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Abstract
In weighted automata theory, many classical results on formal languages have been extended into
a quantitative setting. Here, we investigate weighted context-free languages of infinite words, a
generalization of ω-context-free languages (Cohen, Gold 1977) and an extension of weighted context-
free languages of finite words (Chomsky, Schützenberger 1963). As in the theory of formal grammars,
these weighted languages, or ω-algebraic series, can be represented as solutions of mixed ω-algebraic
systems of equations and by weighted ω-pushdown automata.

In our first main result, we show that mixed ω-algebraic systems can be transformed into Greibach
normal form. Our second main result proves that simple ω-reset pushdown automata recognize all
ω-algebraic series that are a solution of an ω-algebraic system in Greibach normal form. Simple
reset automata do not use ε-transitions and can change the stack only by at most one symbol. These
results generalize fundamental properties of context-free languages to weighted languages.
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1 Introduction

Context-free languages provide a fundamental concept for programming languages in com-
puter science. In order to model quantitative properties, already in 1963, Chomsky and
Schützenberger [3] introduced weighted context-free languages. The theory of weighted push-
down automata developed quickly; for background, we refer the reader to the survey [19] and
the books [21, 20, 16, 10]. In 1977, Cohen and Gold [4] investigated context-free languages
of infinite words. Weighted pushdown automata on infinite words were studied more recently
by Ésik and Kuich [14].

The goal of this paper is the investigation of weighted context-free languages and weighted
pushdown automata on infinite words. As in [20, 16], the weighted context-free languages of
finite and infinite words are described by solutions of mixed ω-algebraic systems of equations.
In our first main result, we show that these systems can be transformed into a Greibach
normal form. In the literature, Greibach normal forms, central for context-free languages of
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38:2 Greibach Normal Form and Weighted Simple ω-Pushdown Automata

finite words, have been established for ω-context-free languages (of infinite words), see [4],
and also for algebraic systems of equations for series over finite words [20, 16]; this latter
result is employed in our proof. Hence here we extend these classical results to a weighted
version for infinite words.

In our second main result, we consider weighted simple pushdown automata. These
automata do not use ε-transitions and utilize only three simple stack commands: popping a
symbol, pushing a symbol or leaving the stack unaltered; moreover, it is only possible to read
the topmost stack symbol by popping it. Observe that together with the restriction of not
allowing ε-transitions, these restrictions for the actions on the stack are non-trivial. In our
second main result we show that these weighted simple pushdown automata still recognize the
weighted ω-context-free languages that are a solution of weighted ω-context-free grammars
in Greibach normal form. Our proof uses two ingredients. First, weighted ω-pushdown
automata are expressively equivalent to mixed ω-algebraic systems of equations, see [8, 9].
Secondly, we apply a recent corresponding expressive equivalence result for weighted simple
pushdown automata on finite words from [7] to construct the required weighted simple
ω-pushdown automata.

We believe the model of weighted simple ω-pushdown automata to be very natural.
Similar expressivity equivalence results in the unweighted case hold for context-free languages
of finite words, hidden in a proof by Blass and Gurevich [1], and also for ω-context-free
languages, see [6].

After the preliminaries in the next section, Sections 3 and 4 contain our results on the
Greibach normal form. Sections 5 and 6 describe weighted simple pushdown automata.

2 Preliminaries

For the convenience of the reader, we recall definitions and results from Ésik, Kuich [16].
A semiring S is called complete if it has “infinite sums” (i) that are an extension of the

finite sums, (ii) that are associative and commutative and (iii) that satisfy the distribution
laws (see Conway [5], Eilenberg [12], Kuich [19]).

A semiring S equipped with an additional unary star operation ∗ : S → S is called a
starsemiring. In complete semirings for each element a, the star a∗ of a is defined by

a∗ =
∑
j≥0

aj .

Hence, each complete semiring is a starsemiring, called a complete starsemiring.
A semiring is called continuous if it is ordered, each directed subset has a least upper

bound and addition and multiplication preserves the least upper bound of directed sets. Any
continuous semiring is complete. See Ésik, Kuich [16] for background.

Suppose that S is a semiring and V is a commutative monoid written additively. We call
V a (left) S-semimodule if V is equipped with a (left) action

S × V → V, (s, v) 7→ sv

subject to the following rules:

s(s′v) = (ss′)v , (s+ s′)v = sv + s′v , s(v + v′) = sv + sv′ ,

1v = v , 0v = 0 , s0 = 0 ,

for all s, s′ ∈ S and v, v′ ∈ V . If V is an S-semimodule, we call (S, V ) a semiring-
semimodule pair.
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Suppose that (S, V ) is a semiring-semimodule pair such that S is a starsemiring and
S and V are equipped with an omega operation ω : S → V . Then we call (S, V ) a
starsemiring-omegasemimodule pair. A semiring-semimodule pair (S, V ) is called complete if
S is a complete semiring, V is a complete monoid and the left action of the semimodule is
distributive; moreover, it is required that it has “infinite products” mapping infinite sequences
over S to V such that the product (i) can be partitioned, (ii) can be extended from the left
and (iii) is distributive (see Ésik, Kuich [17]).

Suppose that (S, V ) is complete. Then we define

s∗ =
∑
i≥0

si and sω =
∏
i≥1

s ,

for all s ∈ S. This turns (S, V ) into a starsemiring-omegasemimodule pair. Observe that, if
(S, V ) is a complete semiring-semimodule pair, then 0ω = 0.

A star-omega semiring is a semiring S equipped with unary operations ∗ and ω : S → S.
A star-omega semiring S is called complete if (S, S) is a complete semiring-semimodule pair,
i.e., if S is complete and is equipped with an infinite product operation that satisfies the
three conditions stated above. A complete star-omega semiring S is called continuous if the
semiring S is continuous.

For the definition of quemirings, we refer the reader to [16], page 110. Here we note that
a quemiring T is isomorphic to a quemiring S × V determined by the semiring-semimodule
pair (S, V ); this is an algebraic structure with an addition given componentwise and a
multiplication given by semiring multiplication in the first component and a semidirect
product type addition in the second component (since S acts on V ); cf. Elgot [13], Ésik,
Kuich [16], page 109. Also, one can define a natural star operation on S × V , see [16].

For an alphabet Σ, we call mappings r of Σ∗ into S series. The collection of all such
series r is denoted by S〈〈Σ∗〉〉. We call the set supp(r) = {w | (r, w) 6= 0} the support of
a series r. We denote by S〈Σ〉, S〈{ε}〉 and S〈Σ ∪ {ε}〉 the series with support in Σ, {ε}
and Σ ∪ {ε}, respectively. Mappings of Σω into S are called ω-series and their collection is
denoted by S〈〈Σω〉〉. See [20, 16] for more information. Examples of series in S〈Σ∗〉 for a
semiring 〈S,+, ·, 0, 1〉 are 0, w, sw for s ∈ S and w ∈ Σ∗, defined by

(0, w) = 0 for all w,
(w,w) = 1 and (w,w′) = 0 for w 6= w′,

(sw,w) = s and (sw,w′) = 0 for w 6= w′.

Consider a starsemiring-omegasemimodule pair (A, V ). Following Bloom, Ésik [2], we
define a matrix operation ω : An×n → V n×1 on a starsemiring-omegasemimodule pair (A, V )
as follows. If n = 0, Mω is the unique element of V 0, and if n = 1, so that M = (a), for
some a ∈ A, Mω = (aω). Assume now that n > 1 and write M as

M =
(
a b

c d

)
, (1)

where a, b, c and d are submatrices of M , called blocks of M . Then

Mω =
(

(a+ bd∗c)ω + (a+ bd∗c)∗bdω
(d+ ca∗b)ω + (d+ ca∗b)∗caω

)
.
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38:4 Greibach Normal Form and Weighted Simple ω-Pushdown Automata

Following Ésik, Kuich [15], we define matrix operations ω,k : An×n → V n×1 for 0 ≤ k ≤ n
as follows. Assume that M ∈ An×n is decomposed into blocks a, b, c, d as in (1), but with a
of dimension k × k and d of dimension (n− k)× (n− k). Then

Mω,k =
(

(a+ bd∗c)ω
d∗c(a+ bd∗c)ω

)
.

Observe that Mω,0 = 0 and Mω,n = Mω. Intuitively, M can be interpreted as an adjacency
matrix and Mω,k are infinite paths where the first k states are repeated states, i.e., states
that are Büchi-accepting.

I Example 1. Formal languages are covered by our model. Let 〈B,∨,∧, 0, 1〉 be the Boolean
semiring. Then let 0∗ = 1∗ = 1 and take infima as infinite products. This makes B a
continuous star-omega and commutative semiring. It then follows that B〈〈Σ∗〉〉 × B〈〈Σω〉〉 is
isomorphic to formal languages of finite and infinite words with the usual operations.

The semiring 〈N∞,+, ·, 0, 1〉 with N∞ = N ∪ {∞} and the natural infinite product
operation of numbers is a continuous star-omega and commutative semiring.

The tropical semiring 〈N∞,min,+,∞, 0〉 with the usual infinite sum operation as infinite
product is a commutative semiring and a continuous star-omega semiring.

3 Mixed ω-Algebraic Systems

This and the next section describe the Greibach normal form for mixed ω-algebraic systems.
Throughout this paper, S is a continuous, and therefore complete, star-omega semiring

with the underlying semiring S being commutative; and Σ denotes an alphabet.
By Theorem 5.5.5 of Ésik, Kuich [16], (S〈〈Σ∗〉〉, S〈〈Σω〉〉) is a complete semiring-semi-

module pair, hence a Conway semiring-semimodule pair, satisfying εω = 0 (for Conway
semiring-semimodule pairs, cf. Ésik, Kuich [16], page 106). Hence, S〈〈Σ∗〉〉 × S〈〈Σω〉〉 is a
generalized starquemiring.

In the sequel, x and z denote vectors of dimension n and m, respectively, i.e., x =
(x1, . . . , xn), z = (z1, . . . , zm). It will be clear from the context whether they are used as row
or as column vectors. Similar conventions hold for vectors p, σ and τ . Moreover, X denotes
the set of variables {x1, . . . , xn} for S〈〈Σ∗〉〉, while {z1, . . . , zm} is the set of variables for
S〈〈Σω〉〉.

A mixed ω-algebraic system over the quemiring S〈〈Σ∗〉〉×S〈〈Σω〉〉 consists of an algebraic
system over S〈〈Σ∗〉〉

x = p(x), p ∈ (S〈(Σ ∪X)∗〉)n×1

and a linear system over S〈〈Σω〉〉

z = %(x)z, % ∈ (S〈(Σ ∪X)∗〉)m×m .

The pair (σ, τ) ∈ (S〈〈Σ∗〉〉)n × (S〈〈Σω〉〉)m is a solution of the mixed ω-algebraic system

x = p(x), z = %(x)z , if σ = p(σ), τ = %(σ)τ .

Observe that, by Theorem 5.5.7 of Ésik, Kuich [16], τk = %(σ)ω,k for each 1 ≤ k ≤ m is a
solution for the linear system z = %(σ)z.

A solution (σ1, . . . , σn) of the algebraic system x = p(x) is termed least solution if

σi ≤ τi, for each 1 ≤ i ≤ n,

for all solutions (τ1, . . . , τn) of x = p(x).
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If σ is the least solution of x = p(x), then z = %(σ)z is called an Salg〈〈Σ∗〉〉-linear
system and (σ, τk) = (σ, %(σ)ω,k), where k ∈ {0, 1, . . . ,m}, is called kth-canonical solution of
x = p(x), z = %(x)z. Each kth-canonical solution is also called a canonical solution.

Recall that Salg〈〈Σ∗〉〉 comprises the components of least solutions of algebraic systems

xi = pi, (1 ≤ i ≤ n) where pi ∈ S〈(Σ ∪X)∗〉 for 1 ≤ i ≤ n .

We define Salg〈〈Σω〉〉 to be the collection of all components of vectors Mω,k, where M ∈
(Salg〈〈Σ∗〉〉)n×n, n ≥ 1, and k ∈ {1, . . . , n}. Moreover, ω-Rat(Salg〈〈Σ∗〉〉) is defined to be
the ω-Kleene closure of (i.e., the generalized starquemiring generated by) Salg〈〈Σ∗〉〉.

I Example 2. We consider the following mixed ω-algebraic system over the quemiring
N∞〈〈Σ∗〉〉 × N∞〈〈Σω〉〉 for the tropical semiring 〈N∞,min,+,∞, 0〉

x1 = 1ax1b+ 1ab z1 = cz1

z2 = x1z1 + z1

where a, b, c ∈ Σ and using the natural number 1.
Then for the algebraic system x = p(x) over N∞〈〈Σ∗〉〉, we get the least solution σ =

anbn 7→ n. The first canonical solution of the mixed ω-algebraic system x = p(x), z = %(x)z
over N∞〈〈Σ∗〉〉 × N∞〈〈Σω〉〉 is then (σ, cω 7→ 0, anbncω 7→ n). Hence the series anbncω 7→ n

is ω-algebraic but it is clearly not recognizable by a weighted automaton without stack.

Now we have the following characterization of algebraic and ω-algebraic series.

I Theorem 3. Let S be a continuous complete star-omega semiring with the underlying
semiring S being commutative and let Σ be an alphabet. Then the following statements are
equivalent for (s, υ) ∈ S〈〈Σ∗〉〉 × S〈〈Σω〉〉:
(i) (s, υ) ∈ Salg〈〈Σ∗〉〉 × Salg〈〈Σω〉〉,
(ii) (s, υ) ∈ ω-Rat(Salg〈〈Σ∗〉〉),
(iii) (s, υ) = ‖A‖, where A is a finite Salg〈〈Σ∗〉〉-automaton over S〈〈Σ∗〉〉 × S〈〈Σω〉〉,
(iv) s ∈ Salg〈〈Σ∗〉〉 and υ =

∑
1≤j≤l sjt

ω
j for some l ≥ 0, where sj , tj ∈ Salg〈〈Σ∗〉〉,

(v) (s, υ) is component of the automata-theoretic solution of an Salg〈〈Σ∗〉〉-linear system
over S〈〈Σ∗〉〉 × S〈〈Σω〉〉,

(vi) (s, υ) is component of the canonical solution of a mixed ω-algebraic system over S〈〈Σ∗〉〉
× S〈〈Σω〉〉.

Proof. The statements (ii), (iii) and (iv) are equivalent by Theorem 5.4.9 (see also The-
orem 5.6.6) of Ésik, Kuich [16]. J

4 Greibach Normal Form for Mixed ω-Algebraic Systems

In this section we show that for any element of Salg〈〈Σ∗〉〉 × Salg〈〈Σω〉〉 there exists a mixed
ω-algebraic system in Greibach normal form such that this element is a component of a
solution of this mixed ω-algebraic system. Similar to the definition for algebraic systems on
finite words (cf. also Greibach [18]), a mixed ω-algebraic system

x = p(x), z = %(x)z

is in Greibach normal form if

supp(pi(x)) ⊆ {ε} ∪ Σ ∪ ΣX ∪ ΣXX, for all 1 ≤ i ≤ n, and
supp(%ij(x)) ⊆ Σ ∪ ΣX, for all 1 ≤ i, j ≤ m .

For the construction of the Greibach normal form we need a corollary to Theorem 3.

FSTTCS 2019



38:6 Greibach Normal Form and Weighted Simple ω-Pushdown Automata

I Corollary 4. The following statement for (s, υ) ∈ S〈〈Σ∗〉〉 × S〈〈Σω〉〉 is equivalent to the
statements (i) to (vi) of Theorem 3:
s ∈ Salg〈〈Σ∗〉〉 and υ =

∑
1≤j≤l sjt

ω
j for some l ≥ 0, where sj , tj ∈ Salg〈〈Σ∗〉〉 with (tj , ε) = 0;

moreover (sj , ε) = 0 or sj = (sj , ε)ε.
Proof. The proof is an easy case distinction. J

We now assume that (s, υ) ∈ Salg〈〈Σ∗〉〉 × Salg〈〈Σω〉〉 is given in the form of Corollary 4
with l = 1. By Theorem 2.4.10 of Ésik, Kuich [16], there exist algebraic systems in Greibach
normal form whose first component of their least solutions equals s1, t1.

Firstly, we deal with the case (s1, ε) = 0. Let

xi = pi(x) +
∑

1≤j≤n
pij(x)xj , for each 1 ≤ i ≤ n, (∗)

where supp(pi(x)) ⊆ Σ ∪ ΣX, supp(pij(x)) ⊆ ΣX, be the algebraic system in Greibach
normal form for s1 and

x′i = p′i(x′) +
∑

1≤j≤m
p′ij(x′)x′j , for each 1 ≤ i ≤ m, (∗∗)

where supp(p′i(x′)) ⊆ Σ ∪ ΣX ′, supp(pij(x′)) ⊆ ΣX ′, be the algebraic system in Greibach
normal form for t1. Let σ and σ′ with σ1 = s1 and σ′1 = t1 be the least solutions of (∗) and
(∗∗), respectively.

Consider now the mixed ω-algebraic system consisting of the algebraic system (∗), (∗∗)
over S〈〈Σ∗〉〉 and the linear system over S〈〈Σω〉〉

z′′ = p′1(x′)z′′ +
∑

1≤j≤m
p′1j(x′)z′j ,

z′i = p′i(x′)z′′ +
∑

1≤j≤m
p′ij(x′)z′j , for 1 ≤ i ≤ m ,

zi = pi(x)z′′ +
∑

1≤j≤n
pij(x)zj , for 1 ≤ i ≤ n .

(∗ ∗ ∗)

Observe that the mixed ω-algebraic system is in Greibach normal form. We then order
the variables of the mixed ω-algebraic system (∗), (∗∗), (∗ ∗ ∗) as x1, . . . , xn;x′1, . . . , x′m; z′′;
z′1, . . . , z

′
m; z1, . . . , zn. Observe that σ′1σ′ω1 = σ′ω1 .

The next lemma states that the system (∗), (∗∗), (∗ ∗ ∗) is the mixed ω-algebraic system
in Greibach normal whose canonical solution indeed contains a component σ1σ

′ω
1 = s1t

ω
1 as

described in the statement of Corollary 4.
I Lemma 5. The solution

(σ1, . . . , σn;σ′1, . . . , σ′m;σ′1σ′ω1 ;σ′1σ′ω1 , . . . , σ′mσ′ω1 ;σ1σ
′ω
1 , . . . , σnσ

′ω
1 ) (2)

is the first canonical solution of the mixed ω-algebraic system (∗), (∗∗), (∗ ∗ ∗).
Secondly, we deal with the case s1 = (s1, ε)ε. Consider now the mixed ω-algebraic system

consisting of (∗∗) and the linear system over S〈〈Σω〉〉

z′′ = p′1(x′)z′′ +
∑

1≤j≤m
p′1j(x′)z′j ,

z′i = p′i(x′)z′′ +
∑

1≤j≤m
p′ij(x′)z′j , 1 ≤ i ≤ m ,

z1 = (s1, ε)p′1(x′)z′′ + (s1, ε)
∑

1≤j≤m
p′1j(x′)z′j .

(∗∗∗∗)
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I Lemma 6. The solution

(σ′1, . . . , σ′m;σ′1σ′ω1 ;σ′1σ′ω1 , . . . , σ′mσ′ω1 ; (s1, ε)σ′ω1 ) . (3)

is the first canonical solution of the mixed ω-algebraic system (∗∗), (∗∗∗∗).

We now consider general sums of series of the above form. The next lemma shows how to
construct a mixed ω-algebraic system whose canonical solution is the sum of the canonical
solutions of multiple mixed ω-algebraic systems as given in the Lemmas 5 and 6.

I Lemma 7. Let (s, υ) ∈ Salg〈〈Σ∗〉〉 × Salg〈〈Σω〉〉 be given in the form of Corollary 4. Then
there exists a mixed ω-algebraic system in Greibach normal form such that υ is a component
of its l-th canonical solution.

Our first main result is the following.

I Theorem 8. The following statement for (s, υ) ∈ S〈〈Σ∗〉〉 × S〈〈Σω〉〉 is equivalent to the
statements of Theorem 3:
(s, υ) is component of a canonical solution of a mixed ω-algebraic system over S〈〈Σ∗〉〉
× S〈〈Σω〉〉 in Greibach normal form.

Proof. The above statement trivially implies statement (vi) of Theorem 3. By Corollary 4
and Lemma 7, the statements of Theorem 3 imply the above statement. J

5 Simple Reset Pushdown Automata

In this second part of the paper, we want to show that weighted ω-pushdown automata can
be transformed into a simple form. The next section will prove this result for ω-algebraic
series that are a component of a solution of an ω-algebraic system in Greibach normal form.
For the proof, we will need the corresponding result for finite words as an intermediate step.
This result, the expressive equivalence of algebraic series (of finite words) and (weighted)
simple reset pushdown automata, has been established in [7]. We recall the construction
of the weighted simple reset pushdown automata here for the convenience of the reader, as
variants of these automata will be used in Section 6 for ω-algebraic series.

Following Kuich, Salomaa [20] and Kuich [19], we introduce pushdown transitions matrices.
These matrices can be considered as adjacency matrices of graphs representing automata.
A special form, the reset pushdown matrices, is used for pushdown automata starting with
an empty stack and allowing the automaton to push onto the empty stack. Here, we are
interested in simple reset pushdown matrices, introduced in [7]. This simple form allows
the automaton only to push one symbol, to pop one symbol or to ignore the stack. The
corresponding automata, the simple reset pushdown automata are a generalization of the
unweighted automata used in [6]. They do not use ε-transitions and don’t allow the inspection
of the topmost stack symbol.

Let Γ be an alphabet, called pushdown alphabet and let n ≥ 1. A matrix M̄ ∈ (Sn×n)Γ∗×Γ∗

is called a pushdown matrix (with pushdown alphabet Γ and state set {1, . . . , n}) if
(i) for each p ∈ Γ there exist only finitely many blocks M̄p,π, π ∈ Γ∗, that are unequal to 0;
(ii) for all π1, π2 ∈ Γ∗,

M̄π1,π2 =
{
M̄p,π, if there exist p ∈ Γ, π, π′ ∈ Γ∗ with π1 = pπ′ and π2 = ππ′,

0, otherwise.

Intuitively, the infinite pushdown matrix M̄ is (ii) fully represented only by the blocks M̄p,π

where p ∈ Γ, π ∈ Γ∗ and (i) only finitely many such blocks are nonzero.

FSTTCS 2019



38:8 Greibach Normal Form and Weighted Simple ω-Pushdown Automata

A matrix M ∈ (Sn×n)Γ∗×Γ∗ is called row-finite if {π′ |Mπ,π′ 6= 0} is finite for all π ∈ Γ∗.
Let Γ be a pushdown alphabet and {1, . . . , n}, n ≥ 1, be a set of states. A reset matrix
MR ∈ (Sn×n)Γ∗×Γ∗ is a row-finite matrix such that

(MR)π1,π2 = 0 for π1, π2 ∈ Γ∗ with π1 6= ε .

A reset pushdown matrix M ∈ (Sn×n)Γ∗×Γ∗ is the sum M = MR + M̄ of a reset matrix
MR and a pushdown matrix M̄ .

Intuitively, a reset pushdown matrix is similar to a pushdown matrix with the additional
possibility to push onto the empty stack, i.e., Mε,π is allowed to be nonzero. Note that reset
pushdown matrices are still finitely represented because of the row-finiteness.

A reset pushdown matrix M is called simple if M ∈
(
(S〈Σ〉)n×n

)Γ∗×Γ∗ for some n ≥ 1,
and for all p, p1 ∈ Γ,

Mp,ε, Mp,p = Mε,ε and Mp,p1p = Mε,p1 ,

are the only blocks Mπ,π′ , where π ∈ {ε, p} and π′ ∈ Γ∗, that may be unequal to the zero
matrix 0.

Hence, a simple reset pushdown matrix M is defined by its blocks Mε,ε and Mp,ε, Mε,p

(p ∈ Γ). Intuitively, the automata will only be allowed to ignore the stack (modeled by
Mε,ε), pop one symbol (Mp,ε) or push one symbol (Mε,p). Note also that the matrix
M ∈ ((S〈Σ〉)n×n)Γ∗×Γ∗ forbids ε-transitions. Moreover, the equalities Mp,p = Mε,ε and
Mp,p1p = Mε,p1 imply that the next transition does not depend on the topmost symbol of the
stack except when popping it (modeled by Mp,ε). An example of a simple reset pushdown
matrix can be found in Example 14.

A reset pushdown automaton (with input alphabet Σ) A = (n,Γ, I,M, P ) is given by
a set of states {1, . . . , n}, n ≥ 1,
a pushdown alphabet Γ,
a reset pushdown matrix M ∈ ((S〈Σ ∪ {ε}〉)n×n)Γ∗×Γ∗ called transition matrix,
a row vector I ∈ (S〈{ε}〉)1×n, called initial state vector,
a column vector P ∈ (S〈{ε}〉)n×1, called final state vector.

The behavior ‖A‖ of a reset pushdown automaton A is defined by

‖A‖ = I(M∗)ε,εP .

A reset pushdown automaton A = (n,Γ, I,M, P ) is called simple if M is a simple reset
pushdown matrix. Example 14 shows a simple ω-reset pushdown automaton.

Given a series r ∈ Salg〈〈Σ∗〉〉, we want to construct a simple reset pushdown automaton
with behavior r. By Theorems 5.10 and 5.4 of [19], r is a component of the unique solution
of a strict algebraic system in Greibach normal form.

We only consider the algebraic series r with (r, ε) = 0; cf. [7] for the other case. So we
assume without loss of generality that r is the x1-component of the unique solution of the
algebraic system (4) with variables x1, . . . , xn

xi = pi, 1 ≤ i ≤ n,

of the form

xi =
∑

1≤j,k≤n

∑
a∈Σ

(pi, axjxk)axjxk +
∑

1≤j≤n

∑
a∈Σ

(pi, axj)axj +
∑
a∈Σ

(pi, a)a . (4)
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As shown in [7], we can construct the simple reset pushdown automaton As = (n+1,Γ, Is,
M, P ), 1 ≤ s ≤ n, with r = ‖A1‖ as follows:
We let Γ = {x1, . . . , xn}; we also denote the state n+ 1 by f ; the entries of M of the form
(Mxk,xk

)i,j , (Mxk,ε)i,j , (Mε,xk
)i,j , (Mε,ε)i,j , (Mε,ε)i,f , where 1 ≤ i, j, k ≤ n, that may be

unequal to 0 are

(Mε,xk
)i,j =

∑
a∈Σ

(pi, axjxk)a ,

(Mxk,xk
)i,j = (Mε,ε)i,j =

∑
a∈Σ

(pi, axj)a ,

(Mxk,ε)i,k = (Mxk,xk
)i,f = (Mε,ε)i,f =

∑
a∈Σ

(pi, a)a ;

we further put (Is)s = ε, (Is)i = 0 for 1 ≤ i ≤ s− 1 and s+ 1 ≤ i ≤ n+ 1; finally let Pf = ε

and Pj = 0 for 1 ≤ j ≤ n;
The following motivation will be essential for our later construction for ω-pushdown

automata. Intuitively, the variables in the algebraic system are simulated by states in the
simple reset pushdown automaton As. By the Greibach normal form, only two variables
on the right-hand side are allowed. The first is modeled directly by changing the state, the
second is pushed to the pushdown tape and the state is changed to it later when the variable
is popped again. The special final state f will only be used as the last state.

Note that (Mxk,xk
)i,f allows the automaton to change to the final state with a non-empty

pushdown tape. This is an artificial addition to fit the definition of simple reset pushdown
matrices. If the simple reset automaton is not popping a symbol from the pushdown tape,
it cannot distinguish between different pushdown states. Even though the automaton can
enter the final state too early, it can not continue from there as it is a sink.

Observe that ‖As‖ = ((M∗)ε,ε)s,f for all 1 ≤ s ≤ n.
This simple reset pushdown matrix M is called the simple pushdown matrix induced by

the Greibach normal form (4). The simple reset pushdown automata As, 1 ≤ s ≤ n, are
called the simple reset pushdown automata induced by the Greibach normal form (4).

The following (main) theorem of [7] states that the behavior of the simple reset pushdown
automata induced by the Greibach normal form (4) is the unique solution of the original
algebraic system (4).

I Theorem 9 (Theorem 11 of [7]). The unique solution of the algebraic system (4) is

(‖A1‖, . . . , ‖An‖) = (((M∗)ε,ε)1,f , . . . , ((M∗)ε,ε)n,f ) .

I Corollary 10 (Corollary 12 of [7]). Let r ∈ Salg〈〈Σ∗〉〉. Then there exists a simple reset
pushdown automaton with behavior r.

6 Simple ω-Reset Pushdown Automata

This section will prove that simple ω-reset pushdown automata can be obtained from ω-
algebraic systems in Greibach normal form. We first prove some results for infinite applications
of simple reset pushdown matrices. Then we introduce simple ω-reset pushdown automata
and the main theorem will show that they can recognize all ω-algebraic series that are
solutions of ω-algebraic systems in Greibach normal form.

In the sequel, (S, V ) is a complete semiring-semimodule pair.
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We will use sets Pl comprising infinite sequences over {1, . . . , n} as defined in [8]:

Pl = {(j1, j2, . . . ) ∈ {1, . . . , n}ω | jt ≤ l for infinitely many t ≥ 1} .

Observe the following summation identity: Assume that A1, A2, . . . are matrices in Sn×n.
Then for 0 ≤ l ≤ n, 1 ≤ j ≤ n, and m ≥ 1, we have∑
(j1,j2,... )∈Pl

(A1)j,j1(A2)j1,j2 · · · =
∑

1≤j1,...,jm≤n

(A1)j,j1 · · · (Am)jm−1,jm

∑
(jm+1,jm+2,... )∈Pl

(Am+1)jm,jm+1 · · · .

By Theorem 5.5.1 of Ésik, Kuich [16] we obtain, for a finite matrix A and for 0 ≤ l ≤ n,
the equality AAω,l = Aω,l. By Theorem 6 of Droste, Ésik, Kuich [8], we have a similar result
for pushdown matrices. We will now show the same equality for a reset pushdown matrix M .

I Theorem 11. Let (S, V ) be a complete semiring-semimodule pair and M ∈ (Sn×n)Γ∗×Γ∗

be a reset pushdown matrix. Then
(i) Mω,l = MMω,l, for each 0 ≤ l ≤ n,
(ii) (Mω)p = (M̄ω)p + (M̄∗)p,ε(Mω)ε, for any p ∈ Γ,
(iii) (Mω,l)p = (M̄ω,l)p + (M̄∗)p,ε(Mω,l)ε, for each 0 ≤ l ≤ n and p ∈ Γ.

Proof.
(i) The proof is similar to the proof of Theorem 6 of [8] but we also need to handle empty

pushdown tapes.
(ii) We obtain, for p ∈ Γ,

(Mω)p =
∑

π1,π2,···∈Γ+

Mp,π1Mπ1,π2 · · ·+
∑
t≥1

∑
π1,...,πt−1∈Γ+

Mp,π1 · · ·Mπt−1,ε(Mω)ε

= (M̄ω)p +
∑
t≥1

(M̄ t)p,ε(Mω)ε

= (M̄ω)p + (M̄∗)p,ε(Mω)ε .

(iii) The proof is similar to the proof of (ii) but more technical as it needs to consider the
repeated states. J

I Lemma 12. Let (S, V ) be a complete semiring-semimodule pair. Let M be a simple reset
pushdown matrix. Then,
(i) (Mω)p = (Mω)ε + (M∗)ε,εMp,ε(Mω)ε for p ∈ Γ,
(ii) (Mω,l)p = (Mω,l)ε + (M∗)ε,ε(Mp,ε)(Mω,l)ε for each 0 ≤ l ≤ n and p ∈ Γ.

Proof. Only (i): We obtain, for p ∈ Γ,

(Mω)p =
∑

π1,π2,···∈Γ∗
Mp,π1Mπ1,π2 · · ·

=
∑

π1,π2,···∈Γ∗
Mp,π1pMπ1p,π2p · · ·+

∑
t≥0

∑
π1,...,πt−1∈Γ∗

Mp,π1p · · ·Mπt−1p,pMp,ε(Mω)ε

= (Mω)ε +
(∑
t≥0

∑
π1,...,πt−1∈Γ∗

Mε,π1 · · ·Mπt−1,ε

)
Mp,ε(Mω)ε

= (Mω)ε +
∑
t≥0

(M t)ε,εMp,ε(Mω)ε

= (Mω)ε + (M∗)ε,εMp,ε(Mω)ε . J
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2 3 4 1
a, (↓, Z0) : 1 b, (↑, X) b, (↑, Z0)

a, (↓, X) : 1 b, (↑, X) c,#

c,#
b, (↑, Z0)

Figure 1 Example 14: Weighted simple ω-pushdown automaton, where (↓, X) means push symbol
X, (↑, X) means pop X, and # leaves the stack unaltered. All shown transitions have a weight
equal to the natural number 0 except the two transitions reading letter a and pushing a symbol
onto the stack that have weight 1. All other possible transitions have weight ∞.

I Lemma 13. Let M be induced by the Greibach normal form (4). Then, for all 1 ≤ j, k ≤ n
and 0 ≤ l ≤ n,

((Mω,l)xk
)j = ((Mω,l)ε)j + ((M∗)ε,ε)j,f ((Mω,l)ε)k .

Proof. By Lemma 12(ii), we have

((Mω,l)xk
)j =

[
(Mω,l)ε + (M∗)ε,ε(Mxk,ε)(Mω,l)ε

]
j

= ((Mω,l)ε)j +
[
(M∗)ε,ε(Mxk,ε)(Mω,l)ε

]
j

Then for 1 ≤ j, k ≤ n, we have(
(M∗)ε,ε(Mxk,ε)(Mω,l)ε

)
j

=
∑

1≤t1,t2≤f
((M∗)ε,ε)j,t1(Mxk,ε)t1,t2((Mω,l)ε)t2

=
∑

1≤t1≤f
((M∗)ε,ε)j,t1(Mε,ε)t1,f ((Mω,l)ε)k

= ((M∗)ε,εMε,ε)j,f ((Mω,l)ε)k
= ((M∗)ε,ε)j,f ((Mω,l)ε)k .

The second equality holds because we defined (Mxk,ε)t1,t2 = 0 for t2 6= k and (Mxk,ε)t1,k =
(Mε,ε)t1,f for induced simple pushdown matrices. The result follows. J

Next, an ω-reset pushdown automaton

A = (n,Γ, I,M, P, l)

is given by a reset pushdown automaton (n,Γ, I,M, P ) and an integer l with 0 ≤ l ≤ n,
which indicates that 1, . . . , l are the repeated states of A. The behavior ‖A‖ of this ω-reset
pushdown automaton A is defined by

‖A‖ = I(M∗)ε,εP + I(Mω,l)ε .

The ω-reset pushdown automaton A = (n,Γ, I,M, P, l) is called simple if M is a simple reset
pushdown matrix.

I Example 14. Figure 1 shows a simple ω-reset pushdown automaton A = (4,Γ, I,M, P, 1)
over the quemiring N∞〈〈Σ∗〉〉×N∞〈〈Σω〉〉 for the tropical semiring 〈N∞,min,+,0 =∞,1 = 0〉
with Σ = {a, b, c}, Γ = {Z0, X}, I2 = 0, Ii =∞ for i 6= 2 and Pi =∞ for all 1 ≤ i ≤ 4. The
adjacency matrix M of the automaton is a simple reset pushdown matrix. As an indication,
M is defined with (Mε,ε)1,1 = (Mε,ε)2,1 = 0c, (Mε,Z0)2,3 = 1a, etc., resulting in e.g.,

Mε,ε =


0c 0 0 0
0c 0 0 0
0 0 0 0
0 0 0 0

 and finally M =


Mε,ε Mε,Z0 Mε,X · · ·
MZ0,ε Mε,ε 0 · · ·
MX,ε 0 Mε,ε · · ·
...

...
...

. . .

 ,
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where the excluded part of M can be derived from the rules of pushdown and simple reset
pushdown matrices. The automaton A has the behavior anbncω 7→ n, similar to the mixed
ω-algebraic system in Example 2.

Now, for a series r ∈ Salg〈〈Σ∗〉〉 × Salg〈〈Σω〉〉, we want to construct a simple ω-reset
pushdown automaton with behavior r. For our construction, r must be a component of a
solution of an ω-algebraic system in Greibach normal form. An ω-algebraic system consists
of only one system over the quemiring variables {y1, . . . , yn}. See [16], pp. 136 for details.

Similar to the definition for mixed ω-algebraic systems, an ω-algebraic system

y = p(y)

is in Greibach normal form if

supp(pi(y)) ⊆ {ε} ∪ Σ ∪ ΣY ∪ ΣY Y, for all 1 ≤ i ≤ n .

Let r be a component of a solution of the ω-algebraic system (5) in Greibach normal
form over the complete semiring-semimodule pair (S, V ), i.e., over the quemiring S × V ,

yi =
∑

1≤j,k≤n

∑
a∈Σ

(pi, ayjyk)ayjyk +
∑

1≤j≤n

∑
a∈Σ

(pi, ayj)ayj +
∑
a∈Σ

(pi, a)a . (5)

The variables of this system are yi, (1 ≤ i ≤ n); they are variables for (S, V ). The
system (5) induces the following mixed ω-algebraic system:

xi =
∑

1≤j,k≤n

∑
a∈Σ

(pi, ayjyk)axjxk +
∑

1≤j≤n

∑
a∈Σ

(pi, ayj)axj +
∑
a∈Σ

(pi, a)a , (4)

and

zi =
∑

1≤j,k≤n

∑
a∈Σ

(pi, ayjyk)a(zj + xjzk) +
∑

1≤j≤n

∑
a∈Σ

(pi, ayj)azj . (6)

Let now, for 1 ≤ s ≤ n and 0 ≤ l ≤ n,

Als = (n+ 1,Γ, Is,M, P, l)

be the simple ω-reset pushdown automata such that (n+ 1,Γ, Is,M, P ), for 1 ≤ s ≤ n, are
induced by the Greibach normal form (4).

The following theorem states that the induced simple ω-reset pushdown automata behave
similar to the solution of system (5). Note that in the semimodule part (Mω,l)ε of the
behavior, state f will never be reached.

I Theorem 15. Let (S, V ) be a complete semiring-semimodule pair. Let the simple ω-reset
pushdown automata ‖Als‖ for 1 ≤ s ≤ n and 0 ≤ l ≤ n be induced by the Greibach normal
form (4). Then, for 0 ≤ l ≤ n,

(‖Al1‖, . . . , ‖Aln‖) =
(
((M∗)ε,ε)1,f + ((Mω,l)ε)1, . . . , ((M∗)ε,ε)n,f + ((Mω,l)ε)n

)
is a solution of (5).
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Proof. By Theorem 9, (((M∗)ε,ε)1,f , . . . , ((M∗)ε,ε)n,f ) is a solution of (4). We show that
(((Mω,l)ε)1, . . . , ((Mω,l)ε)n) is a solution of (6) and substitute it into the right sides of (6):

∑
1≤j,k≤n

(Mε,yk
)i,j
(

((Mω,l)ε)j + ((M∗)ε,ε)j,f ((Mω,l)ε)k
)

+
∑

1≤j≤n
(Mε,ε)i,j((Mω,l)ε)j

=
∑

1≤j,k≤n
(Mε,yk

)i,j((Mω,l)yk
)j +

∑
1≤j≤n

(Mε,ε)i,j((Mω,l)ε)j

=
∑

1≤k≤n
(Mε,yk

(Mω,l)yk
)i + (Mε,ε(Mω,l)ε)i

= ((MMω,l)ε)i = ((Mω,l)ε)i, for each 1 ≤ i ≤ n .

The first equality is by Lemma 13, the last equality by Theorem 11(i). The result follows. J

The following is now immediate by Theorem 15 and our previous discussion.

I Corollary 16. Let r ∈ Salg〈〈Σ∗〉〉 × Salg〈〈Σω〉〉 such that r is a component of a solution of
an ω-algebraic system in Greibach normal form. Then there exists a simple ω-reset pushdown
automaton with behavior r.

7 Discussion

We have extended the characterization of ω-algebraic series so that we can use the ω-Kleene
closure to transfer the property of Greibach normal form from algebraic systems to mixed
ω-algebraic ones. This generalizes a fundamental property from context-free languages.

We believe that the same technique can be used to transfer other properties of algebraic
systems to infinite words. Cohen, Gold [4] use this technique also for the elimination of
chain rules, for the Chomsky normal form and for effective decision methods of emptiness,
finiteness and infiniteness.

The second part transforms ω-algebraic series into simple ω-reset pushdown automata.
Simple ω-reset pushdown automata do not use ε-transitions; in the literature, this is also
called a realtime pushdown automaton. Realtime pushdown automata read a symbol of the
input word in every transition - exactly like context-free grammars in Greibach normal form
generate a letter in every derivation step. Additionally, each derivation step of context-free
grammars in Greibach normal form increases the number of non-terminals in the sentential
form by at most one. We showed that for realtime pushdown automata it suffices to handle
at most one stack symbol per transition. Here the Greibach normal form provides exactly
the properties needed to construct simple ω-reset pushdown automata.

As the first part applies only to mixed ω-algebraic systems, we could not use this result
in the second part where the Greibach normal form is needed for ω-algebraic systems.

The model of simple ω-reset pushdown automata seems to be very natural. They occur
when applying general homomorphisms to nested-word automata [1]. Their unweighted
counterparts have been used for a Büchi-type logical characterization of timed pushdown
languages [11] and ω-context-free languages [6]. A corresponding result for weighted ω-
context-free languages is currently in development and uses the simple ω-reset pushdown
automata introduced here.
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