EXPRESSIVENESS AND DECIDABILITY OF WEIGHTED AUTOMATA AND WEIGHTED LOGICS

Frik Paul

A WEIGHTED FEFERMAN-VAUGHT THEOREM

MONITOR LOGIC

$$A = (Q, T, I, F)$$
 over $\Sigma = \{a, b\}$

$$A = (Q, T, I, F)$$
 over $\Sigma = \{a, b\}$

$$A = (Q, T, I, F)$$
 over $\Sigma = \{a, b\}$

$$\rightarrow q_1 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_2 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \xrightarrow{b} q_3 \rightarrow$$

$$A = (Q, T, I, F)$$
 over $\Sigma = \{a, b\}$

Weights in $\mathbb{R} \cup \{-\infty\}$

$$\rightarrow q_1 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_2 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \xrightarrow{b} q_3 \rightarrow$$

$$A = (Q, T, I, F)$$
 over $\Sigma = \{a, b\}$

Weights in
$$\mathbb{R} \cup \{-\infty\}$$

$$\longrightarrow$$

T, I, F

$$\rightarrow q_1 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_2 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \xrightarrow{b} q_3 \rightarrow$$

$$A = (Q, T, I, F)$$
 over $\Sigma = \{a, b\}$

Weights in
$$\mathbb{R} \cup \{-\infty\}$$

$$\longrightarrow$$

T, I, F

$$\rightarrow q_1 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_2 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \xrightarrow{b} q_3 \rightarrow$$

Weight of run:

initial weight + transition weights + final weight

$$\mathcal{A} = (Q, T, I, F)$$
 over $\Sigma = \{a, b\}$

Weights in
$$\mathbb{R} \cup \{-\infty\}$$

$$\longrightarrow$$

T, I, F

$$\rightarrow q_1 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_2 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \xrightarrow{b} q_3 \rightarrow$$

Weight of run:

Weight of word:

maximum over all runs

Weights in
$$\mathbb{R} \cup \{-\infty\}$$
 \longrightarrow T, I, F $\longrightarrow q_1 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_2 \xrightarrow{b} q_2 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \xrightarrow{b} q_3 \xrightarrow{b}$

Weight of run:

initial weight + transition weights + final weight

Weight of word:

maximum over all runs

sequential / deterministic

one "initial state" no two valid $p \stackrel{a}{ o} q_1, \ p \stackrel{a}{ o} q_2$

sequential / deterministic

one "initial state" no two valid
$$p \stackrel{a}{\to} q_1, \ p \stackrel{a}{\to} q_2$$

$$Run(w) = \{Runs \ r \ on \ w \ with \ weight(r) \neq -\infty\}$$

sequential / deterministic

one "initial state" no two valid
$$p \stackrel{a}{\rightarrow} q_1, \ p \stackrel{a}{\rightarrow} q_2$$

$$Run(w) = \{Runs \ r \ on \ w \ with \ weight(r) \neq -\infty\}$$

unambiguous

$$|\mathsf{Run}(w)| \leq 1$$

sequential / deterministic

one "initial state" no two valid
$$p \stackrel{a}{ o} q_1, \ p \stackrel{a}{ o} q_2$$

$$Run(w) = \{Runs \ r \ on \ w \ with \ weight(r) \neq -\infty\}$$

unambiguous	$ Run(w) \leq 1$
finitely ambiguous	$ Run(w) \leq M$

sequential / deterministic

one "initial state" no two valid
$$p \stackrel{a}{ o} q_1, \ p \stackrel{a}{ o} q_2$$

$$Run(w) = \{Runs \ r \ on \ w \ with \ weight(r) \neq -\infty\}$$

unambiguous	$ Run(w) \leq 1$
finitely ambiguous	$ Run(w) \leq M$
polynomially ambiguous	$ Run(w) \leq P(w)$

unambiguous	$ Run(w) \leq 1$
finitely ambiguous	$ Run(w) \leq M$
polynomially ambiguous	$ Run(w) \leq P(w)$

Equivalence problem

Given
$$A_1, A_2$$

Is
$$[A_1](w) = [A_2](w)$$
 for all w ?

unambiguous	$ Run(w) \leq 1$
finitely ambiguous	$ Run(w) \leq M$
polynomially ambiguous	$ Run(w) \leq P(w)$

Equivalence problem

Given
$$A_1, A_2$$
 Is $[A_1](w) = [A_2](w)$ for all w ?

Unambiguity problem

Given \mathcal{A} Is there unamb \mathcal{A}' with $[\![\mathcal{A}]\!] = [\![\mathcal{A}']\!]$?

unambiguous	$ Run(w) \leq 1$
finitely ambiguous	$ Run(w) \leq M$
polynomially ambiguous	$ Run(w) \leq P(w)$

Equivalence problem

Given
$$A_1, A_2$$
 Is $[\![A_1]\!](w) = [\![A_2]\!](w)$ for all w ?

Unambiguity problem

Given
$$\mathcal{A}$$
 Is there unamb \mathcal{A}' with $[\![\mathcal{A}]\!] = [\![\mathcal{A}']\!]$?

Sequentiality problem

Given
$$\mathcal{A}$$
 Is there determ \mathcal{A}' with $[\![\mathcal{A}]\!] = [\![\mathcal{A}']\!]$?

unambiguous	$ Run(w) \leq 1$
finitely ambiguous	$ Run(w) \leq M$
polynomially ambiguous	$ Run(w) \leq P(w)$

Equivalence problem

Given
$$A_1, A_2$$
 Is $[\![A_1]\!](w) = [\![A_2]\!](w)$ for all w ?

Unambiguity problem

Given \mathcal{A} Is there unamb \mathcal{A}' with $[\![\mathcal{A}]\!] = [\![\mathcal{A}']\!]$?

Sequentiality problem

Given \mathcal{A} Is there determ \mathcal{A}' with $[\![\mathcal{A}]\!] = [\![\mathcal{A}']\!]$?

Finite Sequentiality problem

Given \mathcal{A} Is $\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$ for some determ \mathcal{A}_i ?

Decidability for max-plus automata on words

	Equivalence	Unambiguity	Sequentiality	Fin Seq
fin-amb				
poly-amb				
general				

Decidability for max-plus automata on words

	Equivalence	Unambiguity	Sequentiality	Fin Seq
fin-amb				
poly-amb	no			
general	no			

Krob

Decidability for max-plus automata on words

	Equivalence	Unambiguity	Sequentiality	Fin Seq
fin-amb	yes			
poly-amb	no			
general	no			

Krob Hashiguchi, Ishiguro, Jimbo

Decidability for max-plus automata on words

	Equivalence	Unambiguity	Sequentiality	Fin Seq
fin-amb	yes	yes	yes	
poly-amb	no			
general	no			

Krob Hashiguchi, Ishiguro, Jimbo Klimann, Lombardy, Mairesse, Prieur

Decidability for max-plus automata on words

	Equivalence	Unambiguity	Sequentiality	Fin Seq
fin-amb	yes	yes	yes	
poly-amb	no	yes	yes	
general	no			

Krob Hashiguchi, Ishiguro, Jimbo Klimann, Lombardy, Mairesse, Prieur Kirsten, Lombardy

Decidability for max-plus automata on words

	Equivalence	Unambiguity	Sequentiality	Fin Seq
fin-amb	yes	yes	yes	
poly-amb	no	yes	yes	
general	no	?		

Krob Hashiguchi, Ishiguro, Jimbo Klimann, Lombardy, Mairesse, Prieur Kirsten, Lombardy

Decidability for max-plus automata on words

	Equivalence	Unambiguity	Sequentiality	Fin Seq
fin-amb	yes	yes	yes	yes
poly-amb	no	yes	yes	
general	no	?		

Krob Hashiguchi, Ishiguro, Jimbo Klimann, Lombardy, Mairesse, Prieur Kirsten, Lombardy Bala

Decidability for max-plus automata on words

	Equivalence	Unambiguity	Sequentiality	Fin Seq
fin-amb	yes	yes	yes	yes
poly-amb	no	yes	yes	?
general	no	?	?	?

Krob Hashiguchi, Ishiguro, Jimbo Klimann, Lombardy, Mairesse, Prieur Kirsten, Lombardy Bala

Decidability for max-plus automata on words

	Equivalence	Unambiguity	Sequentiality	Fin Seq
fin-amb	yes	yes	yes	yes
poly-amb	no	yes	yes	?
general	no	?		

... on trees before the thesis

	Equivalence	Unambiguity	Sequentiality	Fin Seq
fin-amb	?	?	?	?
poly-amb	no	?	?	?
general	no	?	?	?

Decidability for max-plus automata on words

	Equivalence	Unambiguity	Sequentiality	Fin Seq
fin-amb	yes	yes	yes	yes
poly-amb	no	yes	yes	?
general	no	?		

... on trees after the thesis

	Equivalence	Unambiguity	Sequentiality	Fin Seq
fin-amb	yes	yes	yes	unamb
poly-amb	no	?	?	?
general	no	?	?	?

Decidability for max-plus automata on words

	Equivalence	Unambiguity	Sequentiality	Fin Seq
fin-amb	yes	yes	yes	yes
poly-amb	no	yes	yes	?
general	no	?		

... on trees now

	Equivalence	Unambiguity	Sequentiality	Fin Seq
fin-amb	yes	yes	yes	yes
poly-amb	no	?	?	?
general	no	?	?	?

ranked alphabet Γ

$$\mathcal{A} = (Q, \Gamma, \mu, \nu)$$

over

ranked alphabet Γ

$$\mathcal{A} = (Q, \Gamma, \mu, \nu)$$

over

ranked alphabet Γ

$$\mathcal{A} = (Q, \Gamma, \mu, \nu)$$

over

ranked alphabet Γ

$$(q_{11}, q_{12}, a, q_1)$$

$$\mathcal{A} = (Q, \Gamma, \mu, \nu)$$

over

ranked alphabet Γ

weight of run = transition weights + final weight (q_{11}, q_{12}, a, q_1)

$$\mathcal{A} = (Q, \Gamma, \mu, \nu)$$
 over

ranked alphabet Γ

weight of run =

transition weights + final weight

$$(q_{11}, q_{12}, a, q_1)$$

determinism: bottom-up

$$\mathcal{A} = (Q, \Gamma, \mu, \nu)$$

over

ranked alphabet Γ

weight of run =

transition weights + final weight

$$(q_{11}, q_{12}, a, q_1)$$

determinism: bottom-up

unambiguity problem:

decomposing runs

35%

;

$$\mathcal{A} = (Q, \Gamma, \mu, \nu)$$

over

ranked alphabet Γ

weight of run =

transition weights + final weight

$$(q_{11},q_{12},a,q_1)$$

determinism: bottom-up

unambiguity problem:

decomposing runs

$$q_1 \xrightarrow{a} q_1 \xrightarrow{a} q_3 \xrightarrow{b} q_2 \xrightarrow{b} q_1 \xrightarrow{a} q_3 \xrightarrow{b} q_2$$

$$\mathcal{A} = (Q, \Gamma, \mu, \nu)$$

over

ranked alphabet Γ

weight of run =

transition weights + final weight

$$(q_{11},q_{12},a,q_1)$$

determinism: bottom-up

unambiguity problem:

decomposing runs

$$q_1 \xrightarrow{a} q_1 \xrightarrow{a} q_3 \xrightarrow{b} q_2 \xrightarrow{b} q_1 \xrightarrow{a} q_3 \xrightarrow{b} q_2$$

$$\mathcal{A} = (Q, \Gamma, \mu, \nu)$$

over

ranked alphabet Γ

weight of run =

transition weights + final weight

$$(q_{11},q_{12},a,q_1)$$

determinism: bottom-up

unambiguity problem:

decomposing runs

$$q_1 \xrightarrow{a} q_1 \xrightarrow{a} q_3 \xrightarrow{b} q_2 \xrightarrow{b} q_1 \xrightarrow{a} q_3 \xrightarrow{b} q_2$$

equivalence problem:

$$\mathcal{A} = (Q, \Gamma, \mu, \nu)$$

over

ranked alphabet Γ

weight of run =

transition weights + final weight

$$(q_{11},q_{12},a,q_1)$$

determinism: bottom-up

unambiguity problem:

decomposing runs

$$q_1 \xrightarrow{a} q_1 \xrightarrow{a} q_3 \xrightarrow{b} q_2 \xrightarrow{b} q_1 \xrightarrow{a} q_3 \xrightarrow{b} q_2$$

equivalence problem:

→ uses Parikh's Theorem

new approach simplifies word case

$$\mathcal{A} = (Q, \Gamma, \mu, \nu)$$

over

ranked alphabet Γ

weight of run =

transition weights + final weight

$$(q_{11}, q_{12}, a, q_1)$$

determinism: bottom-up

finite sequentiality problem:

Max-Plus Tree Automata

$$\mathcal{A} = (Q, \Gamma, \mu, \nu)$$

over

ranked alphabet Γ

transition weights + final weight

$$(q_{11}, q_{12}, a, q_1)$$

determinism: bottom-up

finite sequentiality problem:

THM [BALA, KONIŃSKI]

$${\cal A}$$
 unamb \Rightarrow

 \mathcal{A} unamb $\Rightarrow \quad [A]$ finitely sequential $\leftrightarrow \mathcal{A}$ satisfies X

$$\mathcal{A} = (Q, \Gamma, \mu, \nu)$$

over

ranked alphabet Γ

transition weights + final weight

$$(q_{11}, q_{12}, a, q_1)$$

determinism: bottom-up

finite sequentiality problem:

THM [BALA, KONIŃSKI]

$${\mathcal A}$$
 unamb \Rightarrow

$$\llbracket \mathcal{A}
rbracket$$
 finitely sequential $\leftrightarrow \mathcal{A}$ satisfies X

New THM

$${\mathcal A}$$
 unamb \Rightarrow

$$\llbracket \mathcal{A}
rbracket$$
 finitely sequential $\leftrightarrow \mathcal{A}'$ satisfies X and Y

A Weighted Feferman-Vaught Theorem

finite automata

 \leftrightarrow

MSO logic [Büchi]

finite automata

 \leftrightarrow

MSO logic [Büchi]

max-plus automata

 \leftrightarrow

??? logic

lacktriangledown finite automata \leftrightarrow MSO logic [Büchi]

■ max-plus automata \leftrightarrow ??? logic \rightsquigarrow weighted automata \leftrightarrow weighted MSO [Droste, Gastin]

lacktriangledown finite automata \leftrightarrow MSO logic [Büchi]

■ max-plus automata \leftrightarrow ??? logic \rightsquigarrow weighted automata \leftrightarrow weighted MSO [Droste, Gastin]

lacktriangle ambiguity subclasses \leftrightarrow fragments of weighted MSO

lacktriangledown finite automata \leftrightarrow MSO logic [Büchi]

■ max-plus automata \leftrightarrow ??? logic \rightsquigarrow weighted automata \leftrightarrow weighted MSO [Droste, Gastin]

lacktriangle ambiguity subclasses \leftrightarrow fragments of weighted MSO

 $\blacksquare \ \, \mathsf{Feferman\text{-}Vaught theorem:} \qquad \qquad \mathsf{MSO} \, \to \, \mathsf{weighted} \, \, \mathsf{MSO}$

formula β

 $\xleftarrow{\mathsf{satisfaction}}$

structure ${\cal A}$

formula β

**satisfaction

structure ${\cal A}$

Feferman-Vaught theorem

question about union of structures $\mathcal{A} \sqcup \mathcal{B}$

50%

7

formula β

 $\stackrel{\mathsf{satisfaction}}{\longleftrightarrow}$

structure \mathcal{A}

Feferman-Vaught theorem

question about union of structures $\mathcal{A} \sqcup \mathcal{B}$

questions about ${\cal A}$

questions about ${\cal B}$

satisfaction formula β structure \mathcal{A} Feferman-Vaught theorem question about union of structures $\mathcal{A} \sqcup \mathcal{B}$ combine answers questions about Aquestions about \mathcal{B}

$\sigma = (Rel,ar)$	signature
$Rel = \{R_1, \dots, R_m\}$	relation symbols
ar: Rel $ ightarrow \mathbb{N}$	arity function

$\sigma = (Rel, ar)$				signature
$\overline{Rel = \{R_1, \dots, R_m\}}$		r	elation symbols	
$\operatorname{ar} \colon Rel o \mathbb{N}$				arity function
Ex.	$label_a(\cdot)$	$label_b(\cdot)$	$edge(\cdot, \cdot)$	

$\sigma = (Rel,ar)$				signature
$Rel = \{R_1, \dots, R_m\}$			r	elation symbols
$\operatorname{ar} \colon Rel o \mathbb{N}$				arity function
Ex.	$label_a(\cdot)$	$label_b(\cdot)$	$edge(\cdot,\cdot)$	
$\mathcal{A} = (A, \mathcal{I})$				σ -structure
A				universe
$\mathcal{I}(R) \subseteq A^{ar(R)}$	$(R \in Re$	el)		interpretation

Disjoint union $A \sqcup B$ of σ -structures

 $A \sqcup B$ universe

 $\mathcal{I}_{\mathcal{A}}(R)\sqcup\mathcal{I}_{\mathcal{B}}(R)$ interpretation

Disjoint union $A \sqcup B$ of σ -structures

$$A \sqcup B$$
 universe

$$\mathcal{I}_{\mathcal{A}}(R) \sqcup \mathcal{I}_{\mathcal{B}}(R)$$
 interpretation

$MSO(\sigma)$ logic

$$\beta ::= R(x_1, \ldots, x_n) \mid x \in X \mid \neg \beta \mid \beta \vee \beta \mid \exists x . \beta \mid \exists X . \beta$$

Disjoint union $A \sqcup B$ of σ -structures

$$A \sqcup B$$
 universe

$$\mathcal{I}_{\mathcal{A}}(R) \sqcup \mathcal{I}_{\mathcal{B}}(R)$$
 interpretation

$MSO(\sigma)$ logic

$$\beta ::= R(x_1, \ldots, x_n) \mid x \in X \mid \neg \beta \mid \beta \lor \beta \mid \exists x . \beta \mid \exists X . \beta$$

Propositional formulas Prop

$$P ::= x_i \mid y_i \mid P \lor P \mid P \land P$$

CLASSICAL FEFERMAN-VAUGHT THEOREM

Given

signature σ

 $\beta \in \mathsf{MSO}(\sigma)$

CLASSICAL FEFERMAN-VAUGHT THEOREM

Given

$$\text{signature } \sigma$$

$$\beta \in \mathsf{MSO}(\sigma)$$

there exist

$$n \ge 1$$

$$ar{eta}^{\mathbb{1}},ar{eta}^{\mathbb{2}}\in\mathsf{MSO}(\sigma)^n$$

$$P \in \mathsf{Prop}$$

CLASSICAL FEFERMAN-VAUGHT THEOREM

Given

signature
$$\sigma$$

$$\beta \in \mathsf{MSO}(\sigma)$$

there exist

$$n \ge 1$$

$$ar{eta}^{\mathbb{1}}, ar{eta}^{\mathbb{2}} \in \mathsf{MSO}(\sigma)^n$$

$$P \in \mathsf{Prop}$$

such that for all structures \mathcal{A},\mathcal{B}

$$\mathcal{A} \sqcup \mathcal{B} \models \beta$$

iff
$$P(x_1, \ldots, x_n, y_1, \ldots, y_n) = \text{true}$$

$$x_i = \text{true iff } \beta_i^1 \models \mathcal{A}$$

$$y_i = \mathtt{true} \ \mathsf{iff} \ \beta_i^2 \models \mathcal{B}$$

qualitative answers

 \longrightarrow

quantitative answers

qualitative answers	\longrightarrow	quantitative answers
$(\mathcal{S},\oplus,\otimes,\mathbb{0},\mathbb{1})$		semiring

qualitative answers
$$\longrightarrow$$
 quantitative answers
$$(S,\oplus,\otimes,0,1)$$
 semiring
$$\mathsf{Example}\quad (\mathbb{N}_0,+,\cdot,0,1)$$

 \longrightarrow

quantitative answers

$$(S,\oplus,\otimes,\mathbb{0},\mathbb{1})$$

semiring

Example
$$(\mathbb{N}_0, +, \cdot, 0, 1)$$

$\mathsf{wMSO}(\sigma, S) \mathsf{logic}$

[Droste and Gastin]

$$\varphi ::= \beta \mid s \mid \varphi \oplus \varphi \mid \varphi \otimes \varphi \mid \bigoplus x.\varphi \mid \bigotimes x.\varphi \mid \bigoplus X.\varphi$$

 \longrightarrow

quantitative answers

$$(S,\oplus,\otimes,\mathbb{0},\mathbb{1})$$

semiring

Example
$$(\mathbb{N}_0, +, \cdot, 0, 1)$$

$wMSO(\sigma, S)$ logic

[Droste and Gastin]

$$\varphi ::= \beta \mid s \mid \varphi \oplus \varphi \mid \varphi \otimes \varphi \mid \bigoplus x.\varphi \mid \bigotimes x.\varphi \mid \bigoplus X.\varphi$$

$$\llbracket \varphi \rrbracket \colon \mathsf{Str}(\sigma) \to S$$

$$\longrightarrow$$

quantitative answers

$$(S,\oplus,\otimes,\mathbb{0},\mathbb{1})$$

Example
$$(\mathbb{N}_0, +, \cdot, 0, 1)$$

$\mathsf{wMSO}(\sigma, S) \mathsf{logic}$

[Droste and Gastin]

$$\varphi ::= \beta \mid s \mid \varphi \oplus \varphi \mid \varphi \otimes \varphi \mid \bigoplus x.\varphi \mid \bigotimes x.\varphi \mid \bigoplus X.\varphi$$

$$\llbracket \varphi \rrbracket \colon \mathsf{Str}(\sigma) \to S$$

$$\llbracket \beta \rrbracket (\mathcal{A}) \in \{0, 1\}$$

qualitative answers
$$\longrightarrow$$
 quantitative answers $(S,\oplus,\otimes,\mathbb{O},\mathbb{1})$ semiring

Example
$$(\mathbb{N}_0,+,\cdot,0,1)$$

$$\llbracket \bigoplus x. \bigoplus y. \mathsf{edge}(x, y) \rrbracket =$$

number of edges

semiring

$wMSO(\sigma, S)$ logic

[Droste and Gastin]

$$\varphi ::= \beta \mid s \mid \varphi \oplus \varphi \mid \varphi \otimes \varphi \mid \bigoplus x.\varphi \mid \bigotimes x.\varphi \mid \bigoplus X.\varphi$$

$$\llbracket \varphi \rrbracket \colon \mathsf{Str}(\sigma) \to S$$

$$[\![\beta]\!](\mathcal{A}) \in \{0,1\}$$

$$\longrightarrow$$

quantitative answers

$$(S,\oplus,\otimes,\mathbb{0},\mathbb{1})$$

semiring

Example
$$(\mathbb{N}_0,+,\cdot,0,1)$$

$$\llbracket \bigoplus x. \bigoplus y. \mathsf{edge}(x,y) \rrbracket$$

number of edges

$wMSO(\sigma, S)$ logic

[Droste and Gastin]

$$\psi ::= \beta \mid \mathbf{s} \mid \psi \oplus \psi \mid \psi \otimes \psi$$

$$\varphi := \beta \mid s \mid \varphi \oplus \varphi \mid \varphi \otimes \varphi \mid \bigoplus x.\varphi \mid \bigotimes x.\psi \mid \bigoplus X.\varphi$$

$$\bigotimes x.\psi \mid \bigoplus X.\varphi$$

$$\llbracket \varphi \rrbracket \colon \mathsf{Str}(\sigma) \to S$$

$$[\![\beta]\!](\mathcal{A}) \in \{0,1\}$$

Expressions $\text{Exp}_n(S)$

$$E ::= x_i \mid y_i \mid E \oplus E \mid E \otimes E$$

WEIGHTED LOGICS AND EXPRESSIONS

Expressions $Exp_n(S)$

$$E ::= x_i \mid y_i \mid E \oplus E \mid E \otimes E$$

$$\frac{\langle\!\langle E \rangle\!\rangle \colon S^n \times S^n \to S}{\langle\!\langle x_1 \oplus y_2 \rangle\!\rangle (\bar{s}, \bar{t}) = s_1 \oplus t_2}$$

Given

$$\text{signature } \sigma$$

$$\beta \in \mathsf{MSO}(\sigma)$$

there exist

$$n \ge 1$$

$$ar{eta}^{1},ar{eta}^{2}\in\mathsf{MSO}(\sigma)^{n}$$

$$P \in \mathsf{Prop}$$

such that for all structures \mathcal{A},\mathcal{B}

$$\mathcal{A} \sqcup \mathcal{B} \models \beta$$

iff
$$P(x_1, \ldots, x_n, y_1, \ldots, y_n) = \text{true}$$

$$x_i = \text{true iff } \beta_i^1 \models \mathcal{A}$$

$$y_i = \text{true iff } \beta_i^2 \models \mathcal{B}$$

Given

$$\text{signature } \sigma$$

$$\beta \in \mathsf{MSO}(\sigma)$$

there exist

$$n \ge 1$$

$$ar{eta}^{1},ar{eta}^{2}\in\mathsf{MSO}(\sigma)^{n}$$

$$P \in \mathsf{Prop}$$

such that for all structures A,B

$$[\![\beta]\!](\mathcal{A}\sqcup\mathcal{B})=\mathtt{true}$$

$$[\![\beta]\!](\mathcal{A}\sqcup\mathcal{B})=\mathtt{true} \qquad \mathsf{iff} \qquad P(x_1,\ldots,x_n,y_1,\ldots,y_n)=\mathtt{true}$$

where

$$x_i = \text{true iff } \beta_i^1 \models \mathcal{A}$$

$$y_i = \text{true iff } \beta_i^2 \models \mathcal{B}$$

Given

 $\text{signature } \sigma$

$$\beta \in \mathsf{MSO}(\sigma)$$

there exist

$$n \ge 1$$

$$ar{eta}^{\mathbb{1}},ar{eta}^{\mathbb{2}}\in\mathsf{MSO}(\sigma)^n$$

$$P \in \mathsf{Prop}$$

such that for all structures A,B

$$\llbracket eta
rbracket (eta) = ext{true} \qquad ext{iff} \qquad P(x_1, \dots, x_n, y_1, \dots, y_n) = ext{true}$$
 where $x_i = \llbracket eta_i^1
rbracket (eta) \ y_i = \llbracket eta_i^2
rbracket (eta)$

Given

signature
$$\sigma$$

$$\beta \in \mathsf{MSO}(\sigma)$$

there exist

$$n \ge 1$$

$$ar{eta}^{1},ar{eta}^{2}\in\mathsf{MSO}(\sigma)^{n}$$

$$E \in \mathsf{Exp}_n(\mathbb{B})$$

such that for all structures A,B

$$\llbracket eta
rbracket (eta) = ext{true} \qquad ext{iff} \qquad P(x_1, \dots, x_n, y_1, \dots, y_n) = ext{true}$$
 where $x_i = \llbracket eta_i^1
rbracket (eta) \ y_i = \llbracket eta_i^2
rbracket (eta)$

Given

signature
$$\sigma$$

$$\beta \in \mathsf{MSO}(\sigma)$$

there exist

$$n \ge 1$$

$$ar{eta}^{\mathbb{1}},ar{eta}^{\mathbb{2}}\in\mathsf{MSO}(\sigma)^n$$

$$E \in \mathsf{Exp}_n(\mathbb{B})$$

such that for all structures \mathcal{A},\mathcal{B}

$$[\![\beta]\!](\mathcal{A}\sqcup\mathcal{B})=\mathtt{true}$$

$$\llbracket \beta \rrbracket (\mathcal{A} \sqcup \mathcal{B}) = \text{true} \quad \text{iff} \quad \frac{\langle \langle E \rangle \rangle}{\langle \llbracket \bar{\beta}^1 \rrbracket} (\mathcal{A}), \llbracket \bar{\beta}^2 \rrbracket (\mathcal{B})) = \text{true}$$

Given

 $\text{signature } \sigma$

$$\beta \in \mathsf{MSO}(\sigma)$$

there exist

$$n \ge 1$$

$$ar{eta}^{\mathbb{1}}, ar{eta}^{\mathbb{2}} \in \mathsf{MSO}(\sigma)^n$$

$$E \in \mathsf{Exp}_n(\mathbb{B})$$

such that for all structures A,B

$$\llbracket \beta \rrbracket (\mathcal{A} \sqcup \mathcal{B}) = \langle\!\langle E \rangle\!\rangle (\llbracket \bar{\beta}^{1} \rrbracket (\mathcal{A}), \llbracket \bar{\beta}^{2} \rrbracket (\mathcal{B}))$$

Given

signature
$$\sigma$$

$$\varphi \in \mathsf{wMSO}(\sigma, S)$$

there exist

$$n \ge 1$$

$$ar{arphi}^{\mathbb{1}},ar{arphi}^{\mathbb{2}}\in\mathsf{wMSO}(\sigma,S)^n$$

$$E \in \operatorname{Exp}_n(S)$$

such that for all finite structures A,B

$$\llbracket \varphi \rrbracket (\mathcal{A} \sqcup \mathcal{B}) = \langle\!\langle E \rangle\!\rangle (\llbracket \bar{\varphi}^{1} \rrbracket (\mathcal{A}), \llbracket \bar{\varphi}^{2} \rrbracket (\mathcal{B}))$$

$$\llbracket \varphi \rrbracket (\mathcal{A} \sqcup \mathcal{B}) = \langle\!\langle E \rangle\!\rangle (\llbracket \bar{\varphi}^1 \rrbracket (\mathcal{A}), \llbracket \bar{\varphi}^2 \rrbracket (\mathcal{B}))$$

Example

 $label_a(\cdot), label_b(\cdot), edge(\cdot, \cdot)$

 $(\mathbb{N}_0,+,\cdot,0,1)$

$$\llbracket \varphi \rrbracket (\mathcal{A} \sqcup \mathcal{B}) = \langle\!\langle E \rangle\!\rangle (\llbracket \bar{\varphi}^1 \rrbracket (\mathcal{A}), \llbracket \bar{\varphi}^2 \rrbracket (\mathcal{B}))$$

Example
$$\mathsf{label}_a(\cdot), \mathsf{label}_b(\cdot), \mathsf{edge}(\cdot, \cdot)$$
 $(\mathbb{N}_0, +, \cdot, 0, 1)$

$$\varphi = |b-b-edges| \cdot |a-nodes|$$

$$\llbracket \varphi \rrbracket (\mathcal{A} \sqcup \mathcal{B}) = \langle\!\langle E \rangle\!\rangle (\llbracket \bar{\varphi}^1 \rrbracket (\mathcal{A}), \llbracket \bar{\varphi}^2 \rrbracket (\mathcal{B}))$$

Example
$$\mathsf{label}_a(\cdot), \mathsf{label}_b(\cdot), \mathsf{edge}(\cdot, \cdot)$$
 $(\mathbb{N}_0, +, \cdot, 0, 1)$

$$\varphi = |b-b\text{-edges}| \cdot |a\text{-nodes}|$$

$$= \underbrace{\bigoplus x. \bigoplus y. \text{edge}(x,y) \land |abe|_b(x) \land |abe|_b(y)}_{\varphi_{|a|}} \otimes \underbrace{\bigoplus z. |abe|_a(z)}_{\varphi_{|a|}}$$

$$\llbracket \varphi \rrbracket (\mathcal{A} \sqcup \mathcal{B}) = \langle\!\langle E \rangle\!\rangle (\llbracket \bar{\varphi}^1 \rrbracket (\mathcal{A}), \llbracket \bar{\varphi}^2 \rrbracket (\mathcal{B}))$$

Example
$$\mathsf{label}_a(\cdot), \mathsf{label}_b(\cdot), \mathsf{edge}(\cdot, \cdot)$$
 $(\mathbb{N}_0, +, \cdot, 0, 1)$

$$\varphi = |b\text{-}b\text{-edges}| \cdot |a\text{-nodes}|$$

$$= \underbrace{\bigoplus x. \bigoplus y. \operatorname{edge}(x,y) \wedge \operatorname{label}_b(x) \wedge \operatorname{label}_b(y)}_{\varphi_{|a|}} \otimes \underbrace{\bigoplus z. \operatorname{label}_a(z)}_{\varphi_{|a|}}$$

$$\bar{\varphi}^{1} = \bar{\varphi}^{2} = (\varphi_{|b-b|}, \varphi_{|a|})$$

$$E = (x_{1} \oplus y_{1}) \otimes (x_{2} \oplus y_{2})$$

 restrictions on product quantifiers necessary counterexamples exist

- restrictions on product quantifiers necessary counterexamples exist

- restrictions on product quantifiers necessary counterexamples exist
- lacktriangleright products of structures $\mathcal{A} \times \mathcal{B}$ \leadsto first order logic

- restrictions on product quantifiers necessary counterexamples exist
- same restriction as in [Droste and Gastin]

 ⇔ characterization of weighted finite automata
- products of structures $\mathcal{A} \times \mathcal{B}$ \longrightarrow first order logic
- infinite structures bicomplete semirings

- restrictions on product quantifiers necessary counterexamples exist
- lacktriangleright products of structures $\mathcal{A} \times \mathcal{B}$ \longrightarrow first order logic
- infinite structuresbicomplete semirings

- restrictions on product quantifiers necessary counterexamples exist
- lacktriangleright products of structures $\mathcal{A} imes \mathcal{B} \qquad \leadsto \qquad \text{first order logic}$
- infinite structuresbicomplete semirings
- specific semirings no restrictionsDe Morgan algebras, locally finite semirings

item x restocked (in a shop) every Monday

item x restocked (in a shop) every Monday demand events between Mondays

item x restocked (in a shop) every Monday demand events between Mondays

 \rightarrow modeled as (infinite) sequence over alphabet {restock, demand}

item x restocked (in a shop) every Monday demand events between Mondays

 \rightarrow modeled as (infinite) sequence over alphabet {restock, demand}

How many demands of x each week?

item x restocked (in a shop) every Monday demand events between Mondays

→ modeled as (infinite) sequence over alphabet {restock, demand}

How many demands of x each week?

minimal demand

item x restocked (in a shop) every Monday demand events between Mondays

→ modeled as (infinite) sequence over alphabet {restock, demand}

How many demands of x each week?

- minimal demand
- maximal demand

item x restocked (in a shop) every Monday demand events between Mondays

→ modeled as (infinite) sequence over alphabet {restock, demand}

How many demands of x each week?

- minimal demand
- maximal demand
- long-term average demand

item x restocked (in a shop) every Monday demand events between Mondays

→ modeled as (infinite) sequence over alphabet {restock, demand}

How many demands of x each week?

- minimal demand
- maximal demand
- long-term average demand
- → Quantitative Monitor Automata [Chatterjee, Henzinger, Otop]

```
item x restocked (in a shop) every Monday demand events between Mondays
```

→ modeled as (infinite) sequence over alphabet {restock, demand}

How many demands of x each week?

- minimal demand
- maximal demand
- long-term average demand
- → Quantitative Monitor Automata [Chatterjee, Henzinger, Otop]

Quantitative Monitor Automata

 \leftrightarrow

Monitor Logic

item x restocked (in a shop) every Monday demand events between Mondays

 $\rightarrow \mathsf{modeled} \ \mathsf{as} \ \mathsf{(infinite)} \ \mathsf{sequence} \ \mathsf{over} \ \mathsf{alphabet} \ \{\mathsf{restock}, \mathsf{demand}\}$

How many demands of x each week?

- minimal demand
- maximal demand
- long-term average demand
- → Quantitative Monitor Automata [Chatterjee, Henzinger, Otop]

Quantitative Monitor Automata

 \leftrightarrow

Monitor Logic

→ extension of logic for weighted Büchi automata

EQUIVALENCE, UNAMBIGUITY, (FINITE) SEQUENTIALITY OF MAX-PLUS TREE AUTOMATA

A WEIGHTED FEFERMAN-VAUGHT THEOREM

MONITOR LOGIC
FOR
QUANTITATIVE MONITOR AUTOMATA