FINITE SEQUENTIALITY OF UNAMBIGUOUS MAX-PLUS TREE AUTOMATA

Erik Paul

Leipzig University

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_5 \xrightarrow{a} q_6$$

Weights in $\mathbb{R} \cup \{-\infty\}$

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_5 \xrightarrow{a} q_6$$

Weights in $\mathbb{R} \cup \{-\infty\}$

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_5 \xrightarrow{a} q_6$$

Weight of run:

initial weight + transition weights + final weight

5%

1

Weights in $\mathbb{R} \cup \{-\infty\}$

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_5 \xrightarrow{a} q_6$$

Weight of run:

initial weight + transition weights + final weight

Weight of word:

maximum over all runs

Weights in $\mathbb{R} \cup \{-\infty\}$

$$q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_3 \xrightarrow{a} q_4 \xrightarrow{b} q_5 \xrightarrow{a} q_6$$

Weight of run:

initial weight + transition weights + final weight

Weight of word:

maximum over all runs

sequential / deterministic

one "initial state" no two valid $p \stackrel{a}{ o} q_1, \; p \stackrel{a}{ o} q_2$

sequential / deterministic

one "initial state" no two valid $p \stackrel{a}{\to} q_1, \; p \stackrel{a}{\to} q_2$

$$Run(w) = \{Runs \ r \ on \ w \ with \ weight(r) \neq -\infty\}$$

one "initial state" sequential / deterministic no two valid $p \stackrel{a}{ o} q_1, \ p \stackrel{a}{ o} q_2$

$$Run(w) = \{Runs \ r \ on \ w \ with \ weight(r) \neq -\infty\}$$

unambiguous $|\mathsf{Run}(w)| \leq 1$

one "initial state" no two valid
$$p \stackrel{a}{ o} q_1, \ p \stackrel{a}{ o} q_2$$

$$\mathsf{Run}(w) = \{\mathsf{Runs}\ r\ \mathsf{on}\ w\ \mathsf{with}\ \mathsf{weight}(r) \neq -\infty\}$$

unambiguous

$$|\mathsf{Run}(w)| \leq 1$$

Sequentiality problem

Given A

Is there determ
$$\mathcal{A}'$$
 with $[\![\mathcal{A}]\!] = [\![\mathcal{A}']\!]?$

one "initial state" no two valid
$$p \stackrel{a}{\to} q_1, \; p \stackrel{a}{\to} q_2$$

$$\mathsf{Run}(w) = \{\mathsf{Runs}\ r\ \mathsf{on}\ w\ \mathsf{with}\ \mathsf{weight}(r) \neq -\infty\}$$

unambiguous

$$|\mathsf{Run}(w)| \leq 1$$

Sequentiality problem

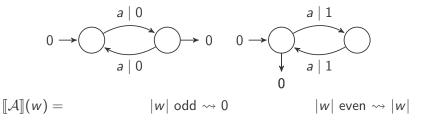
Given \mathcal{A}

Is there determ
$$\mathcal{A}'$$
 with $[\![\mathcal{A}]\!] = [\![\mathcal{A}']\!]$?

decidable on words for unamb ${\mathcal A}$

[Mohri]

Sequentiality Problem: A determinizable?



Sequentiality Problem: A determinizable?

 ${\cal A}$ max-plus automaton

p, q states

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$$

$$\|A\|(w) = |w| \text{ odd } \longrightarrow 0 \longrightarrow |w| \text{ even } \longrightarrow |w|$$

SEQUENTIALITY PROBLEM: ${\cal A}$ DETERMINIZABLE?

 \mathcal{A} max-plus automaton

p, q states

p, q rivals iff $\exists \text{ words } u, v$:

$$\xrightarrow{u} p \xrightarrow{v|x} p$$

$$\xrightarrow{u} q \xrightarrow{v|y} q$$

 $x \neq y$

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$$

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$$

$$0 \longrightarrow 0 \longrightarrow 0$$

$$0 \longrightarrow$$

$$\llbracket \mathcal{A} \rrbracket (w) =$$

$$|w|$$
 odd $\rightsquigarrow 0$

$$|w|$$
 even $\rightsquigarrow |w|$

SEQUENTIALITY PROBLEM: ${\cal A}$ DETERMINIZABLE?

 \mathcal{A} max-plus automaton

p, q states

p, q rivals iff $\exists \text{ words } u, v$:

$$\xrightarrow{u} p \xrightarrow{v|x} p$$

$$\xrightarrow{u} q \xrightarrow{v|y} q$$

 $x \neq y$

$$0 \longrightarrow p \longrightarrow 0 \qquad 0 \longrightarrow q \longrightarrow a \mid 1$$

$$0 \longrightarrow q \longrightarrow a \mid 1$$

$$\llbracket \mathcal{A} \rrbracket (w) =$$

$$|w|$$
 odd $\rightsquigarrow 0$

$$|w|$$
 even $\rightsquigarrow |w|$

Sequentiality Problem: \mathcal{A} determinizable?

 \mathcal{A} max-plus automaton

p, q states

$$p, q \text{ rivals}$$
 iff $\exists \text{ words } u, v$:

$$\xrightarrow{u} p \xrightarrow{v|x} p$$

$$\xrightarrow{u} q \xrightarrow{v|y} q$$

$$x \neq y$$

$$u = \varepsilon \quad v = aa$$

$$0 \longrightarrow p \longrightarrow 0 \quad 0 \longrightarrow q \longrightarrow a \mid 1$$

$$0 \longrightarrow a \mid 0$$

$$[A](w) =$$

$$|w|$$
 odd $\rightsquigarrow 0$

$$|w|$$
 even $\rightsquigarrow |w|$

 \mathcal{A} unamb \Rightarrow

 \mathcal{A} determinizable \leftrightarrow no rivals in \mathcal{A}

[Mohri]

Finite Sequentiality problem

Given \mathcal{A} Is $[\![\mathcal{A}]\!] = \max_{i=1}^n [\![\mathcal{A}_i]\!]$ for some determ \mathcal{A}_i ?

Finite Sequentiality problem

Given \mathcal{A} Is $[\![\mathcal{A}]\!] = \max_{i=1}^n [\![\mathcal{A}_i]\!]$ for some determ \mathcal{A}_i ?

decidable on words for unamb ${\mathcal A}$

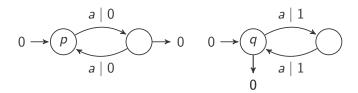
[Bala, Koniński]

Finite Sequentiality problem

Given \mathcal{A} Is $[\![\mathcal{A}]\!] = \max_{i=1}^n [\![\mathcal{A}_i]\!]$ for some determ \mathcal{A}_i ?

decidable on words for unamb ${\cal A}$

[Bala, Koniński]

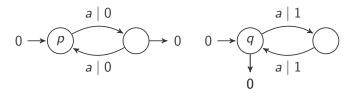


Finite Sequentiality problem

Is $[A] = \max_{i=1}^n [A_i]$ for some determ A_i ? Given \mathcal{A}

decidable on words for unamb A

[Bala, Koniński]



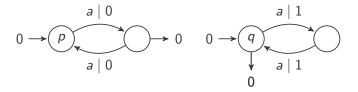
for rivals p, q: word f fork iff $p \xrightarrow{f} p$ $p \xrightarrow{f} q$

Finite Sequentiality problem

Is $[A] = \max_{i=1}^n [A_i]$ for some determ A_i ? Given \mathcal{A}

decidable on words for unamb A

[Bala, Koniński]



for rivals p, q:

word f fork iff $p \xrightarrow{f} p p \xrightarrow{f} q$

 \mathcal{A} unamb \Rightarrow

[A] finitely sequential \leftrightarrow no forks

Finite Sequentiality problem

Is $[A] = \max_{i=1}^n [A_i]$ for some determ A_i ? Given \mathcal{A}

decidable on words for unamb A

[Bala, Koniński]

$$u = a$$

$$v = b$$

$$f = a$$

$$0 \longrightarrow P$$

$$a \mid 0$$

$$a \mid 0$$

$$b \mid -1$$

$$a \mid 0$$

$$q \longrightarrow 0$$

for rivals p, q:

word f fork iff $p \xrightarrow{f} p$ $p \xrightarrow{f} a$

 \mathcal{A} unamb \Rightarrow

[A] finitely sequential \leftrightarrow no forks

Finite Sequentiality problem

Is $[A] = \max_{i=1}^n [A_i]$ for some determ A_i ? Given \mathcal{A}

decidable on words for unamb A

[Bala, Koniński]

$$u = a$$

$$v = b$$

$$f = a$$

$$0 \longrightarrow p$$

$$a \mid 0$$

$$b's \text{ before last } a$$

$$0 \longrightarrow p$$

$$a \mid 0$$

$$q \longrightarrow 0$$

$$b's \text{ after last } a$$

for rivals p, q:

word f fork iff $p \xrightarrow{f} p p \xrightarrow{f} q$

 \mathcal{A} unamb \Rightarrow

[A] finitely sequential \leftrightarrow no forks

Finite Sequentiality problem

Is $[A] = \max_{i=1}^n [A_i]$ for some determ A_i ? Given \mathcal{A}

decidable on words for unamb A

[Bala, Koniński]

$$\begin{array}{c|cccc}
a & 0 & b & 1 & b & -1 \\
\hline
 & a & 0 & & & & & \\
 & & \uparrow & & & & \uparrow \\
 & & & & & & & \\
\end{array}$$

for rivals p, q: word f fork iff $p \xrightarrow{f} p$ $p \xrightarrow{f} q$

 \mathcal{A} unamb \Rightarrow

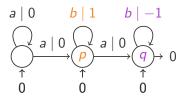
[A] finitely sequential \leftrightarrow no forks

Finite Sequentiality problem

Is $[A] = \max_{i=1}^n [A_i]$ for some determ A_i ? Given \mathcal{A}

decidable on words for unamb A

[Bala, Koniński]



2 deterministic automata:

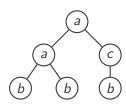
$$a^*b^+ab^*$$
 a^*b^*

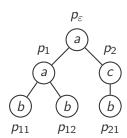
for rivals p, q:

word f fork iff $p \xrightarrow{f} p$ $p \xrightarrow{f} a$

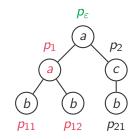
 \mathcal{A} unamb \Rightarrow

[A] finitely sequential \leftrightarrow no forks



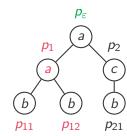


weight of run = transition weights + final weight (p_{11}, p_{12}, a, p_1)



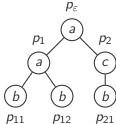
weight of run = transition weights + final weight (p_{11}, p_{12}, a, p_1)

determinism: bottom-up



weight of run = transition weights + final weight (p_{11},p_{12},a,p_1)

determinism: bottom-up

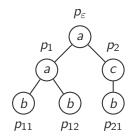


Finite Sequentiality: $[A] = \max_{i=1}^{n} [A_i]$ for some determ A_i ?

transition weights + final weight

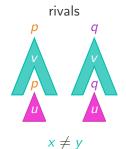
$$(p_{11}, p_{12}, a, p_1)$$

determinism: bottom-up



Finite Sequentiality:

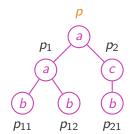
$$\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$$
 for some determ \mathcal{A}_i ?



transition weights + final weight

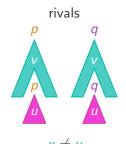
$$(p_{11}, p_{12}, a, p_1)$$

determinism: bottom-up



Finite Sequentiality:

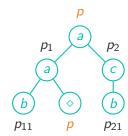
$$\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$$
 for some determ \mathcal{A}_i ?



transition weights + final weight

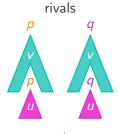
$$(p_{11}, p_{12}, a, p_1)$$

determinism: bottom-up



Finite Sequentiality:

$$\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$$
 for some determ \mathcal{A}_i ?

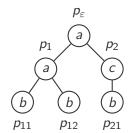


 $x \neq y$

transition weights + final weight

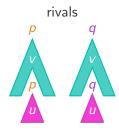
$$(p_{11}, p_{12}, a, p_1)$$

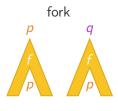
determinism: bottom-up



Finite Sequentiality:

$$\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$$
 for some determ \mathcal{A}_i ?



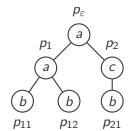


 $x \neq y$

transition weights + final weight

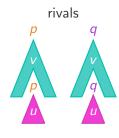
$$(p_{11}, p_{12}, a, p_1)$$

determinism: bottom-up



Finite Sequentiality:

$$\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$$
 for some determ \mathcal{A}_i ?



fork

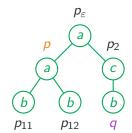
split

 $x \neq y$

transition weights + final weight

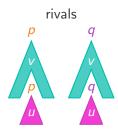
$$(p_{11}, p_{12}, a, p_1)$$

determinism: bottom-up



Finite Sequentiality:

$$\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$$
 for some determ \mathcal{A}_i ?



fork

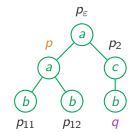
split

 $x \neq y$

 $\label{eq:weight of run} \mbox{weight of run} = \\ \mbox{transition weights} + \mbox{final weight}$

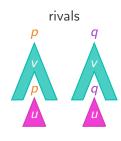
$$(p_{11}, p_{12}, a, p_1)$$

determinism: bottom-up



Finite Sequentiality:

 $\llbracket \mathcal{A} \rrbracket = \max_{i=1}^n \llbracket \mathcal{A}_i \rrbracket$ for some determ \mathcal{A}_i ?



 $x \neq y$

fork

split

NEW THM

 \mathcal{A} unamb $\Rightarrow \llbracket \mathcal{A} \rrbracket$ fin seq \leftrightarrow no forks \land no splits