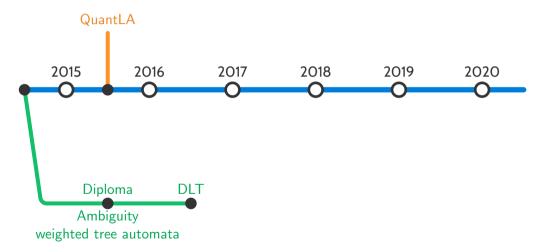
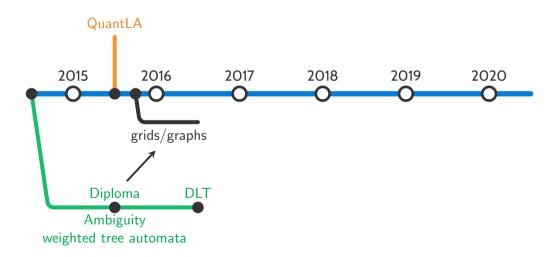
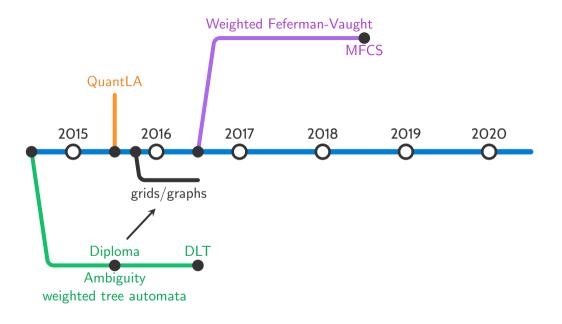
TREES, LOGICS, AND AUTOMATA


MY TIME IN QUANTLA


Erik Paul



question about union of structures $\mathcal{A} \sqcup \mathcal{B}$

question about union of structures $\mathcal{A} \sqcup \mathcal{B}$

questions about ${\cal A}$

questions about ${\cal B}$

question about union of structures $\mathcal{A} \sqcup \mathcal{B}$

1

combine answers

questions about ${\mathcal A}$

questions about ${\cal B}$

question about union of structures $\mathcal{A} \sqcup \mathcal{B}$

1

combine answers

questions about ${\cal A}$

questions about ${\cal B}$

weighted logic:

 $\beta \colon \mathcal{A} \mapsto \mathsf{weight}$

(Booleans, numbers, semiring elements)

question about union of structures $\mathcal{A} \sqcup \mathcal{B}$

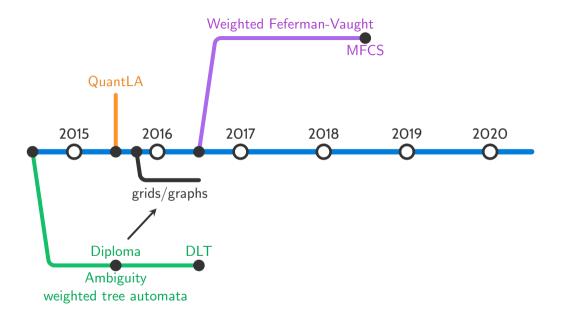
1

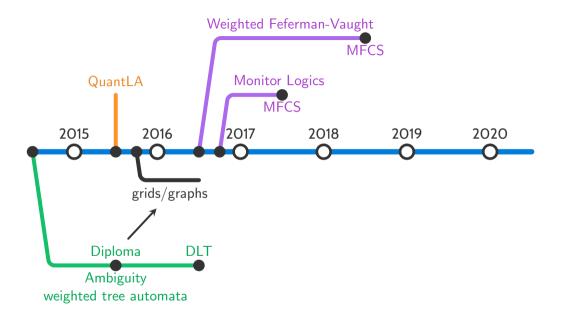
combine answers

questions about ${\cal A}$

questions about ${\cal B}$

weighted logic:


 $\beta \colon \mathcal{A} \mapsto \mathsf{weight}$


(Booleans, numbers, semiring elements)

Example

 $\bigoplus_{x} label_a(x)$

graph \mapsto number of *a*-nodes

MONITOR LOGICS

Quantitative Monitor Automata

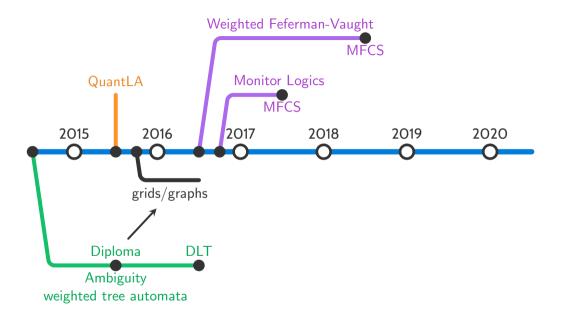
- infinite words
- lacksquare words $ightarrow \mathbb{R}$
- passive ("monitor") counters

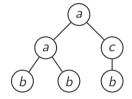
[Chatterjee, Henzinger, Otop '16]

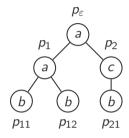
MONITOR LOGICS

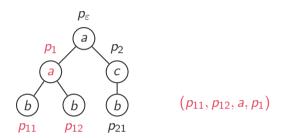
Quantitative Monitor Automata

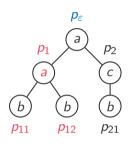
- infinite words
- lacksquare words $ightarrow \mathbb{R}$
- passive ("monitor") counters

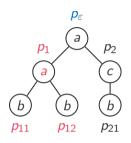

Logical characterization

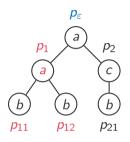

Quantitative Monitor Automata


[Chatterjee, Henzinger, Otop '16]


 \leftrightarrow

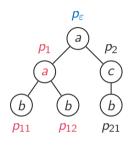

Monitor Logic





final weights transition weights in $\mathbb{R} \cup \{-\infty\}$ (p_{11}, p_{12}, a, p_1)

final weights transition weights in $\mathbb{R} \cup \{-\infty\}$ (p_{11}, p_{12}, a, p_1)

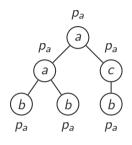

 $\label{eq:weight of run} \begin{aligned} \text{weight of run} &= \\ \text{transition weights} &+ \text{final weight} \end{aligned}$

final weights transition weights in $\mathbb{R} \cup \{-\infty\}$ (p_{11}, p_{12}, a, p_1)

weight of run =
transition weights + final weight

weight of tree =
maximum over runs on tree

final weights transition weights in $\mathbb{R} \cup \{-\infty\}$


 (p_{11}, p_{12}, a, p_1)

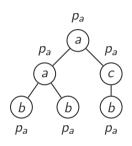
weight of run =
transition weights + final weight

weight of tree = maximum over runs on tree

Example

tree $\mapsto \max\{a\text{-nodes}, b\text{-nodes}\}$

final weights transition weights in $\mathbb{R} \cup \{-\infty\}$


 (p_{11}, p_{12}, a, p_1)

weight of run =
transition weights + final weight

weight of tree =
maximum over runs on tree

tree
$$\mapsto \max\{a\text{-nodes}, b\text{-nodes}\}\$$

states $\{p_a, p_b\}$

run valid \leftrightarrow only p_a or only p_b

final weights transition weights in $\mathbb{R} \cup \{-\infty\}$

 (p_{11}, p_{12}, a, p_1)

weight of tree = maximum over runs on tree

weight of run =

transition weights + final weight

tree
$$\mapsto \max\{a\text{-nodes}, b\text{-nodes}\}\$$
 states $\{p_a, p_b\}$

$$(p_a, p_a, a, p_a) \mapsto 1$$

$$(b, p_b) \mapsto 1$$

$$\mathsf{rest} \mapsto \{0, -\infty\}$$

run valid \leftrightarrow only p_a or only p_b

sequential / deterministic

bottom-up determinism (p_1, \ldots, p_m, a, q)

sequential / deterministic

bottom-up determinism (p_1, \ldots, p_m, a, q)

$$\mathsf{Run}(t) = \{\mathsf{Runs}\ r\ \mathsf{on}\ t\ \mathsf{weight}(r) \neq -\infty\}$$

sequential / deterministic

bottom-up determinism (p_1, \ldots, p_m, a, q)

$$Run(t) = \{Runs \ r \ on \ t \ with \ weight(r) \neq -\infty\}$$

unambiguous

 $|\mathsf{Run}(t)| \leq 1$

sequential / deterministic	bottom-up determinism (p_1, \ldots, p_m, a, q)
$Run(t) = \{Runs \ r \ on \ t \ with \ weight(r) = \{Runs \ r \ on \ t \ with \ with \ weight(r) = \{Runs \ r \ on \ t \ with \ w$	(, , , , , , , , , , , , , , , , , , ,
unambiguous	$ Run(t) \leq 1$
finitely ambiguous	$ Run(t) \leq M$

sequential / deterministic	bottom-up determinism (p_1, \ldots, p_m, a, q)
$Run(t) = \{Runs\; r \; on\; t \; with\; weight(r) eq -c$	∞ }
unambiguous	$ Run(t) \leq 1$
finitely ambiguous	$ Run(t) \leq M$
polynomially ambiguous	$ Run(t) \leq P(t)$

sequential / deterministic	bottom-up determinism
	(p_1,\ldots,p_m,a,q)
$Run(t) = \{Runs\; r \; on\; t \; with\; weight(r) eq -$	$-\infty$ }
unambiguous	$ Run(t) \leq 1$
finitely ambiguous	$ Run(t) \leq M$
polynomially ambiguous	$ Run(t) \leq P(t)$

Diploma

■ finitely ambiguous = union of unambiguous

sequential / deterministic

bottom-up determinism (p_1, \ldots, p_m, a, q)

$$Run(t) = \{Runs \ r \ on \ t \ with \ weight(r) \neq -\infty\}$$

unambiguous	$ Run(t) \leq 1$
finitely ambiguous	$ Run(t) \leq M$
polynomially ambiguous	$ Run(t) \leq P(t)$

Diploma

- finitely ambiguous = union of unambiguous
- structure of polynomially ambiguous tree automata

bottom-up determinism (p_1, \ldots, p_m, a, q)

$$Run(t) = \{Runs \ r \ on \ t \ with \ weight(r) \neq -\infty\}$$

unambiguous	$ Run(t) \leq 1$
finitely ambiguous	$ Run(t) \leq M$
polynomially ambiguous	$ Run(t) \leq P(t)$

Diploma

- finitely ambiguous = union of unambiguous
- structure of polynomially ambiguous tree automata
- logical characterization of ambiguity

FOUR DECISION PROBLEMS

unambiguous	$ Run(t) \leq 1$
finitely ambiguous	$ Run(t) \leq M$
polynomially ambiguous	$ Run(t) \leq P(t)$

Equivalence problem

Given
$$A_1, A_2$$

Is
$$\llbracket \mathcal{A}_1 \rrbracket(t) = \llbracket \mathcal{A}_2 \rrbracket(t)$$
 for all t ?

FOUR DECISION PROBLEMS

unambiguous	$ Run(t) \leq 1$
finitely ambiguous	$ Run(t) \leq M$
polynomially ambiguous	$ Run(t) \leq P(t)$

Equivalence problem

Given $\mathcal{A}_1,\mathcal{A}_2$

Is $[A_1](t) = [A_2](t)$ for all t?

Unambiguity problem

Given \mathcal{A}

Is $\llbracket \mathcal{A} \rrbracket = \llbracket \mathcal{A}' \rrbracket$ for some unamb \mathcal{A}' ?

FOUR DECISION PROBLEMS

unambiguous	$ Run(t) \leq 1$
finitely ambiguous	$ Run(t) \leq M$
polynomially ambiguous	$ Run(t) \leq P(t)$

Equivalence problem

Given $\mathcal{A}_1,\mathcal{A}_2$ Is $\llbracket \mathcal{A}_1 \rrbracket(t) = \llbracket \mathcal{A}_2 \rrbracket(t)$ for all t?

Unambiguity problem

Given \mathcal{A} Is $\llbracket \mathcal{A} \rrbracket = \llbracket \mathcal{A}' \rrbracket$ for some unamb \mathcal{A}' ?

Sequentiality problem

Given \mathcal{A} Is $\llbracket \mathcal{A} \rrbracket = \llbracket \mathcal{A}' \rrbracket$ for some determ \mathcal{A}' ?

FOUR DECISION PROBLEMS

unambiguous	$ Run(t) \leq 1$
finitely ambiguous	$ Run(t) \leq M$
polynomially ambiguous	$ Run(t) \leq P(t)$

Equivalence problem

Given A_1, A_2

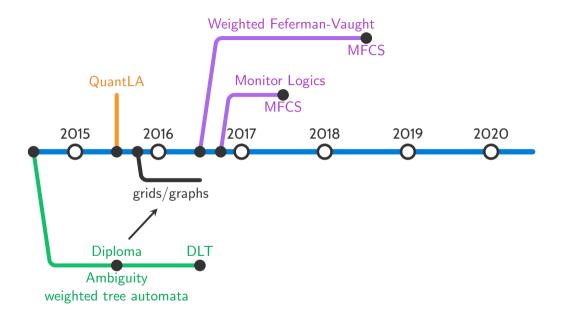
Is $[A_1](t) = [A_2](t)$ for all t?

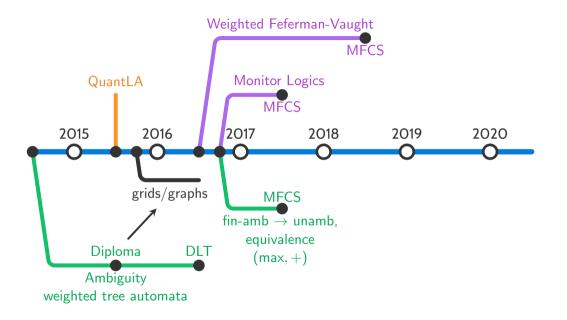
Unambiguity problem

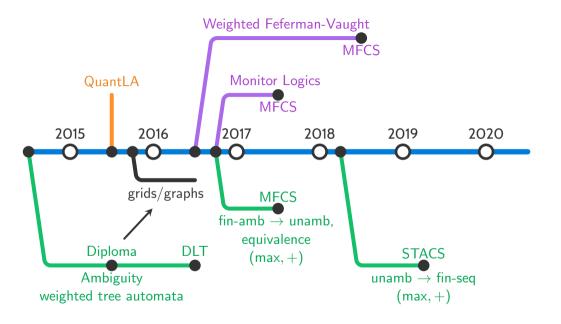
Given A

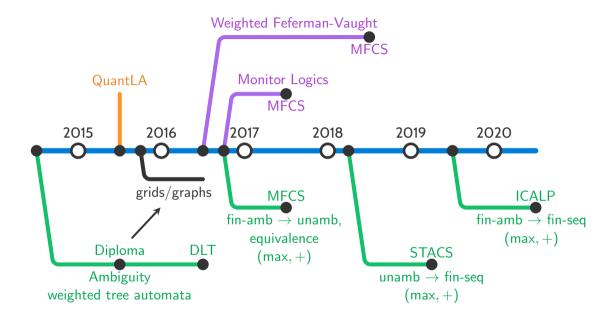
Is $[\![\mathcal{A}]\!] = [\![\mathcal{A}']\!]$ for some unamb \mathcal{A}' ?

Sequentiality problem


Given \mathcal{A}


Is $[\![\mathcal{A}]\!] = [\![\mathcal{A}']\!]$ for some determ \mathcal{A}' ?


Finite Sequentiality problem


Given $\mathcal A$

Is $\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$ for some determ \mathcal{A}_i ?

	Equivalence	Unambiguity	Sequentiality	Finite Sequentiality
fin-amb	yes	yes	yes	yes
poly-amb	no	?	?	?
general	no			?

Equivalence problem

Given A_1, A_2

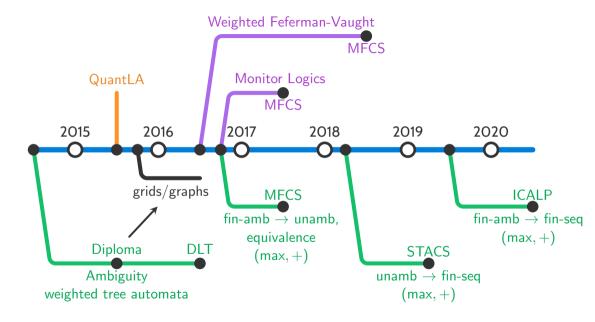
Is $[A_1](t) = [A_2](t)$ for all t?

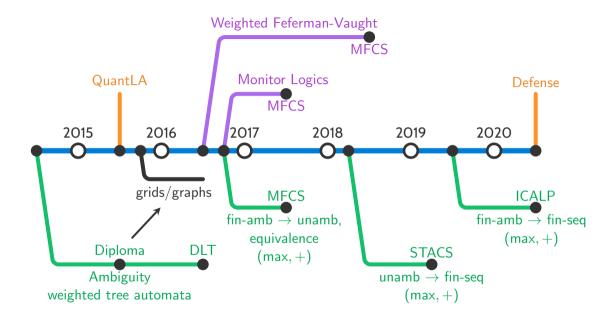
Unambiguity problem

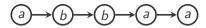
Given A

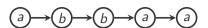
Is $\llbracket \mathcal{A} \rrbracket = \llbracket \mathcal{A}' \rrbracket$ for some unamb \mathcal{A}' ?

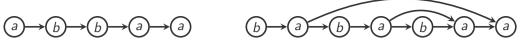
Sequentiality problem

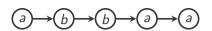

Given \mathcal{A}

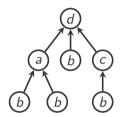

Is $\llbracket \mathcal{A} \rrbracket = \llbracket \mathcal{A}' \rrbracket$ for some determ \mathcal{A}' ?

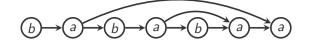

Finite Sequentiality problem

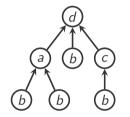

Given \mathcal{A}

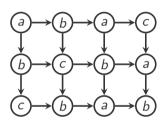

Is
$$[\![\mathcal{A}]\!] = \max_{i=1}^n [\![\mathcal{A}_i]\!]$$
 for some determ \mathcal{A}_i ?

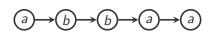




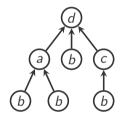


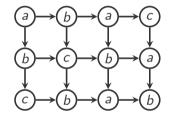


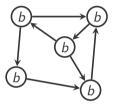


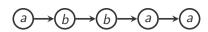


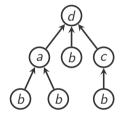


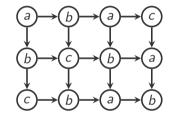


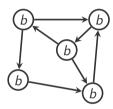


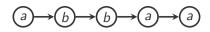


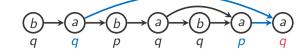


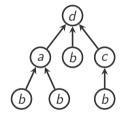


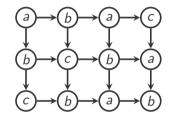


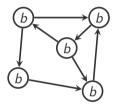


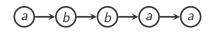


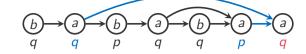


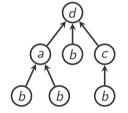


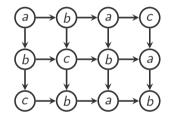

states on nodes

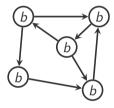

$$(q_1,\ldots,q_0)\stackrel{\mathsf{a}}{ o} q$$

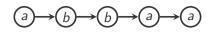


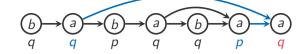


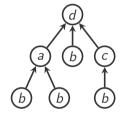


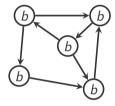

states on nodes


$$(q_1,\ldots,q_0)\stackrel{\mathsf{a}}{ o} q$$

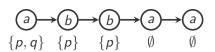


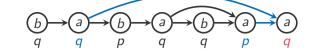


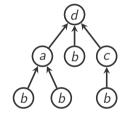

determinize?

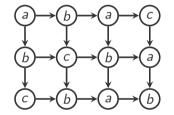

states on nodes powerset construction

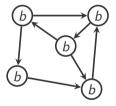
 $(q_1, \dots, q_0) \stackrel{a}{\rightarrow} q$ what states could I be in?

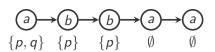

determinize?

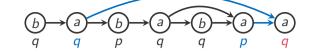

word automaton:

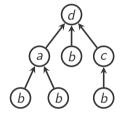

states on nodes powerset construction

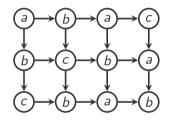

$$(q_1,\ldots,q_0)\stackrel{ extbf{a}}{
ightarrow} q$$
 what states could I be in?

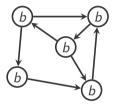

$$\stackrel{a}{\rightarrow} p \qquad \stackrel{a}{\rightarrow} q \qquad p \stackrel{b}{\rightarrow} p$$

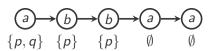

determinize?

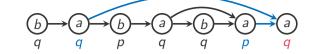

word automaton:

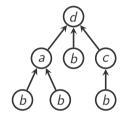

states on nodes powerset construction

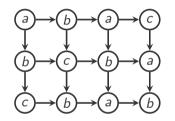

$$(q_1,\ldots,q_0)\stackrel{ extit{a}}{
ightarrow} q$$
 what states could I be in?

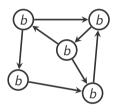

$$\stackrel{a}{\rightarrow} p \qquad \stackrel{a}{\rightarrow} q \qquad p \stackrel{b}{\rightarrow} p$$


states on nodes powerset construction


word automaton:


→ fails on top-down trees, nested words, pictures


$$(q_1,\ldots,q_0)\overset{a}{\to} q$$
 what states could I be in?
$$\overset{a}{\to} p \qquad \overset{a}{\to} q \qquad p\overset{b}{\to} p$$


synchronization after split

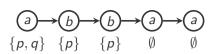
nested word automaton:

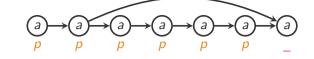
states on nodes powerset construction

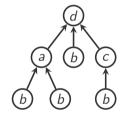
$$\stackrel{a}{\rightarrow} p$$

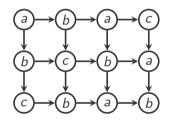
$$p \stackrel{a}{\rightarrow}$$

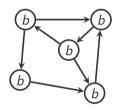
$$p \qquad p \stackrel{a}{\rightarrow} p$$


→ fails on top-down trees, nested words, pictures


$$(q_1,\ldots,q_0)\stackrel{ extbf{a}}{
ightarrow} q$$


what states could I be in?


$$\stackrel{a}{\rightarrow} p \qquad p \stackrel{a}{\rightarrow} p \qquad \stackrel{a}{\rightarrow} q \qquad q \stackrel{a}{\rightarrow} q \qquad (p,q) \stackrel{a}{\rightarrow} p$$

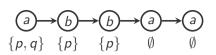

synchronization after split

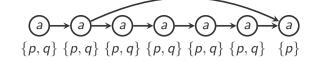
nested word automaton:

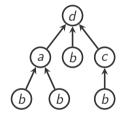
states on nodes powerset construction

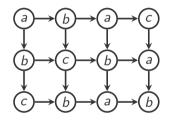
$$\stackrel{a}{\rightarrow} p$$

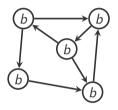
$$p \stackrel{a}{\rightarrow}$$


$$\rightarrow$$
 fails on top-down trees, nested words, pictures


$$(q_1,\ldots,q_0)\stackrel{ extbf{a}}{
ightarrow} q$$


what states could I be in?

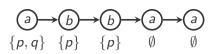

$$\stackrel{a}{\rightarrow} p \qquad \stackrel{a}{\rightarrow} p \qquad \stackrel{a}{\rightarrow} q \qquad q \stackrel{a}{\rightarrow} q \qquad (p,q) \stackrel{a}{\rightarrow} p$$

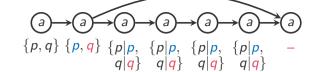

synchronization after split

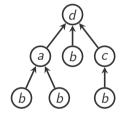
nested word automaton:

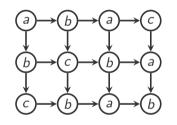
states on nodes powerset construction

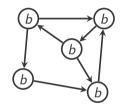
$$\stackrel{a}{\rightarrow} p \qquad p \stackrel{a}{\rightarrow}$$


→ fails on top-down trees, nested words, pictures


$$(q_1,\ldots,q_0)\stackrel{\mathsf{a}}{ o} q$$


what states could I be in?

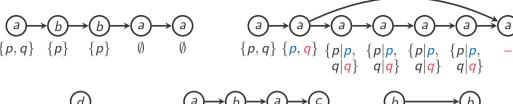

$$\stackrel{a}{\rightarrow} p \qquad p \stackrel{a}{\rightarrow} p \qquad \stackrel{a}{\rightarrow} q \qquad q \stackrel{a}{\rightarrow} q \qquad (p,q) \stackrel{a}{\rightarrow} p$$

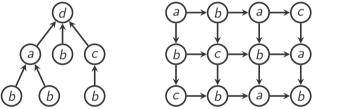

synchronization after split

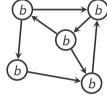
states on nodes powerset construction

$$\stackrel{a}{\rightarrow} p \qquad \stackrel{a}{\rightarrow} p \qquad \stackrel{a}{\rightarrow} q \qquad q \stackrel{a}{\rightarrow} q \qquad (p,q) \stackrel{a}{\rightarrow} p$$

what states could I be in?

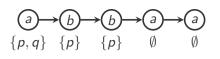

nested word automaton:

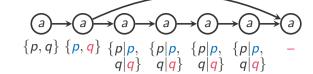

$$\stackrel{a}{\rightarrow} p \qquad p \stackrel{a}{\rightarrow} p$$

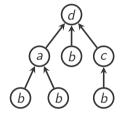

→ fails on top-down trees, nested words, pictures

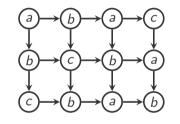
synchronization after split

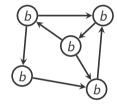
 $(q_1,\ldots,q_0)\stackrel{a}{\rightarrow} q$








When does modified powerset construction work?


Characterization of determinizable graph classes?

When does modified powerset construction work?

Characterization of determinizable graph classes?

- DAGs with single sink
- Tree width?