Universitat Leipzig

Fakultat fiir Mathematik und Informatik
Mathematisches Institut

Weighted Tree Automata and
Quantitative Logics with a Focus
on Ambiguity

Diplomarbeit

zur FErlangung des akademischen Grades
Diplom-Mathematiker

vorgelegt von Erik Paul

Leipzig, April 2015

Betreuender Hochschullehrer:

Prof. Dr. Manfred Droste
Institut fir Informatik






Abstract

We define a framework for adding quantitative properties to monadic second
order logic for trees and relate various restrictions of this quantitative logic to
subclasses of weighted tree automata. These subclasses are defined by the level
of ambiguity allowed in the automata. This yields a generalization of the results
by Kreutzer and Riveros, who defined an analogous framework to provide quan-
titative properties for monadic second order logic for words and proved various
fragments of that logic to correspond to subclasses of weighted word automata,
characterized by ambiguity.

Along the way we also prove that a finitely ambiguous weighted tree automa-
ton can be decomposed into unambiguous ones and define and analyze polyno-

mial ambiguity for tree automata.



i



Contents

1__Introduction| 1
2 Prelininacies 5
[2.1 'Tree Languages and ITree Automata]. . . . . . . . . ... ... .. 5
[2.2  Tree Series and Weighted Tree Automatal . . . . . . . .. ... .. 9
[3 Quantitative Logics for Trees| 13
[3.1 Quantitative Monadic Second Order Logid| . . . . . .. . ... .. 13
13.2  Fragments of QMSO(I')l . . . . . . ... ... o L. 16

[4  General Weighted Tree Automata and the Fragment |

[ QMSO(XZ I, @, O 19
[5 Determinism and the Fragment QMSO (™, &, ©) 31
[6 Unambiguity and the Fragment QMSO (II}, &, O )| 35
[7 Finite Ambiguity and the Fragment QMSO(II;, ®, ©)| 37
[8 Polynomial Ambiguity and the Fragment QMSO(XFITL, &, @) 45
8.1 General Definitions and Observations . . . . ... ... ... ... 48
[8.2  Decomposition into a Sum of Standardized Automatal . . . . . . . 53
[8.3  Analysis of the Polynomial Standard Form| . . . . . . . . ... .. 62
[8.4 'T'wo Transformations on Logic Formulas| . . . . . ... ... ... 74
[8.5 Conclusion and a Corollaryl] . . . . . ... ... ... ... .... 82

[9 Pure Weighted Tree Automata and the Fragment |
L QMSO(XF, &, Op)l 89

(10 Conclusion| 91

(Bibliography| 93

1l



v



1 Introduction

A finite automaton (FA) is an elementary, very simple model for systems with
state transitions. As a fundamental operating principle, an automaton reads a
given sequence of events and changes its state according to these events. This
concept is rather universal and thus has many applications. Some are very basic,
like the modeling of a binary adder, a vending machine or an elevator, but au-
tomata can also be used as models for compilers, speech and image recognition

software or parsers in general.

At times a simple succession of events is not expressive enough to describe
a given problem. A structure commonly used as an extension to sequences is
that of a tree. Here, events are organized in a parent-child relation. Automata
operating on trees, called finite tree automata (FTA), have uses including the
evaluation of search trees employed in various search algorithms or the analysis

of syntax trees as part of a compiler.

There may arise situations in which not only the outcome of a computa-
tion done by an automaton is of interest, but also how this computation was
done. Certain costs generated, time needed or multiplicity being inherent to our
problem may be of importance. An example is the implementation of a natural
language parser. As human language is not always unambiguous, a given sen-
tence may have more than one meaning. A “good” language parser should be
able to find all different meanings of a sentence and count them or, if possible,
assign to each of them a weight describing the likelihood that this is the intended
meaning in the specific context. This leads to the concepts of weighted automata
(WA) and weighted tree automata (WTA), which to a given input also assign a
value or weight. The concept of weighted automata has first been investigated
by Schiitzenberger [I8] and a lot of further research on the subject has been done

since then, cf. [17, [16] 2] [7].



1 Introduction

The notion of ambiguity inherent to natural language processing is interesting
in itself, as the sheer fact of having multiple possible computations for certain
input may cause the use of a particular automaton to be ineffective. An au-
tomaton is said to be deterministic if there is no ambiguity in the basic state
transitions, i.e. if given the automaton’s current state and an input event there
is no more than one possible state for the automaton to change into. It seems

desirable for an automaton to work in such a way, but it is also restrictive.

While the classification of automata into deterministic ones and nondeter-
ministic ones is the most prominent, it is possible to distinguish finer nuances of
nondeterminism, depending on the number of possible different computations for
a given input. Regarding ambiguity, the most commonly distinguished classes of
automata are deterministic (DFA), unambiguous (unamb-FA), finitely ambigu-
ous (fin-FA), polynomially ambiguous (poly-FA) and exponentially ambiguous

or simply nondeterministic (NFA) finite automata.

Ambiguity of finite automata has already been studied numerous times. For
example, |21} T9] 1] present criteria for and algorithms to determine the ambiguity
of automata and [12] investigates the decidability of the equivalence problem for
finitely ambiguous finance automata.

For finite automata without weights it can be shown, using the powerset con-
struction [4, Theorem 1.1.9], that deterministic automata and nondeterministic
automata are equally expressive. The same is not true for weighted automata.
It is shown in [I4] that the inclusions DWA C unamb-WA C fin-WA are strict
and in [13] it is shown that the inclusion fin-WA C poly-WA is strict.

Logics are an essential tool to accurately describe problems in theoretical
science. In computer science an example for this is model checking, the exhaustive
and automatic checking of whether a given model for a system meets a desired
specification. A typical application of this would be to verify whether a given
hardware circuit operates as intended or whether a given software program can
produce an infinite loop. Formulating the specification as a logic formula and the

system model as an abstract structure, the task of model checking boils down to



checking whether the structure satisfies the formula. While formulae are often an
accurate and uncomplicated way to formulate these problems, the direct analysis
of them can result difficult.

As a remedy, automata come into play. While automata are not always the
best means to directly formalize a problem, their structural simplicity allows
them to be examined more easily than logic formulas. To make use of the ad-
vantages of both logics and automata at the same time, a link between them is
needed. Such a link has been established by Biichi’s and Elgot’s fundamental the-
orems [3], 9], showing the equal expressive power of finite automata and monadic
second order logic (MSO-logic). This result has since spawned many extensions
to other structures. For example, in [20] ] it is shown that the same holds true
for finite tree automata, in [6] a weighted logic is introduced and shown be just
as expressive as weighted automata and in [8] a weighted logic for trees does the

same for weighted tree automata.

As ambiguity is an interesting property of automata, the question arises
whether logics used to describe these automata preserve the aspect of ambiguity
in some form. In the unweighted case we cannot expect this, as deterministic and
nondeterministic automata are equally expressive. In the case of weighted au-
tomata, however, this question has recently been answered positively by Kreutzer
and Riveros [15].

As weighted tree automata are a generalization of weighted automata, the
same must be true for them to at least some extent. The objective of this work
is to generalize [15] to weighted tree automata and investigate in detail how

different degrees of ambiguity translate into logic formulae.



1 Introduction




2 Preliminaries

The following introductory definitions are taken from [§] in large parts.

2.1 Tree Languages and Tree Automata

Let N = {0,1,2,...}. A ranked alphabet is a pair (I',rkr) where I" is a finite
set and rkr: I' — N. For every m > 0 we define I'™ := rk-*(m) as the set of
all symbols of rank m. In the sequel we will abuse notation and denote (I", rkr)
simply by I' if rkp is known from the context or not of importance. Furthermore
the rank 7k(I") of I is defined as max{rkr(a)|a € I'}. The set of (finite, labeled
and ordered) T'-trees, denoted by T, is the smallest subset 7" of (TTU{(,)}U{, })*
such that if @ € I'™ with m > 0 and s1,...,5s,, € T, then a(sy,...,sy,) € T. In
case m = 0, we identify a() with a. Clearly Ty = () iff [®) = (. Since we are
not interested in the case that Tr = (), we assume that I'© = () for every ranked
alphabet I' considered.

We define the set of positions in a tree by means of the mapping pos: Tr —
P(N*) inductively as follows: (i) if + € T'® then pos(t) = {e}, and (ii) if
t = a(s1,...,5y,) where a € '™, m > 1 and sy,...,5, € Tp, then pos(t) =
{e}U{iv|1 <i<m, vepos(s;)}. Note that pos(t) is partially ordered by the
prefix relation <, and totally ordered with respect to the lexicographic ordering
<;. Alluding to the graph structure induced by a tree, we also refer to the
elements of pos(t) as nodes, to € as the root of ¢t and to prefix-maximal nodes as
leaves. Two positions wy, we € pos(t) for which neither wy <, wy nor wy <, wy
are called prefiz-independent.

Now let t,5s € Ty, w € pos(t) and t = a(sy,...,s,,) for some a € ™ with
m > 0 and $1,...,8, € Tr. The label of t at w and the subtree of t at w,
denoted by t(w) and t|,, respectively, are defined inductively as follows: t(¢) = a
and t|. = t, and if w = v and 1 < i < m, then t(w) = s;(v) and t|, = si,-
The substitution of s into w, denoted by t(s — w), is defined inductively as
t(s - w)y = sif w =¢, and if w = v with 1 < i < m then t(s — w) =

a(si,...,8i-1,8(s = v), 811, .,5m). To illustrate these concepts we look at an

5



2  Preliminaries

example.
Example 2.1. Assume I' = {a,b,¢,d} with rkr(a) = 3, rkr(b) = 2, rkr(c) =1
and rkr(d) = 0. Then an example tree is:

t :=b(a(d,d,b(d,d)),c(d))

with pos(t) = {e,1,11,12,13,131,132,2,21}.

131 132

As shown in above diagram, the positions in pos(t) describe the “path” we have
to take from the root in order to get to the according node in the graph. The

subtree t|;3 of t at position 13 is:

tl13 = b(d, d) with pos(t|13) = {¢,1,2}.

To illustrate substitution, we substitute the subtree ¢|13 into position 2 of t:

tH{t)s — 2) = bla(d, d, b(d, d)), b(d, d))

Next we recall basic background on bottom-up finite state tree automata,

also see [10, [I1]. A bottom-up finite state tree automaton (for short: BU-FTA) is

6



2.1 Tree Languages and Tree Automata

a tuple A = (Q,T,0, F') where @ is a finite set (of states), I is a ranked alphabet
(of input symbols), 6 C U:fg) Q™ x '™ x @Q (the valid transitions) and F' C Q
(the final states). We set Ay := U;ffo) Q™ x T x Q. A tuple (p,a,q) € Ay is
called a transition and (p, a, q) is called valid if (p,a,q) € 6. A BU-FTA is called

(m

deterministic if for every m > 0, a € '™ and p € Q™ there exists at most one

q € @ such that (p,a,q) € 9.

Now we define the run semantics of a BU-FTA A. Let t € Tr. A quasi-run
of A on t is a mapping 7: pos(t) — Q. If w € pos(t) and t(w) = a € I'™ for

some m > 0, then
t.(w) = (r(wl),...,r(wm),a,r(w))

is called the transition with footpoint w or transition at w. A quasi-run r is called
valid or simply a run if for every w € pos(t) the transition t,(w) is valid and a

run is called accepting if r(¢) € F. A run r is also called a g-run if r(¢) = q.

Let Runy(t), Rung,(¢), Rungr(f) denote the sets of all runs of A on ¢, all

g-runs of A on t and all accepting runs of A on t, respectively.

The tree language accepted by A is the set L(A) := {t € Tr | Rungr(t) # 0}.
A tree language L C Tt is called (deterministically) recognizable if there is a
(deterministic) bottom-up finite state tree automaton A such that L = L(A).
By applying the usual power set construction, one obtains that every recogniz-
able tree language is also deterministically recognizable (cf. [20, Theorem 1]). It
is well known that the class of recognizable tree languages is closed under the

boolean operations (i.e. union, intersection and complement; cf. [20, Theorem

2]).

Next we briefly recall MSO-logic on trees and Biichi’s Theorem for trees,
namely that MSO-definable tree languages are exactly the recognizable tree lan-
guages [20, B5]. Let I" be a ranked alphabet. The set MSO(T") of all formulas of
MSO-logic over I' is defined as the smallest set F' such that

(1) F contains all atomic formulas label,(x), edge;(x,y) and = € X and



2  Preliminaries

(2) if p,9 € F, then also ¢ V¢, p AN, =p, Jx.@, AX .0, Vr., VX.0 € F,
where a € T', x,y are first order variables, 1 < ¢ < rk(I'), and X is a second
order variable. The set of free variables of ¢ is denoted by Free(y).

Let V be a finite set of first order and second order variables. The ranked
alphabet Ty = (T x {0,1}V,rk) is defined by rk((a, f)) = rkr(a) for every
f €{0,1}Y. For a symbol (a, f) € T'y we denote a by (a, f); and f by (a, f)s.
A T'y-tree s is walid if for every first order variable x € V, there is exactly one
w € pos(s) such that (s(w)z)(x) = 1. The subset T, containing all valid trees
is denoted by Ty . We put I'y = I'ree(y)-

Every valid I'y-tree s corresponds to a pair (¢, p) where t € Tr and pisa (V,t)-
assignment; such an assignment is a function which maps first order variables in
V to elements of pos(t) and second order variables in V to subsets of pos(t). More
precisely, we say that s and (t,p) correspond to each other if pos(t) = pos(s), t
is obtained from s by replacing s(w) by s(w); for every w € pos(t), and for every
first order variable x, second order variable X, and w € pos(s), we have that
(s(w)2)(x) = 1iff p(x) = w, and (s(w)y)(X) =1 iff w € p(X). In the sequel we
will identify a valid I'y-tree with the corresponding pair (¢, p).

Let s be an arbitrary I'y-tree, z be a first order variable and w € pos(s).
Then sz — w] is the I'yyp,y-labeled tree obtained from s by putting (s[z —
wl(v)y)(x) = 1 iff v = w. Similarly, if X is a second order variable and I C
pos(s), then s[X — I] is the 'y xy-tree obtained from s by putting (z[X —
I(v)2)(X) =1iffv € I. If here s = (t, p), we also write s[z — w] = (t, p[r — w])
and s[X — I] = (¢, p[X — I]).

Let ¢ be a formula in MSO(I') and s = (¢, p) be a valid I'y-tree such that
Free(p) € V. Then the relation “(t,p) satisfies ¢”, denoted by (t,p) E ¢, is

defined as usual, i.e.

(t,p) Elabel,(z) & t(plx)) =a

(t,p) | edges(z,y) = ply) = pla)i
tp)EreX = p)ep(X)
G Eerny = (Lp)EeAtp) EY



2.2 Tree Series and Weighted Tree Automata

DR S ((YOR =)
(t,p) E Tz = Jw € pos(t) : (¢, plr = w]) E ¢

(t,p) EIX.p = I Cpos(t) : (t,p[X — I]) = .

The remaining cases follow from the above by using double negation. We will

usually also assume that V' does not contain any bound variables of . We let

Ly(p) = {(t,p) € T¥, [ (t, ) F ¥}

and we will simply write £(p) instead of Lpyee(y) (). Now we recall the equiva-
lence between recognizable tree languages and MSO-definable tree languages; c.f.
[20, Theorems 14 and 17|, [5, Theorems 3.7 and 3.9], or [I1, Proposition 12.2]:
Every tree language Ly(p) is (deterministically) recognizable over I'y,.  Con-
versely, for every recognizable tree language L over I'; there is an MSO-sentence
¢ such that L = L(p). It follows from this, but can also easily be shown directly,

that the set T is recognizable.

2.2 Tree Series and Weighted Tree Automata

A semiring is an algebraic structure (K, ®,®,0,1) with operations sum @ and
product ® and constants 0 and 1 such that (K, ®,0) is a commutative monoid
and (K, ®,1) is a monoid, multiplication distributes over addition, and k ® 0 =
0®k =0 for every k € K. Whenever the operations and constants of a semiring
are clear from the context, we abbreviate (K,®,®,0,1) by K. The semiring K

is commutative if ©® is commutative. Important examples of semirings are

e the boolean semiring B = ({0,1},V,A,0,1) with disjunction V and con-

junction A

e the semiring of natural numbers (N, -+, 0,1), abbreviated by N, with the

usual addition and multiplication

e the tropical semiring Trop := (N U {oco}, min, +, 00, 0) where the sum and

9



2  Preliminaries

the product operations are min and +, respectively, extended to N U {oco}

in the usual way.

A (formal) tree series is a mapping S: Tt — K. The support of S is the
set supp(S) = {t € Tr | S(t) # 0}. The set of all tree series (over I' and K) is
denoted by K ((Tr)). For two tree series S, T € K((1r)) and k € K, the sum S®T,
the Hadamard product S ® T, and the product k ® S are each defined pointwise
for every t € Tr as follows: (S@T)(t) = S(t) @ T(t), (SOT)(t)=S(t)©T(t),
and (k® S)(t) =k o S(t).

For every L C Tv, the characteristic tree series 1p: Tr — K is defined for

every t € Tr by 1,(t) =1 if t € L and 1.(¢) = 0 otherwise.

We now introduce weighted bottom-up finite state tree automata and their
behavior. Let (K, ®,®,0,1) be a commutative semiring. A weighted bottom-up
finite state tree automaton (short: WTA) over K andT isatuple A = (Q, T, i, o)
where () is a finite set (of states), I' is a ranked alphabet (of input symbols),
i U::S;) Q™ xT™ x @ — K (the weight function) and a: Q — K (the function
of final weights). We define A 4 := U”mkfo) Q™ x '™ x  as before. A transition
(pya,q) € Ay is called valid if u(p,a,q) # 0. A state ¢ € Q is called final if
alg) # 0. A is called deterministic if for every m > 0, a € I'™ and p' € Q™
there exists at most one ¢ € @ such that u(p,a, q) # 0.

Now let t € Tr. A quasi-run of A on t is a mapping r: pos(t) — Q. Let
w € pos(t), then we define t,.(w) as before and call r valid or simply a run if for
every w € pos(t) the transition t,(w) is valid. We call a run r accepting if r(e)
is final. If r(¢) = ¢ then a run r is also called a g-run. By Runu(t), Runy,(¢),
Runy r(t) we denote the sets of all runs of A on ¢, all g-runs of A on ¢ and
accepting runs of A on t, respectively.

Let r € Run4(t), then the weight of r is defined by

wta(t,r) == @ p(t(w)).

weEpos(t)
The tree series accepted by A, denoted by [A] € K ({(Tr)), is the tree series defined

10



2.2 Tree Series and Weighted Tree Automata

for every t € It by

[AI() = D wtalt,r) @ alr(e)).

re€Run 4 r(t)

For t € Ty, w € pos(t), r € Runy(t) and 7, € Rung,(w(tlw) we define

r{r, — w) € Runy(t) by

ry(v) if w <, W with w = wv
r{ry, = w)(w) =
r(w) otherwise.

It is easy to see that this is well defined and that given w # & we have

r(ry — w) € Runy () iff r € Runp(?).

The automaton A is called trim if

(i) for every ¢ € @ there exist t € Tt and r € Runyp(t) such that r(w) = ¢ for

some w € pos(t) and

(ii) for every valid d € A4 there exist ¢ € Tt and r € Rungp(t) such that

t,.(w) = d for some w € pos(t).

The trim part of A is the automaton obtained by removing all states ¢ € @
which do not satisfy (i) and setting u(d) = 0 for all d € A4 which do not satisfy
(ii). This process obviously has no influence on [A].

Now we define the ambiguity of A. We say that A is

e deterministic if for every m > 0, a € T'™ and p’ € Q™ there exists at most

one ¢ € @ such that u(p,a,q) # 0.
o unambiguous if |Runr(t)| <1 for all t € Tr.

e finitely ambiguous or m-ambiguous if |[Runag(t)] < m for all t € Ty and a

fixed constant m € N.

o (k-)polynomially ambiguous if |Runar(t)| < p(|pos(t)|) for some polyno-
mial p (of degree k).

11



2  Preliminaries

e cxponentially ambiguous in any other case. This naming is justified as an
automaton with m states cannot have more than m™ runs on a tree with

n nodes

Regarding the definition of polynomial ambiguity, our definition is one of two
possibilities to generalize the concept of polynomial ambiguity for automata on
words. There, an automaton is said to be polynomially ambiguous if the number
of runs on each word is bounded polynomially in the length of the word. In order
to have polynomial ambiguity of tree automata be a generalization of the one
for word automata, we can either define it with the number of nodes in the tree,
as we have done, or with the depth of a tree. Here for ¢t € Tt the depth of t,
denoted by depth(t), is defined as

depth(t) :==14 max |w|.

wepos(t)

However, the polynomiality using the depth is far more restrictive (see Example
8.1) and, as far as we know, does not possess a characteristic translation into

logic formulas as the polynomiality using the number of nodes does.

12



3 Quantitative Logics for Trees

3.1 Quantitative Monadic Second Order Logic

We now want to define a quantitative logic for trees similar to the ones suggested
by Droste and Gastin for words [6] and by Droste and Vogler for trees [§]. We
are going to divide our syntax into two levels. The lower, Boolean level, will
consist of full MSO formulas, without the restrictions on quantors needed in
[0, 8]. This level is basically used to access the characteristic functions of regular
tree languages. The semiring (K, ®, ®,0,1) comes into play in the second level,
the semiring level, where we will use the operations ® and @ to add and multiply

our formulas.

Definition 3.1 (Syntax of QMSO(I')). The set QMSO(T") of all formulas of
Quantitative MSO-logic over K and I' is defined as the smallest set F' such that
(1) F contains all £k € K and all ¢ € MSO(I") and

(2)if 6,7 € Fthenalso0 7,007, Y., 11x.0, ¥X.0 € F

where z is a first order variable and X is a second order variable.

The operators Yx and XX are referred to as first order sum quantification
and second order sum quantification, respectively, and Ilx is referred to as (first
order) product quantification. They are somewhat related to the notions of 3.X,
dz, Vz in [§]. Accordingly, we do not need the operator I1X (i.e. VX) for our
results. Moreover, the operators Xz, XX and Ilz also bind the variables x and
X, respectively, so that z ¢ Free(X¥z.0) and the same for XX and Ilz. Other
than that the notion of free variables of QMSO(I") formulas is the same as for

regular MSO(T") formulas.

We now come to the semantics of QMSO(I"). Similar to regular MSO formu-

las, we take a finite set of first order and second order variables ¥V and a valid
['y-tree s = (t, p). For a formula § € QMSO(I") we will define the value [0](¢, p)

inductively under the assumption that Free(6) C V.
Definition 3.2 (Semantics of QMSO(I")). Let (¢, p) be a valid I'y-tree and 0 €

13



3 Quantitative Logics for Trees

QMSO(T") with Free(d) C V. If 6 = ¢ € MSO(I") we set

L if (&, p) F o

0 otherwise.

[[9]] (t7 p) =

Otherwise depending on the structure of 6 we define

[kl(t,p) = k

(t,p)

[0: @ 0:](t, p) = [01](L, p) ® [02](¢, p)
(t,p)
(t,p)

[61 © 6:](t,p) = [6:1](¢, p) © [62](2, p)
[Xz.T](t, p) = @ [7](t, plx — w])
wepos(t)
[Mar](t.p) == () [t ple = w))
wepos(t)
[EX](tp) = @ [t plX = 1)
ICpos(t)

where k € K and 01, 60,, 7 € QMSO(I).

Example 3.3. We consider the semiring (N, +,-,0,1) and the alphabet T' =
{a, b} where rkr(a) = 2 and rkr(b) = 0. We want to construct a formula which
for every t € Tt outputs the amount of a’s taking two b’s as child nodes. This is

achieved by the following formula.

Z x. (labela(x) A Ty. (edge, (z,y) Alabel,(y)) A y. (edgey(z, y) A labelb(y)))

Here > denotes the addition + in N.

Example 3.4. We consider the field of real numbers (R, +,-,0,1) and the al-
phabet I' = {a, b, ¢} where rkr(a) = 2, rkr(b) = 0 and rkr(c) = 1.

Assume that given a tree t € T we want to travel down the tree from the
root to a leaf. When we are at a node labeled ¢ there is only one way to go
down, when we are at a node labeled b we are finished. In the case of being at

a node labeled a we have two possible choices and decide a direction randomly

14



3.1 Quantitative Monadic Second Order Logic

with probability % for each possibility.

Given this setting we want to construct a formula which outputs for a given
tree t the expected number of ¢’s visited when proceeding as described above.
Recall that given a probability measure P on a finite set 2 the expected value of

a random variable f: 2 — R is given by

E(f) =) f(w)Pw).

we

A set of positions I C pos(t) visited when traveling down a tree is characterized
by (1) containing a leaf, (2) the parent node of every node in [ is also in I and
(3) no node has two child nodes in I. Such a set is also called a branch of the

tree. For a second order variable X we therefore define the formula

branch(X) := ELCE.(.CE € X A Vy.—~(edge, (z,y) V edge,(z, y)))
/\V:c.Vy.(x € X A (edge(y, ) V edge,(y, :U))) —-yeX

AV Ny Vz.(edge,(x,y) Aedgey(z,2)) = -(y € X Az € X).

The probability of a branch I to be traveled is given by P(I) = (1)"® where

n(a) is the amount of nodes labeled a in I. The function value f(I) of I is then
the amount of nodes in I labeled c. Applying the formula for the expected value

we can hence define our formula as

ZX. (branch(X) : Zx(m € X Alabel.(x))
Hx(% -z € X Nlabel,(z) + =(z € X A labela(x))))

where Y and [] are the addition + and multiplication - in R, respectively.

We want to define another operator ()~ which, as we will see later, does not

increase the expressiveness of QMSO(T"), but yields a nice characterization for

15



3 Quantitative Logics for Trees

deterministic WTA. For ¢t € Tt and 6 € QMSO(T") with Free(f) = () we define

0710 = ) [El(t),

wepos(t)

that is, we multiply over the weights of all subtrees of ¢.

3.2 Fragments of QMSO(I)

As done in [I5] we want to study various fragments of QMSO (T") by restricting the
use of certain quantors. For any subset Op C {®, ®,%,,[I,, Xx,” } of operators
in the semiring level we denote by QMSOR(Op) the restriction of QMSO(I") to
the operators in Op. For example, QMSOp(Xx, ¥,, I, ®, ®) denotes the full
logic. We will simply write QMSO(Op) if it is clear from context what the
underlying alphabet I is.

This, however, is often not restrictive enough. For instance, in [§] the Vx.¢-
operator had to be restricted to be only used on so-called recognizable step func-
tions o, otherwise the resulting formulas could define tree series not definable by
a weighted automaton. It is expectable that we will need a similar mechanism.
We therefore also consider fragments obtained by restricting the alternation and
nesting of the semiring level operators, using an intuitive quantifier pattern. Such
a pattern is a word over {3%, X" 117 |n € NoU {oo}}, where the index (-)" spec-
ifies the (maximum) number of nested quantifiers in a block. For example, the
fragment QMSO (B XTI, @, ®) contains all QMSO(T') formulas with any num-
ber of second order sum quantifiers followed by any number of first order sum
quantifiers followed by at most one non-nested product quantification. As we
often do not distinguish between first order and second order sum quantifica-
tion, we denote by 3% , the quantifier pattern allowing the use of n nested sum
quantifiers of any type. We write X, short for X2° and the same for ¥ x and II,.

The reason ()~ was left out in the quantifier patterns is that for the whole
paper we will assume this operator to not be nested when it occurs.

Finally we want to define a restriction on the operators @& and ®. Given an

operator x € {®, ®} and any set Op of operators in the semiring level, we define

16



3.2 Fragments of QMSO(T")

the fragment QMSO(Op, ;) as the set of all formulas 6 € QMSO(Op, x) such
that for all subformulas 71 % 75 in 6 we have that 71,75 € QMSO(®, ®), i.e. 7
and 7y contain no quantifier of any kind. The b stems from the notion that we
restrict the operators to a “base level” of the semiring level.

As usual, we say that a tree series S € K((IT)) is definable by a QMSO(Op)
formula over K and I if there exists a formula § € QMSO(Op) such that S(t) =
[0](t) for all t € Tr.

17



3 Quantitative Logics for Trees

18



4 General Weighted Tree Automata and the
Fragment QMSO(X% 1T}, ®,0)

The first fragment we have a look at is QMSO(X% II}, @, ®) which, as we will
prove in this section, describes exactly the tree series that can also be defined by
weighted bottom-up finite state tree automata. This result is in fact not new,
as it has already been shown in [§], but we will prove it using our framework
nevertheless. All proofs of this section, with the exception of Proposition are
straight-forward adaptations of the ones used in Section 4 of [15] or [§] for the

corresponding statements. The main theorem we want to prove is the following.

Theorem 4.1. Let (K,®,®,0,1) be a commutative semiring and (I',rkr) a
ranked alphabet. A tree series S € K{(Ir)) is definable by a weighted bottom-up
finite state tree automaton over K and I if, and only if, S is definable by a
formula in QMSOR(X%,IT;, @, ©).

Proof. (=) Let A= (Q,T, u, @) be WTA that defines the tree series S € K((1r)).
We will define a formula 6.4 € QMSOp (3% 11}, ®, ®) such that [A](t) = [0.4](t)
for all t € Tr. The idea is to do the following:

1. Guess a run using second-order sum quantification.

2. Check whether this run is valid using an MSO-formula.

3. Aggregate the cost of this run using the Il-operator.

For a first-order variable  and second-order variables X7, ..., X, we define the
abbreviations
k(T
root(x) := Vy. /\ —edge; (y, x)
i=1

partition(Xy, ..., X,,) := Vz. \/ (:U e XiN /\ -(x € Xj)> :

i=1 J#i

Both formulas are obviously MSO-formulas. The formula root(x) is true iff x
is the root of the given tree and partition(Xy,...,X,) is true iff {X,..., X}

forms a partition of set of positions in the given tree.

19



4 General Weighted Tree Automata and the Fragment QMSO(E}O@H}C, ®,0)

Now let D = {(q,a,q) € Aa|p(q,a,q) # 0} be the set of all valid transitions
and Dr = {(¢,a,q) € D|a(q) # 0} be the set of all valid final transitions.
Furthermore, for (¢,a,q) € D let X744 be a second order variable and for
n = |D| let v: {Xgagq | (T a,q) € D} — {1,...,n} be a bijection. We write
X(Gaq) for Xy(ga,q)) and X for (X1,...,X,). Using this notation we define the

formula matched(X) to check whether the guessed partition is well matched.

matched(X) := /\ V. ((SE € Xgaq) = labela(a:)>/\ (1)
(¢a,9)€D
/\ Vo | (2 € Xgag) = 1 - - - Fym. (/\ edge;(z,y;)) A
(¢,a,9)€D i=1
G=(q1,--,qm)

\/ (/\(yl € Xﬁi,aqu‘)))

(P1,a1,1)€D =1
(Prmam qm )ED

(2)

Part (1) verifies that the labeling of the run is consistent with the letters in the
tree and Part (2) verifies that the transitions used are well matched. With this
in hand we define the MSO-formula valid 4(X) that checks if X encodes a valid
run of A.

valid 4(X) =

partition(X) A matched(X) A Jz. | root(z) A \/ (7 € X(ga,q)
(q—:awq)eDF

That is, we verify that X is a partition, that this partition is well matched and
that the state at the root is a final state.

Next we define the formulas that aggregate the cost of the transitions and

20



the weight of the final state.

transition(z, X) = @ ((x € X@gaq) © (7 a, q)>

(¢,a,9)€D

final(X) := <(E|x.root(x) Nz € X(Gag) © a(q))

With this in hand we can define the formula 0 4 as
04 :=2X <validA()_() ® (Iz.transition(z, X)) © ﬁnal(X))
and it is easy to see that 64 and A define the same tree series.
(«<=) We prove this direction by structural induction. Given a formula 6 €
QMSOR (2%, I}, ®, ®) we show how to construct an automaton Ay such that

0 and Ay define the same tree series. The first step is a simple application of

Biichi’s Theorem.

Proposition 4.2. For every formula ¢ € MSO(I")and every finite set of first
and second order variables V O Free(p) there is a deterministic WTA A, such

that for every tree t € Tr and every (V,t)-assignment p we have

[¢l(t, p) = [AL(E, p).

Proof. Take ¢ € MSO(I') and V C Free(p). By Biichi’s Theorem there is a
BU-FTA A= (Q,Ty, 0, F) such that

(t.p) = @ iff (t,p) € L(A).

As every recognizable tree language is also deterministically recognizable (see

Section [2.1)), we can assume without loss of generality that A is deterministic.

21



4 General Weighted Tree Automata and the Fragment QMSO(E}O@H}C, ®,0)

We define the automaton A, = (Q,I'y, p, ) for d € A4 and ¢ € @ via

1 ifded
p(d) =
\0 otherwise
.
1 ifgeF
alq) =
0 otherwise.

For every (¢, p) € L(.A) there is now exactly one run of A, on ¢ and the weight
of this run is 1, all (¢, p) ¢ L(.A) do not possess any run in A,. A, is obviously
also deterministic, as A was, and therefore A, satisfies [¢] (¢, p) = [A,](¢, p) for
every tree t € Tr and (V, t)-assignment p. ]

We now come to the semiring level, or more precisely to the fragment
QMSOp(®, ®). We prove this special case, because the automata constructed

for this fragment can be chosen deterministic, as we will see.

Proposition 4.3. For every formula 6 € QMSOR(®, ®) and every finite set of
first and second order variables V O Free(f) there is a deterministic WTA A

such that for every tree t € Tr and every (V,t)-assignment p we have

[[eﬂ(t,p) = IIAG]] (t,p).

Proof. Let 0 € QMSOp(®,®) and V D Free(#). The formula 6 consists of MSO
formulas and semiring elements separated by @, ® and parentheses. We take
these MSO formulas and semiring elements and by distributing multiplication

over addition and using the commutativity of ® rewrite € into the form

n

9:@(@@)@9{)

i=1

where n € N, n; € Nand k; € K for i € {1,...,n} and ¢/ € MSO(I") for
ie{l,...,n}and j € {1,...,n;}. Fort € Tr and a (V,t)-assignment p we see
that [O}L, 07](t, p) = 1 iff (¢,p) = ¢/ for all j € {1,...,n,;} and 0 otherwise, so

22



(O, 7] = AL 6’]. Hence, by Biichi’s Theorem we can find a deterministic

BU-FTA A; = (Q;, Ty, ;, F}) such that for 6; := A", 6/ we have

(¢, p) |= 03 iff (2, p) € L{A:)

for every t € Tt and (V,p)-assignment p. Now consider the WTA A4, =
(QJPV7u7a) where

Q= X(Q:U{0))

ald',....q") = @ k;
i=1

qieF;

w((qis e @)oo (G -y @)say (g -0y qh) =

1 ifVie{l,...,n}: ((qi,...,q,ﬁl,a,qi) € 0;
V(g =0A~30€ Qi+ ((d, . g q) € 5)

0 otherwise.

\

The automaton 4y runs all automata A; in parallel. Coordinate i € {1,...,n}
behaves exactly like automaton A;, except for the fact that if for some m €
{1,...,7k(D)}, @ € T™ and given ¢',...,¢™ € @, there is no transition
(G155 qm,a,q) € 9;, then, and only then, we can switch into state (), enabling
the other coordinates to continue their runs, but making sure that the run of
this coordinate ¢ will not influence the weight of the whole run. It is easy to see

that Ay is deterministic and that it defines the same tree series as 6. O

Next we turn to the proof for the fragment QMSOR(ITL, &, ®). More precisely,
the next proof shows the recognizability of the fragment QMSOR(ITL, By, Oy).

Proposition 4.4. For every formula 6§ € QMSOR(®, ®) and every finite set of

23



4 General Weighted Tree Automata and the Fragment QMSO(E}O@H}C, ®,0)

first and second order variables V 2O Free(Ilx.0) there is an unambiguous WTA

An such that for every tree t € Tr and every (V,t)-assignment p we have

[1.0](t, p) = [An](# ).

Proof. Let A = (Q,T'vuay, i, @) be the deterministic WTA of Proposition
that defines the tree series [#]. Recall that the weights of all transitions in .4 are
either 0 or 1. Assuming that x ¢ V), there is an obvious bijection between the
sets 'vugzy and 'y x {0, 1}. We abuse notation and identify I'vup,y = I'v x {0, 1}
in the sequel. Without loss of generality we assume A to be complete, that is,
for all ¢ € Q™ and a € I'yyg,y there is some ¢ € Q with pu(¢,a,q) = 1. We
can enforce this by simply adding a dummy state if A does not already have
this property. We define the automaton A = (Q x P(Q x Q), 'y, pur1, aqr) with
the help of some abbreviations: given ¢y € @, m € {1,...,7k(I')}, a € I‘E,m),
7= (q1,....qn) €Q™and R=(Ry,...,R,) € (P(Q x Q)™ we set

fi(a,@.R) == {(p,d}) € Q x Q|Ti € {1,...,m} I(pi,q}) € Ry :
P(Qs - Qim1,Diy Qit1s - - -5 Gms (@, 0),p) = 1}

fQ(G,CT,Qf) = {(p7Qf) |p € Q and M(qla“-aqmv(av 1),]?) = 1}

1 if RC{(p,p)|pe}

0 otherwise

an(q, R) =

(g1, R, - (Gms R, @, (g0, Ro)) ==

(

k  if for some gy € @ we have k = a(qs), p(q1,---,qm,(a,0),q0) =1 and
Ry = fl(a,q_’,ﬁ) U fa(a, q, qr) where ¢ = (q1,...,qn) and R= (Ry,...,Rn)

0 otherwise.

\

In the first coordinate the automaton executes A on (¢, p) as if it had not yet

24



read x. Then at each position w € pos(t) we guess one state ¢;. It is the state we
guess the automaton A would produce at the root if we ran A on (¢, p[z — w)).
We therefore set the weight of this transition as the final weight o(qs) of ¢f. The
second coordinate is then used to check whether we guessed correctly. We add
the singleton f>(a, ¢, qf) with a = (¢, p)(w) into the set of the second coordinate.
The pair (p, qy) inside this singleton consists of the state p the automaton A
would have at position w if we ran it on (¢, p[z — w]) and the state g7, which we
save to check correctness later. We then use the second coordinate to see what
the automaton A will do with the state p, which is exactly what the function f;
does. Assuming for some i € N we have (p;,q}) € R;, we interpret this as the
fact that we guessed q} as one final state earlier and the automaton .4 would now
be in state p; having done so. Then fi(a, ¢, ﬁ) will contain the pair (p, ¢}) where
p is the state A would then change into under this assumption. If we guessed

correctly, all those pairs in the second coordinate should be of the form (¢}, ¢})

at the root, which is exactly the condition we impose on states to be final.

We show that for every ¢ € Tt and (V, t)-assignment p such that for every w €
pos(t) we have [0] (¢, p[r — w]) # 0 there is exactly one run r € Run 4, (¢, p) and
this run satisfies up(t,.(w)) = [0](t, p[z — w]) for all w € pos(t). In particular,

A is unambiguous.

Assume we have r € Runy, ¢(t,p), w € pos(t) and t(w) € '™ for some

m € N. Then given (¢;, R;) := r(wi) for i € {1,...,m} we know that for some

qf € Q we must have T(’LU) = (QOafl((tapxw)aq_;é) U fQ((tap)(w)7§7Qf)) where

—

7= (q1,---,qm), R=(Rq,...,Ry) and g is uniquely determined due to A being
deterministic. This g; =: ¢f(r, w) hence is characteristic for r at w, such that two
runs 7 and ry are equal iff ¢¢(ry, w) = ¢¢(r2, w) for all w € pos(t). Furthermore,
we see that pp(t,(w)) = a(gr(r,w)) for all w € pos(t).

Now, assuming that for all w € pos(t) we have [0](¢, plx — w]) # 0, we find
exactly one run " € Runr(t, p[r — w]) and for this run we have «a(r'(¢)) =
[0](t, pl[x — w]) by construction of A. We set ¢flx — w| := r'(¢) as the final
state of this unique run. If we can show that for every run r € Run 4, (¢, p) we

have ¢(r,w) = qf[r — w|, we can easily infer from the observations just made,

25



4 General Weighted Tree Automata and the Fragment QMSO(E}O@H}C, ®,0)

that  has to be uniquely determined and that wt((¢, p), r) = [lz.0] (¢, p).

Take r € Rung, r(t, p) and let (¢, R.) := r(€) be the state at the root. We
show that for all w € pos(t) we have (¢f[r — w],qr(r,w)) € R. and due to
(¢e, Re) being final, we must then have ¢jz — w]| = ¢s(r,w). Fix w € pos(t),
t(w) € T for m € N, (¢, R;) := r(wi) for i € {1,...,m}, (g, Roy) := r(w) and
take ' € Run4p(t, p[r — w]). It is easy to see that the projection of r on the first
coordinate is the quasi-run in A we would get if we did not assign any position of
t to x. Hence, we have ¢; = 7'(wi) for all i € {1,...,m} so by definition of Ap we
have (7' (w), g¢(r,w)) € Ry via fo. Now assume that for some position w’ € pos(t)
and j € N we have w'j <, w. We write (¢, R') := r(w') and (¢}, R}) := r(w'j).
If we have (r'(w'j),p) € R} for some p € @, then we also have (r'(v'),p) € R’
via fi1. Therefore, we must have (r'(¢), ¢¢(r,w)) = (¢f[lr — w], ¢¢(r,w)) € R,
which was to show.

It is also easy to see now that when defining a quasi-run r by choosing g (r, w)
as ¢rlz — w| for all w € pos(t) we obtain a (valid) run on (¢, p), so we have
shown that Ay defines the same tree series as Ilx.6. Also note that from what
we have shown, it easily follows that if for some w € pos(t) we have [0](¢, p[z —
w]) = 0, then there exists no (valid) run of Ay on (t, p), such that Ay indeed is

unambiguous. O

We now come to the proof for the operators & and ©.

Proposition 4.5. Let 71,72 € QMSO(I') and let V O Free(r;) U Free(m2) be a
finite set of first and second order variables such that there are WTA A; and A,
over I'y, defining the same tree series as 71 and T9, respectively. Then there is a

WTA Ag such that for every tree t € Tr and every (V,t)-assignment p we have

[n ® 7], p) = [Ae](t: p).

Proof. Let Ay = (Q1, 'y, p1, 1) and Ay = (Qo, 'y, 12, an) be automata defining
the formulas 7 and 7. Without loss of generality we assume Q; N Qo = (),

then we define the automaton Ag = (Q1 U Q2,I'y, 1, ag) for d € Ay, and

26



g€ RQUQ: as

p(d) ifd e Ay,
pe(d) = po(d) if d € Ay,

0 otherwise

a(q) ifge
ag(q) =

as(q) if g€ Q>

and it is easy to see that Ag defines the same tree series as 7, @ 7o, as for each
valid I'y-tree t the set of runs of Ag on t is the union of runs of A; and A on

t. [

Proposition 4.6. Let 7,75 € QMSO(I') and let V O Free(r;) U Free(rs) be a
finite set of first and second order variables such that there are WTA Ay and A,
over I'y, defining the same tree series as 11 and To, respectively. Then there is a

WTA Ag such that for every tree t € Tr and every (V,t)-assignment p we have

[n © 7]t p) = [As](E, p).

Proof. Let Ay = (Q1, 'y, p1, 1) and Ay = (Qo, 'y, 2, an) be automata defining
the formulas 7; and 7. We define the automaton Ao = (Q1 X Q2, 'y, e, ap)

for ((p%ap%)a SR (pylnap3n>7a’7 (q17q2)) € A.A@ and (Q17(12> € Ql X QQ as

/’L(D((pip%)? ey (p11n7p3n)7 a, (q17 q2)) = /Ll(pi s 7p71n7 a, ql) O] ,LLZ(p% s 7p12n7 a, q2)

ae(q) = a1(q1) © az(gz)

and it is easy to see that Ay defines the same tree series as 71 ® 7y, as for each
valid I'y-tree ¢ the set of runs of Ag on t are the pairs of runs of A; and A, on ¢
and the weight of each such run is the product of the weights of the runs in each

coordinate, since K is commutative. [

Now only the translations of the first and second order sum operators into

27



4 General Weighted Tree Automata and the Fragment QMSO(E}O@H}C, ®,0)

automata are left. We turn to the second order sum operator first.

Proposition 4.7. Let 6 € QMSO(I") and let V 2O Free(X.X.0) be a finite set of
first and second order variables, where X is a second order variable, such that
there is a WTA A over I'yuix) defining the same tree series as . Then there
is a WTA Ax such that for every tree t € Tt and every (V,t)-assignment p we

have

[EX01(t, p) = [AX]( p)-

Proof. Let A = (Q,T'vuixy, i, a) be a WTA defining the same tree series as
0. Again we assume X ¢ V and write I'vyxy as I'vy x {0,1}. We define the
automaton Ay = (Q x {0,1}, Ty, ux, ax) for ((ii ), e (M), a, (g)) € Ay, as

px ((n )oes (i )sa, (1)) = plprs - - s (a0, k), q)

To show that Ax defines the same tree series as 3X.0, take t € T and a (V, t)-

assignment p. First note that

P wta o)) oalrE) = B wial(t,p),r) ©alr(e))
r€Run 4  #(t,p) re(Qx{0,1})pos(®)

where (Q x {0,1})P*®) is the set of all functions pos(t) — Q x {0,1}, i.e. the
set of all quasi-runs, as quasi-runs that are not runs will not influence the sum.
For w € pos(t) set a(w) := (t, p)(w) and m(w) € N such that a(w) € T ie.
a(w) is the label at w of the I'y-tree corresponding to the pair (¢, p). Furthermore,
let {0,1}P°® be the set of mappings pos(t) — {0,1} and for o € {0, 1}P*® set
I(0) ={w € pos(t) | o(w) = 1}, then we have

[[-AX]](tvp)
_ @ wtay ((t,0),7) © ax(r(e))

re(Qx{0,1})pos®)

— @ ax(r(e)) ® @ px (t(w))

re(Qx{0,1})pos(®) wepos(t)

28



= P P e ®©u (wl), ..., r(wm(w)), (a(w), o(w)), r(w))

a€{0,1}pos(t) reQpros(t) wepos(t

= D D ) owtallt X - o)),

O'G{O 1}pos(t) Teros(t)

= P [AltplX —1(o)])

oc{0,1}pos(t)

= D 61t plX — 1)

ICpos(t)

= [[EXQ]] <t7 p)

which is what we wanted to show. O

Now lastly we come to the first order sum quantifier. Its construction is

similar to the one of the second order sum quantifier.

Proposition 4.8. Let € QMSO(T") and let V D Free(Xx.0) be a finite set of
first and second order variables, where x is a first order variable, such that there
is a WTA A over I'yyyy defining the same tree series as 6. Then there is a WTA

A, such that for every tree t € Ty and every (V,t)-assignment p we have

[Za.01(t, p) = [A(E p).

Proof. Let A = (Q,T'vugay, pt, @) be a WTA defining the same tree series as 0.

Again we assume = ¢ V and write I'yyg,y as I'y x {0, 1}. We define the automaton

=(Q x {0,1}, Ty, g, o) for ((ii),...,(iz),a,(g)) € Ay, as:

Hea ((ﬁ)”(irmn)aa?(;i)) =

w(p1s- oy Pmy (a,0),q) ifk=0ANk=...=k,=0

(

w(piy .oy pm,(a,1),q) ifk=1ANk=...=k,=0

w(piy - s pm, (a,0),q) ifk=1AFie{l,....m}:k =1

\ 0 otherwise

29



4 General Weighted Tree Automata and the Fragment QMSO(E}O@H}C, ®,0)

«Q ifk=1
au() = (9)

0 otherwise.

That is, from a bottom-up perspective we can run A, on a tree ¢t € Tr,, as if
x had not been read yet, then guess randomly a position for x and from then
on only allow transitions that behave as if x was not set on these positions.
Finally we require x to be guessed at at least one position, as only states whose
second coordinate is 1 are final. For every w € pos(t) every run of A on t[z — w]
corresponds to exactly one run of A, on ¢, given by setting the second coordinate
of this run to 1 on all positions v <, w and to 0 otherwise. The weights of these
runs are the same, so it is clear that A, defines the same tree series as Yx.0

does. O]

All of the above proofs show that for all formulas § € QMSOR (X%, 11}, @, ©),
the tree series [f] is also definable by a WTA A and we conclude the proof of
Theorem (4.1] O

30



5 Determinism and the Fragment

QMSO(™, @, ©)

We now come to the tree series definable by deterministic WTA. The idea and
proof of this section is a straight-forward adaptation of the idea and proof used
in Theorem 5.1 of [15], where the theorem is proven for deterministic weighted

automata on words.

Theorem 5.1. Let (K,®,®,0,1) be a commutative semiring and (I',rkr) a
ranked alphabet. A tree series S € K({(Tr)) is definable by a deterministic weighted
bottom-up finite state tree automaton over K and I' if, and only if, S is definable

by a formula in QMSOR(7, @&y, ®).

Proof. (=) Let A= (Q,T, 1, @) be a deterministic WTA such that [A] = S. We
show how to construct a formula 64 € QMSOR (7, @, ®) such that [04] = [A].
The characteristic feature of deterministic WTA we will use is that, given a tree
t € Tr, we know that there is at most one (not necessarily accepting) run of A
on t. Therefore, to know which state a run on ¢ has at a position w € pos(t),
it suffices to know the subtree ¢|,, of ¢t at w and look at the run of A on this

subtree.

As we did in the proof of Theorem [4.1, we define D as the set of valid

transitions in A4 and let X = (Xi,...,X,) be an enumeration of the set

{X(Gaq | (@ a,q) € D}. We use a formula similar to valid 4(X), but this time do

not check whether the state at the root is final or not. We reuse the formulas

partition(X) and matched(X) and define

det-valid 4(X) := partition(X) A matched(X)

det-transition := @ (3X .det-valid 4 (X) A (3z.root(z) Az € X(gaq))

(¢,a,9)€D

© u(q,a,q)

31



5 Determinism and the Fragment QMSO (™, ®, ®)

det-final := @ 3X .det-valid 4(X) A | Fz.root(x) A \/ T € X(ga,q

9€Q (q,a,q)€D

© a(q)

and with this we can define 04 as
0 4 := (det-transition) ™ ® det-final.
Clearly, for t € Tr, w € pos(t) and the unique run r € Run 4 r(¢) we have
[det-transition] (¢|,) = u(t,.(w))
so we have

[(det-transition)™ ® det-final] (t) = wt4(¢,r) ® a(r(e))

= [Al(®)

such that indeed [04] = [A].

(<) For 7 € QMSOp(7, @, ®) we show how to construct a deterministic
WTA A, such that [A,] = [r]. In Proposition 4.3| we have shown that for every
formula in QMSO (4, ®) we can find a deterministic WTA defining the same
tree series as this formula and the construction in the proof of Proposition
for ® preserves determinism. Therefore the only thing left to show is that given
a formula § € QMSO(®, ®) we can construct a deterministic WTA A_, such
that [AL] = [(0)7].

Let A = (Q,T, u, @) be the deterministic automaton we can find by Propo-
sition such that [LA] = [f]. Recall that the weights of all transitions
in A are either 1 or 0. We define the automaton A, = (Q,T',u_,a,) for

32



(p17"'7pm7a7Q) S AAH as

Oé((]) if M(pla"'apmaaﬂq) =1
M—>(p17 -y Pm, @, q) =
0 otherwise

a(q) =1

For t € Ty, w € pos(t), r € Runy , r(t) and r,, € Run 4 r(t|,) we clearly have

(e (w)) = a(ry(e))
= [6](w)

and as A_, is deterministic due to the fact that the valid transitions in A 4, form

a subset of the valid transitions in A 4, we have

[AS]() = @ [0](t].)
weEpos(t)

=[©)71()

which is what we wanted to show. O]

33



5 Determinism and the Fragment QMSO (™, ®, ®)

34



6 Unambiguity and the Fragment
QMSOO_[;? Db, ®b>

We now come to the tree series definable by unambiguous WTA. The idea and
proof of this section is a straight-forward adaptation of the idea and proof used
in Theorem 5.2 of [I5], where the theorem is proven for unambiguous weighted

automata on words.

Theorem 6.1. Let (K, ®,®,0,1) be a commutative semiring and (I',rkr) a
ranked alphabet. A tree series S € K{(Ir)) is definable by an unambiguous
weighted bottom-up finite state tree automaton over K and ' if, and only if,

S is definable by a formula in QMSO(ITL, By, ©p).

Proof. (=) Let A = (Q,T, i, ) be an unambiguous WTA such that [A] = S.
We show how to construct a formula 4 € QMSOR(IIL, @, ®p) such that [64] =
[A]. As for every tree t € Tt there is at most one run of A on ¢, we don’t have to
sum over all runs. Instead, we know that if we guess a run using the existential
quantifier, this will always produce the same unique run.

As we did in the proof of Theorem [4.1] we define D as the set of valid
transitions in Ay and let X = (Xi,...,X,) be an enumeration of the set

{X(Gaq | (@ a,q) € D}. We also reuse the formula valid 4(X) and define

unamb-transition(x) := @ (FX valida(X) Az € X(gag) © 1(7:a,q)

(¢,a,9)€D
unamb-final := @ (3X valid4(X) A Fz.root(z) Az € X(gaq) © alq)
(¢a,q)€D
In the first formula we guess the unique run, if it exists, using the existential
operator and take the weight at position z. In the second formula we find the
final weight of the state at the root of this run. It is easy to see that by defining

the formula ', as

¢y := (Ilz.unamb-transition(z)) ® unamb-final

35



6 Unambiguity and the Fragment QMSO(IT}, &, @)

we have [A] = [¢,]. However, this formula is not in QMSO (I}, &, ©p) yet.
We therefore consider the following: for 7,7 € QMSOp (&, ®), the formula

(llz.7) © 7y
can also be written as
[Iz. ((11 © 72 ® root(x)) & (11 ® —root(x)))

after relabeling x in 7, if it is used in the formula. Of course, the commutativity
of @ is crucial here. Latter formula obviously is in QMSOp(IIL, @, ®p) and as

¢, has above form, we obtain 64 as needed by applying this idea to #';.

(<) This direction has been proven in Proposition [4.4] O

36



7 Finite Ambiguity and the Fragment
QMSOO_[;? D, Qb)

We now come to the tree series definable by finitely ambiguous WTA. The main
idea here is the same as in [I5, Theorem 5.3|, just that we have to prove an

equivalent version of the Lemma A.7 in [15] for the case of trees.

Theorem 7.1. Let (K, ®,®,0,1) be a commutative semiring and (I',rkr) a
ranked alphabet. A tree series S € K{(Ir)) is definable by a finitely ambiguous

weighted bottom-up finite state tree automaton over K and ' if, and only if, S
is definable by a formula in QMSOR(ITL, &, ©p).

Proof. (<) Take 6 € QMSO(ITL, &, ®p). Obviously 6 is a finite sum of formulas
in QMSOF(H;, Dy, @b), that is

n

e:@ei

=1

for some n € N and 6y,...,0, € QMSO(IIL, &y, ®,). By Theorem there
are unambiguous WTA A, ..., A, such that [A4;] = [6;] for all i € {1,...,n}
and by the proof of Proposition the automaton we can construct for the sum
6 =P, b; is then n-ambiguous.

(=) For this direction we use Lemma [7.2 below, which we yet have to prove.
Given the lemma, for a finitely ambiguous WTA A we can find n € N and
unambiguous WTA A, ..., A, such that for all t € T we have

[A41(t) = EDIAL)

By Theorem for i € {1,...,n} we can find §; € QMSOR(II., By, ®p) such
that [A;] = [6:] so for 0 := @}, 6; € QMSO(IIL, ®, ®;) we have [0] = [A].
This was to show. O]

The rest of the section is dedicated to prove the lemma used in above proof.

37



7 Finite Ambiguity and the Fragment QMSO(IIL, &, &)

Lemma 7.2. Let A = (A, T, pu, ) be a finitely ambiguous weighted bottom-up
finite state tree automaton. Then there exist finitely many unambiguous weighted

bottom-up finite state tree automata Ay, ..., A, satisfying

[A] =[Ai] @ ... & [A.].

The proof roughly follows the construction applied in [14, Section 4]. Let
A" = (A, T, i/, a’) be a finitely ambiguous WTA. Without loss of generality, A’
is assumed to be trim. We will prove the lemma by constructing a finite set of
unambiguous automata such that every accepting run in A’ will correspond to
an accepting run in one of the new automata in a 1-to-1 manner. Note first,
that an accepting run is characterized only by all its transitions and the final
state having non-zero weights. Therefore, for the construction we consider the

“booleanized” automaton A = (A, T", u, a) over B where for d € A4 and ¢ € A

1 if p/(d) #0

0 otherwise

and
1 ifo/(q) #0

0 otherwise.

In other words, A is an automaton over the boolean semiring B having the same
accepting runs as A’. Now, remember that there is an obvious 1-to-1 correspon-
dence between the WTA over the boolean semiring and the standard BU-FTA.

In the following, we will therefore not make a strict distinction between the two.

We will now use the power set construction to obtain a deterministic WTA
B = (B,T',v,3) over B having the same support as .A. As we are going to need
its properties in detail, we will recapitulate the construction, but refer to [4]

Theorem 1.1.9] for a proof of correctness. Let B’ = (B',T',v/, ") be the WTA

38



defined by B’ := P(A),

V(P ..., Ppa,Q)=1:&

Q={q€A|lIpr € Pr...3pm € Py : (p1,---,Pm,a,q) =1}

and

F(Q)=1:=3g€Q:ag) =1.

Then B is defined as the trim part of B'.

With the help of B, we now define the Schiitzenberger covering S = (S, T, (,w)
of A over B. Let the tensor product AE B = (A x B, I,y B v,a@ f) of A and
B be the automaton defined by

:umV((plapl)a"'7(pmqu)7av(QaQ)) =1l

w(piy . s Pm,a,q) = 1AV(P, ..., Ppya, @) =1

and

alB(q,Q) =1 alqg) =1AB(Q) =1.

Then S is defined as the trim part of A& B.

Now let (¢,Q) € S. The past of (q,Q), denoted by Pasts(q, @), is defined as

Pasts(q, Q) := {t € Tr | Rung 4,q)(t) # 0}.

Proposition 7.3. Let A, B,S be as above, then the following holds:

(1) For all states (q,Q) in S we have q € Q.

(ii) We have a canonical bijection between the accepting runs in S and A.

39



7 Finite Ambiguity and the Fragment QMSO(IIL, &, &)

(iii) For every pair of states (q1,Q),(q2,Q) in S we have Pasts(q1,Q) =
Pasts (g, Q).

Proof. (i) Let t € Tr and r € Runagpr(t). For the leaves w € pos(t) with
a:=t(w) € T'® and (¢,Q) := r(w) we have p(a,q) =1 and v(a,Q) =1 & Q =
{G € Alu(a,q) =1} by definition of B and A @ B, so obviously ¢ € Q.

For w € pos(t) with t(w) € T™ m > 1 we assume by induction that for
(pi, B;) :=r(wi) (1 <i<m) we have p; € P, and obtain that for (¢, Q) = r(w)
we have p(p1, ..., Pm,a,q) = land v(Py,...,Py,a,Q) =1 Q ={¢€ A|3Ip; €
Py ...3pm € Py w(pry .-y Pm,a,q) = 1}. Trivially, ¢ € @ must hold. By trim-

ness, this proves (i).

(ii) Let t € Tr. Define Uy: Runsp(t) — Runyp(t) by projection on the
first coordinate, i.e. if r(w) = (¢, @) then Vy(r)(w) = ¢. Similarly, let
Uy: Runsp(t) — Runpgp(t) be the projection on the second coordinate. By
definition of A [ B, ¥; and U, are well defined. As B is deterministic (—
unambiguous), we get |Rungp(t)] < 1 and it is therefore easy to see that for
every two ri,r2 € Rungp(t) we have Wy(r;) = Wo(ry). It follows that ¥,
is injective. For surjectivity of U, take r4 € Rungr(¢) and the unique run
rg € Rungp(t). It is easy to see that r(w) = (ra(w),rg(w)) € Runzzr(t) and

therefore r € Rungp(t), ¥q(r) = ra.

(iii) As the problem is symmetric, it suffices to show that Pasts(q1,Q) C
Pasts (g2, @). By (i) we know that ¢; € @ and ¢, € Q. Let t € Pasts(q;, Q) and
r1 € Rung,q,.0)(t). We define 7, € Rung (4,.¢)(t) inductively starting from the
root, beginning with ro(e) 1= (g2, Q). Now assume 75 is defined on w € pos(t)
with ro(w) = (fo, F), mi(w) = (f1, F) and t(w) =: a € T™. Let (p;, P,) :=
ri(wi) (1 <i < m). By induction we assume fo € F and by definition of B we
have F={f € A|3p1 € Pr...3pm € Py : pu(P1,---,Pm,a, f) = 1}. This implies
that we can find p; € Py,...,pm € P, such that u(py,...,pm,a, fo) = 1. We
define ro(wi) := (p;, P;). Now ((t,,(w)) =1 and, as p; € P;, the prerequisite for

the next induction step is fulfilled and we obtain ry as needed.

40



Definition 7.4. Let a € T'™), Two valid transitions

((p{7P1>7 te (pj;nvpm)vav ((LQ)) € AS (] = 172)

are said to compete. Competing is an equivalence relation on the valid transitions
and the equivalence class T of a valid transition is called a competing set if it
contains at least 2 different transitions. A transition belonging to a competing

set is called a competing transition.

Note that every transition ((p1, P1), ..., (Pm, Pm), @, (¢, Q)) competes with it-
self by definition, but we will only refer to it as a competing transition if it

actually belongs to a competing set.

We are now going to show that for each competing set there must exist a
constant x € N such that for every tree ¢t € Tt and every run r € Rungr(¢) the

number of footpoints of transitions of this given competing set is bounded by .

Proposition 7.5. Let T be a competing set. Then there exists a constant x =

X(T) € N satisfying
Vt € Tr Vr € Rungp(t) : [{w € pos(t) | t.(w) € T} < x

Proof. We prove the statement by contradiction. Let T be a competing set such
that for every n € N we have a tree t,, € Tt and a run r, € Rungg(t) such
that for V,, := {w € pos(t,)|t,,(w) € T} we have |V,| > n. Let v € V,, and
((p1, P1), -y (Dms Pm)y a, (g, Q)) be the transition t,(v) at v and fix a transition
((p1, P1), -y (D, Prm)sa, (q,Q)) € T different from the former. By definition of
a run and Proposition (iii) we have t,|,; € Pasts(p;, P;) = Pasts(p;, P;) for

all i € {1,...,m}. Thus, we find 7; € Rung , p,)(tn|s:) which means that

ri(uw) if vi <, w for some i € {1,...,m} and w = viu
ro(w) =
rn(w) otherwise

41



7 Finite Ambiguity and the Fragment QMSO(IIL, &, &)

is an accepting run for ¢,,. r, differs strictly from r,, but the difference is restricted
to the subtree at v. Thus, for vy,vs € V,, with v; # vy, two runs r,, and r,,
constructed in this way will differ either at both v; and wv,, if v; and vy are
prefix-independent, or they will differ at least at the prefix-smaller position.
This means there exists a different run r, € Rungsg(t,) for each v € V,, ie.
|Runsr(t,)| > |Vu| > n. For n — oo this contradicts the finite ambiguity of
S. O

As both I" and S are finite, there is only a finite amount of different compet-

ing sets T and we can take the maximum of all y(T) to obtain a global constant .

To make proper use of Proposition we need to decompose our automaton
S for the first time. Let F' be the set of final states in S. Then for each f € F
we let Sy be the automaton behaving exactly like S with the exception that f is
the only final state. Obviously, each accepting run r in § will now be a run in
S,() and only in S,(.). To prove Lemma it therefore suffices to deal with the
Sy separately and then take the sum of those. For sake of notation, we simply

assume S to have only one final state (g, Qf).

We will now show that every accepting run r is characterized uniquely by
the order in which the competing transitions are visited, from a bottom-up point
of view, assuming the transitions are ordered using the lexicographical order of

their footpoints.

Proposition 7.6. Let t € Tt and ri,ro € Rungp(t) such that vy # ro. Then
there exists a competing set T satisfying the following. Let W’ = {w €
pos(ty,) | t,,(w) € T} and write W7 = {w{,...,w%j} with wl <, ... < wy,
for j =1,2. Then for some 1 < k < min{ny,na} we have t,, (w}) # t,,(w?).

Proof. Take t € Tr and 71,72 € Rungp(t) with r; # 7. Let w be the lexico-
graphically smallest position in pos(t) such that ry(w) # r2(w). By assumption

on S we have r(e) = ra(e) = (¢r,Qy), so € # w = w't’ for some 7' € N. Let

t(w') =: a € T, By minimality of w we have r(vw') = ra(w') =: (¢, Q).

42



Now let (pl, B) = rj(w'i) for 1 < i < m, j = 1,2. Remember that S is
“deterministic” in the second coordinate which means that both runs are iden-
tical there. It is now easy to see that w’ is the footpoint of the transition
((p1, Pr)s -+ s Py Pra)s @, (, Q) in ry and ((pf, 1), - -, (D, ), @, (¢, Q) 7,
belonging to the same competing set T and being strictly different as p;, # p32.
Again by minimality of w, we get that r; and ry are identical on all positions
w <; w'. In particular, all footpoints wy,...,w, € pos(t) of transitions in r;
belonging to T, i.e. with t,,(w;) € T, such that w; <; w’, are also footpoints of

transitions from T in ro and vice versa. O

We are now going to use this characterization to define finitely many au-
tomata such that each accepting run in § will correspond to an accepting run
in exactly one of the newly constructed automata. The idea is to make the
automata remember which ones of the competing transitions have been used in
which order. By Proposition 7.5 we only have to care about remembering finitely
many transitions and by Proposition this will cause different accepting runs

for a tree to be accepted in different automata.

Let Ty,..., Ty be an enumeration of the competing sets in §. For each
kX ) ko x .
£ e X U(T)) take S := (S x X |J(T;)7,T,n,w*) defined by
1=17=0 I=15=0
(pl)Pl) (pm,Pm) (q,Q)
ef e el
77 . Y ) . ’a7 = 1 :<:>
e’f e];“n ek

el:dGZ"'an if d:= p,P,--~7pm;vaaaQ7Q eT
Vie{l,... k} ' (e )0 b @ Q) et

otherwise

and

ek

Wl ] =1 e (q,Q)Z(Qfan)/\<e;>=€

43



7 Finite Ambiguity and the Fragment QMSO(IIL, &, &)

It is easy to see by construction, that the automata gain no “new” accepting runs,
as they are in fact “deterministic” in the >k< O(Tl)j coordinate, and that this
second coordinate effectively saves the ordeir:(l)f] 2?1 competing transitions for each
competing set in lexicographical order. By Proposition we can execute every
accepting run in one of the automata and by Proposition different accepting
runs for the same tree end up in different automata, making the automata un-

ambiguous. Finally, we “redecorate” these automata with our original weights,

i.e.

(p1,P1) (P, Prm) (4,Q)
el el 1
1 m e

n : e : ,a, : =1

e’f ek, ek

(plvpl) (pm,Pm) (q»Q)
et e el

/ e !
~en : . ) @, : '_u(plu"'7pm7a’7q)

e’f ek, ek

and the same for the final states. The result is a set of unambiguous WTA whose

sum equals our initial automaton. This concludes the proof of Lemmal[7.2 O

44



8 Polynomial Ambiguity and the Fragment
QMSO(ZHMIL, @, @)

o
We now come to the tree series definable by polynomially ambiguous WTA.
Given a polynomially ambiguous WTA A we can define the functionr4: N — N
that counts the maximum number of possible runs given trees with a limited
number of nodes, i.e. r4(n) = max{|Runsr(t)| |t € T, |pos(t)| < n}. We then

define the degree of ambiguity of A by
degree(A) = min{k € N|r € O(n*)}.

This is well defined if A is polynomially ambiguous. We illustrate this by giving

an example for a simple polynomially ambiguous automaton.

Example 8.1. We consider the alphabet I' = {a,b} where rkr(a) = 2 and
rkr(b) = 0. We construct an automaton A = (Q,I',u,a) over the tropical
semiring (N U {oco}, min, 4+, 00,0) which to a tree ¢ € T assigns the minimum
amount of a’s we have to visit to reach any leaf b starting from the root. For this,
we let Q@ = {p,qs}, where p will serve as a “filler state” and ¢y as a “counting
state”. Given the tree t, we want that for every leaf b in ¢ there is exactly one
run of A on ¢, given by mapping all nodes between this leaf and the root to ¢
and all other nodes to p. The following figure gives an example of how such a

run should look like.

45



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

We therefore define

p(p,p,a,p) =0
(b, qr) =0
M(Qf7p7a7Qf) =1
p(b,p) =0
w(p,ay,a,q5) =1
and g is oo for all other transitions. For the final weights we set a(gs) = 0

and a(p) := oo. In other words, we can “enter” into the tree at the leaves with
both states p and ¢y without cost. The transitions at the letter a then serve to
“forward gy upwards”, but cannot “create gy out of nothing”. Note here, that
the transition (¢, ¢, a, gs) is not valid, so we can enter at no more than one leaf
with the state ¢; to get a run. Finally, the root has to be mapped to g; due to
a(p) := oo, which in turn forces us to enter at least one leaf with state the g;.

For w € pos(t) with ¢(w) = b, the run r associated to w by r(w) = ¢y will have
weight |w|, hence the weight of ¢ will be the minimum over all |v| for v € pos(t)
with ¢(v) = b. As every run of A on t corresponds to exactly one leaf of ¢ and
a tree trivially has no more leaves than nodes, A is 1-polynomially ambiguous.
As we can construct trees with as many leaves as we want, A is also not finitely
ambiguous.

This example can also be used to show that polynomiality defined using the
depth of the tree is not equivalent to our definition. For n € N we let t,, € Tt be
the “largest” tree of depth n possible, i.e. the full binary tree of depth n with
2"~1 leaves. Formally, we set t; := b() and t,,1 = a(t,,t,) for n € N. Then
indeed depth(t,) = n and t,, has exactly 2" leaves, so there are 27! different
runs of A on t, for every n € N. So if we would regard n, the depth of the tree,
to be its “size”, A would in fact not be polynomially ambiguous.

A formula describing A is found in

min z. Z Y. (labelb(x) + min {1 + (label,(y) Ay <, x), =(label,(y) Ay <, 37)})

where ) is the addition + in N. A definition of the prefix relation <, for formulas

is given in Definition [8.23]

46



Theorem 8.2. Let (K,®,®,0,1) be a commutative semiring and (I',rkr) a
ranked alphabet. A tree series S € K{(Ir)) is definable by a polynomially am-
biguous weighted bottom-up finite state tree automaton of degree k over K and I"

if, and only if, S is definable by a formula in QMSOp(ZFITL, @, ©p).

rTx)

Proof. (<) This direction can be proven with the idea used in the proof of
Theorem 6.2 of [I5] for weighted automata over words. Take k € N and 6 €
QMSOR(ZFIIL, @, ®p). Due to the fact that for 7, 75 € QMSO(I') we can rewrite

T

Ya.(m @ 1) into Xx.1y & Yx.7o, we can assume that § is a sum of formulas in

QMSOF(anl @b, @b), that iS

xTxTTx)

n

0= o

=1

for some n € N and 6; € QMSO(ZFILL, @y, @) for @ € {1,...,n}. It then
suffices to show that for all € {1,...,n} we can find a polynomially ambiguous
WTA A; of degree k such that [A;] = [¢;]. We prove this by induction over k.
For k = 0 this is clear due to Theorem [6.1] For k& > 0 we consider the proof

of Proposition |4.8 in more detail, where we have shown how to construct an

automaton for the first order sum operator.

By induction we assume that for 7 € QMSOR(ZFMIL @, ®;) we can find a
k — 1-polynomially ambiguous WTA A such that [7] = [A]. Now let A, be the
automaton constructed from A as done in the proof of Proposition 4.8 such that
[A.] = [Xz.7] and let p be a polynomial of degree k — 1 such that for all ¢t € T

we have

[Run(t)| < p(|pos(t)]).

Now let ¢t € Tr. As we have seen in the construction of A,, every run of A,
on t corresponds to exactly one run of A on t[x — w| for some w € pos(t). In

particular, we have

Runa, p(H)] < > [Rungp(tfr — w])l

wEpos(t)

47



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

xTTx)

< S pllpos(t)])

wepos(t)

= [pos(t)| - p(|pos(t)])

so that A, is k-polynomially ambiguous, as |pos(t)| - p(|pos(t)|) is a polynomial
of degree k in |pos(?)].

(=) The proof for this direction takes more effort and we will therefore divide
it into five smaller parts. First, we will make some definitions and observations
applicable to polynomially ambiguous WTA in general. Secondly, we will show
that we can represent any polynomially ambiguous WTA as a sum of polynomi-
ally ambiguous WTA which are in a standard form we yet have to define. Thirdly,
we will analyze this standard form and fourthly, we will prove some purely logic-
related statements we need in order to utilize the properties we have found the
standard form to possess. Finally, we will combine all of this to conclude the

proof of Theorem (8.2

8.1 General Definitions and Observations

For the rest of this section we will assume, without loss of generality, that all
WTA, which are not the result of an explicit construction, are trim. We begin
by introducing a more elaborate concept for runs. For now let A = (Q, T, i, )

be a polynomially ambiguous WTA.

—

Definition 8.3 (Run(¢; W, q), Runy(t;w,d)). Let t € Ty, @ = (wy,...,w,) €
pos(t), ¢= (q1,.-.,qn) € Q™ and d= (dy,...,d,) € A", then

Run(t; @, q) := {r € Run(t) |r(w;) = ¢; foralli =1,...,n}

and

-

Run(t;w,d) := {r € Runy(t) | t,(w;) =d; for alli =1,...,n}.

48



8.1 General Definitions and Observations

- -

The sets Runar(t; W, q), Runa,(t; 4, q), Runar(t; w,d) and Rung,(t; @, d) for
q € @ are defined in a similar manner to the above and Run 4 g(t) and Run 4 ,(?).
We also need the notion of partial runs as defined in [19]. For ¢ € Tr, a tuple & =
(w1, ..., wy,) € pos(t)" of pairwise prefix-independent positions and ¢, ...,q, €
() a map

r: pos(t) \ (U wipos(t|wi)> U{wy,...,w,} — Q

is called a partial run of A on t relative to qq,...,q, at wy,...,w, if for all
w € pos(t) \ (U;, wipos(t|,,)) the transition t,(w) is valid and r(w;) = ¢; for
i € {1,...,n}. We denote the set of all such runs by Run%(t;1,q) and the
sets Runiq(t; W, q) for ¢ € Q and Runi’]F(t; w, q) are defined analogously to the

previous cases.

Definition 8.4 (%, €, Q). We define a relation < on @ by
¢ < q = FteTr Jw e pos(t) : Runyy, (6w, q0) # 0.

This relation is reflexive and transitive. For transitivity take ¢; < ¢» and
2 < g3 and trees t1,ty € T, positions wy € pos(ty), wsz € pos(tz) and runs
ri € Runag, (ti; wit1,giq1) for ¢ = 1,2 as in the definition of <. Then r(ry —
we) € Runy g, (81 (ta — wa);ws, gs), i.e. ¢1 < gs. Intuitively, ¢1 < ¢» means that
there is a “path” from ¢; down to go, cf. [2I]. This gives rise to a relation ~ on

Q) defined by
Q=qp = @IRNEREI Q.

This is an equivalence relation inducing equivalence classes [¢l~ € Q)~. One
may think of the classes as strongly connected components of states. We set
@(q) := [¢~ and Q := @/~ and refer to €(q) as the component of ¢ and to Q as

the components of Q). Then again, < induces a partial order < on £, defined by

1) S €q) & @< ¢

49



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

We will use this relation to derive various structural properties of our automaton.

We also need the notion of a bridge, similar to the one used in [21].

Definition 8.5 (Bridge). A valid transition b = (p1,...,pm,a,q) € A4 is called
a bridge out of €(q) if €(p;) # €(q) for all i € {1,...,m}. Notice that all valid

transitions of the form (a,q) with a € I'®© and ¢ € Q are bridges.

Definition 8.6 (F,). For every p € @ we define the WTA F, = (Q. T, 11,7,)

where for ¢ € ) we define v, as

1 ifg=p
Wwlg) =
0 otherwise.

The intuition is that for ¢ € It the accepting runs of the automaton F, on ¢
are exactly the p-runs of A on t, i.e. the ones that “begin” with p at the root.
Though we have defined F, specifically for our automaton A, the construction
is applicable in an obvious way to arbitrary WTA and depending on context, we
will change the underlying automaton used for F, in the following considerations.

Now for some properties of F,.

Proposition 8.7.

(i) Rung, () = Rungy,(t) for allp € Q and t € Tr. In particular Runyp(t) =
U,er Runz, g(t), where F' is the set of final states of A.

(ii) F, is polynomially ambiguous for every p € Q.
(iii) If p1 < p2 then degree(F,,) > degree(F,,).
Proof. (i) Clear.
(ii) By trimness we can find a run using p, i.e. there is a tree t € T with a
run r; € Rungr(t) and w € pos(t) such that r,(w) = p. Now for all s € Tr and

rs € Rung, r(s) we have r,(r, — w) € Runyr(t(s — w)) and as A is polynomi-

ally ambiguous this means that /, must be polynomially ambiguous.

20



8.1 General Definitions and Observations

(iii) For p; = po this is clear, otherwise from the fact that p; < p, we can
find t € Tr and w € pos(t) such that some r, € Runy,, (t; w, pa) exists. Then for
any tree s € Tr and 7, € Rung,, g(s) we get r(r, — w) € Rung, r(t(s — w))
so that degree(F,,) < degree(F,,).

O

Definition 8.8 (degree4(p)). For p € @ we define degree 4(p) = degree(F,)
which is well defined by Proposition (ii). Furthermore we define

degree 4(€(p)) := degree 4(p)

which is now well defined by Proposition 8.7| (iii). If it is clear from context about

which automaton we are talking, we will simply write degree(p) and degree(€(p)).

We now show some properties which are characteristic for polynomially am-
biguous WTA. The first three points deal with restrictions the polynomial am-
biguity imposes on the automaton. The last point shows that polynomially
ambiguous WTA, which are not also finitely ambiguous, possess at least a lower
linear bound on their ambiguity. The ideas for the following proof are the same

as the ones applied by Seidl and Weber in [21], [19].

Proposition 8.9. Let A= (Q,T, u,7) be a polynomially ambiguous WTA.
(i) Fort eI, w € pos(t) and g € Q we have \Runiyq(t;w,qﬂ <1.

(ii) Fort e Tr, w € pos(t), ¢ € Q and p € €(q) we have |Runf’4’q(t;w,p)| <1.

(iii) Let d = (p1,-..,Pm,a,q) € A4 be a valid transition. If p; € €(q) for some

i€ {l,...,m}, then F,, is unambiguous for j € {1,...,m}, j #i.

(iv) Ifdegree(A) > 0 then there exists a sequence of trees (t,)nen with |pos(t)| <
C -n and |[Rungp(t,)| > n, i.e. we have a lower linear bound on the

ambiguity of A.

Proof. (i) Assume we have ¢ € @, t € Tr and w € pos(t) such that 1,7y €
Runiq(t; w, q) with 7 # 5. We can then “concatenate” these partial runs re-

peatedly arbitrarily mixing them to get runs on trees growing like n in size but

51



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

having at least 2" partial runs. Formally let ¢, := ¢ and t,, := t,_,(t — w"™1)
forn > 1. Forn > 1 and a word x = 2/l € {1,2}" where | € {1,2} we set
re 1= ru(r; — w"l) € Runiq(tn; w",q). In conclusion we have a sequence of
trees (t,)neny With |pos(t,)| < n-C where C' = |pos(t)| and |Runi,q(tn;w”,q)| >
2". By trimness we can find some s € Tt and r; € Rung,(s). By joining
ti=t,(s — w") and r = r (rs — w") we get |pos(t))| < n-C + |pos(s)| and
|Run 4 ,(t,)] > 2" which clearly is a contradiction to the polynomial ambiguity

of F,, i.e. Proposition (ii).

(ii) Assume we have ¢ € @, p € €(q), t € Tr and w € pos(t) such that
there exist rq,ry € Runiyq(t;w,p) with 71 # r9. As p < ¢ we can find s € T,
v € pos(s) and 75 € Run4,(s; v, q). Then considering t' := (s — w) and the runs
ri=ri(rs = w) and ry 1= ro(rs — w) we easily see that |Runi7q(t’; wv, q)| > 1

which is a contradiction to (i).

(iii) Assume we have a valid transition d = (p1, ..., Ppm,a,q) € A4 such that
pi € &(q) fori € {1,...,m} and F,, is not unambiguous for some j € {1,...,m}
with j # 4. Then we can find s € Tr with 7,7, € Rungy,(t) such that
r1 # ro. By trimness we can find a run that uses d, i.e. there are t; € Ty
and rqy € Rungr(ty) such that for some wy € pos(ty) we have t,.,(wg) = d.
We consider the subtree ¢ := t4],, with the run r € Rung,(t) defined by
r(w) = rq(wqw), ie. t,(¢) = d. Then the tree t' := t(s — j) with runs
ry = r(ry — j) and ry := r{ry — j) clearly shows that |Runi’q(t’;i,pi)| > 1

which is a contradiction to (ii).

(iv) This has been proven in [19], so we just sum up the argumentation. We
refrain from repeating the exact formulations here, as it would require introducing
a lot of definitions not used elsewhere in this paper. As degree(.A) > 0, A is not
finitely ambiguous. By [19, Prop. 2.5] this means that A must satisfy at least
one of three properties (T1.1), (T1.2) or (T2) which in our notation look like the

following.

52



8.2 Decomposition into a Sum of Standardized Automata

(T1) Fje{L,....,7k(I")} Ip,q,q; € Q : p = ¢; = g such that

(T1.1) There exist two different valid transitions
(qg), . j(i)l, 4, qj(-izl, o ,qfq?, a,q) € Ay, i =1,2, and trees
tyeo o tjmt, tisa, ..oyt € Tp with RunAq;f)(tj/) # () for i = 1,2 and
all j/ # j.

(T1.2) There exists a valid transition (g1, ..., ¢j—1,¢j, ¢j+1s- - qm, @, q) €
Ay and a tree ¢ € Ty with [Runyg, (¢)[ > 1 for some j* # j.

(T2) There exist states p,q € @ with p # ¢ such that for some ¢ € Tr and
w € pos(t) all of the sets Runijp(t; w, p), Runijp(t; w, q) and Runijq(t; w,q)

are non-empty.

(T1.1) is basically a negation of (ii) and (T1.2) a negation of (iii). Therefore,

in our case (T2) must hold. As a consequence we can find t € Ty, w € pos(t)

and p,q € Q with p # ¢ for which there are partial runs 75 € Runi,p(t;w,p),
B B

rk € Runy ,(t;w,q) and 7 € Runy (t;w, q).

Conceptually, we can now “concatenate” these partial runs in a fashion
rb - rbrlrl--.rl. This creates partial runs on trees growing like n in size and
having at least n partial runs. We set ¢, :=t, t,,41 = t,,(t = w") and ri = .
For n > 1 and i € {1,...,n} we set 1}, = r;(r! — w") (adding r? at the
bottom) and 77} := r2(r — w) (to get the run with r# at the bottom). Then
forn € Nand 1 <i < j <n we have %, € Runim(tn;w”,q) and 7! # rJ such
that |pos(t,)| < n-|pos(t)| and \Runi,p(t; w™, q)| > n. By extending the trees ¢,
with some fixed tree § € Tp and run 7 € Runi,F((é; 0, p) for 0 € pos(8) at the top

and § € Tr and run 7 € Run4,4(5) at the bottom we obtain trees as needed. [

8.2 Decomposition into a Sum of Standardized Automata

We can now define what we want to understand by a standardized WTA.

Definition 8.10 (Polynomial Standard Form). We call a (polynomially ambigu-
ous) WTA A = (Q, T, u,7y) standardized or say it to be in polynomial standard

form if

23



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

xTTx)

(i) A is polynomially ambiguous, trim and possesses only one final state ¢y € @

and

ii) for every p € @ with degree 4(p) > 0 there is exactly one bridge out of &(p
A

and every accepting run r uses this bridge exactly once. Formally
{d € A4|dis a bridge out of €(p)} = {b(p)}
for some b(p) € Ay and

Vit € Tr Vr € Rungp(t) : [{w € pos(t) | t,(w) = b(p)}| = 1.

The fundamental concept of standardized WTA is close to the notion of chain

NFAs as introduced in [21].

Lemma 8.11. Let A = (Q,T',u,y) be a polynomially ambiguous WTA, then
there exist n € N and WTA Ay, ..., A, in polynomial standard form such that
degree(A;) < degree(A) for alli € {1,...,n} and

[4] = PDIAL

The rest of this subsection is dedicated to the proof of this lemma. We begin
with a first elementary simplification. Let A = (Q, T, i,y) be a polynomially
ambiguous WTA and F be the final states of A. For g € F take the automaton

Ay = (Q, T, u,7,) where v,(q) == v(¢) and v,(p) := 0 if p # g. Clearly, we have

[A] = DAL
q€F
Therefore, without loss of generality, it suffices to prove Lemma [8.11) under the
assumption that A4 possesses only one final state gs. In the next step we construct
a WTA A, accepting the same tree series as A, in which for every component
¢ € Q' and every run 7’ there is at most one footpoint of a bridge out of ¢’ in 7/,

The idea is to make several copies of the states of A and adapt p accordingly.

o4



8.2 Decomposition into a Sum of Standardized Automata

Set N:=|Q|+1,U :={1,...,rk(l')} and U := Ui]\io U'. Then we consider the
WTA A" = (Q', T, i/,7') where Q' := @Q x il and p/ and + are defined by

'U’/<<p17u1)7 SRR (pmaum),a, (q,u)) =

w(p1y .. Dm,a,q) if (p1,...,Dm,a,q) is not a bridge and u = uy; = ... = uy,

or if (p1,...,Pm,a,q) is a bridge and u; = i for all

ie{l,...,m}
\O otherwise
Ya) Hu=e
Y(qu) =
0 otherwise.

The automaton A" behaves like A in the ()-coordinate and, using a top-down
perspective, upon encountering a bridge saves the direction it took passing this
bridge accumulating these directions into a word. Every state (p,u) € @’ can
be interpreted as a copy of the state p € Q. For (p,u) € Q' we denote the
component of (p,u) in terms of 5 by € (p,u) and the components of @)’ by £’

Proposition 8.12.
(1) A’ is polynomially ambiguous with degree(A’) = degree(A) and [A'] = [A].
(i) For all (p,u) € Q" we have degree 4 (p,u) < degree 4(p).

(iii) States of A" with non-zero degree being in <-relation are always at positions
being in in <,-relation: For allt € Tr, ' € Runa () and wy, ws € pos(t)
such that r'(wy) < r'(wa), degree 4 (r'(w1)) > 0 and degree 4 (' (ws)) > 0

we have wy <, wy or wy <p wy.

Proof. (i) Let t € It and m: Runa p(t) — Runar(¢) be the projection on the
Q-coordinate. By definition of u/ the well definition of 7 is clear. We will

show that 7 is a bijection and that the weights of the runs are preserved. Take

95



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

r € Rungp(t) and define ' € Run 4 »(t) inductively starting from the root with
'(e) := (qy,€), which is the only final state. Then assume that 7’ is defined at
position w € pos(t) with r'(w) = (¢, u) and that ¢,.(w) = (p1,...,Pm,a,q) =: d.

1) If d is not a bridge, we set d’' := ((p1,u), ..., (Pm, ), a, (¢, u)) and define 1’
at position w using this transition. By construction of u’ this is the only possible
extension of 7’ such that t,/(w) is valid. We also see that u(d) = p/(d').

2) If d is a bridge we set d' := ((p1,ul), ..., (pm,um),a, (¢, u)). If u ¢ UYN we
have d € Ay and can define v at position w using this transition. This then
again is the only possible extension of 7’ such that t, (w) is valid and we have
p(d) = ' (d') in this case.

3) Now if d was a bridge and u € UY at the same time, we can find N
pairwise distinct positions wy <, ... <, wy = w such that t,(w;) is a bridge for
all © € {1,...,N}. But then also €(r(wy)),...,€(r(wy)) are pairwise distinct
such that |Q| > |Q| > N = |@Q| 4+ 1 which is a contradiction. Therefore this case
can not arise.

We now have 7(r') = r. The uniqueness of the construction of " implies
injectivity of 7 and the fact that we can always construct r’ as shown above
shows surjectivity. This bijection yields the polynomial ambiguity of A’ with the
same degree as A and together with u(t,(w)) = p/(¢,/(w)) for all w € pos(t) and

v(ay) = 7'(g5,€) we have [A] = [A'].

(ii) Take (p,u) € @', then with the same construction as in (i) we can show
that for ¢ € Tt the projection on the Q-coordinate 7: Run s (. (t) — Run,(t)

is injective such that [Runu ) (t)| < |[Runu,(t)| and therefore degree 4 (p, u) <

degree 4(p).

(ili) Assume we have ¢t € Tr, r’ € Run 4 () and prefix-independent wy, wq €
pos(t) such that r'(wy) < r'(ws), degree 4 (r'(w1)) > 0 and degree 4 (' (wz)) > 0.
Now let v be the largest common prefix of w; and ws, i.e. w; = viw) and
wy = vjwh with ¢ # j. Take 7 as in (i) and consider r := 7w (r') € Run4r(?).

We have degree 4(r(vi)) > degree ,(r(wy)) > degree 4 (r'(wq)) > 0 and similarly

o6



8.2 Decomposition into a Sum of Standardized Automata

degree 4(r(vg)) > 0 which by Proposition (iii) implies that d := t,.(v) is a
bridge. By what we have shown in (i) this then means that for some u, uy,uy € U
the state r’(w;) is of the form (p;, wiuy) and r'(ws) is of the form (py, ujus). But
due to 7(wy) < 7’(w9) and the construction of p we also must have that uwiu, is
a prefix of ujus, which is impossible due to ¢ # j. This is a contradiction, so w;

and wy as chosen cannot exist. O

The next proposition shows, simply put, that components of non-zero degree
always form a “straight line” in a run and that no components of non-zero degree

can “branch off” of these lines.
Proposition 8.13. Lett € Tr, ' € Runa r(t), ¢ € Q" with degree 4 (q) > 0 and

define 20 := {w € pos(t) |'(w) € €(q)}, then:

(i) W =0 or W = {v,viy, viyia,...,viy - i} for some v € pos(t), n € Ny and

ity in €N

(ii) If w € pos(t) with v <, w for some v € W and degree 4, (r'(w)) > 0, then

esther w € W or v <, w for all all v € 20.

(iii) The run r" uses at most one bridge out of €(q), that is for
U = {w € pos(t) | t,(w) is a bridge out of € (q)}

we have |B| <1 and |V| =1 iff W # 0.

Proof. (i) We assume 20 # (). By (ili) W is a <,-totally ordered set.
Now if w' € pos(t) such that wy <, w' <, wy for some wy,wy € W we
have 7’(wy) < 7'(w') < r'(wy) such that r'(w') € €(¢) and w’ € 2. Hence,

0 = {v,viy, viyls, ..., Vi i, } for some v € pos(t), n € Ny and iy, ...,4, € N.

(ii) Take w € pos(t) with v <, w for some v € 20U and degree 4, (r'(w)) > 0
and write 20 = {vy, ..., v} with vy <, ... <, vj. Take the largest [ € {1,... k}
such that v; <, w. If | = k we are finished, otherwise write v;;1 = v;j and take

d = ty(v) = (p1,...,Pm,a,p). This is not a bridge as €'(p) = €(p;), so by

o7



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

Proposition (iii) degree 4 (p;) = 0 for all i # j. In particular, p; £ r'(w) for
i # j (Proposition (iii)) and so v;i £, w for i # j and as v;j = v £, W we

must have w = v, i.e. w € 20.

(iii) Let U := {w € pos(t) |t (w) is a bridge out of € (q)}. It is easy to see
that U C 20, so if 20 = () then also U = (). Assume 20 # (), let v € 20U and
take d := t,.(v). If v is the maximal element in 20, d must clearly be a bridge.
Otherwise vj € 20 for some j € N, due to the structure of 20 we proved in (i),

so that d cannot be a bridge, in particular |G| < 1. O

In conclusion, we now have an automaton that defines the same tree series
[A] as A does and is polynomially ambiguous with the same degree as A, but is
simpler in structure, as every run uses at most one bridge out of each component
of 9’ of non-trivial degree. Therefore without loss of generality, we assume A to
have had this property from the beginning. We will continue to denote the only
final state of A by g;.

We now come to the final construction needed to prove Lemma [8.11, We

assume degree(A) > 0 as for finitely ambiguous WTA the lemma obviously

holds true. Let ¢,...,¢, € Q be an enumeration of all components of ) of non-
trivial degree and for i € {1,...,n} let bgi), ce b,(fi) € A4 be an enumeration of

all bridges out of ¢; and set J := X[_ {1,...,k;}. Then for x = (zy,...,3,) € J
we define the automaton A, = (Q, T, u,, ) by

p(d) itd#6 forallie {1,...,n} and j € {1,... .k}

pa(d) = orifd= bg(fi) for some i € {1,...,n}

0 otherwise
\

for d € A 4. That is, for every component of () of non-trivial degree we remove
all but one bridge out of this component. By assumption on A, i.e. Proposition
[8.13] (iii), for any ¢ € T and € Runp(t) the run r is also an accepting run for

t in one of the A,, but r might still be an accepting run in more than one of the

28



8.2 Decomposition into a Sum of Standardized Automata

A.. We can resolve this by taking only a subset of the A,.

Let B := {bgi) lie{1,...,n}, je{L,...,k}}. Fort € Tr and r € Runyp(t)
define B(r) :={b € B|Jw € pos(t) : t,(w) = b} as the set of all bridges in B
used by 7.

Proposition 8.14.

(i) For every x = (x1,...,2,) € J and 11,79 € Runa, r(t) we have that B(ry) =
B(ry). The definition B(x) := B(rq) is therefore well-defined.

(ii) For every t € It and r € Runagp(t) there exists some x € J such that

r € Runy, p(t).

Proof. The idea is very simple here. In every run the root has to be mapped
to gr. Hence given € J every run of A, uses the one bridge out of the
component of gy it possesses. The “child states” of non-zero degree of this
transition therefore occur in every run as well and so do the bridges leaving
their components. Iterating this argument we get that every run of A, uses the
same set of bridges in B. A formal proof follows.

Take t € Tt and ry,rs € Rung, p(t). We show B(r1) C B(r2) and consider
B := B(r1) \ B(ry). If B = ( there is nothing to show, otherwise we have
V :={v € pos(t) |r1(v) € B} # . Now select some prefix-minimal v € V| let
W, = {w € pos(t) | ri(w) € €(r1(v))} and let vy be the prefix-smallest element
of 20;, which exists due to Proposition (i). If vg = € then from r(e) = ¢ we
get that b := t, (v) is a bridge out of €(gs). As ra2(e) = ¢ as well and there is
only one (in A4, valid) bridge out of €(gs), we get that b € B(ry), so b ¢ B and
v ¢ V', which is a contradiction.

We conclude that ¢ # vy = wyl for some [ € N and w; € pos(t). As
degree 4(r1(vg)) > 0 the transition b := t,,(w;) must be a bridge, i.e. b € B.
As we chose v to be minimal, we have w; ¢ V and therefore b ¢ B, so
b € B(ry). Hence, there is some wy € pos(t) with t,,(we) = b. But then
ro(wel) = 1 (wil) € €(r1(v)), so Wy := {w € pos(t) | re(w) € €(r1(v))} # 0. In

particular, for some w € pos(t) the transition t,,(w) is a bridge out of €(ry(v))

29



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

xTTx)

and as there is only one such bridge, t,,(w) = t,,(v) must hold. In particu-
lar, ¢,,(v) € B(ry), so b ¢ B and v ¢ V. It follows, that V = B = () and
%(7’1) = %(7’2).

(ii) By Proposition[8.13|(iii) we have that for all i € {1,...,n} there can be at
most one w € pos(t) such that r(w) is a bridge out of ¢;. In particular, for every
i € {l,...,n} there exists at most one j € {1,...,k;} such that bgi) € B(r). For
ie{l,...,n} weset x; = j if bgi) € B(r) for some j € {1,...,k;} and if such j

does not exist we choose z; arbitrary. Clearly we have r € Run4, r(?). ]

We now have an equivalence relation on J induced by = ~ y iff B(z) = B(y)
for x,y € J. We select a representative of every equivalence class and obtain a
set {x1,..., 25} € J. For this selection we can prove the following proposition,

which in essence concludes the proof of Lemma [8.11}

Proposition 8.15.

(i) [A] = D[ Al

(ii) Fori e {l,...,k} we have degree(A,,) < degree(A) such that A,, is poly-

nomially ambiguous and max;<y, degree(A,,) = degree(A).

Now fori € {1,...,k} let A; = (Qi, T, i, y) be the trim part of A,,. Note that
trimming has no influence on properties (i) and (ii). For p € Q; we denote the

component of p by €;(p) € Q;, where Q; denotes the components of Q;.

(iii) Fori € {1,...,k} and every p € Q; with degree,, (p) > 0 there is evactly
one bridge out of €;(p) and every accepting run r uses this bridge exactly

once. Formally
{d € Ay, |dis a bridge out of €;(p)} = {b(p)}
for some b(p) € Ay, and

Vit € Tr Vr € Rung, p(t) : [{w € pos(t) | t,(w) = b(p)}| = 1.

60



8.2 Decomposition into a Sum of Standardized Automata

Proof. (i) Take t € Tr and r € Runyg(t), then by Proposition [8.14] (i) we
have that » € Rung, r(¢) for some z € J. By construction we have z ~ z;
for some i € {l,...,k}, such that B(r) = B(z) = B(z;). This means
r € Runy, r(t), yielding Rungr(t) = Ule Rung, p(t). Now assume we have
r € Rung, p(t) N RunAzj,F(t) for 1 <i < j <k, then B(r) = B(z;) # B(z;) =
B (r) which is a contradiction, hence Runy,, #(t) N Rung, r(t) = 0, i.e. we have

a partition of the accepting runs in A.
(ii) degree(A,,) < degree(A) is clear as for every t € Tr and @ € {1,...,k}
we have Runy, r(t) € Rungg(t). The second property is clear by |[Runar(t)| =

Zle [Runy, r(t)| for every t € Tr and the definition of the function degree.

(iii) Let ¢ € {1,...,k}, then for all p € @Q; we have degreey,, (p)

IN

degree,, (p) < degreey(p). We prove that if degree, (p) > 0 then &(p)
C(p). Let t € Tt such that we find w € pos(t) and r € Rung, g(t;w,p) C
Run 4 g (t; w, p).

Now take ¢ € €(p), then we find s; € Tr with w, € pos(s;) and r €
Run 4, (s1;wy, q) and so € T with w, € pos(s2) and ry € Run,(s2;wp, p).
Then for s = s1(ss — w,) and ry = ri(rs — w, we have ry €
Run 4, (s; wgy, wyw,, ¢, p). That is, we have a tree s with a run in A that goes
from p to ¢ to p again.

By Proposition m (ii) we know, as degree 4(p) > 0, that all footpoints v of
bridges out of components of ) of non-trivial degree fulfill w,w, <, v. In other
words, there are no bridges “between” the two p’s. Hence, by considering the
tree t' 1= t(s — w)(t|,, — ww,w,), which inserts s into ¢ at position w, and

!/«

the run 7’ “glued” accordingly, we see ' € Runsp(t') and B(r’) = B(r) which
means 7' € Runy, p(t') = Rung, x(t'). As ¢ is used by 7" we have ¢ € Q; and
q € €i(p).

Now if degree, (p) > 0 and b € Ay, is a bridge out of &;(p) then due to
degree 4(p) > 0 and €;(p) = €(p) we have that b is a bridge out of €(p) as well

and by construction of A, this bridge b = b(p) is unique. As p € @; by trimness

61



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

xTTx)

we can find some ¢t € T, r € Rung, p and w € pos(t) with r(w) = p. For this
run we clearly have b(p) € B(r) = B(z;) so by Proposition [8.14 (i) every valid

run in A,, uses b(p), hence so does A;, as trimming does not influence runs. [

The automata A; are all in polynomial standard form and have a degree less

than or equal to the degree of A. As their sum equals A, we have proven Lemma

B.IT

8.3 Analysis of the Polynomial Standard Form

From now on, let A = (Q,T', ,y) be a WTA in polynomial standard form. In
this subsection we will show that there exist degree(.A) many bridges in A, such
that given any tree, the number of runs on that tree is bounded universally if
we fix the position of these bridges. The bound does not depend on the given
tree. This property gives a rather intuitive understanding of what polynomial
ambiguity means: if our automaton has degree n, then fixing the positions of n
predetermined transitions will determine every run up to a constant number of

possibilities.

Definition 8.16 (A, rky, Top). Fix p € @ with degree 4(p) > 0. As there is
exactly one bridge b € A4 out of €(p) we define b(€(p)) := b and b(p) :== b
as this bridge. We set A := {b(q)|q € @, degree,(q) > 0} and for b(p) =
(P1, -+ Dm,a,po) define the rank of b(p), denoted by rka(b(p)), as rkx(b(p)) :=
{i € {1,...,m} |degree 4(p;) > 0}|, the amount of p; of non-trivial degree. We

also extend the relation < to A, that is

b(p1) < b(p2) = p1 < P

For for 91 C A we define the set Top(M) as the set of all minimal elements in I,
that is
Top(N) :={deN|VeeN:(exd— e~xd)}.

62



8.3 Analysis of the Polynomial Standard Form

Proposition 8.17.

(i) Let N C A. If Top(N) = {by,...,b,} and wy, ..., w, are not pairwise prefiz-

independent, then

Runp(t;wy, ..., wp, by, ..., 0,) = 0.

(ii) For by, by € A with by < by, t € Ty, wy, wy € pos(t) we have

Run 4 g (t; wy, we, by, by) # 0 — wy <, ws.

Proof. (i) If this does not hold, it is an obvious contradiction to the minimality

of the elements in Top(N).

(ii) Take by, by € A with by < by, t € Tr, wy, wy € pos(t). Assume that there
exists some 7 € Rungp(t; wy, wa, by, by). Let py := r(wy) and py := r(wy). Due
to b(p1) = by, b(p1) = by and by < by we have that p; < po.

If w; <, wsy there is nothing to show. If wy <, wy, then clearly ps < p; and so
p1 &~ pa. As A is standardized this implies b; = by and w; = wy. In particular,
wy <y Wa.

Now assume that neither w; <, ws nor wy <, wy, i.e. wy and wy are prefix-
independent. Due to p; < p2 we can find some s € Tr and v € pos(s) such that
rs € Rungp, (s;v,pe) exists. Then for ¢’ := t(s — wy) we have r’ :=r(r, = wy) €
Run g r(¥'; w10, we, p2, p2). As we have that wyv and wy are prefix-independent,
there must be at least 2 bridges out of €(py) in 7/, i.e. [{w € pos(t) |t (w) =
b(p2)}| > 2. This is a contradiction to the assumption that A is standardized. [

Before we get to some deeper results, we need one more construction. For
p € @ the automata F, accept subtrees with runs that from a top-down point
of view “begin” with p. But we also need an automaton for the “upper part” of

the run, ending in p, partial runs ending in p, so to speak.
Definition 8.18 (H{). For p,q € Q we define the automaton HI = (Q x

63



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

xTTx)

{0,1}, Ty, pd, o) where T'y = T'U {1} with L ¢ T' and rkr (L) = 0.
The rank of all other letters is preserved and pf and ol are defined for

()0 (B) 0, (1)) € Aggg as:

() (m)sas (%)) =
1 ifa=L1A(%)=(1)
w(piy - oy pmsa,po) ifa€l ANkg=0ANki=...=k, =0

orifael’'ANkg=1ATie{l,....m} k=1

0 otherwise

Lif (3) = (1)

0 otherwise.

(i) =

From a bottom-up point of view, the automaton emulates A in the first
coordinate of the states, deterministically remembers every occurrence of L in

the second and forces the runs to take value p at the leaves labeled L.

Proposition 8.19. Let p,q € QQ, then
(i) Ift € Tr, and Runygg(t) # 0, then 3w € pos(t) : t(w) = L.

(ii) For t € Tr and w € pos(t) we can identify Runysp(t(L — w)) with
Runaq(t;w,p).

(iii) H is polynomially ambiguous.
(iv) HI is unambiguous.
(v) Ifp<p' forp' € Q then degree(H)) < degree(H,).

Proof. (i) Taket € Tr, and r € Run g x(t). If t(w) # L for all w € pos(t) we eas-
ily see that for all w € pos(t) we have r(w) = (?(*)) for some p(w) € Q. In par-

ticular, r(¢) = (*)) for some p(e) € Q and r is not accepting. If wy, wy € pos(t)

64



8.3 Analysis of the Polynomial Standard Form

with wy # ws and t(w;) = t(we) = L then by definition of u for w € pos(t) with
w <, wy or w <, wy we have r(w) = (P0)) for some p(w) € Q. As L can
only occur at leaves, wy and wy must be prefix-independent. Let v be the largest
common prefix of w; and wy, i.e. wy = viw], we = vjw) with i # j, then t,(v)

cannot be a valid transition, as the second coordinate of both r(vi) and r(vj) is 1.

(ii) Take t € Ty, w € pos(t) and let m: Runyg p(¢t(L — w)) — Runiq(t;w,p)
be defined by projection on the -coordinate. This is well defined as pos(t(L —
w)) = (pos(t) \wpos(t|,))U{w} and by definition of ud. It is also injective as H
is “deterministic” in the second coordinate of the states. For surjectivity take

re Runiq(t; w, p) and for v € pos(t(L — w)) define

(
("®) ifo < w

( ’”(0“) ) otherwise.
\

then 7" € Runyg p(t(L — w)) and 7(r') = r. Since the runs correspond to each

other by removing or supplying the second coordinate, we can identify r’ with r.

(iii) Clear by taking some fixed ¢t € Tt and r € Run 4, () and joining r into

the runs of Hg.

(iv) Clear with (ii) and Proposition [8.9i).

(v) Same procedure as Proposition [8.7iii). O

Now we come to the main result of this subsection.

Lemma 8.20. Let p € Q with | := degree 4(p) > 0

(I) There exists a set N(p) = {by,..., b} T A fulfilling the following properties:

(1) There is a constant C' > 0 such that for all t € Tt and wy,...,w; €

65



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

pos(t) we have
|Run g, (t;wy, ..., wy, by, ..., b)) < C.

(ii) Assume b; = (1, ..., p a® ¢@) for all i € {1,...,1} and without
loss of generality Top(M(p)) = {b1,...,b,} for some n € N. Then
there is a constant C' > 0 such that for allt € Tr and pairwise prefiz-

independent wy, . .., w, € pos(t) we have
|Run‘?47p(t; wy, .. we, ¢, g™ < C

and
(iii)
n+ Z Z degreeA(pg.i)) =1.

=1 j=1
(I1) Furthermore there exists a sequence of trees (tp)nen in Tr and a constant

C' > 0 such that for all n € N:

e |pos(t,)| < C-n and

e |Runy,(t,)| > n'.

That is, we want to prove that if 7, is of degree [, then for all trees the runs
of F, on those trees are determined up to a constant C' by fixing the location
of [ bridges. Furthermore, the degree of F, is not only an upper bound on the

amount of runs for a given tree, but also a lower bound.

Proof. Let p € Q). If degree 4(p) = 0, i.e. F, is finitely ambiguous, the proposi-
tion is not more than the definition of finite ambiguity. We therefore only need
to consider the case degree 4(p) > 0 in greater depth. In this case we always have
the (one) bridge b(p) = (p1,- .-, Pm,a, po) out of €(p). We prove the statement
by induction: we assume it is true for p’ € @ with p < p’ and p % p’ and then
prove it for p. Set k; := degree 4(p;) for i € {1,...,m} and k :=> " k;.

66



8.3 Analysis of the Polynomial Standard Form

Step 1: We show k < degree 4(p) < k + 1.
For k < degree 4(p) take ¢ € Tt such that r € Rung,(f) exists and let w €
pos(t) be the position where t,.(w) = b(p). Furthermore for i € {1,...,m}
take tree sequences (t%))neN with |pos(t$«f))| < Cin and |[Rung,, ( S’)| > nki. By
assumption such sequences exist and when considering the tree sequence defined

by sn =t — wl) ... (7 = wm) we see

pos(s,)| < [pos(t)] + Y [pos(t)| < Co+ Y Cin < Cn

i=1 i=1

for Cy := |pos(t)| and C':= """ C; and

Run 4 ,(sp ]>H\RunApz (tO)] ﬁ

=1

This clearly shows degree 4(p) > k. The sequence (s,,)nen also fulfills (II) for p if
degree 4(p) = k.

For degree 4(p) < k + 1 we consider the sets M(p;) = {bgi), e b,(ji)} for 7 €

{1,...,m}. Now take t € Tr, wo,wgl),wél), o ,w,E;:) € pos(t) and consider r €

Run 4, (¢; wo, wgl), . ,w,(x), b(p), bgl), o b,gm)) By Proposition (i) we get
that r is uniquely determined on all positions v “above” wy, i.e. when ~(wy <, v).

Now take i € {1,...,m} and j € {1,...,k;}, then r(wyi) = p; by choice of r.

Due to Proposition [8.17| (ii) and the fact that b(p;) < b( this means that we
(4)

have wyi <, wj(»i) such that wj(-) = wow ) for some v;" € POs(t|u,i). Combining

this with the assumption that |Run ., (|w,i; v§ ). v,(j), b(l) b,(;))| < C; for

some constants C; > 0 we get
1 m 1
[Run (6 wo, 0l ™ b(p), b, b)) H
Finally, with C := [[I*, C,

[Run_ (1))

67



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

xTTx)

— Z |Run 4, (¢; wo,wgl),...,w,(cz),b(p),bgl),...,b,(fz))]
wo ,wgl) ..... wg,? €pos(t)

gives us degree 4(p) < k + 1. Also, if degree,(p) = k + 1, the set MN(p) =
{6(p)} U U~ N(p;) fulfills requirement (i) of our proposition. As obviously
Top(M(p)) = b(p), we get (ii) by using Proposition (ii) again and (iii) by

definition of k£ which means in this case we have proven (I) already.

Step 2: (I) for degree 4(p) = k and (II) for degree4(p) = k + 1
Now we know that we only need to consider the cases degree,(p) = k and
degree 4(p) = k4 1. Furthermore, if degree 4(p) = k, we have (II) already, and if

degree 4(p) = k + 1, we have (I) already. We consider the remaining cases.

We use a recursive method to find a certain state p’ € Q. For the start we
set p' := p. By Proposition m (iv) the automaton H} is unambiguous. Now
assume b(p') = (p),....p,,,d,py). As long as Hﬁ, is finitely ambiguous and
rka(b(p')) = 1, we set p’ := p} for the one i € {1,...,m'} with degree4(p;) > 0.
We stop this procedure once either Hﬁ, is not finitely ambiguous anymore or

rka(b(p’)) # 1. We consider four different cases which can occur after stopping.

Case 1: 1, finitely ambiguous and r7kx(b(p')) =0
Take t € Tr, w € pos(t) and consider the set Run 4 ,(t; w, b(p')). Assume b(p') =
(P, Py, a,py), then for i € {1,...,m'} we have |Runa,,(t|w)| < C; for
C; > 0 not depending on t. As we assume HZ, to be finitely ambiguous and by
Proposition [8.19 (v), we have a constant Cy > 0 such that

\Runip(t;w,pg)] = ‘RUHHZ, rt{L —=w))| < Co.
0

68



8.3 Analysis of the Polynomial Standard Form

This means

/ /

[Run_,(t5w, b(p)| < [Runfy, (8w, )| - [ | [Runag (tlus)l < [T G
i=1 =0

and, with C' := H;‘Zo C;, we get

Run,(H)] = Y [Runa,(tw, b(p)] < C- [pos(t)]
wepos(t)
which means

0 < degree4(p) <1

so degree 4(p) = 1. As we have seen the set M(p) := {b(p)} now fulfills (i), (ii)
and (iii), so we have proven (I) in this case. Moreover we have proven property

(IT) in this case in Proposition (iv).

Case 2: 1, finitely ambiguous and rka(b(p')) > 1
Assume b(p") = (p}, ..., 0, d,p)), set ki := degree 4(p;) and take j; # jo with
K, > 0and K, > 0. We set ' 1= 37" kl. If p = p/ we have k = &’ trivially.
Otherwise k' < degree 4(p') due to Step 1 and degree 4(p’) < k due to Proposition
(iii), so &' < k. We write M(p}) = {bgi),...,b,(c?} for i € {1,...,m'}. Now
Take t € Tr, wy, wy € pos(t), consider r € Run 4, (t; wy, we, bgjl), bgh)) and take
w € pos(t) with t,.(w) = b(p’) which always exists by Proposition (ii).
From Proposition (ii) we get that w <, wy and w <, we. Furthermore we
have wj; <, w; and wj, < wy and due to j; # jo this means w is the largest
common prefix of w; and wsy. In particular, w = w(w, ws) is a function of the

positions of bgjl) and bng). As it was in Case 1 we can find a constant Cy > 0

and constants C,...,C,, > 0 such that

[Runq ()]

1 m’ 1 m/
= Z Z |RunA,p(t;w§),...,w,(gin),bg),...,[J,(gm,))|
)

’
(m

!
) epos(t)
!

m

wgl €pos(t) w

69



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

= Y > Rund, (G w pp)l

wiM epos(t] 1) <ml>epos<t|w/m/>
TR, s wl”, w6, 6]
=1

with v’ = w(w, w")

m/

< Z ﬁC Clpos(t)|* WithC’::HC’i
=0 i=0

w§1>6pos(t) ( )epos( t) "

m

so k < degree 4(p) < K/, i.e. degree 4(p) = k = k’. We also see that in this case the
set N(p) := U:’il MN(p;) satisfies (i). For (ii) and (iii) we notice that Top(9(p)) =

U™, Top(N(p})). Write Top(N(p}) = {6, ... 6%} and let ¢\, ... ¢ be the

states associated to these bridges as done in (ii). Let t € Tr, wg), . wé ,,)

pos(t) be pairwise prefix-independent and

re Runip(t; wgl), . wflm,), qgl), . qflm, ). With the same reasoning as earlier,

we find that the position w € pos(t) with t,.(w) = b(p’) is a function of the

U1) and q§j2). We abbreviate this position by w’ again and if r as

chosen exists can write w = w'iv) for i € {1,...,m'}, n € {1,...,n;} and

ol e pos(t|wi). Then for some constants C! > 0 we have

positions of gy

|Run‘?4’p(t; w%l), Ll /,), q§ L >q7(1 //))|
= ’Runi,p(t; w/7p6)| ’ H |Run?4,pi(t|w’i§ Uy)a R 7(1;)7 C]Y), e ’qY(lii))|
i=1

<Cp- H ! with w' = w(wl, w?)

so we have (ii). That (iii) also holds is clear by induction and the definition of

k" = k, therefore we have (I) in this case.

Case 3: 1, not finitely ambiguous and k" := degree 4(p) < k
As Hﬁ, is not finitely ambiguous, we know that p # p’. Therefore right be-

fore coming to p’ we considered some ¢ € ) with 7—[5, finitely ambiguous and

70



8.3 Analysis of the Polynomial Standard Form

rka(b(¢’)) = 1. Let b(¢") = (qi,...,¢,,,d,q,) and take 7 € {1,...,m'} with
q; = p'. For i # j we have degree4(q;) = 0, so there are constants C; > 0 with
[Run g (t)] < C; for every t € Tr. As My, is finitely ambiguous there is a constant
Co > 0 such that for every t € Tt and w € pos(t) we have |Run?47p(t; w, q5)] < Co.
For p’ we write DM(p’) = {by, ..., br} and see that for some constant C; > 0 and

t € Tt we have

[Run_q (1))

= Z Z |Run 4, (t; wo, wy, ..., wir, ('), b1, ..., bg)]

o€pos(t) wy,r €pos(t)

!

)RS [Runf, (6 wo, )| - | T IRt g ()|

w
wo E€pos(t) wlepos(t\woj) wk/Epos(t\wOj) i;}

: |RunA,p(t|woj;w1; vy Wi, bl, ceey bk’)|

’

< pos()** ] ]
i=0

and this means degree,(p) < k' +1 < k. We see that in this case the set
N(p) :=N(p')U{b(¢)} fulfills (i). As then Top(D(p)) = {b(¢')} we get (ii) from
the fact that |Run?47p(t; w, q)| < Cp for all t € Tr and every w € pos(t). We get

(iii) from &' = degree 4(p') = k — 1. Hence, we have (I) for this case.

Case 4: H;, not finitely ambiguous and degree 4(p') = k
As 7-[2, is not finitely ambiguous, we have p # p’ and by Proposition (iv)
we can find a sequence of trees (t,)neny C Tr, with |pos(t,)] < Cp - n and
|RunH§“]F(tn)| > n for some constant C; > 0 and all n € N. By induction
we can also find a sequence of trees (s,)nen such that |pos(s,)| < Cy - n and
IRun 4, (s,)] > n* for some constant Cy > 0 and n € N. We set w,, € pos(t,) as

the unique position for which ¢,(w,) = L and define ¢/, := ¢,(s, — w,). Then

71



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

xTTx)

with the help of Proposition [8.19 (ii) we see that for n € N

Run g (£,)] > [Rund, (#: )] - [Run g (£, )|
= Rungg (1) - [Rum (5]

> nk+1
and
[pos(#,)] < [pos(ta)] + [pos(sa)| < (Ci + Ca)n

so degree 4(p) > k + 1. We clearly have also proven (II) in this case.

Step 3: Conclusion
First notice, that the case analysis in Step 2 is exhaustive: if ”HZ/ is finitely
ambiguous, then we continue the procedure if 7k (b(p’)) = 1 and otherwise the
only cases left are 7kx(b(p’)) = 0 and rky(b(p')) > 1, which we both covered. If
Hz, is not finitely ambiguous, then we know that p’ # p, so that degree ,(p') < k
simply due to the way our recursion works in the very first step. We have covered
both the cases degree ,(p') = k and degree 4(p') < k.

Now by Step 1 we know that either degree 4(p) = k or degree 4(p) = k + 1.

If degree 4(p) = k then also by Step 1 we have property (II). In this case,
only the cases 1, 2 and 3 of Step 2 are possible. In each of these cases, we have
property (I).

If degree4(p) = k + 1, we have property (I) by Step 1. Furthermore, for
degree 4(p) = k + 1 only the cases 1 and 4 of Step 2 are possible. In both of
these cases we have proven property (II). In conclusion, (I) and (II) hold in every

possible case. O

While the preceding lemma is interesting as a whole, we will only need point
(I) in the sequel. To use this property, we define another automaton very similar

to HL.
Definition 8.21 (G,, I'). First take p € @ and we write Top(MN(p)) =

72



8.3 Analysis of the Polynomial Standard Form

{by,...,b;} with b; = (pgi), . ,p%)i,a(i),q(i)) for i+ € {1,...,1}. Then let
G, = (Q x {0,1}',T, 1, B,) be the automaton defined in the following way:

Fl Z:FU{J_h...,J_l}
with L; ¢ T for i € {1,...,(} and

rkr(a) ifael
rkp,(a) =

0 otherwise.

For m € N, a € Fl(m), P, D1, Pm € Q and ko, ki,... k, € {0,1} with
k= kY, kD) for i € {0,... 1} we define

v ((R)-n (B () =
1 if a = L; for some i € {1,...,1} and py = ¢V and
k(()i)zland k‘(()j):0for all j € {1,...,l} with j #1
w(piy .oy Pmsa,po) ifa € I'and for all i € {1,...,1}
cither k{” = ki = .. =k =0
or k) =1A3je{l,... om} k) =1

0 otherwise

and

1 ifpp=pand kM =.. . =k’ =1
ﬁp(zg)::

0 otherwise.
Proposition 8.22. Let p € Q and [ := |Top(N(p))|.
(i) Ift € Tr, and Rung, p(t) # 0, then Vi € {1,...,1} 3w, € pos(t) : t(w;) = L.

(ii) For t € Tr and pairwise prefiz-independent wy,...,w; € pos(t) we can

identify Rung gp(t(L1 — wi)... (L — w;)) with Runi’p(t; wy, ..., W,

73



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

g, ..., qY).

(iii) G, is finitely ambiguous.

Proof. (i) Same as Proposition [8.19 (i)
(ii) Same as Proposition [8.19) (ii).
(iii) Combine (ii) and property (ii) of Lemma [8.20] O

8.4 Two Transformations on Logic Formulas

What we essentially want to do is, instead of letting the automaton A run directly
on a given tree, to cut this tree into several pieces at prefix-independent positions
and run automata F, on the resulting subtrees and an automaton G, on the upper
part. However, even if we find logic formulas to describe the automata F, and
Gp, we have no way of using them. A formula always evaluates a whole tree and
there is no elementary method to tell a formula to only evaluate a subtree, for
example. To remedy this, we define two mappings & and § which will effectively
turn a given formula into one evaluating only a part of a tree. First, we define

some abbreviations:
Definition 8.23 (Basic Abbreviations).

rk(T)

r <,y :=VX. ((y eX /\Vz.(( \/ (32" (edge;(z, 2 ) N2 € X)) = z € X))

i=1
—)IEX)

r=z=2<,tNr <,z
r>z=z<,zN-(z=1)

x >; z = Jy.(edge;(z,y) Ny <, x)

where z,y,z,y" are first order variables, X a second order variable and i €

{1,...,7k(I")}. The first formula is taken from [4] and is an MSO-formulation of

74



8.4 Two Transformations on Logic Formulas

the prefix-relation: x <, y iff z is an element of every prefix-closed set X which
contains y. Here we call a set X C N* prefix-closed if 2’ € X and z <, 2’ implies

ze X.

Now we define the two transformations. As indicated by the naming, the

transformation & is linked to the automata G, and § to the automata F,.

Definition 8.24 (&7, §7). Let [ € N and 6 € QMSOy,(IL,, ®,®). Then for a
tuple z = (21,...,2) of first order variables not used in 6 we define &7(6) by
induction. The idea is that the z; stand for positions we imagine to substitute
1, into. The existence quantifier is then restricted to only find positions not
“below” any of the z; and the product quantifier effectively only multiplies over

all positions not “below” any of the z;. The definition is as follows:

& (label,(z)) := label,(x) & (e N

)
&/ (edge;(z,y)) == edge;(7,y) & (¢ Vi

&i(re X reX &7 (1 D7

):
) :
) : ) :
&} (~p) == =6 (p) G (1 O ) =
& (k) :

& (labely (7)) := (z = 2;)

&7 (3x.) == Fz.( \/ T > z))

67 (IX.0) == IX (&} () A ~Tz(x € X A\ 2> )

k=1

&7 ([le.7) = . (( \/x>z;€ @\/x>zk

where j € {1,...,1}, ¢ € {1,....7k()}, k € K, a € T, 7,71,72 €
QMSOp, (I, @, ®) and ¢, ¢ € MSO(I").

Let i € {1,...,7k(I")} and 6§ € QMSOp (KL, &, ®). Then for a first order

X

75



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

xTTx)

variable z not used in 6 we define §7(0) by induction. The variable z stands for
a position we imagine to substitute some _L; into. Existence, sum and product
quantifiers are then restricted to only consider the subtree at “z:”. The definition

is as follows:

3 (label,(z)) := labely(x) Si(p AY) =T () AFF ()
37 (edge;(z,y)) = edge;(z, y) Si(p V) = Fi(e) VE(Y)
FlreX)=zeX Fi(n@mn) =F(n) & (n)
3; (mp) = =57 (¢) $i(n O n) =Fi(n) OF;(n)
35 (k) =
87 (Fr.p) := (T (@) N >4 2)
F(EX.0) 1= 3X.(F (o) ATr.(z € X A=(z > 2)))

) :
§i(Xx.7) =3 (F(r) O x >; 2)
) :

§S(Me7) =Tx.((F (1) ©x >; 2) (x> 2))

where 7 € {1,...,7k(T)}, k € K, a € T, 7,71, 72 € QMSOp(3,I1L, &, ®) and
v, € MSO(T).
As we can always rewrite Vx.p and VX.¢ to =3z.—¢ and -3X.—y, respec-

tively, we do not need to define these cases explicitly.

Proposition 8.25. Lett € Tt and | € N, then

(i) Forwy,...,w € pos(t) pairwise prefiz-independent, 8 € QMSOp, (I}, &, ®),
a finite set of first and second order variables V O Free(f), a (V,t(L; —
wy) ... (L — w))-assignment p,, a tuple of first order variables z =
(21,...,21) not in V and not occurring in 6 and the (V,t)-assignment p
defined by p(x) := p, (x) where x € V is a first or second order variable we

have

[O](t(Ly = wi) ... (Ly = w),pr) = [&7(0)](t, plzr — wi] ... [z = wi]).

76



8.4 Two Transformations on Logic Formulas

(ii) For w € pos(t), i € {1,...,rkr(t(w))}, 0 € QMSOR(3I1L, B, ®), a finite
set of first and second order variables V 2O Free(6), a (V,t|yi)-assignment
P, a first order variable z not in ¥V and not occurring in 6 and the (V,t)-
assignment p defined by p(x) = wip/(x) where x € V is a first or second

order variable we have

[01(tluwi, p') = [87 (O)1(£, plz = w)).

Proof. (i) We prove the statement inductively and take ¢, wy,...,wy, 0, V, z, p1.
and p as in the proposition, set ¢, := t(1; — wy)...(L; — w;) and abbreviate
plz1 = wi]... [z — wy] to plz — w]. We start by proving the case § = ¢ €

MSO(I;) and show

(tLp1) E e & (tplz = w]) = & (p).

For the atomic formulas edge,(x,y), € X and label,(z) with a € I this is easily
verified, as &} (p) = ¢ in those cases. For i € {1,...,l} and ¢ = label,(z) we
see that

(ti, p1) Elabely,(z) & ti(po(z)) = L
& pl(x) =w;
& plz = w)(z) = w;

& (t,plz = w]) Eo =2z

as plz — w|(z;) = w; by definition. For ¢ = 11 V g, ¢ = 11 Ahy and ¢ = =)
we get the statement from &7 (¢ V ihe) = B (1) V &7 (1), &7 (Y1 A 1)) =
&7 (Y1) A 67 (12) and &7 (—)) = =7 (1)). Now for the case p = Jx.1) we have

(U,PL) ):Hl‘lﬂ
< Jvepos(ty): (te,pLlr —v]) EVY

< Jv € pos(ty) : (L, plr — v][z = w]) E & (¥) (by induction)

77



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

xTTx)

l

< Jv € pos(t) : - \/(wk <p v AU F wg) A (¢ plr = v][z = w]) E 67 (Y)

& 3v € pos(t) : (t, ple = o[z = w]) E (&7 () A=(\/ @ > )

k=1

1
& (t,plz = w]) = 32(67 () A=\ = > %))
k=1

& (1, plz = wl) = 67(3r.9)

and for ¢ = 3X .9 we have

(ti,p) FIXA
< JV Cpos(ty): (tL,pl[X = V]) Ev

< IV Cpos(ty) : (t,p[X = V][z = w]) E &; () (by induction)
!
< 3V Cpos(t) : ~3Fv € pos(t) : (v e V A \/(w,y€ <, VAU # wy))

At p[X = V][z = w]) = 67 (¢)

< 3V Cpos(t) : (t,p[X = V][z = w)]) E (& () A =Fz.(z € X A \/ x> z))

k=1

& (tplz > w) EIX(S; (W) A-Ta(z € XA\ 2> 2))

k=1

& (tplz = w)) | 67(3X )
which proves that for MSO-formulas we have

[l (L, pr) = [&7(P)](E, plz — w]).

For the semiring level we take & € K and 7,7 € QMSOy,(II},®,®). By
definition have &7 (k) = k, &j (1 © 1) = &7 (1) © B} (2) and &7 (1 B 1) =
&7 (1) © B7 (1) so for V O Free(r) U Free(rz) and a (V,t, )-assignment p we

have

[F1(t L, pr) = (&7 (R)(E, plz = w])

78



8.4 Two Transformations on Logic Formulas

trivially. Furthermore by induction

[1n® 7l(te, pr) = [nl(tL, pr) ® [ (L, p1)
= [&;(r)](t, plz — w]) & [&] ()] (¢, plz — w])
= [&;(r1 & 72)](t, plz — w])

and in the same manner

[11 ©n](tL, pr) =& (11 © R)](t, plz — w]).

We prove the last case, i.e. § = Ilz.7 for some 7 € QMSOFZ(H}:, ®,0):

[Ma.7](ts, p1)
= @ [71(ts, pilz — v])

vEpos(t, )

= @ (&7 (7 t ,plr — v][z — w)) by induction

-~

vepos(t ) —is(v)

= O (B MIs) © [\ 2 > z)](s(v)) & [\ = > 2] (s(v)))

vEpos(t)
= O Bino-(Vo>z)e\ 2> alsw)
vEpos(t) k=1 k=1

l l

= [Mz.((&] (1) o ~(\ 2> =) @ \/ = > 2)](t, plz — w))

k=1 k=1

= [S7 ()]t plz — w])

(ii) We prove this statement by induction as well. Take ¢, w, 0, V, z, o/
and p as in the proposition and set ¢ = t|,;. Again we start with the case

0 = p € MSO(I"), that is we show

') E e (tplz —w]) = Fi(p)

79



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

xTTx)

For ¢ = label,(z) we have

(t.) = label,(x) & £(s/(2)) = a
& t(wip'(z)) = a
& t(plz = wl(x)) = a

& (t,plz = w]) = label,(z),
for ¢ = edge;(r,y) we have

(', p') | edge;(z,y) < p'(y) = p'(2)]
& wip'(y) = wip' ()]
& plz = w)(y) = plz = w|(x)j

& (t,plz = w]) F edge;(z,y),

and for ¢ = x € X we have

t,p) FreX e p(z) € (X)
< wip'(z) € wip'(X)
& plz = w)(z) € plz = w](X)

& (tplz 2 w]) Exe X.

The cases ¢ = ), ¢ = 11 V 10y and ¢ = Y1 A Y5 are easily derived from the

definition of §7. Now assume the cases ¢ = Jz.¢:

(¢, ) e Fo
< Ju € pos(t') : (¢, p'lx — v]) E

< Jo € pos(t') : (¢, plx = wiv][z = w]) E FF(¥) (by induction)

(
< Ju € pos(t) :wi <, v A (t, plr = v][z = w]) = F;(Y)
< Jv € pos(t) : Ju € pos(t) u=wiANu <, vA(plr—]z—w])E=F(Y)
(

< Ju € pos(t) : (t, plr — v][z = w]) E (F () A >; 2)

80



8.4 Two Transformations on Logic Formulas

& (t,plz = w]) E & (3x)

and p = 3X.p:

() 33X
& 3V Cpos(t) : (', p[X = V]) o
& 3V Cpos(t') : (t, p|X — wiV][z — w]) = §(¢)  (by induction)
< 3V Cpos(t) : =3v € pos(t) : (v € V A = (wi <, v))
At plX = V][z = w]) =S ()
< IV Cpos(t) : (t, p[X = V][z = w]) E (F (W) A—Fz.(z € X A=(x >; 2)))

& (t,plz = w]) = 8 (BX9)

so for MSO formulas ¢ we have

[l p') = [ ()], plz — w]).

For the semiring level and 6 =k, § =7 & 75 and § = 71 © 7 it is again easy to

see from the definition of §; that the induction holds, that is

[F1(t, p') = [&7 (R)I(t, plz — w])
[ & ], p) = [67(n & R)](E, plz = w])

[r Ol p) = [8; (11 © )]t plz — w]).

For 60 = Yx.7 consider

[Ex.r](#, )
= P I, flz =)

vEpos(t’)

= EB 57 (1) (¢, plz — wiv][z = w)) (by induction)

vEpos(t’)

81



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

xTTx)

= D Bt ple = vllz = w]) © [e > 2](t, ple = 0]z = w])

veEpos(t)

= P [B:(r) @z > 2](t, plz — ][z — w])

vEpos(t)
= [B2.(F (1) © x> 2)] (¢, plz = w])
= [8i (Ba.n)](t, plz = w])

and for 0 = llz.7

[T 7], o)
= O I dlz— )

vEpos(t’)

= @ [ ()] (¢, plx — wiv][z — w]) (by induction)
vEpos(t’)

= O (BEMIsW) e [ > AA(s() @ [~(z >i 2)](s(v))
vEpos(t)

with s(v) 1= (¢, plr — v][z = w])
= [[L.a(; (1) ©x >; 2) @ ~(x >; 2))](t, plz = w])

= [& (M7 (4, plz — w]).

8.5 Conclusion and a Corollary

The following proposition brings the results of the preceding subsections together
and proves that the automata F, can be converted into logic formulas of the

desired form. We still assume the automaton A to be standardized.

Proposition 8.26. For p € @ and k = degree4(p) there is a formula 6 €
QMSOR(ZFIL, @, ©p) such that [F,] = [0] and 6 can be chosen as a finite sum

b A

of formulas in QMSOR(ZKILL, @y, @p).

xTTx?

Proof. We prove the theorem by induction. We will assume it is true for ¢ € )

with p < ¢ and €(q) # €(p) and from that conclude that it is true for p. If

82



8.5 Conclusion and a Corollary

degree 4(p) = 0 then F, is finitely ambiguous so by Theorem there is a
formula § € QMSOR(ILL, @, ®p) with [F,] = [0]. As the theorem’s proof shows
we can even assume the stronger fact, that 6 is a finite sum of formulas in
QMSOR(IT}, @, ®p). For degree 4(p) > 0 we consider Top(N(p)) = {by,...,b;}
with b; = (p1 ), . ,p$n{, a® ¢ ) for i € {1,...,1}. By induction we assume that
the proposition is true for pj with i € {1,...,l} and 57 € {1,...,m;}, so for
ki = degree 4(p{") we find 6 € QMSOL(SVIIL, &, @) with [0] = [7,0] such
that all 0;- are finite sums of formulas in QMSOF(E? I1L, &y, ©). Furthermore
the automaton G, we defined earlier is finitely ambiguous by Proposition [8.22]
(iii), so we find some 7 € QMSOy, (I}, &, @) with [r] = [G,] such that 7 is a
finite sum of formulas in QMSOy, (IL;,, @3, ®). For t € Tt we have a partition

Runy,(t) = U BunAvp(t;wl,...,wl,bl,...,bl).

W1,...,w €POs(t)

By Proposition (i) we only have to consider pairwise prefix-independent
positions wy, ..., w; in the above formula, so we fix wy,...,w; € pos(t) pairwise
prefix-independent and let z1, ..., z be first order variables not occurring in 7 or

0, fori e {1,...,1} and j € {1,...,m;}. We define the abbreviations

tlz = w| :=t[zy = wi]...[z1 = w]

bridge(z) := Q(,U(bl) © labely (2:))

i=1

indep(z /\ /\ 2 <p 2 V 2j <, 2i))
i=1j=1
J#i

then by Propositions [8.22] (ii), (i) and we can write

’wz]

= [r](t{L; = wy)...(L; = wy)) © [bridge(z)](t[z = w]) ® @@[[02

=1 j=1

83



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

xTTx)

= [87 (N](¢t[z = w]) © [bridge(=)](t[z = w]) © ) @[[35"(92)]]@[% — wil)

i=1 j=1

= [&7(7) ® bridge(z) ® @ @351(9;)]]@[2 — w))

i=1 j=1

so in conclusion we get

[Fp1(t)
= Z Z wtz, (t,7)

w1,...,w; Epos(t) reR(w1,...,w;)
pairwise prefix-independent

— Z [&7 (1) ® bridge(z) ® @ @3;2(99]](75[2 — w))

wi,...,w; Epos(t) =1 j=1
pairwise prefix-independent

= Z [indep(z) ® &7 (7) ® bridge(z) ® @ @ 35 (05)](t[z — w])

w1,...,w; Epos(t) =1 j=1

= [X21...Xz.indep(z) ® &7 (1) ® bridge(z) ® @ @3;(9;)]]@)

i=1 j=1

Recall that for 7,7 € QMSOR (@, ®) we can always rewrite
[ © e = [Hz.((1n © 72 ® root(x)) @ (72 ® —root(x)))]

due to the commutativity of ®. Assuming that 9; is a finite sum of formulas
in QMSOF(Z?Hi,@b,@b) and the definition of §; for all i € {1,...,l} and
j€{l,...,m;} we get that §7'(6?) is a finite sum of formulas of the form

b

Yy ... Emki‘ ((@ Ty > Zi) ® Hy.TQ)

n=1

for some 7, € QMSOp (4, ®) by using the distributivity of ® over @&. Using above
rewriting we see that §'(6?) is a sum of formulas in QMSOF(Z?H}c, @y, ©p). By
using that for 71,7 € QMSOR (4, ®) we can write

[(Tlzy.71) © (Ilzg.72)] = [Hx.(71 © 1)]

84



8.5 Conclusion and a Corollary

after adequate relabeling of variables in 7; and 75, we can expand

l m;
OO @)
i=1 j=1
to a sum of formulas in QMSO(SFIIL, &y, @), as by Lemma m (I) we have
that > >oi ki = k—1. Now note that by definition of &} the formula &7(7) is

actually a sum of formulas in QMSO(IIL, @y, @) so with the same constructions

as above we can rewrite
indep(z) ® &;(7) ® bridge(z)

into a sum of formulas in QMSOR (1L, &y, @) as well. By applying distributivity
once more and the fact that for 7,7 € QMSOR (2,111, B, ®) we have

[Xz.(r & )] = [Zz.71 & Xx.1]

we can rewrite

l m;
Sz ... z.indep(z) © &7 (1) © bridge(2) © (1) () §5(6))

i=1 j=1

into a sum of formulas in QMSO(XFIIL, @y, ®p), which is what we wanted to

[ A v

show. O]

To conclude the proof of Theorem [8.2] note that

[A] = v(ar) © [F4,]

so by rewriting v(qy) into Ilz.((v(gr) © root(z)) @ —(root(x)) and applying dis-
tributivity on the formula we can find by Proposition [8.26| we obtain a formula

0 € QMSOR(ZFILL, @, @), where k = degree(A), such that [A] = [0]. For an

arbitrary polynomially ambiguous automaton we combine this with Lemma [8.11

to write the automaton as a sum of standardized automata and obtain the result

85



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

xTTx)

we wanted to show. OJ

As a corollary of Lemma we also get that the ambiguity of a WTA A is
either bounded below and above by a fixed polynomial or has a lower exponential
bound. While this is a well known result for word automata [21], we could not

find a similar result for tree automata.

Corollary 8.27. Let A = (Q,[',u, ) be a weighted bottom-up finite state
tree automaton. Either A is polynomially ambiguous and r4 € O(n*) for
k := degree(A) or there ezists a sequence of trees (tp)nen in Ir and a constant

C > 0 such that for allmn € N

(i) Ipos(t,)| < C-n

(i) [Rungs(t,)] > 2"

Proof. First note that the components of () can be defined as we did earlier
independent from the ambiguity of A. The same is true for the definition of
bridges. Now assume a sequence (t,),en of trees with above properties does
not exist. Then the proof of Proposition (i) shows that for all ¢ € Tr, all
w € pos(t), all ¢ € @ and all p € €(p) we must have

|Runiyq(t;w,p)\ < 1.

Otherwise we could construct such a sequence of trees. We will now prove by
induction that for all ¢ € ) there exists a constant C' and an integer n € N such
that

[Run_g,4(t)] < C - [pos(t)|"

for all t € Tr.
If €(q) is maximal, i.e. €(q) < €(p) implies €(q) ~ €(p) for all p € Q, then
|[Run ,(t)] <1 as we just found, so C' := 1 and n := 0 fulfill our requirements.

For the induction step we assume that our claim is true for all p € @ with

C(q) < €(p) and €(q) % €(p). Define

B(q) :={d € A|dis a bridge out of €(q)}.

86



8.5 Conclusion and a Corollary

If [Run 4 4(¢)| <1 holds for all ¢ € Tt we have nothing to show. Otherwise using

the same reasoning as in Proposition (iii) we can write

[Runqq(1)]

< Z Z |Run 4 ,(t; w, b)|

beB(q) wepos(t)

mp
< > Z Runf (Gw, ) -[]  Runap, (¢
[\ ~- s —/_/
beB(q) wepos(t pe i=1 <G [pOs(twi)| i

b=(P1,--Pmy-2:4")

S Z Cb pOS ‘nb-‘rl

beB(q)

< |B(q)| - C - |pos(t)|"*!

for some n; €N and C; p€R

for Cp = [, Cip and np := Y ;"% n;5 and C and n as the maxima of the Cy

and ny, respectively. We set

F:={qeQ|a(q) # 0}

and obtain

[Rung(t)] < ) [Runa(t))

qeEF

<Y " C,-Ipos(t)|"

qeEF

for some n, € N and C;, € R and every ¢t € Tp. This obviously means that A
is polynomially ambiguous and for | := degree(A) we have r4 € O(n!). Due to
Lemma [8.20] (IT) we also have 4 € Q(n') so in conclusion r4 € ©(n') holds. O

87



8 Polynomial Ambiguity and the Fragment QMSO (ZFIIL, @, )

xTTx)

88



9 Pure Weighted Tree Automata and the Frag-
ment QMSO(XF, ®y, Op)

We now come to a special class of WTA, one that uses only weights 0 and 1 on
its transitions. Formally, we call a WTA A = (Q, T, u, ) pure, if for all d € Ay
we have p(d) € {0,1}. These automata are interesting in so far, that we can
describe them with formulas not using the product quantifier II. The idea and
proof of this section is a straight-forward adaptation of the corresponding proof

of [15, Proposition 6.1, where the case of automata on words is considered.

Theorem 9.1. Let (K,®,®,0,1) be a commutative semiring and (I',rkr) a
ranked alphabet. A tree series S € K{(Tr)) is definable by a pure weighted bottom-
up finite state tree automaton over K and I if, and only if, S is definable by a
formula in QMSOR(X, @b, Op).

Proof. (=) Let A = (Q,T',u,) be a pure WTA. We use the notation from
Theorem and define 04 as

0.4 :=XX. (valid4(X) ® final(X)).

It is clear that 0 4 € QMSOR (3%, @5, @p) and as the transitions have only weights
0 or 1, it is also clear that [A] = [0.4].

(<) Take 6 € QMSOR (X%, ®p, Op), that is = XX, ... XX,,7 for some n € N
and 7 € QMSOR(®,®). By Proposition we can find a pure WTA A, over
I'¢x,,. x, that defines the same tree series as 7. Then assuming by induction

that for 7 € {0,...,n — 1} we have a pure WTA A; over I'(x, . x,_,} such that

-----

A; defines the same tree series as XX, 11_; ... XX, 7, the proof of Proposition

yields that we can find a pure WTA A;; over I'(x, y such that A;

----- Kn—(i+1)
and XX,,_; ... XX, 7 define the same tree series. The automaton A,, constructed
this way is then pure and defines the same tree series as ¢, which is what was to

prove. O

89



9 Pure Weighted Tree Automata and the Fragment QMSO (X, ©p, ©p)

90



10 Conclusion

We have shown that the correlation between the fragments of a quantative logic
and the ambiguity of automata as described by Kreutzer and Riveros [I5] holds
true for tree automata as well and this extension to tree automata can be done
in a rather obvious manner. In more detail, to each class of tree series definable
by deterministic, unambiguous, finitely ambiguous, polynomially ambiguous and
exponentially ambiguous weighted tree automata we have related a characteristic
fragment of our logic.

While under the aspect of commonly distinguished degrees of ambiguity of
automata this investigation was exhaustive, there are many more fragments of
the logic other than the ones we considered. Whether and how these fragments
correspond to more general automata models is an issue for further research. For
example, the fragment QMSO(II,, @y, ®), which for word automata Kreutzer and
Riveros showed to correspond to a certain model of two-way weighted automata
with pebbles, remains unresolved for the tree case. The findings of Kreutzer
and Riveros suggest that, if there exists a translation of this fragment into an
automata model, this model is likely a pebble tree walking automaton, which

itself is an object of current research.

91



10 Conclusion

92



References

[1]

[12]

[13]

C. Allauzen, M. Mohri, and A. Rastogi. General algorithms for testing the
ambiguity of finite automata. In M. Ito and M. Toyama, editors, Devel-
opments in Language Theory, 12th International Conference, DLT 2008,
Kyoto, Japan, September 16-19, 2008. Proceedings, volume 5257 of Lec-
ture Notes in Computer Science, pages 108-120. Springer Berlin Heidelberg,
2008.

J. Berstel and C. Reutenauer. Rational Series and Their Languages.
Monogr. Theoret. Comput. Sci. EATCS Ser. Springer Berlin Heidelberg,
1988.

J.R. Biichi. Weak second-order arithmetic and finite automata. Z. Math.
Logik und Grundl. Math., 6:66-92, 1960.

H. Comon, M. Dauchet, R. Gilleron, C. Loding, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. Tree automata techniques and applications.

Available on: http://www.grappa.univ-1ille3.fr/tata, 2007. release
October, 12th 2007.

J. Doner. Tree acceptors and some of their applications. J. Comput. Syst.
Sci., 4(5):406-451, 1970.

M. Droste and P. Gastin. Weighted automata and weighted logics. Theor.
Comput. Sci., 380(1-2):69-86, 2007.

M. Droste, W. Kuich, and H. Vogler, editors. Handbook of Weighted Au-
tomata. Monogr. Theoret. Comput. Sci. EATCS Ser. Springer Berlin Hei-
delberg, 2009.

M. Droste and H. Vogler. Weighted tree automata and weighted logics.
Theor. Comput. Sci., 366(3):228-247, 2006.

C.C. Elgot. Decision problems of finite automata design and related arith-
metics. Transactions of the American Mathematical Society, Vol. 98, pages
21-52, 1961.

F. Gécseg and M. Steinby. Tree Automata. Akadéniai Kiadd, Budapest,
Hungary, 1984.

F. Gécseg and M. Steinby. Tree languages. In Grzegorz Rozenberg and
Arto Salomaa, editors, Handbook of Formal Languages, Vol. 3, pages 1-68.
Springer Berlin Heidelberg, Berlin, 1997.

K. Hashiguchi, K. Ishiguro, and S. Jimbo. Decidability of the equivalence
problem for finitely ambiguous finance automata. IJAC, 12(3):445, 2002.

D. Kirsten. A burnside approach to the termination of mohri’s algorithm
for polynomially ambiguous min-plus-automata. ITA, 42(3):553-581, 2008.

93



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

94

[. Klimann, S. Lombardy, J. Mairesse, and C. Prieur. Deciding unambiguity
and sequentiality from a finitely ambiguous max-plus automaton. Theor.
Comput. Sci., 327(3):349-373, 2004.

S. Kreutzer and C. Riveros. Quantitative monadic second-order logic. In
28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2013, New Orleans, LA, USA, June 25-28, 2013, pages 113-122. IEEE Com-
puter Society, 2013.

W. Kuich and A. Salomaa. Semirings, Automata, Languages. Monogr.
Theoret. Comput. Sci. EATCS Ser. Springer Berlin Heidelberg, 1986.

A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power
Series. Texts Monogr. Comput. Sci. Springer New York, 1978.

M.P. Schiitzenberger. On the definition of a family of automata. Information
and Control, 4(2-3):245 — 270, 1961.

H. Seidl. On the finite degree of ambiguity of finite tree automata. In
J. Csirik, J. Demetrovics, and F. Gécseg, editors, Fundamentals of Com-
putation Theory, volume 380 of Lecture Notes in Computer Science, pages
395-404. Springer Berlin Heidelberg, 1989.

J.W. Thatcher and J.B. Wright. Generalized finite automata theory with
an application to a decision problem of second-order logic. Mathematical
Systems Theory, 2(1):57-81, 1968.

A. Weber and H. Seidl. On the degree of ambiguity of finite automata.
Theor. Comput. Sci., 88(2):325-349, 1991.



	Introduction
	Preliminaries
	Tree Languages and Tree Automata
	Tree Series and Weighted Tree Automata

	Quantitative Logics for Trees
	Quantitative Monadic Second Order Logic
	Fragments of ()

	General Weighted Tree Automata and the Fragment (X,xx1, , )
	Determinism and the Fragment ( , b, )
	Unambiguity and the Fragment (x1, b, b)
	Finite Ambiguity and the Fragment (x1, , b)
	Polynomial Ambiguity and the Fragment (xk x1,,b)
	General Definitions and Observations
	Decomposition into a Sum of Standardized Automata
	Analysis of the Polynomial Standard Form
	Two Transformations on Logic Formulas
	Conclusion and a Corollary

	Pure Weighted Tree Automata and the Fragment (X, b, b)
	Conclusion
	Bibliography

