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A=(Q,T,u,v) over ranked alphabet I'

weight of run =

transition weights + final weight

(Q11, qi2, 4, Cll)

determinism: bottom-up

finite sequentiality problem:

THM [BALA, KONINSKI]

Aunamb = [A] finitely sequential <+ A satisfies X

A unamb = [A] finitely sequential «» A’ satisfies X and Y
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AU B universe
ZA(R)UZp(R) interpretation
MSO(o) logic

Bi=R(x1,....,xn) | x€X || BVL|Ix[|IX.B

Propositional formulas Prop
P:Z:X;‘yi|P\/P|P/\P

| 9



CLASSICAL FEFERMAN-VAUGHT THEOREM

Given

signature o B € MSO(o)

59%



CLASSICAL FEFERMAN-VAUGHT THEOREM

Given

signature o B € MSO(o)
there exist

n>1 B, %2 € MSO(o)" P € Prop

60%



CLASSICAL FEFERMAN-VAUGHT THEOREM

Given

signature o B € MSO(o)
there exist

n>1 B, %2 € MSO(o)" P € Prop

such that for all structures A,B
AUBE B iff P(x1,... XnsY1,---,Yn) = true
x; = true iff B} = A
yi = true iff 6,2 =B

where



WEIGHTED LOGICS AND EXPRESSIONS

qualitative answers — quantitative answers

62%



WEIGHTED LOGICS AND EXPRESSIONS

qualitative answers — quantitative answers

(57@7(8)7071) Semiring



WEIGHTED LOGICS AND EXPRESSIONS

qualitative answers — quantitative answers
(57@7(8)7071) Semiring

Example  (Np,+,-,0,1)



WEIGHTED LOGICS AND EXPRESSIONS

qualitative answers — quantitative answers
(57697@7071) Semiring

Example  (Np,+,-,0,1)

wMSO(o, S) logic [Droste and Gastin]

pu=Bs|le@p|leRe | Pxe| Qx| HXp



WEIGHTED LOGICS AND EXPRESSIONS

qualitative answers — quantitative answers
(57697@7071) Semiring

Example  (Np,+,-,0,1)

wMSO(o, S) logic [Droste and Gastin]

pu=Bs|le@p|leRe | Pxe| Qx| HXp

el : Str(o) — S



WEIGHTED LOGICS AND EXPRESSIONS

qualitative answers — quantitative answers
(57697@7071) Semiring

Example  (Np,+,-,0,1)

wMSO(o, S) logic [Droste and Gastin]

pu=Bs|le@p|leRe | Pxe| Qx| HXp

[#]: Str(o) = S [51(A) € {0,1}

67%



WEIGHTED LOGICS AND EXPRESSIONS

qualitative answers — quantitative answers
(S,8,®,0,1) semiring
Example  (Np,+,-,0,1)

[ x. P y-edge(x, y)] = number of edges
wMSO(e, S) logic [Droste and Gastin]

pu=Bs|le@p|leRe | Pxe| Qx| HXp

[#]: Str(o) = S [51(A) € {0,1}

68%



WEIGHTED LOGICS AND EXPRESSIONS

qualitative answers — quantitative answers
(S,8,®,0,1) semiring
Example  (Np,+,-,0,1)

[ x. P y-edge(x, y)] = number of edges
wMSO(o, S) logic [Droste and Gastin]
pr=Bls|vey |y

pu=PFlsledplee[Bxe| Qx| DX

[#]: Str(o) = S [51(A) € {0,1}

69%



WEIGHTED LOGICS AND EXPRESSIONS

Expressions Exp,(S)
ESZ:X,'|y,'|E@E‘E®E

70%



WEIGHTED LOGICS AND EXPRESSIONS

Expressions Exp,(S)
ESZ:X,'|y,'|E@E‘E®E

(E):S"xS"—S

/ \ = T
<<\><1 y2/>(5, t) =51 Db

71%



CLASSICAL FEFERMAN-VAUGHT THEOREM

Given

signature o B € MSO(o)
there exist

n>1 B, %2 € MSO(o)" P € Prop

such that for all structures A,B
AUBE B iff P(x1,... XnsY1,---,Yn) = true
x; = true iff B} = A
yi = true iff 6,2 =B

where



CLASSICAL FEFERMAN-VAUGHT THEOREM

Given

signature o B € MSO(o)
there exist

n>1 B, %2 € MSO(o)" P € Prop

such that for all structures A,B
[BI(AUB) = true  iff  P(xq,...,Xn,y1,...,Yn) = true
Xx; = true iff 5,1 = A
yi = true iff 6,2 =B

73%

where



CLASSICAL FEFERMAN-VAUGHT THEOREM

Given

signature o B € MSO(o)
there exist

n>1 B, %2 € MSO(o)" P € Prop

such that for all structures A,B

[BI(AUB) = true  iff  P(xq,...,Xn,y1,...,Yn) = true

74%



CLASSICAL FEFERMAN-VAUGHT THEOREM

Given

signature o B € MSO(o)
there exist

n>1 B, %2 € MSO(o)" E € Exp,(B)

such that for all structures A,B

[BI(AUB) = true  iff  P(xq,...,Xn,y1,...,Yn) = true

75%



CLASSICAL FEFERMAN-VAUGHT THEOREM

Given

signature o B € MSO(o)
there exist

n>1 B, %2 € MSO(o)" E € Exp,(B)

such that for all structures A,B

[BUAUB) =true  iff  (£)(IF41(A). [72)(B)) = true

76%



CLASSICAL FEFERMAN-VAUGHT THEOREM

Given

signature o B € MSO(o)
there exist

n>1 B, %2 € MSO(o)" E € Exp,(B)

such that for all structures A,B

[B1(A U B) = (E)(I5(A), [521(B))

77%



WEIGHTED FEFERMAN-VAUGHT THEOREM

Given

signature o semiring S v € wMSO(o, S)
there exist

n>1 @t, @%> € wMSO(a, S)" E € Exp,(S)

such that for all finite structures A,B
[l (AL B) = (E)([£1(A), [£°](B))

78%



WEIGHTED FEFERMAN-VAUGHT THEOREM

lel (AL B) = (E)([£'1(A), [£°](B))

Example label, (), labelp(+), edge(-, -) (No, +,-,0,1)

79%



WEIGHTED FEFERMAN-VAUGHT THEOREM

[l (AU B) = (E)([7'](A), [2°](B))
Example label,(+), labelp(-), edge(:, ) (No,+,-,0,1)

@ = |b-b-edges| - |a-nodes|

80%



WEIGHTED FEFERMAN-VAUGHT THEOREM

lel (AL B) = (E)([£'1(A), [£°](B))

Example label,(+), labelp(-), edge(:, ) (No,+,-,0,1)
@ = |b-b-edges| - |a-nodes|
= P x. P y.edge(x, y) A labelp(x) A labely(y) ® €D z.label,(z)
P|b—b| Pla|

81%



WEIGHTED FEFERMAN-VAUGHT THEOREM

lel (AL B) = (E)([£'1(A), [£°](B))

Example label,(+), labelp(-), edge(:, ) (No,+,-,0,1)
@ = |b-b-edges| - |a-nodes|
= P x. P y.edge(x, y) A labelp(x) A labely(y) ® €D z.label,(z)
P|b—b| Pal
&' = &% = (Qjb—b|» P}a|) E=(1®y)® ()

82%



RESULTS OF THE THESIS: OVERVIEW

m restrictions on product quantifiers necessary

counterexamples exist



RESULTS OF THE THESIS: OVERVIEW

m restrictions on product quantifiers necessary

counterexamples exist

m same restriction as in [Droste and Gastin]

~> characterization of weighted finite automata



RESULTS OF THE THESIS: OVERVIEW

m restrictions on product quantifiers necessary

counterexamples exist

m same restriction as in [Droste and Gastin]

~> characterization of weighted finite automata

m products of structures A x B > first order logic



RESULTS OF THE THESIS: OVERVIEW

m restrictions on product quantifiers necessary

counterexamples exist

m same restriction as in [Droste and Gastin]

~> characterization of weighted finite automata
m products of structures A x B > first order logic

m infinite structures bicomplete semirings



RESULTS OF THE THESIS: OVERVIEW

m restrictions on product quantifiers necessary

counterexamples exist

m same restriction as in [Droste and Gastin]

~> characterization of weighted finite automata

m products of structures A x B > first order logic
m infinite structures bicomplete semirings
m translations schemes ~ modify unions



RESULTS OF THE THESIS: OVERVIEW

m restrictions on product quantifiers necessary

counterexamples exist

m same restriction as in [Droste and Gastin]

~> characterization of weighted finite automata

m products of structures A x B > first order logic
m infinite structures bicomplete semirings
m translations schemes ~ modify unions
m specific semirings no restrictions

De Morgan algebras, locally finite semirings
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MONITOR LOGIC — MOTIVATION

item x restocked (in a shop) every Monday
demand events between Mondays

— modeled as (infinite) sequence over alphabet {restock, demand}

How many demands of x each week?
® minimal demand
® maximal demand

m long-term average demand

— Quantitative Monitor Automata [Chatterjee, Henzinger, Otop]

Quantitative Monitor Automata YN Monitor Logic

— extension of logic for weighted Blichi automata
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