The DIAMOND System for Argumentation
Preliminary Report

Stefan Ellmauthaler Hannes Strass

Computer Science Institute
Leipzig University
Germany

ASPOCP 2013
August 25th 2013
Outline

1 Motivation

2 Background
 - Abstract Argumentation Frameworks
 - Abstract Dialectical Frameworks

3 DIAMOND

4 Conclusion & Future Work
Outline

1 Motivation

2 Background
 - Abstract Argumentation Frameworks
 - Abstract Dialectical Frameworks

3 DIAMOND

4 Conclusion & Future Work
Motivation: AFs

State of the art in abstract argumentation

Abstract Argumentation Frameworks (AFs)

- syntactically: directed graphs

- conceptually: nodes are arguments, edges denote attacks between arguments

- semantically: extensions are sets of “acceptable” arguments

- immensely popular in the argumentation community

- drawback: can only express attack
Motivation: ADFs

Abstract Dialectical Frameworks (ADFs)

- generalise AFs, arguments are now called \textit{statements}
- can also (although less directly) be visualised as graphs
- edges express that there is some relationship between the two statements
- relationship need not be “attack”, precise nature specified by \textit{acceptance condition} for each statement
- acceptance condition specifies status of node given status of direct predecessors
Motivation: Argumentation in practice
Recent Projects and Ideas

- lawsuit analysis with argumentation
- argumentation for discussion analysis on social media (e.g. facebook)
- argumentation for blog-discussions

Outline

1 Motivation

2 Background
 - Abstract Argumentation Frameworks
 - Abstract Dialectical Frameworks

3 DIAMOND

4 Conclusion & Future Work
Abstract Argumentation

is for determining acceptance of abstract arguments

- argumentation framework\(^4\) \(F = (A, R) \)
- \(A \) \(\ldots \) set of arguments
- \(R \subseteq A \times A \) \(\ldots \) attack relation
- argument \(a \in A \) is \textit{defended} by a set \(S \subseteq A \) if all attackers of \(a \) are attacked by \(S \):

\[
(\forall b \in A)(bRa \implies (\exists c \in S)cRb)
\]

AF Semantics
are defined via extensions

for AF $F = (A, R)$, a set $S \subseteq A$ of arguments is
- conflict-free iff for all $a, b \in S$, $(a, b) \notin R$
- a conflict-free set S is
 - admissible iff it defends all arguments it contains
 - preferred iff it is \subseteq-maximal admissible
 - complete iff it contains exactly the arguments it defends
 - grounded iff it is \subseteq-minimal complete
 - stable iff it attacks all arguments not in S
AF Semantics
an example framework

- **AF** $F = (A, R)$ with $A = \{a, b, c, d\}$ and $R = \{(a, b), (c, d), (d, c)\}$:

 ![Graph](attachment:image.png)

- grounded extension: $G = \{a\}$
- stable extensions: $E_1 = \{a, c\}$ and $E_2 = \{a, d\}$
- preferred extensions: E_1, E_2
- complete extensions: G, E_1, E_2
Abstract Dialectical Frameworks⁵

Syntax

Definition: Abstract Dialectical Framework

An abstract dialectical framework (ADF) is a triple $D = (S, L, C)$,

- S ... set of statements (correspond to AF arguments)
- $L \subseteq S \times S$... links
- $C = \{ C_s \}_{s \in S}$... acceptance conditions

- links denote some kind of dependency relation
- acceptance condition: Boolean function $C_s : 2^{par(s)} \rightarrow \{ t, f \}$
- here: C_s often specified by propositional formula φ_s

$\varphi_a = t$

$\varphi_b = b$

$\varphi_c = a \land b$

$\varphi_d = \neg b$
Abstract Dialectical Frameworks

Semantics

Truth values, interpretations

- truth values: true t, false f, unknown u
- interpretation: $v : S \rightarrow \{t, f, u\}$
- interpretations can be represented as consistent sets of literals

Information ordering

- $u <_i t$ and $u <_i f$ (as usual $x \leq_i y$ iff $x <_i y$ or $x = y$)
- consensus \sqcap is greatest lower bound w.r.t. \leq_i:
 - $t \sqcap t = t$ and $f \sqcap f = f$, otherwise $x \sqcap y = u$
- information ordering generalised to interpretations:
 - $v_1 \leq_i v_2$ iff $v_1(s) \leq_i v_2(s)$ for all $s \in S$
Abstract Dialectical Frameworks

Semantics

Characteristic Operator
- for a valuation \(\nu \), we define \([\nu]_2 = \{ \nu \leq_i w \mid w \text{ two-valued}\}\)
- for ADF \(D \), we define an operator \(\Gamma_D \) on interpretations
- for interpretation \(\nu : S \rightarrow \{t, f, u\} \), the operator yields a new interpretation (the consensus over \([\nu]_2\))

\[
\Gamma_D(\nu) : S \rightarrow \{t, f, u\} \quad s \mapsto \bigcap \{w(\phi_s) \mid w \in [\nu]_2\}
\]

Semantics
- two-valued \(\nu \) is a model of \(D \) iff \(\nu(s) = \nu(\phi_s) \) for all \(s \in S \)
- \(\nu \) is the grounded model of \(D \) iff it is the least fixpoint of \(\Gamma_D \)
Abstract Dialectical Frameworks

Semantics: Example

\[\varphi_a = t \] \quad \varphi_b = b

\[\varphi_c = a \land b \] \quad \varphi_d = \neg b

- models:
 - \(v_1 = \{ a \mapsto t, b \mapsto t, c \mapsto t, d \mapsto f \} \models \{ a, b, c, \neg d \} \)
 - \(v_2 = \{ a \mapsto t, b \mapsto f, c \mapsto f, d \mapsto t \} \models \{ a, \neg b, \neg c, d \} \)

- grounded model: \(v_3 = \{ a \mapsto t, b \mapsto u, c \mapsto u, d \mapsto u \} \models \{ a \} \)
Abstract Dialectical Frameworks

Semantics: Example

\[\varphi_a = t \]
\[\varphi_b = b \]
\[\varphi_c = a \land b \]
\[\varphi_d = \neg b \]

- models:
 - \(v_1 = \{ a \mapsto t, b \mapsto t, c \mapsto t, d \mapsto f \} \hat{=} \{ a, b, c, \neg d \} \)
 - \(v_2 = \{ a \mapsto t, b \mapsto f, c \mapsto f, d \mapsto t \} \hat{=} \{ a, \neg b, \neg c, d \} \)
- grounded model: \(v_3 = \{ a \mapsto t, b \mapsto u, c \mapsto u, d \mapsto u \} \hat{=} \{ a \} \)
Abstract Dialectical Frameworks

Semantics: Example

\(\varphi_a = \top \)
\(\varphi_b = b \)
\(\varphi_c = a \land b \)
\(\varphi_d = \neg b \)

- models:
 - \(v_1 = \{ a \mapsto \top, b \mapsto \top, c \mapsto \top, d \mapsto \bot \} \models \{ a, b, c, \neg d \} \)
 - \(v_2 = \{ a \mapsto \top, b \mapsto \bot, c \mapsto \bot, d \mapsto \top \} \models \{ a, \neg b, \neg c, d \} \)
- grounded model: \(v_3 = \{ a \mapsto \top, b \mapsto \bot, c \mapsto \bot, d \mapsto \bot \} \models \{ a \} \)
Abstract Dialectical Frameworks

Semantics: Example

\[\varphi_a = \mathbf{t} \]
\[\varphi_b = \mathbf{b} \]
\[\varphi_c = a \land b \]
\[\varphi_d = \neg b \]

• models:

 ▶ \(v_1 = \{ a \mapsto \mathbf{t}, b \mapsto \mathbf{t}, c \mapsto \mathbf{t}, d \mapsto \mathbf{f} \} \downarrow \{ a, b, c, \neg d \} \)

 ▶ \(v_2 = \{ a \mapsto \mathbf{t}, b \mapsto \mathbf{f}, c \mapsto \mathbf{f}, d \mapsto \mathbf{t} \} \downarrow \{ a, \neg b, \neg c, d \} \)

• grounded model: \(v_3 = \{ a \mapsto \mathbf{t}, b \mapsto \mathbf{u}, c \mapsto \mathbf{u}, d \mapsto \mathbf{u} \} \downarrow \{ a \} \)
Abstract Dialectical Frameworks
Admissible Semantics

Definition: Admissible

Interpretation ν is *admissible* for ADF D iff $\nu \leq_{i} \Gamma_{D}(\nu)$.

- intuitively: does not contain too much information
- example ADF has 16 admissible interpretations:
Abstract Dialectical Frameworks
Complete Semantics

Definition: Complete
Interpretation v is complete for ADF D iff $v = \Gamma_D(v)$.

- complete interpretations are stationary w.r.t. revision operator
Outline

1. Motivation

2. Background
 - Abstract Argumentation Frameworks
 - Abstract Dialectical Frameworks

3. DIAMOND

4. Conclusion & Future Work
Set of encodings utilizing the Potsdam Answer Set Solving Collection
Python script for command-line-interface
ECLiPSe-Prolog program for fast input-format conversions

Propositional Formula Representation

- Statements are defined via the unary predicate `statement(a)`.
- Their acceptance condition is a propositional formula, represented by `ac(s, φ)`, where `φ` is a propositional formula in prefix notation.
- Links between statements are implicitly defined by variable occurrence in `φ`.
- Allowed constants in `φ` are `c(v)`, `c(f)`.
- Allowed operators are `neg`, `and`, `or`, `imp`, and `iff`.

Example

```
ac(a,c(v)). ac(b,b).
ac(c, and(a,b)). ac(d, neg(b)).
```
DIAMOND

Instance Representation

Predicates

- unary predicate \(s(a) \). to represent statements
- binary predicate \(l(b,a) \). to represent links
- unary and ternary predicates \(ci \) and \(co \) to model the Boolean acceptance function

Example

\[
\begin{align*}
 s(a) & . \quad s(b) & . \quad s(c) & . \quad s(d) & . \\
 l(a,c) & . \quad l(b,b) & . \quad l(b,c) & . \quad l(b,d) & . \\
 ci(a) & . \\
 co(b) & . \quad ci(b,1,b) & . \\
 co(c) & . \quad co(c,1,a) & . \quad co(c,2,b) & . \quad ci(c,3,a) & . \quad ci(c,3,b) & . \\
 ci(d) & . \quad co(d,1,b) & .
\end{align*}
\]
Predicates

- **unary predicate** `s(a)`. to represent statements
- **binary predicate** `l(b,a)`. to represent links
- **unary and ternary predicates** `ci` and `co` to model the Boolean acceptance function

Example

```
s(a).  s(b).  s(c).  s(d).
l(a,c).  l(b,b).  l(b,c).  l(b,d).
ci(a).
co(b).  ci(b,1,b).
co(c).  co(c,1,a).  co(c,2,b).  ci(c,3,a).  ci(c,3,b).
ci(d).  co(d,1,b).
```
Implementation of Γ_D

- semantics are based upon fixpoint computation of Γ_D
- binary predicates $\text{in}(X,I)$ and $\text{out}(X,I)$ represent an interpretation at $\text{step}(I)$
- operator applied if $\text{step}(I)$ exists
DIAMOND
Implementation of Γ_D

“Interesting” links at step I

\begin{align*}
\text{ciui}(S,J,I) & : \text{lin}(X,S,I), \neg \text{ci}(S,J,X), \text{ci}(S,J). \\
\text{ciui}(S,J,I) & : \text{lout}(X,S,I), \text{ci}(S,J,X). \\
\text{cii}(S,J,I) & : \neg \text{ciui}(S,J,I), \text{ci}(S,J), \text{step}(I).
\end{align*}

Validity check

\begin{align*}
\text{pmodel}(S,I) & : \text{cii}(S,J,I). \\
\text{pmodel}(S,I) & : \text{verum}(S), \text{step}(I). \\
\text{pmodel}(S,I) & : \neg \text{lin}(S,I), \text{ci}(S), \text{step}(I). \\
\text{valid}(S,I) & : \text{pmodel}(S,I), \neg \text{imodel}(S,I).
\end{align*}

Fixpoint check

\begin{align*}
\text{nofp}(I) & : \text{in}(X,I), \neg \text{valid}(X,I), \text{step}(I). \\
\text{nofp}(I) & : \neg \text{valid}(X,I), \text{not in}(X,I), \text{step}(I). \\
\text{nofp}(I) & : \text{out}(X,I), \neg \text{unsat}(X,I), \text{step}(I). \\
\text{nofp}(I) & : \text{unsat}(X,I), \text{not out}(X,I), \text{step}(I). \\
\text{fp}(I) & : \neg \text{nofp}(I), \text{step}(I).
\end{align*}
“Interesting” links at step I

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ciui(S,J,I) :- lin(X,S,I), not ci(S,J,X), ci(S,J).</code></td>
<td>Link between <code>S</code> and <code>I</code>, not between <code>S</code> and <code>J</code>, and <code>ci(J,S)</code></td>
</tr>
<tr>
<td><code>ciui(S,J,I) :- lout(X,S,I), ci(S,J,X).</code></td>
<td>Link out from <code>S</code> to <code>I</code>, and <code>ci(J,S)</code></td>
</tr>
<tr>
<td><code>cii(S,J,I) :- not ciui(S,J,I), ci(S,J), step(I).</code></td>
<td>Not link <code>ciui</code>, <code>ci(S,J)</code>, step <code>I</code></td>
</tr>
</tbody>
</table>

Validity check

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pmodel(S,I) :- cii(S,J,I).</code></td>
<td><code>pmodel</code> if <code>cii(S,J,I)</code></td>
</tr>
<tr>
<td><code>pmodel(S,I) :- verum(S), step(I).</code></td>
<td><code>pmodel</code> if <code>verum(S)</code> and step <code>I</code></td>
</tr>
<tr>
<td><code>pmodel(S,I) :- not lin(S,I), ci(S), step(I).</code></td>
<td>Not link <code>lin</code>, <code>ci(S)</code> and step <code>I</code></td>
</tr>
<tr>
<td><code>valid(S,I) :- pmodel(S,I), not imodel(S,I).</code></td>
<td><code>valid</code> if <code>pmodel(S,I)</code> and not <code>imodel(S,I)</code></td>
</tr>
</tbody>
</table>

Fixpoint check

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nofp(I) :- in(X,I), not valid(X,I), step(I).</code></td>
<td>Not in <code>I</code>, not valid <code>X</code>, step <code>I</code></td>
</tr>
<tr>
<td><code>nofp(I) :- valid(X,I), not in(X,I), step(I).</code></td>
<td>Valid <code>X</code>, not in <code>I</code>, step <code>I</code></td>
</tr>
<tr>
<td><code>nofp(I) :- out(X,I), not unsat(X,I), step(I).</code></td>
<td>Not out <code>X</code>, not unsat <code>X</code>, step <code>I</code></td>
</tr>
<tr>
<td><code>nofp(I) :- unsat(X,I), not out(X,I), step(I).</code></td>
<td>Not unsat <code>X</code>, not out <code>X</code>, step <code>I</code></td>
</tr>
<tr>
<td><code>fp(I) :- not nofp(I), step(I).</code></td>
<td><code>fp</code> if not <code>nofp</code> and step <code>I</code></td>
</tr>
</tbody>
</table>
“Interesting” links at step I

\[
\text{ciui}(S,J,I) \leftarrow \text{lin}(X,S,I), \text{not ci}(S,J,X), \text{ci}(S,J).
\]
\[
\text{ciui}(S,J,I) \leftarrow \text{lout}(X,S,I), \text{ci}(S,J,X).
\]
\[
\text{cii}(S,J,I) \leftarrow \text{not ciui}(S,J,I), \text{ci}(S,J), \text{step}(I).
\]

Validity check

\[
\text{pmodel}(S,I) \leftarrow \text{cii}(S,J,I).
\]
\[
\text{pmodel}(S,I) \leftarrow \text{verum}(S), \text{step}(I).
\]
\[
\text{pmodel}(S,I) \leftarrow \text{not lin}(S,I), \text{ci}(S), \text{step}(I).
\]
\[
\text{valid}(S,I) \leftarrow \text{pmodel}(S,I), \text{not imodel}(S,I).
\]

Fixpoint check

\[
\text{nAFP}(I) \leftarrow \text{in}(X,I), \text{not valid}(X,I), \text{step}(I).
\]
\[
\text{nAFP}(I) \leftarrow \text{valid}(X,I), \text{not in}(X,I), \text{step}(I).
\]
\[
\text{nAFP}(I) \leftarrow \text{out}(X,I), \text{not unsat}(X,I), \text{step}(I).
\]
\[
\text{nAFP}(I) \leftarrow \text{unsat}(X,I), \text{not out}(X,I), \text{step}(I).
\]
\[
\text{fp}(I) \leftarrow \text{not nAFP}(I), \text{step}(I).
\]
Admissible/Complete

\begin{verbatim}
step(0).
in(S,0):s(S).
out(S,0):s(S).
:- in(S,0), out(S,0).
:- in(S), not valid(S,0).
:- out(S), not unsat(S,0).
:- nofp(0).
\end{verbatim}

Grounded

\begin{verbatim}
maxit(I) :- I:=s(S). step(0).
in(S,I+1) :- valid(S,I). out(S,I+1) :- unsat(S,I).
step(I+1) :- step(I), not maxit(I).
in(S) :- fp(I), in(S,I).
out(S) :- fp(I), out(S,I).
udec(S) :- fp(I), s(S), not in(S), not out(S).
\end{verbatim}
Admissible/Complete

```prolog
step(0).
in(S,0):s(S).
out(S,0):s(S).
:- in(S,0), out(S,0).
:- in(S), not valid(S,0).
:- out(S), not unsat(S,0).

:- nofp(0).
```

Grounded

```prolog
maxit(I) :- I:=s(S). step(0).
in(S,I+1) :- valid(S,I). out(S,I+1) :- unsat(S,I).
step(I+1) :- step(I), not maxit(I).
in(S) :- fp(I), in(S,I).
out(S) :- fp(I), out(S,I).
udec(S) :- fp(I), s(S), not in(S), not out(S).
```
Outline

1 Motivation

2 Background
 ◆ Abstract Argumentation Frameworks
 ◆ Abstract Dialectical Frameworks

3 DIAMOND

4 Conclusion & Future Work
DIAMOND utilizes ASP for implementing abstract argumentation (like ASPARTIX7 does for AFs)

All currently known representations for ADFs are understood by DIAMOND

More complex semantics (e.g. preferred) can be implemented with Meta-ASP8

ADFsys9 is a similar system, but it

\begin{itemize}
 \item uses different semantics, and
 \item it already needs disjunctive programs for the computation of Γ_D
\end{itemize}

7Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. “Answer-set programming encodings for argumentation frameworks”. In: Argument and Computation 1.2 (2010), pages 147–177.

Future Work

- Implementation of further semantics for ADFs
- Add more usability to DIAMOND
- Use ADFs and DIAMOND for discussion analysis in the web
- ...
Thank you!
AF Semantics: Alternative Formulation
via operators

Definition
For AF $F = (A, R)$, define two operators

- $U_F(S) = \{ a \in A \mid S \text{ does not attack } a \}$ (Pollock)
- $V_F(S) = \{ a \in A \mid S \text{ defends } a \}$ (Dung)

- U_F is \subseteq-antimonotone ($S_1 \subseteq S_2$ implies $U_F(S_2) \subseteq U_F(S_1)$)
- V_F is \subseteq-monotone ($S_1 \subseteq S_2$ implies $V_F(S_1) \subseteq V_F(S_2)$)

Lemma (Dung)
For any AF F, we have $U_F^2 = V_F$.
AF Semantics: Alternative Formulation
are defined via extensions

for AF $F = (A, R)$, a set $S \subseteq A$ of arguments is

- \textit{conflict-free} iff $S \subseteq U_F(S)$
- \textit{admissible} iff $S \subseteq U_F(S)$ and $S \subseteq V_F(S)$
- \textit{preferred} iff it is \subseteq-maximal admissible
- \textit{complete} iff $S \subseteq U_F(S)$ and $S = V_F(S)$
- \textit{grounded} iff it is the \subseteq-least fixpoint of V_F
- \textit{stable} iff $S = U_F(S)$
Stable Models
for ADFs

Definition: Associated Extension

For an interpretation ν, the set $E_\nu = \{ s \in S \mid \nu(s) = t \}$ defines the unique extension associated with ν.

Definition: Stable Model

Let $D = (S, L, C)$ be an ADF with $C = \{ \varphi_s \}_{s \in S}$. A two-valued model ν of D is a stable model of D iff E_ν equals the grounded extension of the reduced ADF $D^\nu = (E_\nu, L^\nu, C^\nu)$, where

- $L^\nu = L \cap (E_\nu \times E_\nu)$ and
- for $s \in E_\nu$ we set $\varphi_s^\nu = \varphi_s[b/f : \nu(b) = f]$.
Abstract Dialectical Frameworks

Semantics: Example

\[\varphi_a = t \]
\[\varphi_b = b \]
\[\varphi_c = a \land b \]
\[\varphi_d = \neg b \]

- \(v_1 \hat{=} \{a, b, c, \neg d\} \): reduct \(D^{v_1} \) with grounded extension \{a\}, \(\{a\} \neq E_{v_1} \), thus \(v_1 \) not stable (statements \(b \) and \(c \) unjustified)
- \(v_2 \hat{=} \{a, \neg b, \neg c, d\} \): reduct \(D^{v_2} \) with grounded extension \{a, d\} = E_{v_2}, thus \(v_2 \) stable
Abstract Dialectical Frameworks

Semantics: Example

\[
\begin{align*}
\varphi_a &= t \\
\varphi_b &= b \\
\varphi_c &= a \land b \\
\varphi_d &= \neg b
\end{align*}
\]

- \(v_1 \hat{=} \{a, b, c, \neg d\}\): reduct \(D^{v_1}\) with grounded extension \(\{a\}\), \(\{a\} \neq E_{v_1}\), thus \(v_1\) not stable (statements \(b\) and \(c\) unjustified)
- \(v_2 \hat{=} \{a, \neg b, \neg c, d\}\): reduct \(D^{v_2}\) with grounded extension \(\{a, d\} = E_{v_2}\), thus \(v_2\) stable
Abstract Dialectical Frameworks
Semantics: Example

\(\varphi_a = t \)

\(\varphi_b = b \)

\(\varphi_c = a \land b \)

- \(v_1 \models \{ a, b, c, \neg d \} \): reduct \(D^{v_1} \) with grounded extension \(\{ a \} \), \(\{ a \} \neq E_{v_1} \), thus \(v_1 \) not stable (statements \(b \) and \(c \) unjustified)

- \(v_2 \models \{ a, \neg b, \neg c, d \} \): reduct \(D^{v_2} \) with grounded extension \(\{ a, d \} = E_{v_2} \), thus \(v_2 \) stable
Abstract Dialectical Frameworks
Semantics: Example

\[\varphi_a = t \quad \varphi_b = b \]

\[\varphi_c = a \land b \]

\[v_1 \hat{=} \{ a, b, c, \neg d \}: \text{reduct } D^{v_1} \text{ with grounded extension } \{ a \}, \]
\[\{ a \} \neq E_{v_1}, \text{thus } v_1 \text{ not stable (statements } b \text{ and } c \text{ unjustified)} \]

\[v_2 \hat{=} \{ a, \neg b, \neg c, d \}: \text{reduct } D^{v_2} \text{ with grounded extension } \{ a, d \} = E_{v_2}, \]
\[\text{thus } v_2 \text{ stable} \]
Abstract Dialectical Frameworks

Semantics: Example

\(\varphi_a = \top \quad \varphi_b = b \)

\(\varphi_c = a \land b \quad \varphi_d = \neg b \)

- \(v_1 \models \{ a, b, c, \neg d \} \): reduct \(D^{v_1} \) with grounded extension \(\{ a \} \), \(\{ a \} \neq E_{v_1} \), thus \(v_1 \) not stable (statements \(b \) and \(c \) unjustified)
- \(v_2 \models \{ a, \neg b, \neg c, d \} \): reduct \(D^{v_2} \) with grounded extension \(\{ a, d \} = E_{v_2} \), thus \(v_2 \) stable
Abstract Dialectical Frameworks

Semantics: Example

\[\varphi_a = \top \quad \varphi_b = b \]

\[\varphi_c = a \land b \quad \varphi_d = \neg b \]

- \(v_1 \models \{a, b, c, \neg d\} \): reduct \(D^{v_1} \) with grounded extension \(\{a\} \), \(\{a\} \not\models E_{v_1} \), thus \(v_1 \) not stable (statements \(b \) and \(c \) unjustified)

- \(v_2 \models \{a, \neg b, \neg c, d\} \): reduct \(D^{v_2} \) with grounded extension \(\{a, d\} = E_{v_2} \), thus \(v_2 \) stable
Abstract Dialectical Frameworks
Semantics: Example

\(\varphi_a = t \)

\(a \)

\(\varphi_d = \neg f \)

\(d \)

- \(v_1 \upmodels \{a, b, c, \neg d\} \): reduct \(D^{v_1} \) with grounded extension \(\{a\} \), \(\{a\} \neq E_{v_1} \), thus \(v_1 \) not stable (statements \(b \) and \(c \) unjustified)
- \(v_2 \upmodels \{a, \neg b, \neg c, d\} \): reduct \(D^{v_2} \) with grounded extension \(\{a, d\} = E_{v_2} \), thus \(v_2 \) stable
Abstract Dialectical Frameworks
Semantics: Example

\[\varphi_a = t \]

\[\varphi_d = \neg f \]

\[v_1 \models \{ a, b, c, \neg d \} \]: reduct \(D^{v_1} \) with grounded extension \(\{ a \} \), \(\{ a \} \neq E_{v_1} \), thus \(v_1 \) not stable (statements \(b \) and \(c \) unjustified)

\[v_2 \models \{ a, \neg b, \neg c, d \} \]: reduct \(D^{v_2} \) with grounded extension \(\{ a, d \} = E_{v_2} \), thus \(v_2 \) stable
Abstract Dialectical Frameworks
Semantics: Example

\[\varphi_a = t \]
\[\varphi_b = b \]
\[\varphi_c = a \land b \]
\[\varphi_d = \neg b \]

- \(v_1 \triangleright \{a, b, c, \neg d\} \): reduct \(D^{v_1} \) with grounded extension \(\{a\} \), \(\{a\} \neq E_{v_1} \), thus \(v_1 \) not stable (statements \(b \) and \(c \) unjustified)
- \(v_2 \triangleright \{a, \neg b, \neg c, d\} \): reduct \(D^{v_2} \) with grounded extension \(\{a, d\} = E_{v_2} \), thus \(v_2 \) stable
Thank you!