, ϕ̄2 ∈
wMSO¬(σ, L)n with Free(ϕ̄1) ∪ Free(ϕ̄2) ⊆ Free(ϕ) ∪ Free(Φ), and an expression Eϕ ∈ Expn(L) such
that the following holds. For all finite structures A,B ∈ Str(σ), or, for all structures A,B ∈ Str(σ) if L
is complete, all (W,A tB)-assignments ς, and all (V,Φ?(A tB, ς))-assignments ρ we have

JϕK(Φ?(A tB, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, (ς ∪ ρ)�A), Jϕ̄2K(B, (ς ∪ ρ)�B)).

Theorem 36. Let L be a De Morgan algebra, Φ = (φU , (φT )T∈Relτ ) be a σ-τ -translation scheme over W
and Z, V be a set of first and second order variables such that V, W, and Z are pairwise disjoint, and
ϕ ∈ wFO¬(τ, L) with variables from V. Then there exist n ≥ 1, tuples of formulas ϕ̄1, ϕ̄2 ∈ wFO¬(σ, L)n

with Free(ϕ̄1) ∪ Free(ϕ̄2) ⊆ Free(ϕ) ∪ Free(Φ), and an expression Eϕ ∈ Expn(L) such that the following
holds. For all finite structures A,B ∈ Str(σ), or, for all structures A,B ∈ Str(σ) if L is complete, all
(W,A×B)-assignments ς, and all (V,Φ?(A×B, ς))-assignments ρ we have

JϕK(Φ?(A×B, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, (ς ∪ ρ)�A), Jϕ̄2K(B, (ς ∪ ρ)�B)).

22



Proof. We proceed as in the proofs of Theorems 20 and 21. To see that we can assume the translation
scheme to be trivial, note that the inductive proof of Lemma 32 can easily be extended to wMSO¬(σ, L):
if ϕ = ¬ϕ′ and the lemma is true for ϕ′ with the formula ψ′, then we can choose ψ = ¬ψ′.

Using the inductive steps of the proofs for Theorems 20 and 21 and the above rewriting of product
quantifiers into sum quantifiers through a double weighted negation, we see that it only remains to show
the inductive step for the weighted negation ϕ = ¬ζ as follows.

We proceed as in the proof for the Boolean case. Also, the proofs for the disjoint union and the
product are the same, so in the following let C = A tB or C = A×B. We assume the theorem is true
for ζ with Eζ ∈ Expl(L) and ζ̄1, ζ̄2 from wFO¬(σ, L)l or from wMSO¬(σ, L)l. We may assume that
Eζ = E1 ⊕ . . . ⊕ Em is in normal form with all Ei pure products. We let ξi = PRD1(Ei, ζ̄

1, ζ̄2) and
θi = PRD2(Ei, ζ̄

1, ζ̄2) and define

ϕ̄1 = (¬ξ1, . . . ,¬ξm)

ϕ̄2 = (¬ζ1, . . . ,¬ζm)

Eϕ =

m∧
i=1

(xi ∨ yi).

Then we have

JϕK(C, ρ) = ¬〈〈Eζ〉〉(Jζ̄1K(A, ρ�A), Jζ̄2K(B, ρ�B))

= ¬
m∨
i=1

〈〈Ei〉〉(Jζ̄1K(A, ρ�A), Jζ̄2K(B, ρ�B))

= ¬
m∨
i=1

JξiK(A, ρ�A) ∧ JθiK(B, ρ�B)

=

m∧
i=1

J¬ξiK(A, ρ�A) ∨ J¬θiK(B, ρ�B)

= 〈〈Eϕ〉〉(Jϕ̄1K(A, ρ�A), Jϕ̄2K(B, ρ�B)).

5.6 Weakly biaperiodic semirings

In this section, we show that Theorems 20 and 21 hold true without the need for any restriction whenever
our weights are taken from a weakly biaperiodic commutative semiring. A monoid is called weakly
aperiodic if for every element x there exists a positive integer n such that xn = xn+1. We call a semiring
(K,+, ·,0,1) weakly biaperiodic if both its additive monoid (K,+,0) and its multiplicative monoid
(K, ·,1) are weakly aperiodic. Weighted logics for words over weakly biaperiodic semirings were also
considered in [4, 6].

Example 37. Examples of weakly biaperiodic semirings include

• Every De Morgan algebra, in particular, all semirings from Example 33,

• the  Lukasiewicz semiring ([0, 1],max,⊗, 0, 1) where x⊗ y = max{0, x+ y − 1},

• the truncated min-plus semiring ([0, d],min,+d, d, 0) for a real number d > 0, where x +d y =
min{d, x+ y}.

For weakly biaperiodic semirings, we can show that every quantifier, when quantifying over an almost
Boolean formula, again models an almost Boolean formula. The proof for this employs explicit case dis-
tinctions to compute the outcomes of the quantifiers. By induction, it follows that for weakly biaperiodic
semirings, every wMSO formula is semantically equivalent to an almost Boolean formula, i.e., a formula
containing no weighted quantifiers. We thus have the following lemma.

Lemma 38. Let K be a weakly biaperiodic commutative semiring and σ a signature. Then for every
formula ϕ ∈ wMSO(σ,K), there exists a formula ψ ∈ wMSOa-bool(σ,K) with JϕK = JψK.

23



Proof. We proceed by induction. For the cases ϕ = β ∈ MSO(σ,K), ϕ = κ ∈ K, ϕ = ψ1 ⊕ ψ2, and
ϕ = ψ1 ⊗ ψ2 with ψ1, ψ2 ∈ wMSOa-bool(σ,K), the statement is clear.

For the cases ϕ =
⊕
x.ϕ′, ϕ =

⊕
X.ϕ′, ϕ =

⊗
x.ϕ′, and ϕ =

⊗
X.ϕ′ with ϕ′ ∈ wMSO(σ,K),

we proceed as follows. By induction, we assume that there exists an almost Boolean formula ψ′ ∈
wMSOa-bool(σ,K) such that Jϕ′K = Jψ′K. We assume that ψ′ is of the form ψ′ = (κ1⊗β1)⊕ . . .⊕(κl⊗βl),
where β1, . . . , βl form a partition like in the proof of Theorem 20. By the assumption that K is weakly
biaperiodic, there exists for every i ∈ {1, . . . , l} a number ni ∈ N+ such that

∑ni
j=1 κi =

∑ni+1
j=1 κi.

We let N1 := maxli=1 ni. Likewise, there exist ni ∈ N+ such that
∏ni
j=1 κi =

∏ni+1
j=1 κi for every

i ∈ {1, . . . , l}. We let N2 := maxli=1 ni. Then with N = max{N1, N2} we have
∑N
j=1 κi =

∑N+1
j=1 κi and∏N

j=1 κi =
∏N+1
j=1 κi for all i ∈ {1, . . . , l}. Furthermore, we define abbreviations as follows. For first order

variables y1 and y2 and second order variables Y1 and Y2, we let

(y1 = y2) := ∀Z.(y1 ∈ Z ↔ y2 ∈ Z)

(Y1 = Y2) := ∀z.(z ∈ Y1 ↔ z ∈ Y2).

Now let β ∈ MSO(σ,K) be a monadic second order formula. For a first order variable y, we denote by
β(y) the formula which results from β by renaming every free occurrence of the first order variable x
to y. For a second order variable Y , we denote by β(Y ) the formula which results from β by renaming
every free occurrence of the second order variable X to Y . Then for m ∈ N+ and X ∈ {x,X}, we define
the abbreviations

∃≥mX .β := ∃X1 . . . ∃Xm.
( m∧
i=1

β(Xi) ∧
∧
i6=j

¬(Xi = Xj)
)

∃mX .β := ∃≥mX .β ∧ ¬(∃≥m+1X .β)

∃̄mX .β :=

{
∃mX .β if m < N

∃≥NX .β if m ≥ N,

where X1, . . . ,Xm /∈ Free(ψ′) are first order variables if X = x, and they are second order variables if
X = X. For every v̄ ∈ {0, . . . , N}l, we define the constants

κv̄ :=

l∑
i=1

vi∑
j=1

κi λv̄ :=

l∏
i=1

vi∏
j=1

κi.

Again, the empty sum is defined as 0 and the empty product as 1. Then for the case ϕ =
⊕
X .ϕ′ with

X ∈ {x,X}, we define the formula

ψ :=
⊕

v̄∈{0,...,N}l
κv̄ ⊗

l∧
i=1

∃̄viX .βi.

By the definition of κv̄ and the choice of N , we have JϕK = JψK and ψ is almost Boolean. For the case
ϕ =

⊗
X .ϕ′ with X ∈ {x,X}, we define

ψ :=
⊕

v̄∈{0,...,N}l
λv̄ ⊗

l∧
i=1

∃̄viX .βi.

Again, we have JϕK = JψK and ψ is almost Boolean.

We let τ , W, and Z be as in Section 4. Then we have the following theorems.

Theorem 39. Let K be a weakly biaperiodic commutative semiring. Let Φ = (φU , (φT )T∈Relτ ) be a
σ-τ -translation scheme over W and Z, V be a set of first and second order variables such that V, W,
and Z are pairwise disjoint, and ϕ ∈ wMSO(τ,K) with variables from V. Then there exist n ≥ 1, tuples
of formulas ϕ̄1, ϕ̄2 ∈ wMSO(σ,K)n with Free(ϕ̄1) ∪ Free(ϕ̄2) ⊆ Free(ϕ) ∪ Free(Φ), and an expression
Eϕ ∈ Expn(K) such that the following holds. For all structures A,B ∈ Str(σ), all (W,AtB)-assignments
ς, and all (V,Φ?(A tB, ς))-assignments ρ we have

JϕK(Φ?(A tB, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, (ς ∪ ρ)�A), Jϕ̄2K(B, (ς ∪ ρ)�B)).

24



Theorem 40. Let K be a weakly biaperiodic commutative semiring. Let Φ = (φU , (φT )T∈Relτ ) be a σ-τ -
translation scheme overW and Z, V be a set of first and second order variables such that V,W, and Z are
pairwise disjoint, and ϕ ∈ wFO(τ,K) with variables from V. Then there exist n ≥ 1, tuples of formulas
ϕ̄1, ϕ̄2 ∈ wFO(σ,K)n with Free(ϕ̄1) ∪ Free(ϕ̄2) ⊆ Free(ϕ) ∪ Free(Φ), and an expression Eϕ ∈ Expn(K)
such that the following holds. For all structures A,B ∈ Str(σ), all (W,A ×B)-assignments ς, and all
(V,Φ?(A×B, ς))-assignments ρ we have

JϕK(Φ?(A×B, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, (ς ∪ ρ)�A), Jϕ̄2K(B, (ς ∪ ρ)�B)).

Proof. This can be shown using the exact same methods as in the proofs of Lemma 32 and Theorems 20
and 21. Note that, since every formula ϕ ∈ wMSO(σ,K) is equivalent to some almost Boolean formula,
we do not need any assumptions on the finiteness of our structures.

5.7 Beyond disjoint unions and products of two structures

So far, we considered induced disjoint unions and products of only two structures. Here, we shortly point
out an extension of Theorems 20 and 21 to disjoint unions and products of more than two structures.

For m,n ≥ 1 we define the set of expressions Expm×n(K) similar to Expn(K) but with variables

from {xji | i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}} and the semantics extended in the obvious fashion. Then we
have the following theorem for disjoint unions.

Theorem 41. Let m ≥ 2, Φ = (φU , (φT )T∈Relτ ) be a σ-τ -translation scheme overW and Z, V be a set of

first and second order variables such that V, W, and Z are pairwise disjoint, and ϕ ∈ wMSO
⊗

-res(τ,K)

with variables from V. Then there exist n ≥ 1, tuples of formulas ϕ̄1, . . . , ϕ̄m ∈ wMSO
⊗

-res(σ,K)n

with
⋃m
i=1 Free(ϕ̄i) ⊆ Free(ϕ) ∪ Free(Φ), and an expression Eϕ ∈ Expm×n(K) such that the following

holds. For all finite structures A1, . . . ,Am ∈ Str(σ), or, for all structures A1, . . . ,Am ∈ Str(σ) if K is
bicomplete, all (W,A1t . . .tAm)-assignments ς, and all (V,Φ?(A1t . . .tAm, ς))-assignments ρ we have

JϕK(Φ?(A1 t . . . t Am, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A1, (ς ∪ ρ)�A1
), . . . , Jϕ̄mK(Am, (ς ∪ ρ)�Am)).

Proof. We proceed by induction. For m = 2 the theorem follows from Theorem 20. Let m ≥ 2. By
Theorem 20, we we can find l ≥ 1, ζ̄, η̄ ∈ wMSO

⊗
-res(σ,K)l, and E0 ∈ Expl(K) such that

JϕK(Φ?(A1 t . . . t Am t Am+1, ς), ρ) =

〈〈E0〉〉(Jζ̄K(A1 t . . . t Am, (ς ∪ ρ)�A1t...tAm), Jη̄K(Am+1, (ς ∪ ρ)�Am+1
)).

By induction, for every i ∈ {1, . . . , l}, we can find ni ≥ 1, tuples of formulas ζ̄1
i , . . . , ζ̄

m
i ∈ wMSO

⊗
-res(σ,K)ni ,

and an expression Eζi ∈ Expm×ni(K) such that

JζiK(Φ?(A1 t . . . t Am, ς), ρ) = 〈〈Eζi〉〉(Jζ̄1
i K(A1, (ς ∪ ρ)�A1

), . . . , Jζ̄mi K(Am, (ς ∪ ρ)�Am)).

For j ∈ {1, . . . ,m} we define

ϕ̄j = (ζ̄j1 , . . . , ζ̄
j
l )

and with n =
∑l
i=1 ni we define ϕ̄m+1 ∈ wMSO

⊗
-res(σ,K)n as

ϕ̄m+1 = (η̄, true, . . . , true).

For every i ∈ {1, . . . , l}, we define the expression E′ζi as the expression obtained from Eζi by replacing

every variable xjι by xj
ι+

∑i−1
k=1 nk

. We define Eϕ ∈ Expm+1×n(K) as the expression obtained from E0 by

replacing every variable xi by the expression E′ζi and every variable yi by the variable xm+1
i . With these

definitions, the theorem holds.

With an essentially identical proof, we have the following theorem for induced products of more than
two structures.

Theorem 42. Let m ≥ 2, Φ = (φU , (φT )T∈Relτ ) be a σ-τ -translation scheme overW and Z, V be a set of

first and second order variables such that V, W, and Z are pairwise disjoint, and ϕ ∈ wFO
⊗

-free(τ,K)

with variables from V. Then there exist n ≥ 1, tuples of formulas ϕ̄1, . . . , ϕ̄m ∈ wFO
⊗

-free(σ,K)n

25



with
⋃m
i=1 Free(ϕ̄i) ⊆ Free(ϕ) ∪ Free(Φ), and an expression Eϕ ∈ Expm×n(K) such that the following

holds. For all finite structures A1, . . . ,Am ∈ Str(σ), or, for all structures A1, . . . ,Am ∈ Str(σ) if K is
bicomplete, all (W,A1 × . . . × Am)-assignments ς, and all (V,Φ?(A1 × . . . × Am, ς))-assignments ρ we
have

JϕK(Φ?(A1 × . . .× Am, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A1, (ς ∪ ρ)�A1
), . . . , Jϕ̄mK(Am, (ς ∪ ρ)�Am)).

5.8 Translation schemes and Courcelle’s transductions

Like translation schemes, transductions provide a tool to translate structures over one signature into
structures over another signature. Transductions extend our notion of translation scheme by allowing
multiple copies of the given universe. More precisely, a σ-τ -translation scheme is a 1-σ-τ transduction in
the sense defined below. In the following, we show that, with some adjustments, our weighted Feferman-
Vaught Theorems can also be applied to transductions. For a survey on transductions, see [3].

Definition 43 ([3]). Let k > 0 be a natural number, [k] = {1, . . . , k}, and

τ ∗ k = {(T, ı̄) | T ∈ Relτ and ı̄ ∈ [k]arτ (T )}.

A k-σ-τ -transduction Ψ over W and Z is a tuple (ψ1
U , . . . , ψ

k
U , (ψw)w∈τ∗k) where ψiU , ψw ∈ MSO(σ) are

formulas with variables from W ∪ Z. The variables from Z may not be used for quantification, i.e., all
variables from Z must be free.

Intuitively, the formulas ψ1
U , . . . , ψ

k
U are filters for the copies of the universe, i.e., for an element a

from the universe of the σ-structure, there will be one copy of a in the universe of the new τ -structure
for each ψiU which is satisfied when the free variable z is mapped to a. Likewise, the formulas ψ(T,̄ı) are
used to define the interpretation of T for the new τ -structure, where ı̄ determines from which copy of
the universe each entry of the new tuple has to be.

For a σ-structure A = (A, IA) and a (W,A)-assignment ς, the Ψ-induced τ -structure of A and ς,
denoted by Ψ?(A, ς), is defined as a τ -structure with universe UC and interpretation IC as follows. For
i ∈ {1, . . . , k} we define

Ai = {a ∈ A | (A, ς[z → a]) |= ψiU}

and let ιi : Ai → A1 t . . . tAk be the inclusions. Then we let

UC = A1 t . . . tAk
IC(T ) =

⋃
ı̄∈[k]arτ (T )

{(ιi1(a1), . . . , ιiarτ (T )
(aarτ (T ))) | (a1, . . . , aarτ (T )) ∈ Ai1 × . . .×Aiarτ (T )

and (A, ς[z̄ → ā]) |= ψ(T,̄ı)}

where ı̄ = (i1, . . . , iarτ (T )) and ā = (a1, . . . , aarτ (T )).

We refrain from restricting the domain of the transduction, as it does not make any difference for
our purpose.

We can prove an analogue of Lemma 32 for transductions. Therefore, Theorems 20 and 21 are true
for transductions as well. However, we have to make two small concessions. First, for the Boolean
fragment of our first order logic, we need a new atomic formula def(x), where x is a first order variable.
This formula is evaluated to true if the variable x is defined, and to false otherwise. For our second
order logic, we use def(x) as an abbreviation for the formula ∃X.(x ∈ X). We denote by def-wFO(σ,K)
the first order logic where def(x) is allowed as an atomic formula. Second, the variables of the formula
we want to “translate” do usually not suffice for the translated formula. In particular, the translated
formula potentially has more free variables than the formula to translate.

For a set of first and second order variables V and k > 0, we let Vtk = {X i | X ∈ V, i ∈ {1, . . . , k}}
be the set of variables containing k copies of every variable from V. Then, with the above notation, we
define for a (V,Ψ?(A, ς))-assignment ρ the (Vtk,A)-assignment ρ# by

ρ#(X i) =


ι−1
i (ρ(X ) ∩ ιi(A)) if X is a second order variable

ι−1
i (ρ(X )) if X is a first order variable and ρ(X ) ∈ ιi(A)

undefined if X is a first order variable and ρ(X ) /∈ ιi(A).

Then we have the following lemma.

26



Lemma 44. Let K be a commutative semiring. Let Ψ = (ψ1
U , . . . , ψ

k
U , (ψw)w∈τ∗k) be a k-σ-τ -transduction

over W and Z, V be a set of first and second order variables such that V, W, and Z are pairwise dis-
joint, and ϕ ∈ def-wFO(τ,K) or ϕ ∈ wMSO(τ,K) with variables from V. Then there exists a formula
ψ ∈ def-wFO(σ,K) or ψ ∈ wMSO(σ,K), respectively, with Free(ψ) ⊆ Free(ϕ)tk ∪Free(Ψ) such that the
following holds. For all structures A ∈ Str(σ), or, for all structures A ∈ Str(σ) if K is bicomplete, all
(W,A)-assignments ς, and all (V,Ψ?(A, ς))-assignments ρ we have

JϕK(Ψ?(A, ς), ρ) = JψK(A, ς ∪ ρ#).

If ϕ is from wMSO
⊗

-res(τ,K) or def-wFO
⊗

-free(τ,K), then ψ can also be chosen as a formula from

wMSO
⊗

-res(σ,K) or def-wFO
⊗

-free(σ,K), respectively. Furthermore, if ϕ does not contain free vari-
ables, ψ can be chosen to not contain any subformula of the form def(x).

Proof. We proceed by induction and first cover the Boolean case.

If ϕ = T (x1, . . . , xn) for some T ∈ Relτ , we let ψ =
∨
ı̄∈[k]n

(
ψ(T,̄ı)(x

i1
1 , . . . , x

in
n ) ∧

∧n
j=1 def(x

ij
j )
)

. If

ϕ = (x ∈ X), we let ψ =
∨k
i=1 x

i ∈ Xi. If ϕ = def(x) we let ψ =
∨k
i=1 def(xi).

Now we assume that by induction, the theorem holds for the formulas ϕ1, ϕ2, and ϕ′ with the formulas
ψ1, ψ2, and ψ′. If ϕ = ϕ1 ∨ ϕ2, we let ψ = ψ1 ∨ ψ2, and if ϕ = ¬ϕ′, we let ψ = ¬ψ′.

If ϕ = ∃x.ϕ′, we define for i ∈ {1, . . . , k} the formula ψ′+i as the formula obtained by replac-
ing all atomic subformulas in ψ′ that contain a variable xj with j 6= i by false. Then we let
ψ =

∨k
i=1 ∃xi.

(
ψiU (xi) ∧ ψ′+i

)
.

If ϕ = ∃X.ϕ′, we let ψ = ∃X1 . . . ∃Xk.
(
ψ′ ∧

∧k
i=1 ∀x.(x ∈ Xi → ψiU (x))

)
, where x is a new first

order variable.
We now turn to the weighted case.
If ϕ = κ ∈ K, we let ψ = κ.
If ϕ = ϕ1 ⊕ ϕ2 or ϕ = ϕ1 ⊗ ϕ2, we let ψ = ψ1 ⊕ ψ2 or ψ = ψ1 ⊗ ψ2, respectively.
If ϕ =

⊕
x.ϕ′, we let ψ =

⊕k
i=1

⊕
xi.
(
ψiU (xi)⊗ ψ′+i

)
.

If ϕ =
⊕
X.ϕ′, we let ψ =

⊕
X1 . . .

⊕
Xk.

(
ψ′ ⊗

∧k
i=1 ∀x.(x ∈ Xi → ψiU (x))

)
, where x is a new first

order variable.
If ϕ =

⊗
x.ϕ′, we let ψ =

⊗k
i=1

⊗
xi.((ψ′+i ⊗ ψiU (xi))⊕ ¬ψiU (xi)).

If ϕ =
⊗
X.ϕ′ we define β =

∧k
i=1 ∀x.(x ∈ Xi → ψiU (x)), where x is a new first order variable, and

let ψ =
⊗
X1 . . .

⊗
Xk.((ψ′ ⊗ β)⊕ ¬β).

To see that all atomic subformulas def(x) in ψ can be removed if ϕ does not contain free variables,
note that every subformula def(x) can be replaced by true without changing the semantics of ψ if x is
a bound variable.

With this, we have the following versions of Theorems 20 and 21 for transductions.

Theorem 45. Let K be a commutative semiring. Let Ψ = (ψ1
U , . . . , ψ

k
U , (ψw)w∈τ∗k) be a k-σ-τ -

transduction over W and Z, V be a set of first and second order variables such that V, W, and Z
are pairwise disjoint, and ϕ ∈ def-wMSO

⊗
-res(τ,K) with variables from V. Then there exist n ≥ 1,

tuples of formulas ϕ̄1, ϕ̄2 ∈ def-wMSO
⊗

-res(σ,K)n with Free(ϕ̄1)∪Free(ϕ̄2) ⊆ Free(ϕ)tk∪Free(Ψ), and
an expression Eϕ ∈ Expn(K) such that the following holds. For all finite structures A,B ∈ Str(σ), or, for
all structures A,B ∈ Str(σ) if K is bicomplete, all (W,AtB)-assignments ς, and all (V,Ψ?(AtB, ς))-
assignments ρ we have

JϕK(Ψ?(A tB, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, (ς ∪ ρ#)�A), Jϕ̄2K(B, (ς ∪ ρ#)�B)).

Theorem 46. Let K be a commutative semiring. Let Ψ = (ψ1
U , . . . , ψ

k
U , (ψw)w∈τ∗k) be a k-σ-τ -

transduction over W and Z, V be a set of first and second order variables such that V, W, and Z
are pairwise disjoint, and ϕ ∈ def-wFO

⊗
-free(τ,K) with variables from V. Then there exist n ≥ 1, tu-

ples of formulas ϕ̄1, ϕ̄2 ∈ def-wFO
⊗

-free(σ,K)n with Free(ϕ̄1)∪Free(ϕ̄2) ⊆ Free(ϕ)tk∪Free(Ψ), and an
expression Eϕ ∈ Expn(K) such that the following holds. For all finite structures A,B ∈ Str(σ), or, for
all structures A,B ∈ Str(σ) if K is bicomplete, all (W,A×B)-assignments ς, and all (V,Ψ?(A×B, ς))-
assignments ρ we have

JϕK(Ψ?(A×B, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, (ς ∪ ρ#)�A), Jϕ̄2K(B, (ς ∪ ρ#)�B)).

Proof. Theorems 45 and 46 are immediate by first applying Lemma 44 and then Theorem 20 or Theo-
rem 21, respectively, while treating def as a relation symbol.

27



References

[1] G. Birkhoff. Lattice Theory. Colloquium publications. American Math. Soc., 1948. 4th printing.

[2] B. Bollig, P. Gastin, and B. Monmege. Weighted specifications over nested words. In F. Pfenning,
editor, Proc. FoSSaCS, volume 7794 of LNCS, pages 385–400. Springer, 2013.

[3] B. Courcelle. Monadic second-order definable graph transductions: a survey. Theor. Comput. Sci.,
126(1):53–75, 1994.

[4] M. Droste and P. Gastin. Weighted automata and weighted logics. Theor. Comput. Sci., 380(1-
2):69–86, 2007.

[5] M. Droste and G. Rahonis. Weighted automata and weighted logics with discounting. Theor.
Comput. Sci., 410(37):3481–3494, 2009.

[6] M. Droste and H. Vogler. Weighted automata and multi-valued logics over arbitrary bounded
lattices. Theor. Comput. Sci., 418:14 – 36, 2012.

[7] A. Ehrenfeucht. An application of games to the completeness problem for formalized theories. Fund.
Math., 49(2):129–141, 1961.

[8] S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press, 1974.

[9] Z. Ésik and W. Kuich. On iteration semiring-semimodule pairs. Semigroup Forum, 75(1):129–159,
2007.

[10] S. Feferman and R. L. Vaught. The first order properties of products of algebraic systems. Fund.
Math., 47:57–103, 1959.

[11] S. Gottwald. A Treatise on Many-Valued Logics, volume 9 of Studies in Logic and Computation.
Research Studies Press, 2001.

[12] Y. Gurevich. Modest theory of short chains. I. J. Symbolic Logic, 44(4):481–490, 12 1979.

[13] Y. Gurevich. Chapter XIII: Monadic second-order theories. In J. Barwise and S. Feferman, editors,
Model-Theoretic Logics, volume 8 of Perspect. Math. Logic, pages 479–506. Springer, 1985.

[14] P. Hájek. Metamathematics of Fuzzy Logic, volume 4 of Trends in Logic. Kluwer, 1998.

[15] H. J. Hoogeboom and P. ten Pas. Monadic second-order definable text languages. Theory Comput.
Syst., 30(4):335–354, 1997.

[16] W. Kuich. Semirings and formal power series: Their relevance to formal languages and automata.
In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 1, chapter 9,
pages 609–677. Springer, 1997.

[17] H. Läuchli and J. Leonard. On the elementary theory of linear order. Fund. Math., 59(1):109–116,
1966.

[18] J. A. Makowsky. Algorithmic uses of the Feferman–Vaught theorem. Ann. Pure Appl. Logic,
126(1):159–213, 2004.

[19] C. Mathissen. Weighted Automata and Weighted Logics over Tree-like Structures. PhD thesis,
Leipzig University, Germany, 2009.

[20] C. Mathissen. Definable transductions and weighted logics for texts. Theoretical Computer Science,
411(3):631–659, 2010.

[21] C. Mathissen. Weighted logics for nested words and algebraic formal power series. Logical Methods
in Computer Science, 6(1):1–34, 2010.

[22] A. Mostowski. On direct products of theories. J. Symbolic Logic, 17(1):1–31, 1952.

[23] J. Mycielski, P. Pudlák, and A. S. Stern. A Lattice of Chapters of Mathematics: Interpretations
between Theorems, volume 84 of Mem. Amer. Math. Soc. American Math. Soc., 1990.

28



[24] F. P. Ramsey. On a problem of formal logic. Proc. London Math. Soc., 30(1):264–286, 1930.

[25] E. V. Ravve, Z. Volkovich, and G.-W. Weber. Effective optimization with weighted automata on
decomposable trees. Optimization, 63(1):109–127, 2014.

[26] M.-P. Schützenberger. On the definition of a family of automata. Inform. Control, 4(2–3):245–270,
1961.

[27] S. Shelah. The monadic theory of order. Ann. Math., 102(3):379–419, 1975.

29


