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Abstract

We define a framework for adding quantitative properties to monadic second

order logic for trees and relate various restrictions of this quantitative logic to

subclasses of weighted tree automata. These subclasses are defined by the level

of ambiguity allowed in the automata. This yields a generalization of the results

by Kreutzer and Riveros, who defined an analogous framework to provide quan-

titative properties for monadic second order logic for words and proved various

fragments of that logic to correspond to subclasses of weighted word automata,

characterized by ambiguity.

Along the way we also prove that a finitely ambiguous weighted tree automa-

ton can be decomposed into unambiguous ones and define and analyze polyno-

mial ambiguity for tree automata.
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1 Introduction

A finite automaton (FA) is an elementary, very simple model for systems with

state transitions. As a fundamental operating principle, an automaton reads a

given sequence of events and changes its state according to these events. This

concept is rather universal and thus has many applications. Some are very basic,

like the modeling of a binary adder, a vending machine or an elevator, but au-

tomata can also be used as models for compilers, speech and image recognition

software or parsers in general.

At times a simple succession of events is not expressive enough to describe

a given problem. A structure commonly used as an extension to sequences is

that of a tree. Here, events are organized in a parent-child relation. Automata

operating on trees, called finite tree automata (FTA), have uses including the

evaluation of search trees employed in various search algorithms or the analysis

of syntax trees as part of a compiler.

There may arise situations in which not only the outcome of a computa-

tion done by an automaton is of interest, but also how this computation was

done. Certain costs generated, time needed or multiplicity being inherent to our

problem may be of importance. An example is the implementation of a natural

language parser. As human language is not always unambiguous, a given sen-

tence may have more than one meaning. A “good” language parser should be

able to find all different meanings of a sentence and count them or, if possible,

assign to each of them a weight describing the likelihood that this is the intended

meaning in the specific context. This leads to the concepts of weighted automata

(WA) and weighted tree automata (WTA), which to a given input also assign a

value or weight. The concept of weighted automata has first been investigated

by Schützenberger [18] and a lot of further research on the subject has been done

since then, cf. [17, 16, 2, 7].
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1 Introduction

The notion of ambiguity inherent to natural language processing is interesting

in itself, as the sheer fact of having multiple possible computations for certain

input may cause the use of a particular automaton to be ineffective. An au-

tomaton is said to be deterministic if there is no ambiguity in the basic state

transitions, i.e. if given the automaton’s current state and an input event there

is no more than one possible state for the automaton to change into. It seems

desirable for an automaton to work in such a way, but it is also restrictive.

While the classification of automata into deterministic ones and nondeter-

ministic ones is the most prominent, it is possible to distinguish finer nuances of

nondeterminism, depending on the number of possible different computations for

a given input. Regarding ambiguity, the most commonly distinguished classes of

automata are deterministic (DFA), unambiguous (unamb-FA), finitely ambigu-

ous (fin-FA), polynomially ambiguous (poly-FA) and exponentially ambiguous

or simply nondeterministic (NFA) finite automata.

Ambiguity of finite automata has already been studied numerous times. For

example, [21, 19, 1] present criteria for and algorithms to determine the ambiguity

of automata and [12] investigates the decidability of the equivalence problem for

finitely ambiguous finance automata.

For finite automata without weights it can be shown, using the powerset con-

struction [4, Theorem 1.1.9], that deterministic automata and nondeterministic

automata are equally expressive. The same is not true for weighted automata.

It is shown in [14] that the inclusions DWA ( unamb-WA ( fin-WA are strict

and in [13] it is shown that the inclusion fin-WA ( poly-WA is strict.

Logics are an essential tool to accurately describe problems in theoretical

science. In computer science an example for this is model checking, the exhaustive

and automatic checking of whether a given model for a system meets a desired

specification. A typical application of this would be to verify whether a given

hardware circuit operates as intended or whether a given software program can

produce an infinite loop. Formulating the specification as a logic formula and the

system model as an abstract structure, the task of model checking boils down to
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checking whether the structure satisfies the formula. While formulae are often an

accurate and uncomplicated way to formulate these problems, the direct analysis

of them can result difficult.

As a remedy, automata come into play. While automata are not always the

best means to directly formalize a problem, their structural simplicity allows

them to be examined more easily than logic formulas. To make use of the ad-

vantages of both logics and automata at the same time, a link between them is

needed. Such a link has been established by Büchi’s and Elgot’s fundamental the-

orems [3, 9], showing the equal expressive power of finite automata and monadic

second order logic (MSO-logic). This result has since spawned many extensions

to other structures. For example, in [20, 5] it is shown that the same holds true

for finite tree automata, in [6] a weighted logic is introduced and shown be just

as expressive as weighted automata and in [8] a weighted logic for trees does the

same for weighted tree automata.

As ambiguity is an interesting property of automata, the question arises

whether logics used to describe these automata preserve the aspect of ambiguity

in some form. In the unweighted case we cannot expect this, as deterministic and

nondeterministic automata are equally expressive. In the case of weighted au-

tomata, however, this question has recently been answered positively by Kreutzer

and Riveros [15].

As weighted tree automata are a generalization of weighted automata, the

same must be true for them to at least some extent. The objective of this work

is to generalize [15] to weighted tree automata and investigate in detail how

different degrees of ambiguity translate into logic formulae.
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2 Preliminaries

The following introductory definitions are taken from [8] in large parts.

2.1 Tree Languages and Tree Automata

Let N = {0, 1, 2, . . .}. A ranked alphabet is a pair (Γ, rkΓ) where Γ is a finite

set and rkΓ : Γ → N. For every m ≥ 0 we define Γ(m) := rk−1
Γ (m) as the set of

all symbols of rank m. In the sequel we will abuse notation and denote (Γ, rkΓ)

simply by Γ if rkΓ is known from the context or not of importance. Furthermore

the rank rk(Γ) of Γ is defined as max{rkΓ(a) | a ∈ Γ}. The set of (finite, labeled

and ordered) Γ-trees, denoted by TΓ, is the smallest subset T of (Γ∪{(, )}∪{, })∗

such that if a ∈ Γ(m) with m ≥ 0 and s1, . . . , sm ∈ T , then a(s1, . . . , sm) ∈ T . In

case m = 0, we identify a() with a. Clearly TΓ = ∅ iff Γ(0) = ∅. Since we are

not interested in the case that TΓ = ∅, we assume that Γ(0) 6= ∅ for every ranked

alphabet Γ considered.

We define the set of positions in a tree by means of the mapping pos : TΓ →

P(N∗) inductively as follows: (i) if t ∈ Γ(0), then pos(t) = {ε}, and (ii) if

t = a(s1, . . . , sm) where a ∈ Γ(m), m ≥ 1 and s1, . . . , sm ∈ TΓ, then pos(t) =

{ε} ∪ {iv | 1 ≤ i ≤ m, v ∈ pos(si)}. Note that pos(t) is partially ordered by the

prefix relation ≤p and totally ordered with respect to the lexicographic ordering

≤l. Alluding to the graph structure induced by a tree, we also refer to the

elements of pos(t) as nodes, to ε as the root of t and to prefix-maximal nodes as

leaves. Two positions w1, w2 ∈ pos(t) for which neither w1 ≤p w2 nor w2 ≤p w1

are called prefix-independent.

Now let t, s ∈ TΓ, w ∈ pos(t) and t = a(s1, . . . , sm) for some a ∈ Γ(m) with

m ≥ 0 and s1, . . . , sm ∈ TΓ. The label of t at w and the subtree of t at w,

denoted by t(w) and t|w, respectively, are defined inductively as follows: t(ε) = a

and t|ε = t, and if w = iv and 1 ≤ i ≤ m, then t(w) = si(v) and t|w = si|v.

The substitution of s into w, denoted by t〈s → w〉, is defined inductively as

t〈s → w〉 = s if w = ε, and if w = iv with 1 ≤ i ≤ m then t〈s → w〉 =

a(s1, . . . , si−1, si〈s→ v〉, si+1, . . . , sm). To illustrate these concepts we look at an
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2 Preliminaries

example.

Example 2.1. Assume Γ = {a, b, c, d} with rkΓ(a) = 3, rkΓ(b) = 2, rkΓ(c) = 1

and rkΓ(d) = 0. Then an example tree is:

b

a

d d b

d d

c

d

t := b(a(d, d, b(d, d)), c(d))

with pos(t) = {ε, 1, 11, 12, 13, 131, 132, 2, 21}.

ε

1

11 12 13

131 132

2

21

As shown in above diagram, the positions in pos(t) describe the “path” we have

to take from the root in order to get to the according node in the graph. The

subtree t|13 of t at position 13 is:

b

d d

t|13 = b(d, d) with pos(t|13) = {ε, 1, 2}.
ε

1 2

To illustrate substitution, we substitute the subtree t|13 into position 2 of t:

b

a

d d b

d d

b

d d

t〈t|13 → 2〉 = b(a(d, d, b(d, d)), b(d, d))

Next we recall basic background on bottom-up finite state tree automata,

also see [10, 11]. A bottom-up finite state tree automaton (for short: BU-FTA) is
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2.1 Tree Languages and Tree Automata

a tuple A = (Q,Γ, δ, F ) where Q is a finite set (of states), Γ is a ranked alphabet

(of input symbols), δ ⊆
⋃rk(Γ)
m=0 Q

m × Γ(m) ×Q (the valid transitions) and F ⊆ Q

(the final states). We set ∆A :=
⋃rk(Γ)
m=0 Q

m × Γ(m) ×Q. A tuple (~p, a, q) ∈ ∆A is

called a transition and (~p, a, q) is called valid if (~p, a, q) ∈ δ. A BU-FTA is called

deterministic if for every m ≥ 0, a ∈ Γ(m) and ~p ∈ Qm there exists at most one

q ∈ Q such that (~p, a, q) ∈ δ.

Now we define the run semantics of a BU-FTA A. Let t ∈ TΓ. A quasi-run

of A on t is a mapping r : pos(t) → Q. If w ∈ pos(t) and t(w) = a ∈ Γ(m) for

some m ≥ 0, then

tr(w) := (r(w1), . . . , r(wm), a, r(w))

is called the transition with footpoint w or transition at w. A quasi-run r is called

valid or simply a run if for every w ∈ pos(t) the transition tr(w) is valid and a

run is called accepting if r(ε) ∈ F . A run r is also called a q-run if r(ε) = q.

Let RunA(t), RunA,q(t), RunA,F(t) denote the sets of all runs of A on t, all

q-runs of A on t and all accepting runs of A on t, respectively.

The tree language accepted by A is the set L(A) := {t ∈ TΓ |RunA,F(t) 6= ∅}.

A tree language L ⊆ TΓ is called (deterministically) recognizable if there is a

(deterministic) bottom-up finite state tree automaton A such that L = L(A).

By applying the usual power set construction, one obtains that every recogniz-

able tree language is also deterministically recognizable (cf. [20, Theorem 1]). It

is well known that the class of recognizable tree languages is closed under the

boolean operations (i.e. union, intersection and complement; cf. [20, Theorem

2]).

Next we briefly recall MSO-logic on trees and Büchi’s Theorem for trees,

namely that MSO-definable tree languages are exactly the recognizable tree lan-

guages [20, 5]. Let Γ be a ranked alphabet. The set MSO(Γ) of all formulas of

MSO-logic over Γ is defined as the smallest set F such that

(1) F contains all atomic formulas labela(x), edgei(x, y) and x ∈ X and

7



2 Preliminaries

(2) if ϕ, ψ ∈ F , then also ϕ ∨ ψ, ϕ ∧ ψ, ¬ϕ, ∃x.ϕ, ∃X.ϕ, ∀x.ϕ, ∀X.ϕ ∈ F ,

where a ∈ Γ, x, y are first order variables, 1 ≤ i ≤ rk(Γ), and X is a second

order variable. The set of free variables of ϕ is denoted by Free(ϕ).

Let V be a finite set of first order and second order variables. The ranked

alphabet ΓV = (Γ × {0, 1}V , rk) is defined by rk((a, f)) = rkΓ(a) for every

f ∈ {0, 1}V . For a symbol (a, f) ∈ ΓV we denote a by (a, f)1 and f by (a, f)2.

A ΓV-tree s is valid if for every first order variable x ∈ V , there is exactly one

w ∈ pos(s) such that (s(w)2)(x) = 1. The subset TΓV containing all valid trees

is denoted by T vΓV . We put Γϕ = ΓFree(ϕ).

Every valid ΓV-tree s corresponds to a pair (t, ρ) where t ∈ TΓ and ρ is a (V , t)-

assignment ; such an assignment is a function which maps first order variables in

V to elements of pos(t) and second order variables in V to subsets of pos(t). More

precisely, we say that s and (t, ρ) correspond to each other if pos(t) = pos(s), t

is obtained from s by replacing s(w) by s(w)1 for every w ∈ pos(t), and for every

first order variable x, second order variable X, and w ∈ pos(s), we have that

(s(w)2)(x) = 1 iff ρ(x) = w, and (s(w)2)(X) = 1 iff w ∈ ρ(X). In the sequel we

will identify a valid ΓV-tree with the corresponding pair (t, ρ).

Let s be an arbitrary ΓV-tree, x be a first order variable and w ∈ pos(s).

Then s[x → w] is the ΓV∪{x}-labeled tree obtained from s by putting (s[x →

w](v)2)(x) = 1 iff v = w. Similarly, if X is a second order variable and I ⊆

pos(s), then s[X → I] is the ΓV∪{X}-tree obtained from s by putting (x[X →

I](v)2)(X) = 1 iff v ∈ I. If here s = (t, ρ), we also write s[x→ w] = (t, ρ[x→ w])

and s[X → I] = (t, ρ[X → I]).

Let ϕ be a formula in MSO(Γ) and s = (t, ρ) be a valid ΓV-tree such that

Free(ϕ) ⊆ V . Then the relation “(t, ρ) satisfies ϕ”, denoted by (t, ρ) |= ϕ, is

defined as usual, i.e.

(t, ρ) |= labela(x) :⇔ t(ρ(x)) = a

(t, ρ) |= edgei(x, y) :⇔ ρ(y) = ρ(x)i

(t, ρ) |= x ∈ X :⇔ ρ(x) ∈ ρ(X)

(t, ρ) |= ϕ ∧ ψ :⇔ (t, ρ) |= ϕ ∧ (t, ρ) |= ψ

8



2.2 Tree Series and Weighted Tree Automata

(t, ρ) |= ¬ϕ :⇔ ¬((t, ρ) |= ϕ)

(t, ρ) |= ∃x.ϕ :⇔ ∃w ∈ pos(t) : (t, ρ[x→ w]) |= ϕ

(t, ρ) |= ∃X.ϕ :⇔ ∃I ⊆ pos(t) : (t, ρ[X → I]) |= ϕ.

The remaining cases follow from the above by using double negation. We will

usually also assume that V does not contain any bound variables of ϕ. We let

LV(ϕ) := {(t, ρ) ∈ T vΓV | (t, ρ) |= ϕ}

and we will simply write L(ϕ) instead of LFree(ϕ)(ϕ). Now we recall the equiva-

lence between recognizable tree languages and MSO-definable tree languages; c.f.

[20, Theorems 14 and 17], [5, Theorems 3.7 and 3.9], or [11, Proposition 12.2]:

Every tree language LV(ϕ) is (deterministically) recognizable over ΓV . Con-

versely, for every recognizable tree language L over Γ, there is an MSO-sentence

ϕ such that L = L(ϕ). It follows from this, but can also easily be shown directly,

that the set T vΓV is recognizable.

2.2 Tree Series and Weighted Tree Automata

A semiring is an algebraic structure (K,⊕,�, 0, 1) with operations sum ⊕ and

product � and constants 0 and 1 such that (K,⊕, 0) is a commutative monoid

and (K,�, 1) is a monoid, multiplication distributes over addition, and k � 0 =

0�k = 0 for every k ∈ K. Whenever the operations and constants of a semiring

are clear from the context, we abbreviate (K,⊕,�, 0, 1) by K. The semiring K

is commutative if � is commutative. Important examples of semirings are

• the boolean semiring B = ({0, 1},∨,∧, 0, 1) with disjunction ∨ and con-

junction ∧

• the semiring of natural numbers (N,+, ·, 0, 1), abbreviated by N, with the

usual addition and multiplication

• the tropical semiring Trop := (N ∪ {∞},min,+,∞, 0) where the sum and

9



2 Preliminaries

the product operations are min and +, respectively, extended to N ∪ {∞}

in the usual way.

A (formal) tree series is a mapping S : TΓ → K. The support of S is the

set supp(S) = {t ∈ TΓ |S(t) 6= 0}. The set of all tree series (over Γ and K) is

denoted by K〈〈TΓ〉〉. For two tree series S, T ∈ K〈〈TΓ〉〉 and k ∈ K, the sum S⊕T ,

the Hadamard product S � T , and the product k� S are each defined pointwise

for every t ∈ TΓ as follows: (S ⊕ T )(t) = S(t)⊕ T (t), (S � T )(t) = S(t)� T (t),

and (k � S)(t) = k � S(t).

For every L ⊆ TΓ, the characteristic tree series 1L : TΓ → K is defined for

every t ∈ TΓ by 1L(t) = 1 if t ∈ L and 1L(t) = 0 otherwise.

We now introduce weighted bottom-up finite state tree automata and their

behavior. Let (K,⊕,�, 0, 1) be a commutative semiring. A weighted bottom-up

finite state tree automaton (short: WTA) over K and Γ is a tupleA = (Q,Γ, µ, α)

where Q is a finite set (of states), Γ is a ranked alphabet (of input symbols),

µ :
⋃rk(Γ)
m=0 Q

m×Γ(m)×Q→ K (the weight function) and α : Q→ K (the function

of final weights). We define ∆A :=
⋃rk(Γ)
m=0 Q

m × Γ(m) ×Q as before. A transition

(~p, a, q) ∈ ∆A is called valid if µ(~p, a, q) 6= 0. A state q ∈ Q is called final if

α(q) 6= 0. A is called deterministic if for every m ≥ 0, a ∈ Γ(m) and ~p ∈ Qm

there exists at most one q ∈ Q such that µ(~p, a, q) 6= 0.

Now let t ∈ TΓ. A quasi-run of A on t is a mapping r : pos(t) → Q. Let

w ∈ pos(t), then we define tr(w) as before and call r valid or simply a run if for

every w ∈ pos(t) the transition tr(w) is valid. We call a run r accepting if r(ε)

is final. If r(ε) = q then a run r is also called a q-run. By RunA(t), RunA,q(t),

RunA,F(t) we denote the sets of all runs of A on t, all q-runs of A on t and

accepting runs of A on t, respectively.

Let r ∈ RunA(t), then the weight of r is defined by

wtA(t, r) :=
⊙

w∈pos(t)

µ(tr(w)).

The tree series accepted by A, denoted by JAK ∈ K〈〈TΓ〉〉, is the tree series defined

10



2.2 Tree Series and Weighted Tree Automata

for every t ∈ TΓ by

JAK(t) :=
⊕

r∈RunA,F(t)

wtA(t, r)� α(r(ε)).

For t ∈ TΓ, w ∈ pos(t), r ∈ RunA(t) and rw ∈ RunA,r(w)(t|w) we define

r〈rw → w〉 ∈ RunA(t) by

r〈rw → w〉(ŵ) :=

rw(v) if w ≤p ŵ with ŵ = wv

r(ŵ) otherwise.

It is easy to see that this is well defined and that given w 6= ε we have

r〈rw → w〉 ∈ RunA,F(t) iff r ∈ RunA,F(t).

The automaton A is called trim if

(i) for every q ∈ Q there exist t ∈ TΓ and r ∈ RunA,F(t) such that r(w) = q for

some w ∈ pos(t) and

(ii) for every valid d ∈ ∆A there exist t ∈ TΓ and r ∈ RunA,F(t) such that

tr(w) = d for some w ∈ pos(t).

The trim part of A is the automaton obtained by removing all states q ∈ Q

which do not satisfy (i) and setting µ(d) = 0 for all d ∈ ∆A which do not satisfy

(ii). This process obviously has no influence on JAK.

Now we define the ambiguity of A. We say that A is

• deterministic if for every m ≥ 0, a ∈ Γ(m) and ~p ∈ Qm there exists at most

one q ∈ Q such that µ(~p, a, q) 6= 0.

• unambiguous if |RunA,F(t)| ≤ 1 for all t ∈ TΓ.

• finitely ambiguous or m-ambiguous if |RunA,F(t)| ≤ m for all t ∈ TΓ and a

fixed constant m ∈ N.

• (k-)polynomially ambiguous if |RunA,F(t)| ≤ p(|pos(t)|) for some polyno-

mial p (of degree k).

11



2 Preliminaries

• exponentially ambiguous in any other case. This naming is justified as an

automaton with m states cannot have more than mn runs on a tree with

n nodes

Regarding the definition of polynomial ambiguity, our definition is one of two

possibilities to generalize the concept of polynomial ambiguity for automata on

words. There, an automaton is said to be polynomially ambiguous if the number

of runs on each word is bounded polynomially in the length of the word. In order

to have polynomial ambiguity of tree automata be a generalization of the one

for word automata, we can either define it with the number of nodes in the tree,

as we have done, or with the depth of a tree. Here for t ∈ TΓ the depth of t,

denoted by depth(t), is defined as

depth(t) := 1 + max
w∈pos(t)

|w|.

However, the polynomiality using the depth is far more restrictive (see Example

8.1) and, as far as we know, does not possess a characteristic translation into

logic formulas as the polynomiality using the number of nodes does.

12



3 Quantitative Logics for Trees

3.1 Quantitative Monadic Second Order Logic

We now want to define a quantitative logic for trees similar to the ones suggested

by Droste and Gastin for words [6] and by Droste and Vogler for trees [8]. We

are going to divide our syntax into two levels. The lower, Boolean level, will

consist of full MSO formulas, without the restrictions on quantors needed in

[6, 8]. This level is basically used to access the characteristic functions of regular

tree languages. The semiring (K,⊕,�, 0, 1) comes into play in the second level,

the semiring level, where we will use the operations � and ⊕ to add and multiply

our formulas.

Definition 3.1 (Syntax of QMSO(Γ)). The set QMSO(Γ) of all formulas of

Quantitative MSO-logic over K and Γ is defined as the smallest set F such that

(1) F contains all k ∈ K and all ϕ ∈ MSO(Γ) and

(2) if θ, τ ∈ F then also θ ⊕ τ , θ � τ , Σx.θ, Πx.θ, ΣX.θ ∈ F

where x is a first order variable and X is a second order variable.

The operators Σx and ΣX are referred to as first order sum quantification

and second order sum quantification, respectively, and Πx is referred to as (first

order) product quantification. They are somewhat related to the notions of ∃X,

∃x, ∀x in [8]. Accordingly, we do not need the operator ΠX (i.e. ∀X) for our

results. Moreover, the operators Σx, ΣX and Πx also bind the variables x and

X, respectively, so that x /∈ Free(Σx.θ) and the same for ΣX and Πx. Other

than that the notion of free variables of QMSO(Γ) formulas is the same as for

regular MSO(Γ) formulas.

We now come to the semantics of QMSO(Γ). Similar to regular MSO formu-

las, we take a finite set of first order and second order variables V and a valid

ΓV-tree s = (t, ρ). For a formula θ ∈ QMSO(Γ) we will define the value JθK(t, ρ)

inductively under the assumption that Free(θ) ⊆ V .

Definition 3.2 (Semantics of QMSO(Γ)). Let (t, ρ) be a valid ΓV-tree and θ ∈

13



3 Quantitative Logics for Trees

QMSO(Γ) with Free(θ) ⊆ V . If θ = ϕ ∈ MSO(Γ) we set

JθK(t, ρ) :=

1 if (t, ρ) |= ϕ

0 otherwise.

Otherwise depending on the structure of θ we define

JkK(t, ρ) := k

Jθ1 ⊕ θ2K(t, ρ) := Jθ1K(t, ρ)⊕ Jθ2K(t, ρ)

Jθ1 � θ2K(t, ρ) := Jθ1K(t, ρ)� Jθ2K(t, ρ)

JΣx.τK(t, ρ) :=
⊕

w∈pos(t)

JτK(t, ρ[x→ w])

JΠx.τK(t, ρ) :=
⊙

w∈pos(t)

JτK(t, ρ[x→ w])

JΣX.τK(t, ρ) :=
⊕

I⊆pos(t)

JτK(t, ρ[X → I])

where k ∈ K and θ1, θ2, τ ∈ QMSO(Γ).

Example 3.3. We consider the semiring (N,+, ·, 0, 1) and the alphabet Γ =

{a, b} where rkΓ(a) = 2 and rkΓ(b) = 0. We want to construct a formula which

for every t ∈ TΓ outputs the amount of a’s taking two b’s as child nodes. This is

achieved by the following formula.

∑
x.
(

labela(x) ∧ ∃y.
(
edge1(x, y) ∧ labelb(y)

)
∧ ∃y.

(
edge2(x, y) ∧ labelb(y)

))
Here

∑
denotes the addition + in N.

Example 3.4. We consider the field of real numbers (R,+, ·, 0, 1) and the al-

phabet Γ = {a, b, c} where rkΓ(a) = 2, rkΓ(b) = 0 and rkΓ(c) = 1.

Assume that given a tree t ∈ TΓ we want to travel down the tree from the

root to a leaf. When we are at a node labeled c there is only one way to go

down, when we are at a node labeled b we are finished. In the case of being at

a node labeled a we have two possible choices and decide a direction randomly

14



3.1 Quantitative Monadic Second Order Logic

with probability 1
2

for each possibility.

Given this setting we want to construct a formula which outputs for a given

tree t the expected number of c’s visited when proceeding as described above.

Recall that given a probability measure P on a finite set Ω the expected value of

a random variable f : Ω→ R is given by

E(f) =
∑
ω∈Ω

f(ω)P(ω).

A set of positions I ⊆ pos(t) visited when traveling down a tree is characterized

by (1) containing a leaf, (2) the parent node of every node in I is also in I and

(3) no node has two child nodes in I. Such a set is also called a branch of the

tree. For a second order variable X we therefore define the formula

branch(X) := ∃x.
(
x ∈ X ∧ ∀y.¬(edge1(x, y) ∨ edge2(x, y))

)
∧ ∀x.∀y.

(
x ∈ X ∧ (edge1(y, x) ∨ edge2(y, x))

)
→ y ∈ X

∧ ∀x.∀y.∀z.(edge1(x, y) ∧ edge2(x, z))→ ¬(y ∈ X ∧ z ∈ X).

The probability of a branch I to be traveled is given by P(I) = (1
2
)n(a) where

n(a) is the amount of nodes labeled a in I. The function value f(I) of I is then

the amount of nodes in I labeled c. Applying the formula for the expected value

we can hence define our formula as

∑
X.
(

branch(X) ·
∑

x.(x ∈ X ∧ labelc(x))

·
∏

x.(
1

2
· x ∈ X ∧ labela(x) + ¬(x ∈ X ∧ labela(x)))

)
where

∑
and

∏
are the addition + and multiplication · in R, respectively.

We want to define another operator (·)→ which, as we will see later, does not

increase the expressiveness of QMSO(Γ), but yields a nice characterization for

15
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deterministic WTA. For t ∈ TΓ and θ ∈ QMSO(Γ) with Free(θ) = ∅ we define

Jθ→K(t) :=
⊙

w∈pos(t)

JθK(t|w),

that is, we multiply over the weights of all subtrees of t.

3.2 Fragments of QMSO(Γ)

As done in [15] we want to study various fragments of QMSO(Γ) by restricting the

use of certain quantors. For any subset Op ⊆ {⊕,�,Σx,Πx,ΣX ,
→ } of operators

in the semiring level we denote by QMSOΓ(Op) the restriction of QMSO(Γ) to

the operators in Op. For example, QMSOΓ(ΣX ,Σx,Πx,⊕,�) denotes the full

logic. We will simply write QMSO(Op) if it is clear from context what the

underlying alphabet Γ is.

This, however, is often not restrictive enough. For instance, in [8] the ∀x.ϕ-

operator had to be restricted to be only used on so-called recognizable step func-

tions ϕ, otherwise the resulting formulas could define tree series not definable by

a weighted automaton. It is expectable that we will need a similar mechanism.

We therefore also consider fragments obtained by restricting the alternation and

nesting of the semiring level operators, using an intuitive quantifier pattern. Such

a pattern is a word over {Σn
X ,Σ

n
x,Π

n
x |n ∈ N0∪{∞}}, where the index (·)n spec-

ifies the (maximum) number of nested quantifiers in a block. For example, the

fragment QMSO(Σ∞XΣ∞x Π1
x,⊕,�) contains all QMSO(Γ) formulas with any num-

ber of second order sum quantifiers followed by any number of first order sum

quantifiers followed by at most one non-nested product quantification. As we

often do not distinguish between first order and second order sum quantifica-

tion, we denote by Σn
X,x the quantifier pattern allowing the use of n nested sum

quantifiers of any type. We write Σx short for Σ∞x and the same for ΣX and Πx.

The reason (·)→ was left out in the quantifier patterns is that for the whole

paper we will assume this operator to not be nested when it occurs.

Finally we want to define a restriction on the operators ⊕ and �. Given an

operator ? ∈ {⊕,�} and any set Op of operators in the semiring level, we define
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3.2 Fragments of QMSO(Γ)

the fragment QMSO(Op, ?b) as the set of all formulas θ ∈ QMSO(Op, ?) such

that for all subformulas τ1 ? τ2 in θ we have that τ1, τ2 ∈ QMSO(⊕,�), i.e. τ1

and τ2 contain no quantifier of any kind. The b stems from the notion that we

restrict the operators to a “base level” of the semiring level.

As usual, we say that a tree series S ∈ K〈〈TΓ〉〉 is definable by a QMSO(Op)

formula over K and Γ if there exists a formula θ ∈ QMSO(Op) such that S(t) =

JθK(t) for all t ∈ TΓ.

17



3 Quantitative Logics for Trees

18



4 General Weighted Tree Automata and the

Fragment QMSO(Σ∞X,xΠ
1
x,⊕,�)

The first fragment we have a look at is QMSO(Σ∞X,xΠ
1
x,⊕,�) which, as we will

prove in this section, describes exactly the tree series that can also be defined by

weighted bottom-up finite state tree automata. This result is in fact not new,

as it has already been shown in [8], but we will prove it using our framework

nevertheless. All proofs of this section, with the exception of Proposition 4.7, are

straight-forward adaptations of the ones used in Section 4 of [15] or [8] for the

corresponding statements. The main theorem we want to prove is the following.

Theorem 4.1. Let (K,⊕,�, 0, 1) be a commutative semiring and (Γ, rkΓ) a

ranked alphabet. A tree series S ∈ K〈〈TΓ〉〉 is definable by a weighted bottom-up

finite state tree automaton over K and Γ if, and only if, S is definable by a

formula in QMSOΓ(Σ∞X,xΠ
1
x,⊕,�).

Proof. (⇒) Let A = (Q,Γ, µ, α) be WTA that defines the tree series S ∈ K〈〈TΓ〉〉.

We will define a formula θA ∈ QMSOΓ(Σ∞X,xΠ
1
x,⊕,�) such that JAK(t) = JθAK(t)

for all t ∈ TΓ. The idea is to do the following:

1. Guess a run using second-order sum quantification.

2. Check whether this run is valid using an MSO-formula.

3. Aggregate the cost of this run using the Π-operator.

For a first-order variable x and second-order variables X1, . . . , Xn we define the

abbreviations

root(x) := ∀y.

rk(Γ)∧
i=1

¬edgei(y, x)


partition(X1, . . . , Xn) := ∀x.

n∨
i=1

(
x ∈ Xi ∧

∧
j 6=i

¬(x ∈ Xj)

)
.

Both formulas are obviously MSO-formulas. The formula root(x) is true iff x

is the root of the given tree and partition(X1, . . . , Xn) is true iff {X1, . . . , Xn}

forms a partition of set of positions in the given tree.
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Now let D := {(~q, a, q) ∈ ∆A |µ(~q, a, q) 6= 0} be the set of all valid transitions

and DF := {(~q, a, q) ∈ D |α(q) 6= 0} be the set of all valid final transitions.

Furthermore, for (~q, a, q) ∈ D let X(~q,a,q) be a second order variable and for

n := |D| let v : {X(~q,a,q) | (~q, a, q) ∈ D} → {1, . . . , n} be a bijection. We write

X(~q,a,q) for Xv((~q,a,q)) and X̄ for (X1, . . . , Xn). Using this notation we define the

formula matched(X̄) to check whether the guessed partition is well matched.

matched(X̄) :=
∧

(~q,a,q)∈D

∀x.
(

(x ∈ X(~q,a,q))→ labela(x)
)
∧ (1)

∧
(~q,a,q)∈D
~q=(q1,...,qm)

∀x.

(x ∈ X(~q,a,q))→ ∃y1 . . . ∃ym.

(
m∧
i=1

edgei(x, yi)) ∧

∨
(~p1,a1,q1)∈D

...
(~pm,am,qm)∈D

(
m∧
i=1

(yi ∈ X~pi,ai,qi)))




(2)

Part (1) verifies that the labeling of the run is consistent with the letters in the

tree and Part (2) verifies that the transitions used are well matched. With this

in hand we define the MSO-formula validA(X̄) that checks if X̄ encodes a valid

run of A.

validA(X̄) :=

partition(X̄) ∧matched(X̄) ∧ ∃x.

root(x) ∧
∨

(~q,a,q)∈DF

(x ∈ X(~q,a,q))


That is, we verify that X̄ is a partition, that this partition is well matched and

that the state at the root is a final state.

Next we define the formulas that aggregate the cost of the transitions and
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the weight of the final state.

transition(x, X̄) :=
⊕

(~q,a,q)∈D

(
(x ∈ X(~q,a,q))� µ(~q, a, q)

)
final(X̄) :=

⊕
(~q,a,q)∈DF

(
(∃x.root(x) ∧ x ∈ X(~q,a,q))� α(q)

)

With this in hand we can define the formula θA as

θA := ΣX̄
(

validA(X̄)� (Πx.transition(x, X̄))� final(X̄)
)

and it is easy to see that θA and A define the same tree series.

(⇐) We prove this direction by structural induction. Given a formula θ ∈

QMSOΓ(Σ∞X,xΠ
1
x,⊕,�) we show how to construct an automaton Aθ such that

θ and Aθ define the same tree series. The first step is a simple application of

Büchi’s Theorem.

Proposition 4.2. For every formula ϕ ∈ MSO(Γ)and every finite set of first

and second order variables V ⊇ Free(ϕ) there is a deterministic WTA Aϕ such

that for every tree t ∈ TΓ and every (V , t)-assignment ρ we have

JϕK(t, ρ) = JAϕK(t, ρ).

Proof. Take ϕ ∈ MSO(Γ) and V ⊆ Free(ϕ). By Büchi’s Theorem there is a

BU-FTA A = (Q,ΓV , δ, F ) such that

(t, ρ) |= ϕ iff (t, ρ) ∈ L(A).

As every recognizable tree language is also deterministically recognizable (see

Section 2.1), we can assume without loss of generality that A is deterministic.
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We define the automaton Aϕ = (Q,ΓV , µ, α) for d ∈ ∆A and q ∈ Q via

µ(d) :=

1 if d ∈ δ

0 otherwise

α(q) :=

1 if q ∈ F

0 otherwise.

For every (t, ρ) ∈ L(A) there is now exactly one run of Aϕ on t and the weight

of this run is 1, all (t, ρ) /∈ L(A) do not possess any run in Aϕ. Aϕ is obviously

also deterministic, as A was, and therefore Aϕ satisfies JϕK(t, ρ) = JAϕK(t, ρ) for

every tree t ∈ TΓ and (V , t)-assignment ρ.

We now come to the semiring level, or more precisely to the fragment

QMSOΓ(⊕,�). We prove this special case, because the automata constructed

for this fragment can be chosen deterministic, as we will see.

Proposition 4.3. For every formula θ ∈ QMSOΓ(⊕,�) and every finite set of

first and second order variables V ⊇ Free(θ) there is a deterministic WTA Aθ
such that for every tree t ∈ TΓ and every (V , t)-assignment ρ we have

JθK(t, ρ) = JAθK(t, ρ).

Proof. Let θ ∈ QMSOΓ(⊕,�) and V ⊇ Free(θ). The formula θ consists of MSO

formulas and semiring elements separated by ⊕, � and parentheses. We take

these MSO formulas and semiring elements and by distributing multiplication

over addition and using the commutativity of � rewrite θ into the form

θ =
n⊕
i=1

(
ki �

ni⊙
j=1

θji

)

where n ∈ N, ni ∈ N and ki ∈ K for i ∈ {1, . . . , n} and θji ∈ MSO(Γ) for

i ∈ {1, . . . , n} and j ∈ {1, . . . , ni}. For t ∈ TΓ and a (V , t)-assignment ρ we see

that J
⊙ni

j=1 θ
j
i K(t, ρ) = 1 iff (t, ρ) |= θji for all j ∈ {1, . . . , ni} and 0 otherwise, so
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J
⊙ni

j=1 θ
j
i K = J

∧ni

j=1 θ
j
i K. Hence, by Büchi’s Theorem we can find a deterministic

BU-FTA Ai = (Qi,ΓV , δi, Fi) such that for θi :=
∧ni

j=1 θ
j
i we have

(t, ρ) |= θi iff (t, ρ) ∈ L(Ai)

for every t ∈ TΓ and (V , ρ)-assignment ρ. Now consider the WTA Aθ =

(Q,ΓV , µ, α) where

Q :=
n×
i=1

(Qi ∪ {∅})

α(q1, . . . , qn) :=
n⊕
i=1
qi∈Fi

ki

µ((q1
1, . . . , q

n
1 ), . . . , (q1

m, . . . , q
n
m), a, (q1, . . . , qn)) :=

1 if ∀i ∈ {1, . . . , n} :
(

(qi1, . . . , q
i
m, a, q

i) ∈ δi

∨(qi = ∅ ∧ ¬∃q ∈ Qi : ((qi1, . . . , q
i
m, a, q) ∈ δi)

)
0 otherwise.

The automaton Aθ runs all automata Ai in parallel. Coordinate i ∈ {1, . . . , n}

behaves exactly like automaton Ai, except for the fact that if for some m ∈

{1, . . . , rk(Γ)}, a ∈ Γ(m) and given q1, . . . , qm ∈ Qi there is no transition

(q1, . . . , qm, a, q) ∈ δi, then, and only then, we can switch into state ∅, enabling

the other coordinates to continue their runs, but making sure that the run of

this coordinate i will not influence the weight of the whole run. It is easy to see

that Aθ is deterministic and that it defines the same tree series as θ.

Next we turn to the proof for the fragment QMSOΓ(Π1
x,⊕,�). More precisely,

the next proof shows the recognizability of the fragment QMSOΓ(Π1
x,⊕b,�b).

Proposition 4.4. For every formula θ ∈ QMSOΓ(⊕,�) and every finite set of
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first and second order variables V ⊇ Free(Πx.θ) there is an unambiguous WTA

AΠ such that for every tree t ∈ TΓ and every (V , t)-assignment ρ we have

JΠx.θK(t, ρ) = JAΠK(t, ρ).

Proof. Let A = (Q,ΓV∪{x}, µ, α) be the deterministic WTA of Proposition 4.3

that defines the tree series JθK. Recall that the weights of all transitions in A are

either 0 or 1. Assuming that x /∈ V , there is an obvious bijection between the

sets ΓV∪{x} and ΓV×{0, 1}. We abuse notation and identify ΓV∪{x} = ΓV×{0, 1}

in the sequel. Without loss of generality we assume A to be complete, that is,

for all ~q ∈ Qm and a ∈ ΓV∪{x} there is some q ∈ Q with µ(~q, a, q) = 1. We

can enforce this by simply adding a dummy state if A does not already have

this property. We define the automaton AΠ = (Q×P(Q×Q),ΓV , µΠ, αΠ) with

the help of some abbreviations: given qf ∈ Q, m ∈ {1, . . . , rk(Γ)}, a ∈ Γ
(m)
V ,

~q = (q1, . . . , qm) ∈ Qm and ~R = (R1, . . . , Rm) ∈ (P(Q×Q))m we set

f1(a, ~q, ~R) := {(p, q′f ) ∈ Q×Q | ∃i ∈ {1, . . . ,m} ∃(pi, q′f ) ∈ Ri :

µ(q1, . . . , qi−1, pi, qi+1, . . . , qm, (a, 0), p) = 1}

f2(a, ~q, qf ) := {(p, qf ) | p ∈ Q and µ(q1, . . . , qm, (a, 1), p) = 1}

αΠ(q, R) :=

1 if R ⊆ {(p, p) | p ∈ Q}

0 otherwise

µΠ((q1, R1), . . . , (qm, Rm), a, (q0, R0)) :=
k if for some qf ∈ Q we have k = α(qf ), µ(q1, . . . , qm, (a, 0), q0) = 1 and

R0 = f1(a, ~q, ~R) ∪ f2(a, ~q, qf ) where ~q = (q1, . . . , qm) and ~R = (R1, . . . , Rm)

0 otherwise.

In the first coordinate the automaton executes A on (t, ρ) as if it had not yet
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read x. Then at each position w ∈ pos(t) we guess one state qf . It is the state we

guess the automaton A would produce at the root if we ran A on (t, ρ[x→ w]).

We therefore set the weight of this transition as the final weight α(qf ) of qf . The

second coordinate is then used to check whether we guessed correctly. We add

the singleton f2(a, ~q, qf ) with a = (t, ρ)(w) into the set of the second coordinate.

The pair (p, qf ) inside this singleton consists of the state p the automaton A

would have at position w if we ran it on (t, ρ[x→ w]) and the state qf , which we

save to check correctness later. We then use the second coordinate to see what

the automaton A will do with the state p, which is exactly what the function f1

does. Assuming for some i ∈ N we have (pi, q
′
f ) ∈ Ri, we interpret this as the

fact that we guessed q′f as one final state earlier and the automaton A would now

be in state pi having done so. Then f1(a, ~q, ~R) will contain the pair (p, q′f ) where

p is the state A would then change into under this assumption. If we guessed

correctly, all those pairs in the second coordinate should be of the form (q′f , q
′
f )

at the root, which is exactly the condition we impose on states to be final.

We show that for every t ∈ TΓ and (V , t)-assignment ρ such that for every w ∈

pos(t) we have JθK(t, ρ[x→ w]) 6= 0 there is exactly one run r ∈ RunAΠ,F(t, ρ) and

this run satisfies µΠ(tr(w)) = JθK(t, ρ[x → w]) for all w ∈ pos(t). In particular,

AΠ is unambiguous.

Assume we have r ∈ RunAΠ,F(t, ρ), w ∈ pos(t) and t(w) ∈ Γ(m) for some

m ∈ N. Then given (qi, Ri) := r(wi) for i ∈ {1, . . . ,m} we know that for some

qf ∈ Q we must have r(w) = (q0, f1((t, ρ)(w), ~q, ~R) ∪ f2((t, ρ)(w), ~q, qf )) where

~q = (q1, . . . , qm), ~R = (R1, . . . , Rm) and q0 is uniquely determined due to A being

deterministic. This qf =: qf (r, w) hence is characteristic for r at w, such that two

runs r1 and r2 are equal iff qf (r1, w) = qf (r2, w) for all w ∈ pos(t). Furthermore,

we see that µΠ(tr(w)) = α(qf (r, w)) for all w ∈ pos(t).

Now, assuming that for all w ∈ pos(t) we have JθK(t, ρ[x→ w]) 6= 0, we find

exactly one run r′ ∈ RunA,F(t, ρ[x → w]) and for this run we have α(r′(ε)) =

JθK(t, ρ[x → w]) by construction of A. We set qf [x → w] := r′(ε) as the final

state of this unique run. If we can show that for every run r ∈ RunAΠ,F(t, ρ) we

have qf (r, w) = qf [x→ w], we can easily infer from the observations just made,
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that r has to be uniquely determined and that wt((t, ρ), r) = JΠx.θK(t, ρ).

Take r ∈ RunAΠ,F(t, ρ) and let (qε, Rε) := r(ε) be the state at the root. We

show that for all w ∈ pos(t) we have (qf [x → w], qf (r, w)) ∈ Rε and due to

(qε, Rε) being final, we must then have q[x → w] = qf (r, w). Fix w ∈ pos(t),

t(w) ∈ Γ(m) for m ∈ N, (qi, Ri) := r(wi) for i ∈ {1, . . . ,m}, (q0, R0) := r(w) and

take r′ ∈ RunA,F(t, ρ[x→ w]). It is easy to see that the projection of r on the first

coordinate is the quasi-run in A we would get if we did not assign any position of

t to x. Hence, we have qi = r′(wi) for all i ∈ {1, . . . ,m} so by definition of AΠ we

have (r′(w), qf (r, w)) ∈ R0 via f2. Now assume that for some position w′ ∈ pos(t)

and j ∈ N we have w′j ≤p w. We write (q′, R′) := r(w′) and (q′j, R
′
j) := r(w′j).

If we have (r′(w′j), p) ∈ R′j for some p ∈ Q, then we also have (r′(w′), p) ∈ R′

via f1. Therefore, we must have (r′(ε), qf (r, w)) = (qf [x → w], qf (r, w)) ∈ Rε,

which was to show.

It is also easy to see now that when defining a quasi-run r by choosing qf (r, w)

as qf [x → w] for all w ∈ pos(t) we obtain a (valid) run on (t, ρ), so we have

shown that AΠ defines the same tree series as Πx.θ. Also note that from what

we have shown, it easily follows that if for some w ∈ pos(t) we have JθK(t, ρ[x→

w]) = 0, then there exists no (valid) run of AΠ on (t, ρ), such that AΠ indeed is

unambiguous.

We now come to the proof for the operators ⊕ and �.

Proposition 4.5. Let τ1, τ2 ∈ QMSO(Γ) and let V ⊇ Free(τ1) ∪ Free(τ2) be a

finite set of first and second order variables such that there are WTA A1 and A2

over ΓV defining the same tree series as τ1 and τ2, respectively. Then there is a

WTA A⊕ such that for every tree t ∈ TΓ and every (V , t)-assignment ρ we have

Jτ1 ⊕ τ2K(t, ρ) = JA⊕K(t, ρ).

Proof. Let A1 = (Q1,ΓV , µ1, α1) and A2 = (Q2,ΓV , µ2, α2) be automata defining

the formulas τ1 and τ2. Without loss of generality we assume Q1 ∩ Q2 = ∅,

then we define the automaton A⊕ = (Q1 ∪ Q2,ΓV , µ⊕, α⊕) for d ∈ ∆A⊕ and
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q ∈ Q1 ∪Q2 as

µ⊕(d) :=


µ1(d) if d ∈ ∆A1

µ2(d) if d ∈ ∆A2

0 otherwise

α⊕(q) :=

α1(q) if q ∈ Q1

α2(q) if q ∈ Q2

and it is easy to see that A⊕ defines the same tree series as τ1 ⊕ τ2, as for each

valid ΓV-tree t the set of runs of A⊕ on t is the union of runs of A1 and A2 on

t.

Proposition 4.6. Let τ1, τ2 ∈ QMSO(Γ) and let V ⊇ Free(τ1) ∪ Free(τ2) be a

finite set of first and second order variables such that there are WTA A1 and A2

over ΓV defining the same tree series as τ1 and τ2, respectively. Then there is a

WTA A� such that for every tree t ∈ TΓ and every (V , t)-assignment ρ we have

Jτ1 � τ2K(t, ρ) = JA�K(t, ρ).

Proof. Let A1 = (Q1,ΓV , µ1, α1) and A2 = (Q2,ΓV , µ2, α2) be automata defining

the formulas τ1 and τ2. We define the automaton A� = (Q1 × Q2,ΓV , µ�, α�)

for ((p1
1, p

2
1), . . . , (p1

m, p
2
m), a, (q1, q2)) ∈ ∆A� and (q1, q2) ∈ Q1 ×Q2 as

µ�((p1
1, p

2
1), . . . , (p1

m, p
2
m), a, (q1, q2)) := µ1(p1

1, . . . , p
1
m, a, q

1)� µ2(p2
1, . . . , p

2
m, a, q

2)

α�(q) := α1(q1)� α2(q2)

and it is easy to see that A� defines the same tree series as τ1 � τ2, as for each

valid ΓV-tree t the set of runs of A⊕ on t are the pairs of runs of A1 and A2 on t

and the weight of each such run is the product of the weights of the runs in each

coordinate, since K is commutative.

Now only the translations of the first and second order sum operators into
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1
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automata are left. We turn to the second order sum operator first.

Proposition 4.7. Let θ ∈ QMSO(Γ) and let V ⊇ Free(ΣX.θ) be a finite set of

first and second order variables, where X is a second order variable, such that

there is a WTA A over ΓV∪{X} defining the same tree series as θ. Then there

is a WTA AX such that for every tree t ∈ TΓ and every (V , t)-assignment ρ we

have

JΣX.θK(t, ρ) = JAXK(t, ρ).

Proof. Let A = (Q,ΓV∪{X}, µ, α) be a WTA defining the same tree series as

θ. Again we assume X /∈ V and write ΓV∪{X} as ΓV × {0, 1}. We define the

automaton AX = (Q× {0, 1},ΓV , µX , αX) for
(( p1

k1

)
, . . . , (

pm
km ), a, ( qk )

)
∈ ∆AX

as

µX
(( p1

k1

)
, . . . , (

pm
km ), a, ( qk )

)
:= µ(p1, . . . , pm, (a, k), q)

αX( qk ) := α(q)

To show that AX defines the same tree series as ΣX.θ, take t ∈ TΓ and a (V , t)-

assignment ρ. First note that

⊕
r∈RunAX,F(t,ρ)

wtAX
((t, ρ), r)� α(r(ε)) =

⊕
r∈(Q×{0,1})pos(t)

wtAX
((t, ρ), r)� α(r(ε))

where (Q × {0, 1})pos(t) is the set of all functions pos(t) → Q × {0, 1}, i.e. the

set of all quasi-runs, as quasi-runs that are not runs will not influence the sum.

For w ∈ pos(t) set a(w) := (t, ρ)(w) and m(w) ∈ N such that a(w) ∈ Γ
(m(w))
V , i.e.

a(w) is the label at w of the ΓV-tree corresponding to the pair (t, ρ). Furthermore,

let {0, 1}pos(t) be the set of mappings pos(t)→ {0, 1} and for σ ∈ {0, 1}pos(t) set

I(σ) = {w ∈ pos(t) |σ(w) = 1}, then we have

JAXK(t, ρ)

=
⊕

r∈(Q×{0,1})pos(t)

wtAX
((t, ρ), r)� αX(r(ε))

=
⊕

r∈(Q×{0,1})pos(t)

αX(r(ε))�
⊙

w∈pos(t)

µX(tr(w))
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=
⊕

σ∈{0,1}pos(t)

⊕
r∈Qpos(t)

α(r(ε))�
⊙

w∈pos(t)

µ(r(w1), . . . , r(wm(w)), (a(w), σ(w)), r(w))

=
⊕

σ∈{0,1}pos(t)

⊕
r∈Qpos(t)

α(r(ε))� wtA((t, ρ[X → I(σ)]), r)

=
⊕

σ∈{0,1}pos(t)

JAK(t, ρ[X → I(σ)])

=
⊕

I⊆pos(t)

JθK(t, ρ[X → I])

= JΣX.θK(t, ρ)

which is what we wanted to show.

Now lastly we come to the first order sum quantifier. Its construction is

similar to the one of the second order sum quantifier.

Proposition 4.8. Let θ ∈ QMSO(Γ) and let V ⊇ Free(Σx.θ) be a finite set of

first and second order variables, where x is a first order variable, such that there

is a WTA A over ΓV∪{x} defining the same tree series as θ. Then there is a WTA

Ax such that for every tree t ∈ TΓ and every (V , t)-assignment ρ we have

JΣx.θK(t, ρ) = JAxK(t, ρ).

Proof. Let A = (Q,ΓV∪{x}, µ, α) be a WTA defining the same tree series as θ.

Again we assume x /∈ V and write ΓV∪{x} as ΓV×{0, 1}. We define the automaton

Ax = (Q× {0, 1},ΓV , µx, αx) for
(( p1

k1

)
, . . . , (

pm
km ), a, ( qk )

)
∈ ∆Ax as:

µx
(( p1

k1

)
, . . . , (

pm
km ), a, ( qk )

)
:=

µ(p1, . . . , pm, (a, 0), q) if k = 0 ∧ k1 = . . . = km = 0

µ(p1, . . . , pm, (a, 1), q) if k = 1 ∧ k1 = . . . = km = 0

µ(p1, . . . , pm, (a, 0), q) if k = 1 ∧ ∃!i ∈ {1, . . . ,m} : ki = 1

0 otherwise
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αx(
q
k ) :=

α(q) if k = 1

0 otherwise.

That is, from a bottom-up perspective we can run Ax on a tree t ∈ TΓV as if

x had not been read yet, then guess randomly a position for x and from then

on only allow transitions that behave as if x was not set on these positions.

Finally we require x to be guessed at at least one position, as only states whose

second coordinate is 1 are final. For every w ∈ pos(t) every run of A on t[x→ w]

corresponds to exactly one run of Ax on t, given by setting the second coordinate

of this run to 1 on all positions v ≤p w and to 0 otherwise. The weights of these

runs are the same, so it is clear that Ax defines the same tree series as Σx.θ

does.

All of the above proofs show that for all formulas θ ∈ QMSOΓ(Σ∞X,xΠ
1
x,⊕,�),

the tree series JθK is also definable by a WTA A and we conclude the proof of

Theorem 4.1.
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5 Determinism and the Fragment

QMSO(→,⊕b,�)

We now come to the tree series definable by deterministic WTA. The idea and

proof of this section is a straight-forward adaptation of the idea and proof used

in Theorem 5.1 of [15], where the theorem is proven for deterministic weighted

automata on words.

Theorem 5.1. Let (K,⊕,�, 0, 1) be a commutative semiring and (Γ, rkΓ) a

ranked alphabet. A tree series S ∈ K〈〈TΓ〉〉 is definable by a deterministic weighted

bottom-up finite state tree automaton over K and Γ if, and only if, S is definable

by a formula in QMSOΓ(→,⊕b,�).

Proof. (⇒) Let A = (Q,Γ, µ, α) be a deterministic WTA such that JAK = S. We

show how to construct a formula θA ∈ QMSOΓ(→,⊕b,�) such that JθAK = JAK.

The characteristic feature of deterministic WTA we will use is that, given a tree

t ∈ TΓ, we know that there is at most one (not necessarily accepting) run of A

on t. Therefore, to know which state a run on t has at a position w ∈ pos(t),

it suffices to know the subtree t|w of t at w and look at the run of A on this

subtree.

As we did in the proof of Theorem 4.1, we define D as the set of valid

transitions in ∆A and let X̄ = (X1, . . . , Xn) be an enumeration of the set

{X(~q,a,q) | (~q, a, q) ∈ D}. We use a formula similar to validA(X̄), but this time do

not check whether the state at the root is final or not. We reuse the formulas

partition(X̄) and matched(X̄) and define

det-validA(X̄) := partition(X̄) ∧matched(X̄)

det-transition :=
⊕

(~q,a,q)∈D

(
∃X̄.det-validA(X̄) ∧

(
∃x.root(x) ∧ x ∈ X(~q,a,q)

))
� µ(~q, a, q)
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5 Determinism and the Fragment QMSO(→,⊕b,�)

det-final :=
⊕
q∈Q

∃X̄.det-validA(X̄) ∧

∃x.root(x) ∧
∨

(~q,a,q)∈D

x ∈ X(~q,a,q)


� α(q)

and with this we can define θA as

θA := (det-transition)→ � det-final.

Clearly, for t ∈ TΓ, w ∈ pos(t) and the unique run r ∈ RunA,F(t) we have

Jdet-transitionK(t|w) = µ(tr(w))

so we have

J(det-transition)→ � det-finalK(t) = wtA(t, r)� α(r(ε))

= JAK(t)

such that indeed JθAK = JAK.

(⇐) For τ ∈ QMSOΓ(→,⊕b,�) we show how to construct a deterministic

WTA Aτ such that JAτK = JτK. In Proposition 4.3 we have shown that for every

formula in QMSOΓ(⊕,�) we can find a deterministic WTA defining the same

tree series as this formula and the construction in the proof of Proposition 4.6

for � preserves determinism. Therefore the only thing left to show is that given

a formula θ ∈ QMSOΓ(⊕,�) we can construct a deterministic WTA A→ such

that JA→K = J(θ)→K.

Let A = (Q,Γ, µ, α) be the deterministic automaton we can find by Propo-

sition 4.3 such that JAK = JθK. Recall that the weights of all transitions

in A are either 1 or 0. We define the automaton A→ = (Q,Γ, µ→, α→) for

32



(p1, . . . , pm, a, q) ∈ ∆A→ as

µ→(p1, . . . , pm, a, q) :=

α(q) if µ(p1, . . . , pm, a, q) = 1

0 otherwise

α→(q) := 1.

For t ∈ TΓ, w ∈ pos(t), r ∈ RunA→,F(t) and rw ∈ RunA,F(t|w) we clearly have

µ(tr(w)) = α(rw(ε))

= JθK(t|w)

and as A→ is deterministic due to the fact that the valid transitions in ∆A→ form

a subset of the valid transitions in ∆A, we have

JA→K(t) =
⊙

w∈pos(t)

JθK(t|w)

= J(θ)→K(t)

which is what we wanted to show.
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6 Unambiguity and the Fragment

QMSO(Π1
x,⊕b,�b)

We now come to the tree series definable by unambiguous WTA. The idea and

proof of this section is a straight-forward adaptation of the idea and proof used

in Theorem 5.2 of [15], where the theorem is proven for unambiguous weighted

automata on words.

Theorem 6.1. Let (K,⊕,�, 0, 1) be a commutative semiring and (Γ, rkΓ) a

ranked alphabet. A tree series S ∈ K〈〈TΓ〉〉 is definable by an unambiguous

weighted bottom-up finite state tree automaton over K and Γ if, and only if,

S is definable by a formula in QMSOΓ(Π1
x,⊕b,�b).

Proof. (⇒) Let A = (Q,Γ, µ, α) be an unambiguous WTA such that JAK = S.

We show how to construct a formula θA ∈ QMSOΓ(Π1
x,⊕b,�b) such that JθAK =

JAK. As for every tree t ∈ TΓ there is at most one run of A on t, we don’t have to

sum over all runs. Instead, we know that if we guess a run using the existential

quantifier, this will always produce the same unique run.

As we did in the proof of Theorem 4.1, we define D as the set of valid

transitions in ∆A and let X̄ = (X1, . . . , Xn) be an enumeration of the set

{X(~q,a,q) | (~q, a, q) ∈ D}. We also reuse the formula validA(X̄) and define

unamb-transition(x) :=
⊕

(~q,a,q)∈D

(
∃X̄.validA(X̄) ∧ x ∈ X(~q,a,q)

)
� µ(~q, a, q)

unamb-final :=
⊕

(~q,a,q)∈D

(
∃X̄.validA(X̄) ∧ ∃x.root(x) ∧ x ∈ X(~q,a,q)

)
� α(q)

In the first formula we guess the unique run, if it exists, using the existential

operator and take the weight at position x. In the second formula we find the

final weight of the state at the root of this run. It is easy to see that by defining

the formula θ′A as

θ′A := (Πx.unamb-transition(x))� unamb-final
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we have JAK = Jθ′AK. However, this formula is not in QMSOΓ(Π1
x,⊕b,�b) yet.

We therefore consider the following: for τ1, τ2 ∈ QMSOΓ(⊕,�), the formula

(Πx.τ1)� τ2

can also be written as

Πx. ((τ1 � τ2 � root(x))⊕ (τ1 � ¬root(x)))

after relabeling x in τ2, if it is used in the formula. Of course, the commutativity

of � is crucial here. Latter formula obviously is in QMSOΓ(Π1
x,⊕b,�b) and as

θ′A has above form, we obtain θA as needed by applying this idea to θ′A.

(⇐) This direction has been proven in Proposition 4.4.
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7 Finite Ambiguity and the Fragment

QMSO(Π1
x,⊕,�b)

We now come to the tree series definable by finitely ambiguous WTA. The main

idea here is the same as in [15, Theorem 5.3], just that we have to prove an

equivalent version of the Lemma A.7 in [15] for the case of trees.

Theorem 7.1. Let (K,⊕,�, 0, 1) be a commutative semiring and (Γ, rkΓ) a

ranked alphabet. A tree series S ∈ K〈〈TΓ〉〉 is definable by a finitely ambiguous

weighted bottom-up finite state tree automaton over K and Γ if, and only if, S

is definable by a formula in QMSOΓ(Π1
x,⊕,�b).

Proof. (⇐) Take θ ∈ QMSOΓ(Π1
x,⊕,�b). Obviously θ is a finite sum of formulas

in QMSOΓ(Π1
x,⊕b,�b), that is

θ =
n⊕
i=1

θi

for some n ∈ N and θ1, . . . , θn ∈ QMSOΓ(Π1
x,⊕b,�b). By Theorem 6.1 there

are unambiguous WTA A1, . . . ,An such that JAiK = JθiK for all i ∈ {1, . . . , n}

and by the proof of Proposition 4.5 the automaton we can construct for the sum

θ =
⊕n

i=1 θi is then n-ambiguous.

(⇒) For this direction we use Lemma 7.2 below, which we yet have to prove.

Given the lemma, for a finitely ambiguous WTA A we can find n ∈ N and

unambiguous WTA A1, . . . ,An such that for all t ∈ TΓ we have

JAK(t) =
n⊕
i=1

JAiK(t).

By Theorem 6.1 for i ∈ {1, . . . , n} we can find θi ∈ QMSOΓ(Π1
x,⊕b,�b) such

that JAiK = JθiK so for θ :=
⊕n

i=1 θi ∈ QMSOΓ(Π1
x,⊕,�b) we have JθK = JAK.

This was to show.

The rest of the section is dedicated to prove the lemma used in above proof.
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Lemma 7.2. Let A = (A,Γ, µ, α) be a finitely ambiguous weighted bottom-up

finite state tree automaton. Then there exist finitely many unambiguous weighted

bottom-up finite state tree automata A1, . . . ,An satisfying

JAK = JA1K⊕ . . .⊕ JAnK.

The proof roughly follows the construction applied in [14, Section 4]. Let

A′ = (A,Γ, µ′, α′) be a finitely ambiguous WTA. Without loss of generality, A′

is assumed to be trim. We will prove the lemma by constructing a finite set of

unambiguous automata such that every accepting run in A′ will correspond to

an accepting run in one of the new automata in a 1-to-1 manner. Note first,

that an accepting run is characterized only by all its transitions and the final

state having non-zero weights. Therefore, for the construction we consider the

“booleanized” automaton A = (A,Γ, µ, α) over B where for d ∈ ∆A and q ∈ A

µ(d) :=

1 if µ′(d) 6= 0

0 otherwise

and

α(q) :=

1 if α′(q) 6= 0

0 otherwise.

In other words, A is an automaton over the boolean semiring B having the same

accepting runs as A′. Now, remember that there is an obvious 1-to-1 correspon-

dence between the WTA over the boolean semiring and the standard BU-FTA.

In the following, we will therefore not make a strict distinction between the two.

We will now use the power set construction to obtain a deterministic WTA

B = (B,Γ, ν, β) over B having the same support as A. As we are going to need

its properties in detail, we will recapitulate the construction, but refer to [4,

Theorem 1.1.9] for a proof of correctness. Let B′ = (B′,Γ, ν ′, β′) be the WTA
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defined by B′ := P(A),

ν ′(P1, . . . , Pm, a,Q) = 1 :⇔

Q = {q ∈ A | ∃p1 ∈ P1 . . . ∃pm ∈ Pm : µ(p1, . . . , pm, a, q) = 1}

and

β′(Q) = 1 :⇔ ∃q ∈ Q : α(q) = 1.

Then B is defined as the trim part of B′.

With the help of B, we now define the Schützenberger covering S = (S,Γ, ζ, ω)

of A over B. Let the tensor product A� B = (A×B,Γ, µ� ν, α� β) of A and

B be the automaton defined by

µ� ν((p1, P1), . . . , (pm, Pm), a, (q,Q)) = 1 :⇔

µ(p1, . . . , pm, a, q) = 1 ∧ ν(P1, . . . , Pm, a,Q) = 1

and

α� β(q,Q) = 1 :⇔ α(q) = 1 ∧ β(Q) = 1.

Then S is defined as the trim part of A� B.

Now let (q,Q) ∈ S. The past of (q,Q), denoted by PastS(q,Q), is defined as

PastS(q,Q) := {t ∈ TΓ |RunS,(q,Q)(t) 6= ∅}.

Proposition 7.3. Let A,B,S be as above, then the following holds:

(i) For all states (q,Q) in S we have q ∈ Q.

(ii) We have a canonical bijection between the accepting runs in S and A.
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(iii) For every pair of states (q1, Q), (q2, Q) in S we have PastS(q1, Q) =

PastS(q2, Q).

Proof. (i) Let t ∈ TΓ and r ∈ RunA�B,F(t). For the leaves w ∈ pos(t) with

a := t(w) ∈ Γ(0) and (q,Q) := r(w) we have µ(a, q) = 1 and ν(a,Q) = 1⇔ Q =

{q̂ ∈ A |µ(a, q̂) = 1} by definition of B and A� B, so obviously q ∈ Q.

For w ∈ pos(t) with t(w) ∈ Γ(m), m ≥ 1 we assume by induction that for

(pi, Pi) := r(wi) (1 ≤ i ≤ m) we have pi ∈ Pi and obtain that for (q,Q) := r(w)

we have µ(p1, . . . , pm, a, q) = 1 and ν(P1, . . . , Pm, a,Q) = 1⇔ Q = {q̂ ∈ A | ∃p̂1 ∈

P1 . . . ∃p̂m ∈ Pm : µ(p̂1, . . . , p̂m, a, q̂) = 1}. Trivially, q ∈ Q must hold. By trim-

ness, this proves (i).

(ii) Let t ∈ TΓ. Define Ψ1 : RunS,F(t) → RunA,F(t) by projection on the

first coordinate, i.e. if r(w) = (q,Q) then Ψ1(r)(w) = q. Similarly, let

Ψ2 : RunS,F(t) → RunB,F(t) be the projection on the second coordinate. By

definition of A � B, Ψ1 and Ψ2 are well defined. As B is deterministic (→

unambiguous), we get |RunB,F(t)| ≤ 1 and it is therefore easy to see that for

every two r1, r2 ∈ RunS,F(t) we have Ψ2(r1) = Ψ2(r2). It follows that Ψ1

is injective. For surjectivity of Ψ1 take rA ∈ RunA,F(t) and the unique run

rB ∈ RunB,F(t). It is easy to see that r(w) := (rA(w), rB(w)) ∈ RunA�B,F(t) and

therefore r ∈ RunS,F(t), Ψ1(r) = rA.

(iii) As the problem is symmetric, it suffices to show that PastS(q1, Q) ⊆

PastS(q2, Q). By (i) we know that q1 ∈ Q and q2 ∈ Q. Let t ∈ PastS(q1, Q) and

r1 ∈ RunS,(q1,Q)(t). We define r2 ∈ RunS,(q2,Q)(t) inductively starting from the

root, beginning with r2(ε) := (q2, Q). Now assume r2 is defined on w ∈ pos(t)

with r2(w) = (f2, F ), r1(w) = (f1, F ) and t(w) =: a ∈ Γ(m). Let (pi, Pi) :=

r1(wi) (1 ≤ i ≤ m). By induction we assume f2 ∈ F and by definition of B we

have F = {f ∈ A | ∃p̂1 ∈ P1 . . . ∃p̂m ∈ Pm : µ(p̂1, . . . , p̂m, a, f) = 1}. This implies

that we can find p̂1 ∈ P1, . . . , p̂m ∈ Pm such that µ(p̂1, . . . , p̂m, a, f2) = 1. We

define r2(wi) := (p̂i, Pi). Now ζ(tr2(w)) = 1 and, as p̂i ∈ Pi, the prerequisite for

the next induction step is fulfilled and we obtain r2 as needed.
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Definition 7.4. Let a ∈ Γ(m). Two valid transitions

((pj1, P1), . . . , (pjm, Pm), a, (q,Q)) ∈ ∆S (j = 1, 2)

are said to compete. Competing is an equivalence relation on the valid transitions

and the equivalence class T of a valid transition is called a competing set if it

contains at least 2 different transitions. A transition belonging to a competing

set is called a competing transition.

Note that every transition ((p1, P1), . . . , (pm, Pm), a, (q,Q)) competes with it-

self by definition, but we will only refer to it as a competing transition if it

actually belongs to a competing set.

We are now going to show that for each competing set there must exist a

constant χ ∈ N such that for every tree t ∈ TΓ and every run r ∈ RunS,F(t) the

number of footpoints of transitions of this given competing set is bounded by χ.

Proposition 7.5. Let T be a competing set. Then there exists a constant χ =

χ(T) ∈ N satisfying

∀t ∈ TΓ ∀r ∈ RunS,F(t) : |{w ∈ pos(t) | tr(w) ∈ T}| ≤ χ

Proof. We prove the statement by contradiction. Let T be a competing set such

that for every n ∈ N we have a tree tn ∈ TΓ and a run rn ∈ RunS,F(t) such

that for Vn := {w ∈ pos(tn) | trn(w) ∈ T} we have |Vn| ≥ n. Let v ∈ Vn and

((p1, P1), . . . , (pm, Pm), a, (q,Q)) be the transition tr(v) at v and fix a transition

((p̂1, P1), . . . , (p̂m, Pm), a, (q,Q)) ∈ T different from the former. By definition of

a run and Proposition 7.3 (iii) we have tn|vi ∈ PastS(pi, Pi) = PastS(p̂i, Pi) for

all i ∈ {1, . . . ,m}. Thus, we find r̂i ∈ RunS,(p̂i,Pi)(tn|vi) which means that

rv(w) :=

r̂i(u) if vi ≤p w for some i ∈ {1, . . . ,m} and w = viu

rn(w) otherwise
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is an accepting run for tn. rv differs strictly from rn but the difference is restricted

to the subtree at v. Thus, for v1, v2 ∈ Vn with v1 6= v2, two runs rv1 and rv2

constructed in this way will differ either at both v1 and v2, if v1 and v2 are

prefix-independent, or they will differ at least at the prefix-smaller position.

This means there exists a different run rv ∈ RunS,F(tn) for each v ∈ Vn, i.e.

|RunS,F(tn)| ≥ |Vn| ≥ n. For n → ∞ this contradicts the finite ambiguity of

S.

As both Γ and S are finite, there is only a finite amount of different compet-

ing sets T and we can take the maximum of all χ(T) to obtain a global constant χ.

To make proper use of Proposition 7.5 we need to decompose our automaton

S for the first time. Let F be the set of final states in S. Then for each f ∈ F

we let Sf be the automaton behaving exactly like S with the exception that f is

the only final state. Obviously, each accepting run r in S will now be a run in

Sr(ε) and only in Sr(ε). To prove Lemma 7.2 it therefore suffices to deal with the

Sf separately and then take the sum of those. For sake of notation, we simply

assume S to have only one final state (qf , Qf ).

We will now show that every accepting run r is characterized uniquely by

the order in which the competing transitions are visited, from a bottom-up point

of view, assuming the transitions are ordered using the lexicographical order of

their footpoints.

Proposition 7.6. Let t ∈ TΓ and r1, r2 ∈ RunS,F(t) such that r1 6= r2. Then

there exists a competing set T satisfying the following. Let W j := {w ∈

pos(tn) | trj(w) ∈ T} and write W j = {wj1, . . . , wjnj
} with wj1 ≤l . . . ≤l wjnj

for j = 1, 2. Then for some 1 ≤ k ≤ min{n1, n2} we have tr1(w1
k) 6= tr2(w2

k).

Proof. Take t ∈ TΓ and r1, r2 ∈ RunS,F(t) with r1 6= r2. Let w be the lexico-

graphically smallest position in pos(t) such that r1(w) 6= r2(w). By assumption

on S we have r1(ε) = r2(ε) = (qf , Qf ), so ε 6= w = w′i′ for some i′ ∈ N. Let

t(w′) =: a ∈ Γ(m). By minimality of w we have r1(w′) = r2(w′) =: (q,Q).
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Now let (pji , Pi) := rj(w
′i) for 1 ≤ i ≤ m, j = 1, 2. Remember that S is

“deterministic” in the second coordinate which means that both runs are iden-

tical there. It is now easy to see that w′ is the footpoint of the transition

((p1
1, P1), . . . , (p1

m, Pm), a, (q,Q)) in r1 and ((p2
1, P1), . . . , (p2

m, Pm), a, (q,Q)) in r2,

belonging to the same competing set T and being strictly different as p1
i′ 6= p2

i′ .

Again by minimality of w, we get that r1 and r2 are identical on all positions

ŵ ≤l w′. In particular, all footpoints ŵ1, . . . , ŵn ∈ pos(t) of transitions in r1

belonging to T, i.e. with tr1(ŵi) ∈ T, such that ŵi ≤l w′, are also footpoints of

transitions from T in r2 and vice versa.

We are now going to use this characterization to define finitely many au-

tomata such that each accepting run in S will correspond to an accepting run

in exactly one of the newly constructed automata. The idea is to make the

automata remember which ones of the competing transitions have been used in

which order. By Proposition 7.5 we only have to care about remembering finitely

many transitions and by Proposition 7.6 this will cause different accepting runs

for a tree to be accepted in different automata.

Let T1, . . . ,Tk be an enumeration of the competing sets in S. For each

ξ ∈
k

×
l=1

χ⋃
j=0

(Tl)j take Sξ := (S ×
k

×
l=1

χ⋃
j=0

(Tl)j,Γ, η, ωξ) defined by

η

 (p1,P1)

e11
...
ek1

, . . . ,
 (pm,Pm)

e1m
...
ekm

, a,
 (q,Q)

e1

...
ek

 = 1 :⇔

ζ((p1, P1), . . . , (pm, Pm), a, (q,Q)) = 1 ∧

∀l ∈ {1, . . . , k}

e
l = del1 · · · elm if d := ((p1, P1), . . . , (pm, Pm), a, (q,Q)) ∈ Tl

el = el1 · · · elm otherwise

and

ωξ

 (q,Q)

e1

...
ek

 = 1 :⇔ (q,Q) = (qf , Qf ) ∧

(
e1

...
ek

)
= ξ
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It is easy to see by construction, that the automata gain no “new” accepting runs,

as they are in fact “deterministic” in the
k

×
l=1

χ⋃
j=0

(Tl)j coordinate, and that this

second coordinate effectively saves the order of all competing transitions for each

competing set in lexicographical order. By Proposition 7.5 we can execute every

accepting run in one of the automata and by Proposition 7.6 different accepting

runs for the same tree end up in different automata, making the automata un-

ambiguous. Finally, we “redecorate” these automata with our original weights,

i.e.

η

 (p1,P1)

e11
...
ek1

, . . . ,
 (pm,Pm)

e1m
...
ekm

, a,
 (q,Q)

e1

...
ek

 = 1

 η′

 (p1,P1)

e11
...
ek1

 · · ·
 (pm,Pm)

e1m
...
ekm

, a,
 (q,Q)

e1

...
ek

 := µ′(p1, . . . , pm, a, q)

and the same for the final states. The result is a set of unambiguous WTA whose

sum equals our initial automaton. This concludes the proof of Lemma 7.2.

44



8 Polynomial Ambiguity and the Fragment

QMSO(Σk
xΠ

1
x,⊕,�b)

We now come to the tree series definable by polynomially ambiguous WTA.

Given a polynomially ambiguous WTA A we can define the function rA : N→ N

that counts the maximum number of possible runs given trees with a limited

number of nodes, i.e. rA(n) = max{|RunA,F(t)| | t ∈ TΓ, |pos(t)| ≤ n}. We then

define the degree of ambiguity of A by

degree(A) := min{k ∈ N | rA ∈ O(nk)}.

This is well defined if A is polynomially ambiguous. We illustrate this by giving

an example for a simple polynomially ambiguous automaton.

Example 8.1. We consider the alphabet Γ = {a, b} where rkΓ(a) = 2 and

rkΓ(b) = 0. We construct an automaton A = (Q,Γ, µ, α) over the tropical

semiring (N ∪ {∞},min,+,∞, 0) which to a tree t ∈ TΓ assigns the minimum

amount of a’s we have to visit to reach any leaf b starting from the root. For this,

we let Q = {p, qf}, where p will serve as a “filler state” and qf as a “counting

state”. Given the tree t, we want that for every leaf b in t there is exactly one

run of A on t, given by mapping all nodes between this leaf and the root to qf

and all other nodes to p. The following figure gives an example of how such a

run should look like.

a

a

b b

a

a

b b

b

qf

p

p p

qf

qf

p qf

p
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We therefore define

µ(b, qf ) := 0

µ(b, p) := 0

µ(p, p, a, p) := 0

µ(qf , p, a, qf ) := 1

µ(p, qf , a, qf ) := 1

and µ is ∞ for all other transitions. For the final weights we set α(qf ) := 0

and α(p) := ∞. In other words, we can “enter” into the tree at the leaves with

both states p and qf without cost. The transitions at the letter a then serve to

“forward qf upwards”, but cannot “create qf out of nothing”. Note here, that

the transition (qf , qf , a, qf ) is not valid, so we can enter at no more than one leaf

with the state qf to get a run. Finally, the root has to be mapped to qf due to

α(p) :=∞, which in turn forces us to enter at least one leaf with state the qf .

For w ∈ pos(t) with t(w) = b, the run r associated to w by r(w) = qf will have

weight |w|, hence the weight of t will be the minimum over all |v| for v ∈ pos(t)

with t(v) = b. As every run of A on t corresponds to exactly one leaf of t and

a tree trivially has no more leaves than nodes, A is 1-polynomially ambiguous.

As we can construct trees with as many leaves as we want, A is also not finitely

ambiguous.

This example can also be used to show that polynomiality defined using the

depth of the tree is not equivalent to our definition. For n ∈ N we let tn ∈ TΓ be

the “largest” tree of depth n possible, i.e. the full binary tree of depth n with

2n−1 leaves. Formally, we set t1 := b() and tn+1 := a(tn, tn) for n ∈ N. Then

indeed depth(tn) = n and tn has exactly 2n−1 leaves, so there are 2n−1 different

runs of A on tn for every n ∈ N. So if we would regard n, the depth of the tree,

to be its “size”, A would in fact not be polynomially ambiguous.

A formula describing A is found in

minx.
∑

y.
(

labelb(x) + min
{

1 + (labela(y) ∧ y ≤p x),¬(labela(y) ∧ y ≤p x)
})

where
∑

is the addition + in N. A definition of the prefix relation≤p for formulas

is given in Definition 8.23.
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Theorem 8.2. Let (K,⊕,�, 0, 1) be a commutative semiring and (Γ, rkΓ) a

ranked alphabet. A tree series S ∈ K〈〈TΓ〉〉 is definable by a polynomially am-

biguous weighted bottom-up finite state tree automaton of degree k over K and Γ

if, and only if, S is definable by a formula in QMSOΓ(Σk
xΠ

1
x,⊕,�b).

Proof. (⇐) This direction can be proven with the idea used in the proof of

Theorem 6.2 of [15] for weighted automata over words. Take k ∈ N and θ ∈

QMSOΓ(Σk
xΠ

1
x,⊕,�b). Due to the fact that for τ1, τ2 ∈ QMSO(Γ) we can rewrite

Σx.(τ1 ⊕ τ2) into Σx.τ1 ⊕ Σx.τ2, we can assume that θ is a sum of formulas in

QMSOΓ(Σk
xΠ

1
x,⊕b,�b), that is

θ =
n⊕
i=1

θi

for some n ∈ N and θi ∈ QMSOΓ(Σk
xΠ

1
x,⊕b,�b) for i ∈ {1, . . . , n}. It then

suffices to show that for all i ∈ {1, . . . , n} we can find a polynomially ambiguous

WTA Ai of degree k such that JAiK = JθiK. We prove this by induction over k.

For k = 0 this is clear due to Theorem 6.1. For k > 0 we consider the proof

of Proposition 4.8 in more detail, where we have shown how to construct an

automaton for the first order sum operator.

By induction we assume that for τ ∈ QMSOΓ(Σk−1
x Π1

x,⊕b,�b) we can find a

k− 1-polynomially ambiguous WTA A such that JτK = JAK. Now let Ax be the

automaton constructed from A as done in the proof of Proposition 4.8 such that

JAxK = JΣx.τK and let p be a polynomial of degree k− 1 such that for all t ∈ TΓ

we have

|RunA,F(t)| ≤ p(|pos(t)|).

Now let t ∈ TΓ. As we have seen in the construction of Ax, every run of Ax
on t corresponds to exactly one run of A on t[x → w] for some w ∈ pos(t). In

particular, we have

|RunAx,F(t)| ≤
∑

w∈pos(t)

|RunA,F(t[x→ w])|
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≤
∑

w∈pos(t)

p(|pos(t)|)

= |pos(t)| · p(|pos(t)|)

so that Ax is k-polynomially ambiguous, as |pos(t)| · p(|pos(t)|) is a polynomial

of degree k in |pos(t)|.

(⇒) The proof for this direction takes more effort and we will therefore divide

it into five smaller parts. First, we will make some definitions and observations

applicable to polynomially ambiguous WTA in general. Secondly, we will show

that we can represent any polynomially ambiguous WTA as a sum of polynomi-

ally ambiguous WTA which are in a standard form we yet have to define. Thirdly,

we will analyze this standard form and fourthly, we will prove some purely logic-

related statements we need in order to utilize the properties we have found the

standard form to possess. Finally, we will combine all of this to conclude the

proof of Theorem 8.2.

8.1 General Definitions and Observations

For the rest of this section we will assume, without loss of generality, that all

WTA, which are not the result of an explicit construction, are trim. We begin

by introducing a more elaborate concept for runs. For now let A = (Q,Γ, µ, γ)

be a polynomially ambiguous WTA.

Definition 8.3 (RunA(t; ~w, ~q), RunA(t; ~w, ~d)). Let t ∈ TΓ, ~w = (w1, . . . , wn) ∈

pos(t)n, ~q = (q1, . . . , qn) ∈ Qn and ~d = (d1, . . . , dn) ∈ ∆n
A, then

RunA(t; ~w, ~q) := {r ∈ RunA(t) | r(wi) = qi for all i = 1, . . . , n}

and

RunA(t; ~w, ~d) := {r ∈ RunA(t) | tr(wi) = di for all i = 1, . . . , n}.
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The sets RunA,F(t; ~w, ~q), RunA,q(t; ~w, ~q), RunA,F(t; ~w, ~d) and RunA,q(t; ~w, ~d) for

q ∈ Q are defined in a similar manner to the above and RunA,F(t) and RunA,q(t).

We also need the notion of partial runs as defined in [19]. For t ∈ TΓ, a tuple ~w =

(w1, . . . , wn) ∈ pos(t)n of pairwise prefix-independent positions and q1, . . . , qn ∈

Q a map

r : pos(t) \

(
n⋃
i=1

wipos(t|wi
)

)
∪ {w1, . . . , wn} → Q

is called a partial run of A on t relative to q1, . . . , qn at w1, . . . , wn if for all

w ∈ pos(t) \ (
⋃n
i=1 wipos(t|wi

)) the transition tr(w) is valid and r(wi) = qi for

i ∈ {1, . . . , n}. We denote the set of all such runs by Run∂A(t; ~w, ~q) and the

sets Run∂A,q(t; ~w, ~q) for q ∈ Q and Run∂A,F(t; ~w, ~q) are defined analogously to the

previous cases.

Definition 8.4 (4, C, Q). We define a relation 4 on Q by

q1 4 q2 :⇔ ∃t ∈ TΓ ∃w ∈ pos(t) : RunA,q1(t;w, q2) 6= ∅.

This relation is reflexive and transitive. For transitivity take q1 4 q2 and

q2 4 q3 and trees t1, t2 ∈ TΓ, positions w2 ∈ pos(t1), w3 ∈ pos(t2) and runs

ri ∈ RunA,qi(ti;wi+1, qi+1) for i = 1, 2 as in the definition of 4. Then r1〈r2 →

w2〉 ∈ RunA,q1(t1〈t2 → w2〉;w3, q3), i.e. q1 4 q3. Intuitively, q1 4 q2 means that

there is a “path” from q1 down to q2, cf. [21]. This gives rise to a relation ≈ on

Q defined by

q1 ≈ q2 :⇔ q1 4 q2 ∧ q2 4 q1.

This is an equivalence relation inducing equivalence classes [q]≈ ∈ Q/≈. One

may think of the classes as strongly connected components of states. We set

C(q) := [q]≈ and Q := Q/≈ and refer to C(q) as the component of q and to Q as

the components of Q. Then again, 4 induces a partial order 4 on Q, defined by

C(q1) 4 C(q2) :⇔ q1 4 q2.
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We will use this relation to derive various structural properties of our automaton.

We also need the notion of a bridge, similar to the one used in [21].

Definition 8.5 (Bridge). A valid transition b = (p1, . . . , pm, a, q) ∈ ∆A is called

a bridge out of C(q) if C(pi) 6= C(q) for all i ∈ {1, . . . ,m}. Notice that all valid

transitions of the form (a, q) with a ∈ Γ(0) and q ∈ Q are bridges.

Definition 8.6 (Fp). For every p ∈ Q we define the WTA Fp = (Q,Γ, µ, γp)

where for q ∈ Q we define γp as

γp(q) :=

1 if q = p

0 otherwise.

The intuition is that for t ∈ TΓ the accepting runs of the automaton Fp on t

are exactly the p-runs of A on t, i.e. the ones that “begin” with p at the root.

Though we have defined Fp specifically for our automaton A, the construction

is applicable in an obvious way to arbitrary WTA and depending on context, we

will change the underlying automaton used for Fp in the following considerations.

Now for some properties of Fp.

Proposition 8.7.

(i) RunFp,F(t) = RunA,p(t) for all p ∈ Q and t ∈ TΓ. In particular RunA,F(t) =⋃
p∈F RunFp,F(t), where F is the set of final states of A.

(ii) Fp is polynomially ambiguous for every p ∈ Q.

(iii) If p1 4 p2 then degree(Fp1) ≥ degree(Fp2).

Proof. (i) Clear.

(ii) By trimness we can find a run using p, i.e. there is a tree t ∈ TΓ with a

run rt ∈ RunA,F(t) and w ∈ pos(t) such that rt(w) = p. Now for all s ∈ TΓ and

rs ∈ RunFp,F(s) we have rt〈rs → w〉 ∈ RunA,F(t〈s→ w〉) and as A is polynomi-

ally ambiguous this means that Fp must be polynomially ambiguous.
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(iii) For p1 = p2 this is clear, otherwise from the fact that p1 4 p2 we can

find t ∈ TΓ and w ∈ pos(t) such that some rt ∈ RunA,p1(t;w, p2) exists. Then for

any tree s ∈ TΓ and rs ∈ RunFp2 ,F(s) we get rt〈rs → w〉 ∈ RunFp1 ,F(t〈s → w〉)

so that degree(Fp2) ≤ degree(Fp1).

Definition 8.8 (degreeA(p)). For p ∈ Q we define degreeA(p) := degree(Fp)

which is well defined by Proposition 8.7 (ii). Furthermore we define

degreeA(C(p)) := degreeA(p)

which is now well defined by Proposition 8.7 (iii). If it is clear from context about

which automaton we are talking, we will simply write degree(p) and degree(C(p)).

We now show some properties which are characteristic for polynomially am-

biguous WTA. The first three points deal with restrictions the polynomial am-

biguity imposes on the automaton. The last point shows that polynomially

ambiguous WTA, which are not also finitely ambiguous, possess at least a lower

linear bound on their ambiguity. The ideas for the following proof are the same

as the ones applied by Seidl and Weber in [21, 19].

Proposition 8.9. Let A = (Q,Γ, µ, γ) be a polynomially ambiguous WTA.

(i) For t ∈ TΓ, w ∈ pos(t) and q ∈ Q we have |Run∂A,q(t;w, q)| ≤ 1.

(ii) For t ∈ TΓ, w ∈ pos(t), q ∈ Q and p ∈ C(q) we have |Run∂A,q(t;w, p)| ≤ 1.

(iii) Let d = (p1, . . . , pm, a, q) ∈ ∆A be a valid transition. If pi ∈ C(q) for some

i ∈ {1, . . . ,m}, then Fpj is unambiguous for j ∈ {1, . . . ,m}, j 6= i.

(iv) If degree(A) > 0 then there exists a sequence of trees (tn)n∈N with |pos(t)| ≤

C · n and |RunA,F(tn)| ≥ n, i.e. we have a lower linear bound on the

ambiguity of A.

Proof. (i) Assume we have q ∈ Q, t ∈ TΓ and w ∈ pos(t) such that r1, r2 ∈

Run∂A,q(t;w, q) with r1 6= r2. We can then “concatenate” these partial runs re-

peatedly arbitrarily mixing them to get runs on trees growing like n in size but
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having at least 2n partial runs. Formally let t1 := t and tn := tn−1〈t → wn−1〉

for n > 1. For n > 1 and a word x = x′l ∈ {1, 2}n where l ∈ {1, 2} we set

rx := rx′〈rl → wn−1〉 ∈ Run∂A,q(tn;wn, q). In conclusion we have a sequence of

trees (tn)n∈N with |pos(tn)| ≤ n · C where C = |pos(t)| and |Run∂A,q(tn;wn, q)| ≥

2n. By trimness we can find some s ∈ TΓ and rs ∈ RunA,q(s). By joining

t′n := tn〈s→ wn〉 and r′x := rx〈rs → wn〉 we get |pos(t′n)| ≤ n · C + |pos(s)| and

|RunA,q(tn)| ≥ 2n which clearly is a contradiction to the polynomial ambiguity

of Fq, i.e. Proposition 8.7 (ii).

(ii) Assume we have q ∈ Q, p ∈ C(q), t ∈ TΓ and w ∈ pos(t) such that

there exist r1, r2 ∈ Run∂A,q(t;w, p) with r1 6= r2. As p 4 q we can find s ∈ TΓ,

v ∈ pos(s) and rs ∈ RunA,p(s; v, q). Then considering t′ := t〈s→ w〉 and the runs

r′1 := r1〈rs → w〉 and r′2 := r2〈rs → w〉 we easily see that |Run∂A,q(t
′;wv, q)| > 1

which is a contradiction to (i).

(iii) Assume we have a valid transition d = (p1, . . . , pm, a, q) ∈ ∆A such that

pi ∈ C(q) for i ∈ {1, . . . ,m} and Fpj is not unambiguous for some j ∈ {1, . . . ,m}

with j 6= i. Then we can find s ∈ TΓ with r1, r2 ∈ RunA,pj(t) such that

r1 6= r2. By trimness we can find a run that uses d, i.e. there are td ∈ TΓ

and rd ∈ RunA,F(td) such that for some wd ∈ pos(td) we have trd(wd) = d.

We consider the subtree t := td|wd
with the run r ∈ RunA,q(t) defined by

r(w) := rd(wdw), i.e. tr(ε) = d. Then the tree t′ := t〈s → j〉 with runs

r′1 := r〈r1 → j〉 and r′2 := r〈r2 → j〉 clearly shows that |Run∂A,q(t
′; i, pi)| > 1

which is a contradiction to (ii).

(iv) This has been proven in [19], so we just sum up the argumentation. We

refrain from repeating the exact formulations here, as it would require introducing

a lot of definitions not used elsewhere in this paper. As degree(A) > 0, A is not

finitely ambiguous. By [19, Prop. 2.5] this means that A must satisfy at least

one of three properties (T1.1), (T1.2) or (T2) which in our notation look like the

following.
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(T1) ∃j ∈ {1, . . . , rk(Γ)} ∃p, q, qj ∈ Q : p ≈ qj ≈ q such that

(T1.1) There exist two different valid transitions

(q
(i)
1 , . . . , q

(i)
j−1, qj, q

(i)
j+1, . . . , q

(i)
m , a, q) ∈ ∆A, i = 1, 2, and trees

t1, . . . , tj−1, tj+1, . . . , tm ∈ TΓ with RunA,q(i)

j′
(tj′) 6= ∅ for i = 1, 2 and

all j′ 6= j.

(T1.2) There exists a valid transition (q1, . . . , qj−1, qj, qj+1, . . . , qm, a, q) ∈

∆A and a tree t ∈ TΓ with |RunA,qj′ (t)| > 1 for some j′ 6= j.

(T2) There exist states p, q ∈ Q with p 6= q such that for some t ∈ TΓ and

w ∈ pos(t) all of the sets Run∂A,p(t;w, p), Run∂A,p(t;w, q) and Run∂A,q(t;w, q)

are non-empty.

(T1.1) is basically a negation of (ii) and (T1.2) a negation of (iii). Therefore,

in our case (T2) must hold. As a consequence we can find t ∈ TΓ, w ∈ pos(t)

and p, q ∈ Q with p 6= q for which there are partial runs rpp ∈ Run∂A,p(t;w, p),

rpq ∈ Run∂A,p(t;w, q) and rqq ∈ Run∂A,q(t;w, q).

Conceptually, we can now “concatenate” these partial runs in a fashion

rpp · · · rpprpqrqq · · · rqq . This creates partial runs on trees growing like n in size and

having at least n partial runs. We set t1 := t, tn+1 := tn〈t → wn〉 and r1
1 := rpq .

For n ≥ 1 and i ∈ {1, . . . , n} we set rin+1 := rin〈rqq → wn〉 (adding rqq at the

bottom) and rn+1
n+1 := rpp〈rnn → w〉 (to get the run with rpq at the bottom). Then

for n ∈ N and 1 ≤ i < j ≤ n we have rin ∈ Run∂A,p(tn;wn, q) and rin 6= rjn such

that |pos(tn)| ≤ n · |pos(t)| and |Run∂A,p(t;w
n, q)| ≥ n. By extending the trees tn

with some fixed tree ŝ ∈ TΓ and run r̂ ∈ Run∂A,F(ŝ; v̂, p) for v̂ ∈ pos(ŝ) at the top

and š ∈ TΓ and run ř ∈ RunA,q(š) at the bottom we obtain trees as needed.

8.2 Decomposition into a Sum of Standardized Automata

We can now define what we want to understand by a standardized WTA.

Definition 8.10 (Polynomial Standard Form). We call a (polynomially ambigu-

ous) WTA A = (Q,Γ, µ, γ) standardized or say it to be in polynomial standard

form if
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(i) A is polynomially ambiguous, trim and possesses only one final state qf ∈ Q

and

(ii) for every p ∈ Q with degreeA(p) > 0 there is exactly one bridge out of C(p)

and every accepting run r uses this bridge exactly once. Formally

{d ∈ ∆A | d is a bridge out of C(p)} = {b(p)}

for some b(p) ∈ ∆A and

∀t ∈ TΓ ∀r ∈ RunA,F(t) : |{w ∈ pos(t) | tr(w) = b(p)}| = 1.

The fundamental concept of standardized WTA is close to the notion of chain

NFAs as introduced in [21].

Lemma 8.11. Let A = (Q,Γ, µ, γ) be a polynomially ambiguous WTA, then

there exist n ∈ N and WTA A1, . . . ,An in polynomial standard form such that

degree(Ai) ≤ degree(A) for all i ∈ {1, . . . , n} and

JAK =
n⊕
i=1

JAiK.

The rest of this subsection is dedicated to the proof of this lemma. We begin

with a first elementary simplification. Let A = (Q,Γ, µ, γ) be a polynomially

ambiguous WTA and F be the final states of A. For q ∈ F take the automaton

Aq = (Q,Γ, µ, γq) where γq(q) := γ(q) and γq(p) := 0 if p 6= q. Clearly, we have

JAK =
⊕
q∈F

JAqK.

Therefore, without loss of generality, it suffices to prove Lemma 8.11 under the

assumption thatA possesses only one final state qf . In the next step we construct

a WTA A′, accepting the same tree series as A, in which for every component

c′ ∈ Q′ and every run r′ there is at most one footpoint of a bridge out of c′ in r′.

The idea is to make several copies of the states of A and adapt µ accordingly.
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Set N := |Q| + 1, U := {1, . . . , rk(Γ)} and U :=
⋃N
i=0 U

i. Then we consider the

WTA A′ = (Q′,Γ, µ′, γ′) where Q′ := Q× U and µ′ and γ′ are defined by

µ′((p1, u1), . . . , (pm, um), a, (q, u)) :=

µ(p1, . . . , pm, a, q) if (p1, . . . , pm, a, q) is not a bridge and u = u1 = . . . = um

or if (p1, . . . , pm, a, q) is a bridge and ui = ui for all

i ∈ {1, . . . ,m}

0 otherwise

γ′(q, u) :=

γ(q) if u = ε

0 otherwise.

The automaton A′ behaves like A in the Q-coordinate and, using a top-down

perspective, upon encountering a bridge saves the direction it took passing this

bridge accumulating these directions into a word. Every state (p, u) ∈ Q′ can

be interpreted as a copy of the state p ∈ Q. For (p, u) ∈ Q′ we denote the

component of (p, u) in terms of 4 by C′(p, u) and the components of Q′ by Q′.

Proposition 8.12.

(i) A′ is polynomially ambiguous with degree(A′) = degree(A) and JA′K = JAK.

(ii) For all (p, u) ∈ Q′ we have degreeA′(p, u) ≤ degreeA(p).

(iii) States of A′ with non-zero degree being in 4-relation are always at positions

being in in ≤p-relation: For all t ∈ TΓ, r′ ∈ RunA′,F(t) and w1, w2 ∈ pos(t)

such that r′(w1) 4 r′(w2), degreeA′(r
′(w1)) > 0 and degreeA′(r

′(w2)) > 0

we have w1 ≤p w2 or w2 ≤p w1.

Proof. (i) Let t ∈ TΓ and π : RunA′,F(t) → RunA,F(t) be the projection on the

Q-coordinate. By definition of µ′ the well definition of π is clear. We will

show that π is a bijection and that the weights of the runs are preserved. Take
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r ∈ RunA,F(t) and define r′ ∈ RunA′,F(t) inductively starting from the root with

r′(ε) := (qf , ε), which is the only final state. Then assume that r′ is defined at

position w ∈ pos(t) with r′(w) = (q, u) and that tr(w) = (p1, . . . , pm, a, q) =: d.

1) If d is not a bridge, we set d′ := ((p1, u), . . . , (pm, u), a, (q, u)) and define r′

at position w using this transition. By construction of µ′ this is the only possible

extension of r′ such that tr′(w) is valid. We also see that µ(d) = µ′(d′).

2) If d is a bridge we set d′ := ((p1, u1), . . . , (pm, um), a, (q, u)). If u /∈ UN we

have d′ ∈ ∆A′ and can define r′ at position w using this transition. This then

again is the only possible extension of r′ such that tr′(w) is valid and we have

µ(d) = µ′(d′) in this case.

3) Now if d was a bridge and u ∈ UN at the same time, we can find N

pairwise distinct positions w1 ≤p . . . ≤p wN = w such that tr(wi) is a bridge for

all i ∈ {1, . . . , N}. But then also C(r(w1)), . . . ,C(r(wN)) are pairwise distinct

such that |Q| ≥ |Q| ≥ N = |Q|+ 1 which is a contradiction. Therefore this case

can not arise.

We now have π(r′) = r. The uniqueness of the construction of r′ implies

injectivity of π and the fact that we can always construct r′ as shown above

shows surjectivity. This bijection yields the polynomial ambiguity of A′ with the

same degree as A and together with µ(tr(w)) = µ′(tr′(w)) for all w ∈ pos(t) and

γ(qf ) = γ′(qf , ε) we have JAK = JA′K.

(ii) Take (p, u) ∈ Q′, then with the same construction as in (i) we can show

that for t ∈ TΓ the projection on the Q-coordinate π : RunA′,(p,u)(t)→ RunA,p(t)

is injective such that |RunA′,(p,u)(t)| ≤ |RunA,p(t)| and therefore degreeA′(p, u) ≤

degreeA(p).

(iii) Assume we have t ∈ TΓ, r′ ∈ RunA′,F(t) and prefix-independent w1, w2 ∈

pos(t) such that r′(w1) 4 r′(w2), degreeA′(r
′(w1)) > 0 and degreeA′(r

′(w2)) > 0.

Now let v be the largest common prefix of w1 and w2, i.e. w1 = viw′1 and

w2 = vjw′2 with i 6= j. Take π as in (i) and consider r := π(r′) ∈ RunA,F(t).

We have degreeA(r(vi)) ≥ degreeA(r(w1)) ≥ degreeA′(r
′(w1)) > 0 and similarly
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degreeA(r(vj)) > 0 which by Proposition 8.9 (iii) implies that d := tr(v) is a

bridge. By what we have shown in (i) this then means that for some u, u1, u2 ∈ U

the state r′(w1) is of the form (p1, uiu1) and r′(w2) is of the form (p2, uju2). But

due to r′(w1) 4 r′(w2) and the construction of µ we also must have that uiu1 is

a prefix of uju2, which is impossible due to i 6= j. This is a contradiction, so w1

and w2 as chosen cannot exist.

The next proposition shows, simply put, that components of non-zero degree

always form a “straight line” in a run and that no components of non-zero degree

can “branch off” of these lines.

Proposition 8.13. Let t ∈ TΓ, r′ ∈ RunA′,F(t), q ∈ Q′ with degreeA′(q) > 0 and

define W := {w ∈ pos(t) | r′(w) ∈ C′(q)}, then:

(i) W = ∅ or W = {v, vi1, vi1i2, . . . , vi1 · · · in} for some v ∈ pos(t), n ∈ N0 and

i1, . . . , in ∈ N.

(ii) If w ∈ pos(t) with v ≤p w for some v ∈ W and degreeA′(r
′(w)) > 0, then

either w ∈W or v ≤p w for all all v ∈W.

(iii) The run r′ uses at most one bridge out of C′(q), that is for

V := {w ∈ pos(t) | tr′(w) is a bridge out of C′(q)}

we have |V| ≤ 1 and |V| = 1 iff W 6= ∅.

Proof. (i) We assume W 6= ∅. By 8.12 (iii) W is a ≤p-totally ordered set.

Now if w′ ∈ pos(t) such that w1 ≤p w′ ≤p w2 for some w1, w2 ∈ W we

have r′(w1) 4 r′(w′) 4 r′(w2) such that r′(w′) ∈ C′(q) and w′ ∈ W. Hence,

W = {v, vi1, vi1i2, . . . , vi1 · · · in} for some v ∈ pos(t), n ∈ N0 and i1, . . . , in ∈ N.

(ii) Take w ∈ pos(t) with v ≤p w for some v ∈ W and degreeA′(r
′(w)) > 0

and write W = {v1, . . . , vk} with v1 ≤p . . . ≤p vk. Take the largest l ∈ {1, . . . , k}

such that vl ≤p w. If l = k we are finished, otherwise write vl+1 = vlj and take

d := tr′(vl) = (p1, . . . , pm, a, p). This is not a bridge as C′(p) = C′(pj), so by
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Proposition 8.9 (iii) degreeA′(pi) = 0 for all i 6= j. In particular, pi 64 r′(w) for

i 6= j (Proposition 8.7 (iii)) and so vli 6≤p w for i 6= j and as vlj = vl+1 6≤p w we

must have w = vl, i.e. w ∈W.

(iii) Let V := {w ∈ pos(t) | tr′(w) is a bridge out of C′(q)}. It is easy to see

that V ⊆ W, so if W = ∅ then also V = ∅. Assume W 6= ∅, let v ∈ W and

take d := tr′(v). If v is the maximal element in W, d must clearly be a bridge.

Otherwise vj ∈ W for some j ∈ N, due to the structure of W we proved in (i),

so that d cannot be a bridge, in particular |V| ≤ 1.

In conclusion, we now have an automaton that defines the same tree series

JAK as A does and is polynomially ambiguous with the same degree as A, but is

simpler in structure, as every run uses at most one bridge out of each component

of Q′ of non-trivial degree. Therefore without loss of generality, we assume A to

have had this property from the beginning. We will continue to denote the only

final state of A by qf .

We now come to the final construction needed to prove Lemma 8.11. We

assume degree(A) > 0 as for finitely ambiguous WTA the lemma obviously

holds true. Let c1, . . . , cn ∈ Q be an enumeration of all components of Q of non-

trivial degree and for i ∈ {1, . . . , n} let b
(i)
1 , . . . , b

(i)
ki
∈ ∆A be an enumeration of

all bridges out of ci and set J :=×n

i=1
{1, . . . , ki}. Then for x = (x1, . . . , xn) ∈ J

we define the automaton Ax = (Q,Γ, µx, γ) by

µx(d) :=


µ(d) if d 6= b

(i)
j for all i ∈ {1, . . . , n} and j ∈ {1, . . . , ki}

or if d = b
(i)
xi for some i ∈ {1, . . . , n}

0 otherwise

for d ∈ ∆A. That is, for every component of Q of non-trivial degree we remove

all but one bridge out of this component. By assumption on A, i.e. Proposition

8.13 (iii), for any t ∈ TΓ and r ∈ RunA,F(t) the run r is also an accepting run for

t in one of the Ax, but r might still be an accepting run in more than one of the
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Ax. We can resolve this by taking only a subset of the Ax.

Let B := {b(i)
j | i ∈ {1, . . . , n}, j ∈ {1, . . . , ki}}. For t ∈ TΓ and r ∈ RunA,F(t)

define B(r) := {b ∈ B | ∃w ∈ pos(t) : tr(w) = b} as the set of all bridges in B

used by r.

Proposition 8.14.

(i) For every x = (x1, . . . , xn) ∈ J and r1, r2 ∈ RunAx,F(t) we have that B(r1) =

B(r2). The definition B(x) := B(r1) is therefore well-defined.

(ii) For every t ∈ TΓ and r ∈ RunA,F(t) there exists some x ∈ J such that

r ∈ RunAx,F(t).

Proof. The idea is very simple here. In every run the root has to be mapped

to qf . Hence given x ∈ J every run of Ax uses the one bridge out of the

component of qf it possesses. The “child states” of non-zero degree of this

transition therefore occur in every run as well and so do the bridges leaving

their components. Iterating this argument we get that every run of Ax uses the

same set of bridges in B. A formal proof follows.

Take t ∈ TΓ and r1, r2 ∈ RunAx,F(t). We show B(r1) ⊆ B(r2) and consider

B := B(r1) \ B(r2). If B = ∅ there is nothing to show, otherwise we have

V := {v ∈ pos(t) | r1(v) ∈ B} 6= ∅. Now select some prefix-minimal v ∈ V , let

W1 := {w ∈ pos(t) | r1(w) ∈ C(r1(v))} and let v0 be the prefix-smallest element

of W1, which exists due to Proposition 8.13 (i). If v0 = ε then from r(ε) = qf we

get that b := tr1(v) is a bridge out of C(qf ). As r2(ε) = qf as well and there is

only one (in Ax valid) bridge out of C(qf ), we get that b ∈ B(r2), so b /∈ B and

v /∈ V , which is a contradiction.

We conclude that ε 6= v0 = w1l for some l ∈ N and w1 ∈ pos(t). As

degreeA(r1(v0)) > 0 the transition b := tr1(w1) must be a bridge, i.e. b ∈ B.

As we chose v to be minimal, we have w1 /∈ V and therefore b /∈ B, so

b ∈ B(r2). Hence, there is some w2 ∈ pos(t) with tr2(w2) = b. But then

r2(w2l) = r1(w1l) ∈ C(r1(v)), so W2 := {w ∈ pos(t) | r2(w) ∈ C(r1(v))} 6= ∅. In

particular, for some w ∈ pos(t) the transition tr2(w) is a bridge out of C(r1(v))
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and as there is only one such bridge, tr2(w) = tr1(v) must hold. In particu-

lar, tr1(v) ∈ B(r2), so b /∈ B and v /∈ V . It follows, that V = B = ∅ and

B(r1) = B(r2).

(ii) By Proposition 8.13 (iii) we have that for all i ∈ {1, . . . , n} there can be at

most one w ∈ pos(t) such that r(w) is a bridge out of ci. In particular, for every

i ∈ {1, . . . , n} there exists at most one j ∈ {1, . . . , ki} such that b
(i)
j ∈ B(r). For

i ∈ {1, . . . , n} we set xi = j if b
(i)
j ∈ B(r) for some j ∈ {1, . . . , ki} and if such j

does not exist we choose xi arbitrary. Clearly we have r ∈ RunAx,F(t).

We now have an equivalence relation on J induced by x ≈ y iff B(x) = B(y)

for x, y ∈ J . We select a representative of every equivalence class and obtain a

set {x1, . . . , xk} ⊆ J . For this selection we can prove the following proposition,

which in essence concludes the proof of Lemma 8.11.

Proposition 8.15.

(i) JAK =
⊕k

i=1JAxiK.

(ii) For i ∈ {1, . . . , k} we have degree(Axi) ≤ degree(A) such that Axi is poly-

nomially ambiguous and maxi≤k degree(Axi) = degree(A).

Now for i ∈ {1, . . . , k} let Ai = (Qi,Γ, µi, γ) be the trim part of Axi. Note that

trimming has no influence on properties (i) and (ii). For p ∈ Qi we denote the

component of p by Ci(p) ∈ Qi, where Qi denotes the components of Qi.

(iii) For i ∈ {1, . . . , k} and every p ∈ Qi with degreeAi
(p) > 0 there is exactly

one bridge out of Ci(p) and every accepting run r uses this bridge exactly

once. Formally

{d ∈ ∆Ai
| d is a bridge out of Ci(p)} = {b(p)}

for some b(p) ∈ ∆Ai
and

∀t ∈ TΓ ∀r ∈ RunAi,F(t) : |{w ∈ pos(t) | tr(w) = b(p)}| = 1.
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Proof. (i) Take t ∈ TΓ and r ∈ RunA,F(t), then by Proposition 8.14 (ii) we

have that r ∈ RunAx,F(t) for some x ∈ J . By construction we have x ≈ xi

for some i ∈ {1, . . . , k}, such that B(r) = B(x) = B(xi). This means

r ∈ RunAxi ,F(t), yielding RunA,F(t) =
⋃k
i=1 RunAxi ,F(t). Now assume we have

r ∈ RunAxi ,F(t) ∩ RunAxj ,F(t) for 1 ≤ i < j ≤ k, then B(r) = B(xi) 6= B(xj) =

B(r) which is a contradiction, hence RunAxi ,F(t) ∩RunAxj ,F(t) = ∅, i.e. we have

a partition of the accepting runs in A.

(ii) degree(Axi) ≤ degree(A) is clear as for every t ∈ TΓ and i ∈ {1, . . . , k}

we have RunAxi ,F(t) ⊆ RunA,F(t). The second property is clear by |RunA,F(t)| =∑k
i=1 |RunAxi ,F(t)| for every t ∈ TΓ and the definition of the function degree.

(iii) Let i ∈ {1, . . . , k}, then for all p ∈ Qi we have degreeAi
(p) ≤

degreeAxi
(p) ≤ degreeA(p). We prove that if degreeAi

(p) > 0 then Ci(p) =

C(p). Let t ∈ TΓ such that we find w ∈ pos(t) and r ∈ RunAi,F(t;w, p) ⊆

RunA,F(t;w, p).

Now take q ∈ C(p), then we find s1 ∈ TΓ with wq ∈ pos(s1) and r1 ∈

RunA,p(s1;wq, q) and s2 ∈ TΓ with wp ∈ pos(s2) and r2 ∈ RunA,q(s2;wp, p).

Then for s := s1〈s2 → wq〉 and rs := r1〈r2 → wq〉 we have rs ∈

RunA,p(s;wq, wqwp, q, p). That is, we have a tree s with a run in A that goes

from p to q to p again.

By Proposition 8.13 (ii) we know, as degreeA(p) > 0, that all footpoints v of

bridges out of components of Q of non-trivial degree fulfill wqwp ≤p v. In other

words, there are no bridges “between” the two p’s. Hence, by considering the

tree t′ := t〈s → w〉〈t|w → wwqwp〉, which inserts s into t at position w, and

the run r′ “glued” accordingly, we see r′ ∈ RunA,F(t′) and B(r′) = B(r) which

means r′ ∈ RunAxi ,F(t′) = RunAi,F(t′). As q is used by r′ we have q ∈ Qi and

q ∈ Ci(p).

Now if degreeAi
(p) > 0 and b ∈ ∆Ai

is a bridge out of Ci(p) then due to

degreeA(p) > 0 and Ci(p) = C(p) we have that b is a bridge out of C(p) as well

and by construction of Axi this bridge b = b(p) is unique. As p ∈ Qi by trimness
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we can find some t ∈ TΓ, r ∈ RunAi,F and w ∈ pos(t) with r(w) = p. For this

run we clearly have b(p) ∈ B(r) = B(xi) so by Proposition 8.14 (i) every valid

run in Axi uses b(p), hence so does Ai, as trimming does not influence runs.

The automata Ai are all in polynomial standard form and have a degree less

than or equal to the degree of A. As their sum equals A, we have proven Lemma

8.11.

8.3 Analysis of the Polynomial Standard Form

From now on, let A = (Q,Γ, µ, γ) be a WTA in polynomial standard form. In

this subsection we will show that there exist degree(A) many bridges in A, such

that given any tree, the number of runs on that tree is bounded universally if

we fix the position of these bridges. The bound does not depend on the given

tree. This property gives a rather intuitive understanding of what polynomial

ambiguity means: if our automaton has degree n, then fixing the positions of n

predetermined transitions will determine every run up to a constant number of

possibilities.

Definition 8.16 (Λ, rkΛ, Top). Fix p ∈ Q with degreeA(p) > 0. As there is

exactly one bridge b ∈ ∆A out of C(p) we define b(C(p)) := b and b(p) := b

as this bridge. We set Λ := {b(q) | q ∈ Q, degreeA(q) > 0} and for b(p) =

(p1, . . . , pm, a, p0) define the rank of b(p), denoted by rkΛ(b(p)), as rkΛ(b(p)) :=

|{i ∈ {1, . . . ,m} | degreeA(pi) > 0}|, the amount of pi of non-trivial degree. We

also extend the relation 4 to Λ, that is

b(p1) 4 b(p2) :⇔ p1 4 p2.

For for N ⊆ Λ we define the set Top(N) as the set of all minimal elements in N,

that is

Top(N) := {d ∈ N | ∀e ∈ N : (e 4 d −→ e ≈ d)}.
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Proposition 8.17.

(i) Let N ⊆ Λ. If Top(N) = {b1, . . . , bn} and w1, . . . , wn are not pairwise prefix-

independent, then

RunA,F(t;w1, . . . , wn, b1, . . . , bn) = ∅.

(ii) For b1, b2 ∈ Λ with b1 4 b2, t ∈ TΓ, w1, w2 ∈ pos(t) we have

RunA,F(t;w1, w2, b1, b2) 6= ∅ −→ w1 ≤p w2.

Proof. (i) If this does not hold, it is an obvious contradiction to the minimality

of the elements in Top(N).

(ii) Take b1, b2 ∈ Λ with b1 4 b2, t ∈ TΓ, w1, w2 ∈ pos(t). Assume that there

exists some r ∈ RunA,F(t;w1, w2, b1, b2). Let p1 := r(w1) and p2 := r(w2). Due

to b(p1) = b1, b(p1) = b2 and b1 4 b2 we have that p1 4 p2.

If w1 ≤p w2 there is nothing to show. If w2 ≤p w1, then clearly p2 4 p1 and so

p1 ≈ p2. As A is standardized this implies b1 = b2 and w1 = w2. In particular,

w1 ≤p w2.

Now assume that neither w1 ≤p w2 nor w2 ≤p w1, i.e. w1 and w2 are prefix-

independent. Due to p1 4 p2 we can find some s ∈ TΓ and v ∈ pos(s) such that

rs ∈ RunA,p1(s; v, p2) exists. Then for t′ := t〈s→ w1〉 we have r′ := r〈rs → w1〉 ∈

RunA,F(t′;w1v, w2, p2, p2). As we have that w1v and w2 are prefix-independent,

there must be at least 2 bridges out of C(p2) in r′, i.e. |{w ∈ pos(t) | tr′(w) =

b(p2)}| ≥ 2. This is a contradiction to the assumption thatA is standardized.

Before we get to some deeper results, we need one more construction. For

p ∈ Q the automata Fp accept subtrees with runs that from a top-down point

of view “begin” with p. But we also need an automaton for the “upper part” of

the run, ending in p, partial runs ending in p, so to speak.

Definition 8.18 (Hq
p). For p, q ∈ Q we define the automaton Hq

p = (Q ×
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{0, 1},Γ⊥, µqp, αqp) where Γ⊥ := Γ ∪ {⊥} with ⊥ /∈ Γ and rkΓ⊥(⊥) := 0.

The rank of all other letters is preserved and µqp and αqp are defined for(( p1

k1

)
, . . . , (

pm
km ), a,

( p0

k0

))
∈ ∆Hq

p
as:

µqp
(( p1

k1

)
, . . . , (

pm
km ), a,

( p0

k0

))
:=

1 if a = ⊥ ∧
( p0

k0

)
= ( p1 )

µ(p1, . . . , pm, a, p0) if a ∈ Γ ∧ k0 = 0 ∧ k1 = . . . = km = 0

or if a ∈ Γ ∧ k0 = 1 ∧ ∃!i ∈ {1, . . . ,m} : ki = 1

0 otherwise

αqp
( p0

k0

)
:=

1 if
( p0

k0

)
= ( q1 )

0 otherwise.

From a bottom-up point of view, the automaton emulates A in the first

coordinate of the states, deterministically remembers every occurrence of ⊥ in

the second and forces the runs to take value p at the leaves labeled ⊥.

Proposition 8.19. Let p, q ∈ Q, then

(i) If t ∈ TΓ⊥ and RunHq
p,F(t) 6= ∅, then ∃!w ∈ pos(t) : t(w) = ⊥.

(ii) For t ∈ TΓ and w ∈ pos(t) we can identify RunHq
p,F(t〈⊥ → w〉) with

Run∂A,q(t;w, p).

(iii) Hq
p is polynomially ambiguous.

(iv) Hq
q is unambiguous.

(v) If p 4 p′ for p′ ∈ Q then degree(Hq
p) ≤ degree(Hq

p′).

Proof. (i) Take t ∈ TΓ⊥ and r ∈ RunAq
p,F(t). If t(w) 6= ⊥ for all w ∈ pos(t) we eas-

ily see that for all w ∈ pos(t) we have r(w) =
(
p(w)

0

)
for some p(w) ∈ Q. In par-

ticular, r(ε) =
(
p(ε)

0

)
for some p(ε) ∈ Q and r is not accepting. If w1, w2 ∈ pos(t)
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with w1 6= w2 and t(w1) = t(w2) = ⊥ then by definition of µ for w ∈ pos(t) with

w ≤p w1 or w ≤p w2 we have r(w) =
(
p(w)

1

)
for some p(w) ∈ Q. As ⊥ can

only occur at leaves, w1 and w2 must be prefix-independent. Let v be the largest

common prefix of w1 and w2, i.e. w1 = viw′1, w2 = vjw′2 with i 6= j, then tr(v)

cannot be a valid transition, as the second coordinate of both r(vi) and r(vj) is 1.

(ii) Take t ∈ TΓ, w ∈ pos(t) and let π : RunHq
p,F(t〈⊥ → w〉)→ Run∂A,q(t;w, p)

be defined by projection on the Q-coordinate. This is well defined as pos(t〈⊥ →

w〉) = (pos(t)\wpos(t|w))∪{w} and by definition of µqp. It is also injective as Hq
p

is “deterministic” in the second coordinate of the states. For surjectivity take

r ∈ Run∂A,q(t;w, p) and for v ∈ pos(t〈⊥ → w〉) define

r′(v) :=



(
r(v)

1

)
if v ≤p w

(
r(v)

0

)
otherwise.

then r′ ∈ RunHq
p,F(t〈⊥ → w〉) and π(r′) = r. Since the runs correspond to each

other by removing or supplying the second coordinate, we can identify r′ with r.

(iii) Clear by taking some fixed t ∈ TΓ and r ∈ RunA,p(t) and joining r into

the runs of Hq
p.

(iv) Clear with (ii) and Proposition 8.9(i).

(v) Same procedure as Proposition 8.7(iii).

Now we come to the main result of this subsection.

Lemma 8.20. Let p ∈ Q with l := degreeA(p) ≥ 0.

(I) There exists a set N(p) = {b1, . . . , bl} ⊆ Λ fulfilling the following properties:

(i) There is a constant C > 0 such that for all t ∈ TΓ and w1, . . . , wl ∈
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pos(t) we have

|RunA,p(t;w1, . . . , wl, b1, . . . , bl)| ≤ C.

(ii) Assume bi = (p
(i)
1 , . . . , p

(i)
mi , a

(i), q(i)) for all i ∈ {1, . . . , l} and without

loss of generality Top(N(p)) = {b1, . . . , bn} for some n ∈ N. Then

there is a constant Ĉ > 0 such that for all t ∈ TΓ and pairwise prefix-

independent w1, . . . , wn ∈ pos(t) we have

|Run∂A,p(t;w1, . . . , wn, q
(1), . . . , q(n))| ≤ Ĉ

and

(iii)

n+
n∑
i=1

mi∑
j=1

degreeA(p
(i)
j ) = l.

(II) Furthermore there exists a sequence of trees (tn)n∈N in TΓ and a constant

Č > 0 such that for all n ∈ N:

• |pos(tn)| ≤ Č · n and

• |RunA,p(tn)| ≥ nl.

That is, we want to prove that if Fp is of degree l, then for all trees the runs

of Fp on those trees are determined up to a constant C by fixing the location

of l bridges. Furthermore, the degree of Fp is not only an upper bound on the

amount of runs for a given tree, but also a lower bound.

Proof. Let p ∈ Q. If degreeA(p) = 0, i.e. Fp is finitely ambiguous, the proposi-

tion is not more than the definition of finite ambiguity. We therefore only need

to consider the case degreeA(p) > 0 in greater depth. In this case we always have

the (one) bridge b(p) = (p1, . . . , pm, a, p0) out of C(p). We prove the statement

by induction: we assume it is true for p′ ∈ Q with p 4 p′ and p 6≈ p′ and then

prove it for p. Set ki := degreeA(pi) for i ∈ {1, . . . ,m} and k :=
∑m

i=1 ki.
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Step 1: We show k ≤ degreeA(p) ≤ k + 1.

For k ≤ degreeA(p) take t ∈ TΓ such that r ∈ RunA,p(t) exists and let w ∈

pos(t) be the position where tr(w) = b(p). Furthermore for i ∈ {1, . . . ,m}

take tree sequences (t
(i)
n )n∈N with |pos(t

(i)
n )| ≤ Cin and |RunA,pi(t

(i)
n )| ≥ nki . By

assumption such sequences exist and when considering the tree sequence defined

by sn := t〈t(1)
n → w1〉 . . . 〈t(m)

n → wm〉 we see

pos(sn)| ≤ |pos(t)|+
m∑
i=1

|pos(t(i)n )| ≤ C0 +
m∑
i=1

Cin ≤ Cn

for C0 := |pos(t)| and C :=
∑m

i=0Ci and

RunA,p(sn)| ≥
m∏
i=1

|RunA,pi(t
(i)
n )| ≥

m∏
i=1

nki = nk.

This clearly shows degreeA(p) ≥ k. The sequence (sn)n∈N also fulfills (II) for p if

degreeA(p) = k.

For degreeA(p) ≤ k + 1 we consider the sets N(pi) = {b(i)
1 , . . . , b

(i)
ki
} for i ∈

{1, . . . ,m}. Now take t ∈ TΓ, w0, w
(1)
1 , w

(1)
2 , . . . , w

(m)
km
∈ pos(t) and consider r ∈

RunA,p(t;w0, w
(1)
1 , . . . , w

(m)
km
, b(p), b

(1)
1 , . . . , b

(m)
km

). By Proposition 8.9 (ii) we get

that r is uniquely determined on all positions v “above” w0, i.e. when ¬(w0 ≤p v).

Now take i ∈ {1, . . . ,m} and j ∈ {1, . . . , ki}, then r(w0i) = pi by choice of r.

Due to Proposition 8.17 (ii) and the fact that b(pi) 4 b
(i)
j this means that we

have w0i ≤p w(i)
j such that w

(i)
j = w0iv

(i)
j for some v

(i)
j ∈ pos(t|w0i). Combining

this with the assumption that |RunA,pi(t|w0i; v
(i)
1 , . . . , v

(i)
ki
, b

(1)
1 , . . . b

(i)
ki

)| ≤ Ci for

some constants Ci > 0 we get

|RunA,p(t;w0, w
(1)
1 , . . . , w

(m)
km
, b(p), b

(1)
1 , . . . , b

(m)
km

)| ≤
m∏
i=1

Ci.

Finally, with C :=
∏m

i=1 Ci,

|RunA,p(t)|
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=
∑

w0,w
(1)
1 ,...,w

(m)
km
∈pos(t)

|RunA,p(t;w0, w
(1)
1 , . . . , w

(m)
km
, b(p), b

(1)
1 , . . . , b

(m)
km

)|

≤ C|pos(t)|k+1

gives us degreeA(p) ≤ k + 1. Also, if degreeA(p) = k + 1, the set N(p) :=

{b(p)} ∪
⋃m
i=1 N(pi) fulfills requirement (i) of our proposition. As obviously

Top(N(p)) = b(p), we get (ii) by using Proposition 8.9 (ii) again and (iii) by

definition of k which means in this case we have proven (I) already.

Step 2: (I) for degreeA(p) = k and (II) for degreeA(p) = k + 1

Now we know that we only need to consider the cases degreeA(p) = k and

degreeA(p) = k+ 1. Furthermore, if degreeA(p) = k, we have (II) already, and if

degreeA(p) = k + 1, we have (I) already. We consider the remaining cases.

We use a recursive method to find a certain state p′ ∈ Q. For the start we

set p′ := p. By Proposition 8.19 (iv) the automaton Hp
p is unambiguous. Now

assume b(p′) = (p′1, . . . , p
′
m′ , a

′, p′0). As long as Hp
p′ is finitely ambiguous and

rkΛ(b(p′)) = 1, we set p′ := p′i for the one i ∈ {1, . . . ,m′} with degreeA(p′i) > 0.

We stop this procedure once either Hp
p′ is not finitely ambiguous anymore or

rkΛ(b(p′)) 6= 1. We consider four different cases which can occur after stopping.

Case 1: Hp
p′ finitely ambiguous and rkΛ(b(p′)) = 0

Take t ∈ TΓ, w ∈ pos(t) and consider the set RunA,p(t;w, b(p′)). Assume b(p′) =

(p′1, . . . , p
′
m′ , a

′, p′0), then for i ∈ {1, . . . ,m′} we have |RunA,pi(t|wi)| ≤ Ci for

Ci > 0 not depending on t. As we assume Hp
p′ to be finitely ambiguous and by

Proposition 8.19 (v), we have a constant C0 > 0 such that

|Run∂A,p(t;w, p
′
0)| = |RunHp

p′0
,F(t〈⊥ → w〉)| ≤ C0.
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This means

|RunA,p(t;w, b(p′))| ≤ |Run∂A,p(t;w, p
′
0)| ·

m′∏
i=1

|RunA,pi(t|wi)| ≤
m′∏
i=0

Ci

and, with C :=
∏m′

i=0Ci, we get

|RunA,p(t)| =
∑

w∈pos(t)

|RunA,p(t;w, b(p′))| ≤ C · |pos(t)|

which means

0 < degreeA(p) ≤ 1

so degreeA(p) = 1. As we have seen the set N(p) := {b(p′)} now fulfills (i), (ii)

and (iii), so we have proven (I) in this case. Moreover we have proven property

(II) in this case in Proposition 8.9 (iv).

Case 2: Hp
p′ finitely ambiguous and rkΛ(b(p′)) > 1

Assume b(p′) = (p′1, . . . , p
′
m′ , a

′, p′0), set k′i := degreeA(p′i) and take j1 6= j2 with

k′j1 > 0 and k′j2 > 0. We set k′ :=
∑m′

i=1 k
′
i. If p = p′ we have k = k′ trivially.

Otherwise k′ ≤ degreeA(p′) due to Step 1 and degreeA(p′) ≤ k due to Proposition

8.7 (iii), so k′ ≤ k. We write N(p′i) = {b(i)
1 , . . . , b

(i)

k′i
} for i ∈ {1, . . . ,m′}. Now

Take t ∈ TΓ, w1, w2 ∈ pos(t), consider r ∈ RunA,p(t;w1, w2, b
(j1)
1 , b

(j2)
1 ) and take

w ∈ pos(t) with tr(w) = b(p′) which always exists by Proposition 8.15 (iii).

From Proposition 8.17 (ii) we get that w ≤p w1 and w ≤p w2. Furthermore we

have wj1 ≤p w1 and wj2 ≤ w2 and due to j1 6= j2 this means w is the largest

common prefix of w1 and w2. In particular, w = w(w1, w2) is a function of the

positions of b
(j1)
1 and b

(j2)
1 . As it was in Case 1 we can find a constant C0 > 0

and constants C1, . . . , Cm′ > 0 such that

|RunA,p(t)|

=
∑

w
(1)
1 ∈pos(t)

. . .
∑

w
(m′)
k′
m′
∈pos(t)

|RunA,p(t;w
(1)
1 , . . . , w

(m′)
k′
m′
, b

(1)
1 , . . . , b

(m′)
km′

)|
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=
∑

w
(1)
1 ∈pos(t|w′1)

. . .
∑

w
(m′)
k′
m′
∈pos(t|w′m′ )

|Run∂A,p(t;w
′, p′0)|

·
m′∏
i=1

|RunA,pi(t|w′i;w
(i)
1 , . . . , w

(i)

k′i
, b

(i)
1 , . . . , b

(i)

k′i
)|

with w′ = w(w
(j1)
1 , w

(j2)
1 )

≤
∑

w
(1)
1 ∈pos(t)

. . .
∑

w
(m′)
k′
m′
∈pos(t)

m′∏
i=0

Ci = C|pos(t)|k′ with C :=
m′∏
i=0

Ci

so k ≤ degreeA(p) ≤ k′, i.e. degreeA(p) = k = k′. We also see that in this case the

set N(p) :=
⋃m′

i=1 N(p′i) satisfies (i). For (ii) and (iii) we notice that Top(N(p)) =⋃m′

i=1 Top(N(p′i)). Write Top(N(p′i)) = {b(i)
1 , . . . , b

(i)
ni } and let q

(i)
1 , . . . , q

(i)
ni be the

states associated to these bridges as done in (ii). Let t ∈ TΓ, w
(1)
1 , . . . , w

(m′)
nm′ ∈

pos(t) be pairwise prefix-independent and

r ∈ Run∂A,p(t;w
(1)
1 , . . . , w

(m′)
nm′ , q

(1)
1 , . . . , q

(m′)
nm′ ). With the same reasoning as earlier,

we find that the position w ∈ pos(t) with tr(w) = b(p′) is a function of the

positions of q
(j1)
1 and q

(j2)
1 . We abbreviate this position by w′ again and if r as

chosen exists can write w
(i)
n = w′iv

(i)
n for i ∈ {1, . . . ,m′}, n ∈ {1, . . . , ni} and

v
(i)
n ∈ pos(t|w′i). Then for some constants C ′i > 0 we have

|Run∂A,p(t;w
(1)
1 , . . . , w(m′)

nm′
, q

(1)
1 , . . . , q(m′)

nm′
)|

= |Run∂A,p(t;w
′, p′0)| ·

m′∏
i=1

|Run∂A,pi(t|w′i; v
(i)
1 , . . . , v(i)

ni
, q

(i)
1 , . . . , q(i)

ni
)|

≤ C0 ·
m′∏
i=1

C ′i with w′ = w(w
(j1)
1 , w

(j2)
1 )

so we have (ii). That (iii) also holds is clear by induction and the definition of

k′ = k, therefore we have (I) in this case.

Case 3: Hp
p′ not finitely ambiguous and k′ := degreeA(p′) < k

As Hp
p′ is not finitely ambiguous, we know that p 6= p′. Therefore right be-

fore coming to p′ we considered some q′ ∈ Q with Hp
q′ finitely ambiguous and
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rkΛ(b(q′)) = 1. Let b(q′) = (q′1, . . . , q
′
m′ , a

′, q′0) and take j ∈ {1, . . . ,m′} with

q′j = p′. For i 6= j we have degreeA(q′i) = 0, so there are constants Ci > 0 with

|RunA,q′i(t)| ≤ Ci for every t ∈ TΓ. AsHp
q′ is finitely ambiguous there is a constant

C0 > 0 such that for every t ∈ TΓ and w ∈ pos(t) we have |Run∂A,p(t;w, q
′
0)| ≤ C0.

For p′ we write N(p′) = {b1, . . . , bk′} and see that for some constant Cj > 0 and

t ∈ TΓ we have

|RunA,p(t)|

=
∑

w0∈pos(t)

. . .
∑

wk′∈pos(t)

|RunA,p(t;w0, w1, . . . , wk′ , b(q′), b1, . . . , bk′)|

=
∑

w0∈pos(t)

∑
w1∈pos(t|w0j

)

. . .
∑

wk′∈pos(t|w0j
)

|Run∂A,p(t;w0, q
′
0)| ·

m′∏
i=1
i 6=j

|RunA,q′i(t|w0i)|

· |RunA,p(t|w0j;w1, . . . , wk′ , b1, . . . , bk′)|


≤ |pos(t)|k′+1

m′∏
i=0

Ci

and this means degreeA(p) ≤ k′ + 1 ≤ k. We see that in this case the set

N(p) := N(p′)∪{b(q′)} fulfills (i). As then Top(N(p)) = {b(q′)} we get (ii) from

the fact that |Run∂A,p(t;w, q
′
0)| ≤ C0 for all t ∈ TΓ and every w ∈ pos(t). We get

(iii) from k′ = degreeA(p′) = k − 1. Hence, we have (I) for this case.

Case 4: Hp
p′ not finitely ambiguous and degreeA(p′) = k

As Hp
p′ is not finitely ambiguous, we have p 6= p′ and by Proposition 8.9 (iv)

we can find a sequence of trees (tn)n∈N ⊆ TΓ⊥ with |pos(tn)| ≤ C1 · n and

|RunHp

p′ ,F
(tn)| ≥ n for some constant C1 > 0 and all n ∈ N. By induction

we can also find a sequence of trees (sn)n∈N such that |pos(sn)| ≤ C2 · n and

|RunA,p′(sn)| ≥ nk for some constant C2 > 0 and n ∈ N. We set wn ∈ pos(tn) as

the unique position for which tn(wn) = ⊥ and define t′n := tn〈sn → wn〉. Then
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with the help of Proposition 8.19 (ii) we see that for n ∈ N

|RunA,p(t
′
n)| ≥ |Run∂A,p(t

′
n;wn, p

′)| · |RunA,p′(t
′
n|wn)|

= |RunHp

p′ ,F
(tn)| · |RunA,p′(sn)|

≥ nk+1

and

|pos(t′n)| ≤ |pos(tn)|+ |pos(sn)| ≤ (C1 + C2)n

so degreeA(p) ≥ k + 1. We clearly have also proven (II) in this case.

Step 3: Conclusion

First notice, that the case analysis in Step 2 is exhaustive: if Hp
p′ is finitely

ambiguous, then we continue the procedure if rkΛ(b(p′)) = 1 and otherwise the

only cases left are rkΛ(b(p′)) = 0 and rkΛ(b(p′)) > 1, which we both covered. If

Hp
p′ is not finitely ambiguous, then we know that p′ 6= p, so that degreeA(p′) ≤ k

simply due to the way our recursion works in the very first step. We have covered

both the cases degreeA(p′) = k and degreeA(p′) < k.

Now by Step 1 we know that either degreeA(p) = k or degreeA(p) = k + 1.

If degreeA(p) = k then also by Step 1 we have property (II). In this case,

only the cases 1, 2 and 3 of Step 2 are possible. In each of these cases, we have

property (I).

If degreeA(p) = k + 1, we have property (I) by Step 1. Furthermore, for

degreeA(p) = k + 1 only the cases 1 and 4 of Step 2 are possible. In both of

these cases we have proven property (II). In conclusion, (I) and (II) hold in every

possible case.

While the preceding lemma is interesting as a whole, we will only need point

(I) in the sequel. To use this property, we define another automaton very similar

to Hq
p.

Definition 8.21 (Gp, Γl). First take p ∈ Q and we write Top(N(p)) =
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{b1, . . . , bl} with bi = (p
(i)
1 , . . . , p

(i)
mi , a

(i), q(i)) for i ∈ {1, . . . , l}. Then let

Gp = (Q× {0, 1}l,Γl, νp, βp) be the automaton defined in the following way:

Γl := Γ ∪ {⊥1, . . . ,⊥l}

with ⊥i /∈ Γ for i ∈ {1, . . . , l} and

rkΓl
(a) :=

rkΓ(a) if a ∈ Γ

0 otherwise.

For m ∈ N, a ∈ Γ
(m)
l , p0, p1, . . . , pm ∈ Q and k0, k1, . . . , km ∈ {0, 1}l with

ki = (k
(1)
i , . . . , k

(l)
i ) for i ∈ {0, . . . , l} we define

νp
(( p1

k1

)
, . . . , (

pm
km ), a,

( p0

k0

))
:=

1 if a = ⊥i for some i ∈ {1, . . . , l} and p0 = q(i) and

k
(i)
0 = 1 and k

(j)
0 = 0 for all j ∈ {1, . . . , l} with j 6= i

µ(p1, . . . , pm, a, p0) if a ∈ Γ and for all i ∈ {1, . . . , l}

either k
(i)
0 = k

(i)
1 = . . . = k

(i)
m = 0

or k
(i)
0 = 1 ∧ ∃!j ∈ {1, . . . ,m} : k

(i)
j = 1

0 otherwise

and

βp
( p0

k0

)
:=

1 if p0 = p and k
(1)
0 = . . . = k

(l)
0 = 1

0 otherwise.

Proposition 8.22. Let p ∈ Q and l := |Top(N(p))|.

(i) If t ∈ TΓl
and RunGp,F(t) 6= ∅, then ∀i ∈ {1, . . . , l} ∃!wi ∈ pos(t) : t(wi) = ⊥i.

(ii) For t ∈ TΓ and pairwise prefix-independent w1, . . . , wl ∈ pos(t) we can

identify RunGp,F(t〈⊥1 → w1〉 . . . 〈⊥l → wl〉) with Run∂A,p(t;w1, . . . , wl,
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q(1), . . . , q(l)).

(iii) Gp is finitely ambiguous.

Proof. (i) Same as Proposition 8.19 (i)

(ii) Same as Proposition 8.19 (ii).

(iii) Combine (ii) and property (ii) of Lemma 8.20.

8.4 Two Transformations on Logic Formulas

What we essentially want to do is, instead of letting the automatonA run directly

on a given tree, to cut this tree into several pieces at prefix-independent positions

and run automata Fp on the resulting subtrees and an automaton Gp on the upper

part. However, even if we find logic formulas to describe the automata Fp and

Gp, we have no way of using them. A formula always evaluates a whole tree and

there is no elementary method to tell a formula to only evaluate a subtree, for

example. To remedy this, we define two mappings G and F which will effectively

turn a given formula into one evaluating only a part of a tree. First, we define

some abbreviations:

Definition 8.23 (Basic Abbreviations).

x ≤p y := ∀X.

((
y ∈ X ∧ ∀z.

(( rk(Γ)∨
i=1

(∃z′.(edgei(z, z
′) ∧ z′ ∈ X))

)
→ z ∈ X

))

→ x ∈ X

)
x = z := z ≤p x ∧ x ≤p z

x > z := z ≤p x ∧ ¬(z = x)

x >i z := ∃y.(edgei(z, y) ∧ y ≤p x)

where x, y, z, y′ are first order variables, X a second order variable and i ∈

{1, . . . , rk(Γ)}. The first formula is taken from [4] and is an MSO-formulation of
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the prefix-relation: x ≤p y iff x is an element of every prefix-closed set X which

contains y. Here we call a set X ⊆ N∗ prefix-closed if z′ ∈ X and z ≤p z′ implies

z ∈ X.

Now we define the two transformations. As indicated by the naming, the

transformation G is linked to the automata Gp and F to the automata Fp.

Definition 8.24 (Gz
l , F

z
i ). Let l ∈ N and θ ∈ QMSOΓl

(Πx,⊕,�). Then for a

tuple z = (z1, . . . , zl) of first order variables not used in θ we define Gz
l (θ) by

induction. The idea is that the zj stand for positions we imagine to substitute

⊥j into. The existence quantifier is then restricted to only find positions not

“below” any of the zj and the product quantifier effectively only multiplies over

all positions not “below” any of the zj. The definition is as follows:

Gz
l (labela(x)) := labela(x) Gz

l (ϕ ∧ ψ) := Gz
l (ϕ) ∧Gz

l (ψ)

Gz
l (edgei(x, y)) := edgei(x, y) Gz

l (ϕ ∨ ψ) := Gz
l (ϕ) ∨Gz

l (ψ)

Gz
l (x ∈ X) := x ∈ X Gz

l (τ1 ⊕ τ2) := Gz
l (τ1)⊕Gz

l (τ2)

Gz
l (¬ϕ) := ¬Gz

l (ϕ) Gz
l (τ1 � τ2) := Gz

l (τ1)�Gz
l (τ2)

Gz
l (k) := k

Gz
l (label⊥j

(x)) := (x = zj)

Gz
l (∃x.ϕ) := ∃x.(Gz

l (ϕ) ∧ ¬(
l∨

k=1

x > zk))

Gz
l (∃X.ϕ) := ∃X.(Gz

l (ϕ) ∧ ¬∃x.(x ∈ X ∧ (
l∨

k=1

x > zk)))

Gz
l (Πx.τ) := Πx.((Gz

l (τ)� ¬(
l∨

k=1

x > zk))⊕
l∨

k=1

x > zk)

where j ∈ {1, . . . , l}, i ∈ {1, . . . , rk(Γl)}, k ∈ K, a ∈ Γ, τ, τ1, τ2 ∈

QMSOΓl
(Πx,⊕,�) and ϕ, ψ ∈ MSO(Γl).

Let i ∈ {1, . . . , rk(Γ)} and θ ∈ QMSOΓ(Σk
xΠ

1
x,⊕,�). Then for a first order
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variable z not used in θ we define Fzi (θ) by induction. The variable z stands for

a position we imagine to substitute some ⊥j into. Existence, sum and product

quantifiers are then restricted to only consider the subtree at “zi”. The definition

is as follows:

Fzi (labela(x)) := labela(x) Fzi (ϕ ∧ ψ) := Fzi (ϕ) ∧ Fzi (ψ)

Fzi (edgej(x, y)) := edgej(x, y) Fzi (ϕ ∨ ψ) := Fzi (ϕ) ∨ Fzi (ψ)

Fzi (x ∈ X) := x ∈ X Fzi (τ1 ⊕ τ2) := Fzi (τ1)⊕ Fzi (τ2)

Fzi (¬ϕ) := ¬Fzi (ϕ) Fzi (τ1 � τ2) := Fzi (τ1)� Fzi (τ2)

Fzi (k) := k

Fzi (∃x.ϕ) := ∃x.(Fzi (ϕ) ∧ x >i z)

Fzi (∃X.ϕ) := ∃X.(Fzi (ϕ) ∧ ¬∃x.(x ∈ X ∧ ¬(x >i z)))

Fzi (Σx.τ) := Σx.(Fzi (τ)� x >i z)

Fzi (Πx.τ) := Πx.((Fzi (τ)� x >i z)⊕ ¬(x >i z))

where j ∈ {1, . . . , rk(Γ)}, k ∈ K, a ∈ Γ, τ, τ1, τ2 ∈ QMSOΓ(ΣxΠ
1
x,⊕,�) and

ϕ, ψ ∈ MSO(Γ).

As we can always rewrite ∀x.ϕ and ∀X.ϕ to ¬∃x.¬ϕ and ¬∃X.¬ϕ, respec-

tively, we do not need to define these cases explicitly.

Proposition 8.25. Let t ∈ TΓ and l ∈ N, then

(i) For w1, . . . , wl ∈ pos(t) pairwise prefix-independent, θ ∈ QMSOΓl
(Π1

x,⊕,�),

a finite set of first and second order variables V ⊇ Free(θ), a (V , t〈⊥1 →

w1〉 . . . 〈⊥l → wl〉)-assignment ρ⊥, a tuple of first order variables z =

(z1, . . . , zl) not in V and not occurring in θ and the (V , t)-assignment ρ

defined by ρ(x) := ρ⊥(x) where x ∈ V is a first or second order variable we

have

JθK(t〈⊥1 → w1〉 . . . 〈⊥l → wl〉, ρ⊥) = JGz
l (θ)K(t, ρ[z1 → w1] . . . [zl → wl]).
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(ii) For w ∈ pos(t), i ∈ {1, . . . , rkΓ(t(w))}, θ ∈ QMSOΓ(ΣxΠ
1
x,⊕,�), a finite

set of first and second order variables V ⊇ Free(θ), a (V , t|wi)-assignment

ρ′, a first order variable z not in V and not occurring in θ and the (V , t)-

assignment ρ defined by ρ(x) := wiρ′(x) where x ∈ V is a first or second

order variable we have

JθK(t|wi, ρ′) = JFzi (θ)K(t, ρ[z → w]).

Proof. (i) We prove the statement inductively and take t, w1, . . . , wl, θ, V , z, ρ⊥

and ρ as in the proposition, set t⊥ := t〈⊥1 → w1〉 . . . 〈⊥l → wl〉 and abbreviate

ρ[z1 → w1] . . . [zl → wl] to ρ[z → w]. We start by proving the case θ = ϕ ∈

MSO(Γl) and show

(t⊥, ρ⊥) |= ϕ⇔ (t, ρ[z → w]) |= Gz
l (ϕ).

For the atomic formulas edgei(x, y), x ∈ X and labela(x) with a ∈ Γ this is easily

verified, as Gz
l (ϕ) = ϕ in those cases. For i ∈ {1, . . . , l} and ϕ = label⊥i

(x) we

see that

(t⊥, ρ⊥) |= label⊥i
(x)⇔ t⊥(ρ⊥(x)) = ⊥i

⇔ ρ⊥(x) = wi

⇔ ρ[z → w](x) = wi

⇔ (t, ρ[z → w]) |= x = zi

as ρ[z → w](zi) = wi by definition. For ϕ = ψ1 ∨ ψ2, ϕ = ψ1 ∧ ψ2 and ϕ = ¬ψ

we get the statement from Gz
l (ψ1 ∨ ψ2) = Gz

l (ψ1) ∨ Gz
l (ψ2), Gz

l (ψ1 ∧ ψ2) =

Gz
l (ψ1) ∧Gz

l (ψ2) and Gz
l (¬ψ) = ¬Gz

l (ψ). Now for the case ϕ = ∃x.ψ we have

(t⊥, ρ⊥) |= ∃x.ψ

⇔ ∃v ∈ pos(t⊥) : (t⊥, ρ⊥[x→ v]) |= ψ

⇔ ∃v ∈ pos(t⊥) : (t, ρ[x→ v][z → w]) |= Gz
l (ψ) (by induction)
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⇔ ∃v ∈ pos(t) : ¬
l∨

k=1

(wk ≤p v ∧ v 6= wk) ∧ (t, ρ[x→ v][z → w]) |= Gz
l (ψ)

⇔ ∃v ∈ pos(t) : (t, ρ[x→ v][z → w]) |= (Gz
l (ψ) ∧ ¬(

l∨
k=1

x > zk))

⇔ (t, ρ[z → w]) |= ∃x.(Gz
l (ψ) ∧ ¬(

l∨
k=1

x > zk))

⇔ (t, ρ[z → w]) |= Gz
l (∃x.ψ)

and for ϕ = ∃X.ψ we have

(t⊥, ρ) |= ∃X.ψ

⇔ ∃V ⊆ pos(t⊥) : (t⊥, ρ⊥[X → V ]) |= ψ

⇔ ∃V ⊆ pos(t⊥) : (t, ρ[X → V ][z → w]) |= Gz
l (ψ) (by induction)

⇔ ∃V ⊆ pos(t) : ¬∃v ∈ pos(t) : (v ∈ V ∧
l∨

k=1

(wk ≤p v ∧ v 6= wk))

∧ (t, ρ[X → V ][z → w]) |= Gz
l (ψ)

⇔ ∃V ⊆ pos(t) : (t, ρ[X → V ][z → w]) |= (Gz
l (ψ) ∧ ¬∃x.(x ∈ X ∧

l∨
k=1

x > zk))

⇔ (t, ρ[z → w]) |= ∃X.(Gz
l (ψ) ∧ ¬∃x.(x ∈ X ∧

l∨
k=1

x > zk))

⇔ (t, ρ[z → w]) |= Gz
l (∃X.ψ)

which proves that for MSO-formulas we have

JϕK(t⊥, ρ⊥) = JGz
l (ϕ)K(t, ρ[z → w]).

For the semiring level we take k ∈ K and τ1, τ2 ∈ QMSOΓl
(Π1

x,⊕,�). By

definition have Gz
l (k) = k, Gz

l (τ1 � τ2) = Gz
l (τ1) � Gz

l (τ2) and Gz
l (τ1 ⊕ τ2) =

Gz
l (τ1) ⊕ Gz

l (τ2) so for V ⊇ Free(τ1) ∪ Free(τ2) and a (V , t⊥)-assignment ρ we

have

JkK(t⊥, ρ⊥) = JGz
l (k)K(t, ρ[z → w])
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trivially. Furthermore by induction

Jτ1 ⊕ τ2K(t⊥, ρ⊥) = Jτ1K(t⊥, ρ⊥)⊕ Jτ2K(t⊥, ρ⊥)

= JGz
l (τ1)K(t, ρ[z → w])⊕ JGz

l (τ2)K(t, ρ[z → w])

= JGz
l (τ1 ⊕ τ2)K(t, ρ[z → w])

and in the same manner

Jτ1 � τ2K(t⊥, ρ⊥) = JGz
l (τ1 � τ2)K(t, ρ[z → w]).

We prove the last case, i.e. θ = Πx.τ for some τ ∈ QMSOΓl
(Π1

x,⊕,�):

JΠx.τK(t⊥, ρ⊥)

=
⊙

v∈pos(t⊥)

JτK(t⊥, ρ⊥[x→ v])

=
⊙

v∈pos(t⊥)

JGz
l (τ)K(t, ρ[x→ v][z → w]︸ ︷︷ ︸

=:s(v)

) by induction

=
⊙

v∈pos(t)

((JGz
l (τ)K(s(v))� J¬(

l∨
k=1

x > zk)K(s(v)))⊕ J
l∨

k=1

x > zkK(s(v)))

=
⊙

v∈pos(t)

J(Gz
l (τ)� ¬(

l∨
k=1

x > zk))⊕
l∨

k=1

x > zkK(s(v))

= JΠx.((Gz
l (τ)� ¬(

l∨
k=1

x > zk))⊕
l∨

k=1

x > zk)K(t, ρ[z → w])

= JGz
l (θ)K(t, ρ[z → w])

(ii) We prove this statement by induction as well. Take t, w, θ, V , z, ρ′

and ρ as in the proposition and set t′ = t|wi. Again we start with the case

θ = ϕ ∈ MSO(Γ), that is we show

(t′, ρ′) |= ϕ⇔ (t, ρ[z → w]) |= Fzi (ϕ).
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For ϕ = labela(x) we have

(t′, ρ′) |= labela(x)⇔ t′(ρ′(x)) = a

⇔ t(wiρ′(x)) = a

⇔ t(ρ[z → w](x)) = a

⇔ (t, ρ[z → w]) |= labela(x),

for ϕ = edgej(x, y) we have

(t′, ρ′) |= edgej(x, y)⇔ ρ′(y) = ρ′(x)j

⇔ wiρ′(y) = wiρ′(x)j

⇔ ρ[z → w](y) = ρ[z → w](x)j

⇔ (t, ρ[z → w]) |= edgej(x, y),

and for ϕ = x ∈ X we have

(t′, ρ′) |= x ∈ X ⇔ ρ′(x) ∈ ρ′(X)

⇔ wiρ′(x) ∈ wiρ′(X)

⇔ ρ[z → w](x) ∈ ρ[z → w](X)

⇔ (t, ρ[z → w]) |= x ∈ X.

The cases ϕ = ¬ψ, ϕ = ψ1 ∨ ψ2 and ϕ = ψ1 ∧ ψ2 are easily derived from the

definition of Fzi . Now assume the cases ϕ = ∃x.ϕ:

(t′, ρ′) |= ∃x.ψ

⇔ ∃v ∈ pos(t′) : (t′, ρ′[x→ v]) |= ψ

⇔ ∃v ∈ pos(t′) : (t, ρ[x→ wiv][z → w]) |= Fzi (ψ) (by induction)

⇔ ∃v ∈ pos(t) : wi ≤p v ∧ (t, ρ[x→ v][z → w]) |= Fzi (ψ)

⇔ ∃v ∈ pos(t) : ∃u ∈ pos(t) : u = wi ∧ u ≤p v ∧ (t, ρ[x→ v][z → w]) |= Fzi (ψ)

⇔ ∃v ∈ pos(t) : (t, ρ[x→ v][z → w]) |= (Fzi (ψ) ∧ x >i z)
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⇔ (t, ρ[z → w]) |= Fzi (∃x.ψ)

and ϕ = ∃X.ϕ:

(t′, ρ′) |= ∃X.ψ

⇔ ∃V ⊆ pos(t′) : (t′, ρ′[X → V ]) |= ψ

⇔ ∃V ⊆ pos(t′) : (t, ρ[X → wiV ][z → w]) |= Fzi (ψ) (by induction)

⇔ ∃V ⊆ pos(t) : ¬∃v ∈ pos(t) : (v ∈ V ∧ ¬(wi ≤p v))

∧ (t, ρ[X → V ][z → w]) |= Fzi (ψ)

⇔ ∃V ⊆ pos(t) : (t, ρ[X → V ][z → w]) |= (Fzi (ψ) ∧ ¬∃x.(x ∈ X ∧ ¬(x >i z)))

⇔ (t, ρ[z → w]) |= Fzi (∃X.ψ)

so for MSO formulas ϕ we have

JϕK(t′, ρ′) = JFzi (ϕ)K(t, ρ[z → w]).

For the semiring level and θ = k, θ = τ1 ⊕ τ2 and θ = τ1 � τ2 it is again easy to

see from the definition of Fzi that the induction holds, that is

JkK(t′, ρ′) = JGz
l (k)K(t, ρ[z → w])

Jτ1 ⊕ τ2K(t′, ρ′) = JGz
l (τ1 ⊕ τ2)K(t, ρ[z → w])

Jτ1 � τ2K(t′, ρ′) = JGz
l (τ1 � τ2)K(t, ρ[z → w]).

For θ = Σx.τ consider

JΣx.τK(t′, ρ′)

=
⊕

v∈pos(t′)

JτK(t′, ρ′[x→ v])

=
⊕

v∈pos(t′)

JFzi (τ)K(t, ρ[x→ wiv][z → w]) (by induction)
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=
⊕

v∈pos(t)

JFzi (τ)K(t, ρ[x→ v][z → w])� Jx >i zK(t, ρ[x→ v][z → w])

=
⊕

v∈pos(t)

JFzi (τ)� x >i zK(t, ρ[x→ v][z → w])

= JΣx.(Fzi (τ)� x >i z)K(t, ρ[z → w])

= JFzi (Σx.τ)K(t, ρ[z → w])

and for θ = Πx.τ

JΠx.τK(t′, ρ′)

=
⊙

v∈pos(t′)

JτK(t′, ρ′[x→ v])

=
⊙

v∈pos(t′)

JFzi (τ)K(t, ρ[x→ wiv][z → w]) (by induction)

=
⊙

v∈pos(t)

((JFzi (τ)K(s(v))� Jx >i zK(s(v)))⊕ J¬(x >i z)K(s(v)))

with s(v) := (t, ρ[x→ v][z → w])

= JΠ.x(Fzi (τ)� x >i z)⊕ ¬(x >i z))K(t, ρ[z → w])

= JFzi (Πx.τ)K(t, ρ[z → w]).

8.5 Conclusion and a Corollary

The following proposition brings the results of the preceding subsections together

and proves that the automata Fp can be converted into logic formulas of the

desired form. We still assume the automaton A to be standardized.

Proposition 8.26. For p ∈ Q and k = degreeA(p) there is a formula θ ∈

QMSOΓ(Σk
xΠ

1
x,⊕,�b) such that JFpK = JθK and θ can be chosen as a finite sum

of formulas in QMSOΓ(Σk
xΠ

1
x,⊕b,�b).

Proof. We prove the theorem by induction. We will assume it is true for q ∈ Q

with p 4 q and C(q) 6= C(p) and from that conclude that it is true for p. If
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degreeA(p) = 0 then Fp is finitely ambiguous so by Theorem 7.1 there is a

formula θ ∈ QMSOΓ(Π1
x,⊕,�b) with JFpK = JθK. As the theorem’s proof shows

we can even assume the stronger fact, that θ is a finite sum of formulas in

QMSOΓ(Π1
x,⊕b,�b). For degreeA(p) > 0 we consider Top(N(p)) = {b1, . . . , bl}

with bi = (p
(i)
1 , . . . , p

(i)
mi , a

(i), q(i)) for i ∈ {1, . . . , l}. By induction we assume that

the proposition is true for p
(i)
j with i ∈ {1, . . . , l} and j ∈ {1, . . . ,mi}, so for

kij := degreeA(p
(i)
j ) we find θij ∈ QMSOΓ(Σ

kij
x Π1

x,⊕,�b) with JθijK = JF
p

(i)
j
K such

that all θij are finite sums of formulas in QMSOΓ(Σ
kij
x Π1

x,⊕b,�b). Furthermore

the automaton Gp we defined earlier is finitely ambiguous by Proposition 8.22

(iii), so we find some τ ∈ QMSOΓl
(Π1

x,⊕,�b) with JτK = JGpK such that τ is a

finite sum of formulas in QMSOΓl
(Π1

x,⊕b,�b). For t ∈ TΓ we have a partition

RunA,p(t) =
⋃

w1,...,wl∈pos(t)

RunA,p(t;w1, . . . , wl, b1, . . . , bl)︸ ︷︷ ︸
=:R(w1,...,wl)

.

By Proposition 8.17 (i) we only have to consider pairwise prefix-independent

positions w1, . . . , wl in the above formula, so we fix w1, . . . , wl ∈ pos(t) pairwise

prefix-independent and let z1, . . . , zl be first order variables not occurring in τ or

θij for i ∈ {1, . . . , l} and j ∈ {1, . . . ,mi}. We define the abbreviations

t[z → w] := t[z1 → w1] . . . [zl → wl]

bridge(z) :=
l⊙

i=1

(µ(bi)� labela(i)(zi))

indep(z) := (
l∧

i=1

l∧
j=1
j 6=i

¬(zi ≤p zj ∨ zj ≤p zi))

then by Propositions 8.22 (ii), 8.7 (i) and 8.25 we can write

∑
r∈R(w1,...,wl)

wtFp(t, r)

= JτK(t〈⊥1 → w1〉 . . . 〈⊥l → wl〉)� Jbridge(z)K(t[z → w])�
l⊙

i=1

mi⊙
j=1

JθijK(t|wij)
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= JGz
l (τ)K(t[z → w])� Jbridge(z)K(t[z → w])�

l⊙
i=1

mi⊙
j=1

JFzij (θij)K(t[zi → wi])

= JGz
l (τ)� bridge(z)�

l⊙
i=1

mi⊙
j=1

Fzij (θij)K(t[z → w])

so in conclusion we get

JFpK(t)

=
∑

w1,...,wl∈pos(t)
pairwise prefix-independent

∑
r∈R(w1,...,wl)

wtFp(t, r)

=
∑

w1,...,wl∈pos(t)
pairwise prefix-independent

JGz
l (τ)� bridge(z)�

l⊙
i=1

mi⊙
j=1

Fzij (θij)K(t[z → w])

=
∑

w1,...,wl∈pos(t)

Jindep(z)�Gz
l (τ)� bridge(z)�

l⊙
i=1

mi⊙
j=1

Fzij (θij)K(t[z → w])

= JΣz1 . . .Σzl.indep(z)�Gz
l (τ)� bridge(z)�

l⊙
i=1

mi⊙
j=1

Fzij (θij)K(t)

Recall that for τ1, τ2 ∈ QMSOΓ(⊕,�) we can always rewrite

Jτ1 � Πx.τ2K = JΠx.((τ1 � τ2 � root(x))⊕ (τ2 � ¬root(x)))K

due to the commutativity of �. Assuming that θij is a finite sum of formulas

in QMSOΓ(Σ
kij
x Π1

x,⊕b,�b) and the definition of Fzij for all i ∈ {1, . . . , l} and

j ∈ {1, . . . ,mi} we get that Fzij (θij) is a finite sum of formulas of the form

Σx1 . . .Σx
ki
j

((

kij⊙
n=1

xn >i zi)� Πy.τ2)

for some τ2 ∈ QMSOΓ(⊕,�) by using the distributivity of � over ⊕. Using above

rewriting we see that Fzij (θij) is a sum of formulas in QMSOΓ(Σ
kij
x Π1

x,⊕b,�b). By

using that for τ1, τ2 ∈ QMSOΓ(⊕,�) we can write

J(Πx1.τ1)� (Πx2.τ2)K = JΠx.(τ1 � τ2)K
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after adequate relabeling of variables in τ1 and τ2, we can expand

l⊙
i=1

mi⊙
j=1

Fzij (θij)

to a sum of formulas in QMSOΓ(Σk−l
x Π1

x,⊕b,�b), as by Lemma 8.20 (I) we have

that
∑l

i=1

∑mi

j=1 k
i
j = k−l. Now note that by definition of Gz

l the formula Gz
l (τ) is

actually a sum of formulas in QMSOΓ(Π1
x,⊕b,�b) so with the same constructions

as above we can rewrite

indep(z)�Gz
l (τ)� bridge(z)

into a sum of formulas in QMSOΓ(Π1
x,⊕b,�b) as well. By applying distributivity

once more and the fact that for τ1, τ2 ∈ QMSOΓ(ΣxΠ
1
x,⊕,�) we have

JΣx.(τ1 ⊕ τ2)K = JΣx.τ1 ⊕ Σx.τ2K

we can rewrite

Σz1 . . .Σzl.indep(z)�Gz
l (τ)� bridge(z)�

l⊙
i=1

mi⊙
j=1

Fzij (θij)

into a sum of formulas in QMSOΓ(Σk
xΠ

1
x,⊕b,�b), which is what we wanted to

show.

To conclude the proof of Theorem 8.2 note that

JAK = γ(qf )� JFqf K

so by rewriting γ(qf ) into Πx.((γ(qf )� root(x))⊕ ¬(root(x)) and applying dis-

tributivity on the formula we can find by Proposition 8.26 we obtain a formula

θ ∈ QMSOΓ(Σk
xΠ

1
x,⊕,�b), where k = degree(A), such that JAK = JθK. For an

arbitrary polynomially ambiguous automaton we combine this with Lemma 8.11

to write the automaton as a sum of standardized automata and obtain the result
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we wanted to show.

As a corollary of Lemma 8.20 we also get that the ambiguity of a WTA A is

either bounded below and above by a fixed polynomial or has a lower exponential

bound. While this is a well known result for word automata [21], we could not

find a similar result for tree automata.

Corollary 8.27. Let A = (Q,Γ, µ, α) be a weighted bottom-up finite state

tree automaton. Either A is polynomially ambiguous and rA ∈ Θ(nk) for

k := degree(A) or there exists a sequence of trees (tn)n∈N in TΓ and a constant

C > 0 such that for all n ∈ N

(i) |pos(tn)| ≤ C · n

(ii) |RunA,F(tn)| ≥ 2n.

Proof. First note that the components of Q can be defined as we did earlier

independent from the ambiguity of A. The same is true for the definition of

bridges. Now assume a sequence (tn)n∈N of trees with above properties does

not exist. Then the proof of Proposition 8.9 (ii) shows that for all t ∈ TΓ, all

w ∈ pos(t), all q ∈ Q and all p ∈ C(p) we must have

|Run∂A,q(t;w, p)| ≤ 1.

Otherwise we could construct such a sequence of trees. We will now prove by

induction that for all q ∈ Q there exists a constant C and an integer n ∈ N such

that

|RunA,q(t)| ≤ C · |pos(t)|n

for all t ∈ TΓ.

If C(q) is maximal, i.e. C(q) 4 C(p) implies C(q) ≈ C(p) for all p ∈ Q, then

|RunA,q(t)| ≤ 1 as we just found, so C := 1 and n := 0 fulfill our requirements.

For the induction step we assume that our claim is true for all p ∈ Q with

C(q) 4 C(p) and C(q) 6≈ C(p). Define

B(q) := {d ∈ ∆A | d is a bridge out of C(q)}.
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If |RunA,q(t)| ≤ 1 holds for all t ∈ TΓ we have nothing to show. Otherwise using

the same reasoning as in Proposition 8.9 (iii) we can write

|RunA,q(t)|

≤
∑

b∈B(q)

∑
w∈pos(t)

|RunA,q(t;w, b)|

≤
∑

b∈B(q)
b=(p1,...,pmb

,a,q′)

∑
w∈pos(t)

|Run∂A,q(t;w, q
′)|︸ ︷︷ ︸

≤1

·
mb∏
i=1

|RunA,pi(t|wi)|︸ ︷︷ ︸
≤Ci,b·|pos(t|wi)|ni,b

for some ni,b∈N and Ci,b∈R


≤
∑

b∈B(q)

Cb · |pos(t)|nb+1

≤ |B(q)| · C · |pos(t)|n+1

for Cb :=
∏mb

i=1Ci,b and nb :=
∑mb

i=1 ni,b and C and n as the maxima of the Cb

and nb, respectively. We set

F := {q ∈ Q |α(q) 6= 0}

and obtain

|RunA,F(t)| ≤
∑
q∈F

|RunA,q(t)|

≤
∑
q∈F

Cq · |pos(t)|nq

for some nq ∈ N and Cq ∈ R and every t ∈ TΓ. This obviously means that A

is polynomially ambiguous and for l := degree(A) we have rA ∈ O(nl). Due to

Lemma 8.20 (II) we also have rA ∈ Ω(nl) so in conclusion rA ∈ Θ(nl) holds.
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ment QMSO(Σ∞X ,⊕b,�b)

We now come to a special class of WTA, one that uses only weights 0 and 1 on

its transitions. Formally, we call a WTA A = (Q,Γ, µ, α) pure, if for all d ∈ ∆A

we have µ(d) ∈ {0, 1}. These automata are interesting in so far, that we can

describe them with formulas not using the product quantifier Π. The idea and

proof of this section is a straight-forward adaptation of the corresponding proof

of [15, Proposition 6.1], where the case of automata on words is considered.

Theorem 9.1. Let (K,⊕,�, 0, 1) be a commutative semiring and (Γ, rkΓ) a

ranked alphabet. A tree series S ∈ K〈〈TΓ〉〉 is definable by a pure weighted bottom-

up finite state tree automaton over K and Γ if, and only if, S is definable by a

formula in QMSOΓ(Σ∞X ,⊕b,�b).

Proof. (⇒) Let A = (Q,Γ, µ, α) be a pure WTA. We use the notation from

Theorem 4.1 and define θA as

θA := ΣX̄.
(
validA(X̄)� final(X̄)

)
.

It is clear that θA ∈ QMSOΓ(Σ∞X ,⊕b,�b) and as the transitions have only weights

0 or 1, it is also clear that JAK = JθAK.

(⇐) Take θ ∈ QMSOΓ(Σ∞X ,⊕b,�b), that is θ = ΣX1 . . .ΣXnτ for some n ∈ N

and τ ∈ QMSOΓ(⊕,�). By Proposition 4.3 we can find a pure WTA A0 over

Γ{X1,...,Xn} that defines the same tree series as τ . Then assuming by induction

that for i ∈ {0, . . . , n − 1} we have a pure WTA Ai over Γ{X1,...,Xn−i} such that

Ai defines the same tree series as ΣXn+1−i . . .ΣXnτ , the proof of Proposition 4.7

yields that we can find a pure WTA Ai+1 over Γ{X1,...,Xn−(i+1)} such that Ai+1

and ΣXn−i . . .ΣXnτ define the same tree series. The automaton An constructed

this way is then pure and defines the same tree series as θ, which is what was to

prove.
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10 Conclusion

We have shown that the correlation between the fragments of a quantative logic

and the ambiguity of automata as described by Kreutzer and Riveros [15] holds

true for tree automata as well and this extension to tree automata can be done

in a rather obvious manner. In more detail, to each class of tree series definable

by deterministic, unambiguous, finitely ambiguous, polynomially ambiguous and

exponentially ambiguous weighted tree automata we have related a characteristic

fragment of our logic.

While under the aspect of commonly distinguished degrees of ambiguity of

automata this investigation was exhaustive, there are many more fragments of

the logic other than the ones we considered. Whether and how these fragments

correspond to more general automata models is an issue for further research. For

example, the fragment QMSO(Πx,⊕b,�), which for word automata Kreutzer and

Riveros showed to correspond to a certain model of two-way weighted automata

with pebbles, remains unresolved for the tree case. The findings of Kreutzer

and Riveros suggest that, if there exists a translation of this fragment into an

automata model, this model is likely a pebble tree walking automaton, which

itself is an object of current research.

91



10 Conclusion

92



References

[1] C. Allauzen, M. Mohri, and A. Rastogi. General algorithms for testing the
ambiguity of finite automata. In M. Ito and M. Toyama, editors, Devel-
opments in Language Theory, 12th International Conference, DLT 2008,
Kyoto, Japan, September 16-19, 2008. Proceedings, volume 5257 of Lec-
ture Notes in Computer Science, pages 108–120. Springer Berlin Heidelberg,
2008.

[2] J. Berstel and C. Reutenauer. Rational Series and Their Languages.
Monogr. Theoret. Comput. Sci. EATCS Ser. Springer Berlin Heidelberg,
1988.
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