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Abstract. We show a Biichi-like connection between graph automata
and logics for infinite graphs. Using valuation monoids, a very general
weight structure able to model computations like average or discounting,
we extend this result to the quantitative setting. This gives us the first
general results connecting automata and logics over infinite graphs in the
qualitative and the quantitative setting.
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1 Introduction

The coincidence between the languages recognizable by a finite state machine and
the languages definable in monadic second order theory is one of the most fruitful
results in theoretical computer science. Since Biichi, Elgot, and Trakhtenbrot [6,
18, 36] established this fundamental result, it has not only been the corner stone
of multiple applications, like verification of finite-state programs, but also lead to
multiple extensions covering finite and infinite trees [28, 31], traces [32], pictures
[22], (infinite) nested words [1], and texts [24]. A general result for finite graphs
was given by Thomas [33].

It has remained an open question whether it is possible to get such a result for
infinite graphs. In particular, this question is unanswered in the case of infinite
pictures. The main contributions of this paper are the following:

e We show a Biichi-like equivalence between infinite graph acceptors and an
EMSO-logic for infinite graphs.

e We establish a valuation-weighted automata model over graphs, which gener-
alizes semiring-weighted automata and comprises previous automata models
over special classes of graphs.

e Using methods of weighted logics, we extend our Biichi-like result from
the qualitative to the quantitative setting, i.e., we show the equivalence of
weighted infinite graph automata to a restricted weighted MSO-logic.
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Formally introduced by Schiitzenberger [30], the study of quantitative questions
(How often does an event arise?; What is the cost of this solution?; etc.) is another
flourishing theory (see e.g. [17,2] and the recent handbook [13]). Quantitative
automata modeling the long-time average or discounted behavior of systems were
investigated, e.g., by Chatterjee, Doyen, and Henzinger [7].

Recently, Bollig and Kuske [4] considered a logic FO> featuring a first-order
quantifier expressing that there are infinitely many elements satisfying a formula.
In a different context than ours (for Muller message-passing automata), they
were able to relate an extended Ehrenfeucht-Fraissé game and k-equivalence of
two formulas of FO®°, thus developing a Hanf-like theorem [23] for this logic. We
show how this result can be applied to infinite graphs to connect EMSO and
infinite graph automata, yielding our first main result.

Using weighted MSO-logic [11], its extension to graphs [10], and valuation
monoids [14], we generalize our graph automata model and our Biichi-like result to
a quantitative setting. Here, one crucial part is the closure under the (restricted)
weighted universal quantification (the valuation-quantification). An essential part
of proving this closure is utilizing [4] to show that FO* corresponds to one-state
infinite graph acceptors.

To enhance readability, we first develop our weighted results in the finite case.
Note that using valuation monoids, this model and the results are also new for
finite graphs and enable us to consider examples using average or discounting in
this general setting, as well as classical (possibly non-commutative) semirings.
Furthermore, our approach is designed in an adaptable way, thereby facilitating
the later extensions to infinite graphs.

2 Graphs and Graph Acceptors

In this section, we introduce the basic concepts around graphs and graph acceptors.
Following [10, 34], we define a (directed) unpointed graph as a relational structure
G = (V,(Pa)aca, (Ep)pep) over two finite alphabets A and B, where V is the set
of vertices, the sets P,, a € A, form a partition of V', and the sets Ey, b € B, are
pairwise disjoint irreflexive binary relations on V', called edges. We denote by
E = Uyecp Eb the set of all edges. Then the elements of A are the vertex labels,
and the elements of B are the edge labels. A graph is bounded by t if every vertex
has an (in- plus out-) degree less than or equal to t.

We call a class of graphs pointed if every graph G of this class has a dis-
tinguished vertex. Formally, this assumption can be defined by adding a unary
relation root to G with root = {u}.

We consider subgraphs of a pointed graph (G, u) around a vertex v as follows.
We call 7 = (H,v,w) a tile if (H,v) is a pointed graph and either w is an
additionally distinguished vertex of H or w = empty. Let r > 0. We denote by
dist(z,y) < r that there exists a path (z = z¢,z1,...,2; = y) with j < r and
(i, Tiv1) € E or (zi41,2;) € E for all i < j. We call (H,v,u) an r-tile if for
every vertex x of H, it holds that dist(z,v) < r. We denote by sph” ((G, u),v)
the unique r-tile (H,v,w) consisting of all vertices z of G with dist(z,v) < r
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together with their edges and w = w if dist(u,v) < r and w = empty, otherwise.
We say v is the center of 7 = (H,v,w), resp. of 7 = (H,v) = (H,v, empty).

In this work, we assume all graphs to be pointed. We may omit the explicit
root u of a graph and the radius r of a tile if the context is clear. Moreover, our
results not explicitly utilizing the root also hold for unpointed graphs G.

We denote by Labg(v) the label of the vertex v of the graph G. We denote
by DG;¢(A, B) the class of all finite, directed, and pointed graphs over A and B,
bounded by t. We denote by DG (A, B) the class of all infinite, directed, and
pointed graphs over A and B, bounded by ¢. Note that r-tiles of finite or infinite
graphs are finite structures, and there exist only finitely many non-isomorphic
r-tiles since the degree of every considered graph is bounded.

Definition 1 ([33,34]). A graph acceptor (GA) A over DG.(A, B) is defined
as a quadruple A = (Q, A, Occ,r) where

— Q is a finite set of states,

— r € N is the tile-radius,

A is a finite set of pairwise non-isomorphic r-tiles over A x Q and B,

— Occ, the occurrence constraint, is a boolean combination of formulas
‘occ(r) > n”, wheren € N and T € A.

Note that Thomas (cf. [33,34]) uses non-pointed graphs. Here, the pointing can
be seen as optional additional information to distinguish tiles from each other.

Given a finite graph G = (G,u) of DG{(A, B) and a mapping p: V — Q, we
consider the graph G, = (G,,u) € DG{(A x @, B), which consists of the same
vertexes and edges as G and is additionally labeled with p(v) at every vertex v.

We call p a run (or tiling) of A on G if for every v € V, sph'(G,,v) is
isomorphic to a tile in A. We say G, satisfies occ(T) > n if there exist at least n
distinct vertices v € V such that sph”(G,, v) is isomorphic to 7. The semantics
of “G, satisfies Occ” are then defined in the usual way.

We call a run p accepting if G, satisfies Occ. We say that A accepts the
graph G € DG (A, B) if there exists an accepting run p of A on G. We define
L(A) = {G € DG,(A, B) | A accepts G}, the language accepted by A. We call a
language L C DGy (A, B) recognizable if L = L(A) for some GA A.

Next, we introduce the logic MSO(DG¢(A, B)), short MSO, cf. [34]. We
denote by z,y, ... first-order variables ranging over vertices and by XY ... second
order variables ranging over sets of vertices. The formulas of MSO are defined
inductively by

¢ = Py(z) | Ep(z,y) | 100t(z) [r=9y|2€ X |90 | 0oV |Trp|IXe

where a € A and b € B. An FO-formula is a formula of MSO without set
quantifications, i.e., without using 3X. An EMSO-formula is a formula of the
form 3X7,...,3X.¢ where ¢ is an FO-formula.

The satisfaction relation = for graphs and MSO-sentences is defined in
the natural way. Then for a sentence ¢ € MSO, we define the language of ¢
as L(p) = {G € DG(A,B) | G = ¢}. We call a language L C DG(A, B)
MSO-definable (resp. FO-definable) if L = L(yp) for some MSO-sentence (resp.
FO-sentence) .
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Theorem 2 ([34]). Let L C DG¢(A, B) be a set of graphs. Then:

1. L is recognizable by a one-state GA iff L is definable by an FO-sentence.
2. L is recognizable iff L is definable by an EMSO-sentence.

3 Infinite Graph Acceptors

In the following, we extend Theorem 2 to the infinite setting, thus showing a
Biichi-like result for infinite graphs. We introduce infinite graph acceptors with
an extended acceptance condition and an EMSO® logic featuring a first-order
quantifier 3*°z.¢ to express that there exist infinitely many vertices fulfilling .

Using the occurrence constraint as acceptance condition, the introduced graph
acceptor for finite graphs could also be interpreted as a model for infinite graphs.
However, every occurrence constraint only checks for occurrences up to a certain
threshold, i.e., it cannot express that a tile occurs infinitely many often. This
motivates the following definition.

Definition 3. An infinite graph acceptor (GA>) A over DG{°(A, B) is defined
as a quadruple A = (Q, A, Occ,r) where

— @, A, and r are defined as before, and
— Occ, the extended occurrence constraint, is a boolean combination of formulas
‘oce(T) > n” and “oce(r) = 00”, where n € N and 7 € A.

The notions of an accepting run p of A on G € DG{°(A, B) and a recognizable
language L = L(A) C DG;°(A, B) are defined as before.

Next, following [4], we introduce the logic MSO* (DG;* (A, B)), short MSO™,
by the following grammar

@ = Po(z) | By(z,y) | root(z) [z =y |z e X |-p|oVe|Tre|T e |IX.p

We denote by FO™, resp. EMSO®, the usual first-order, resp. existential fragment.
Defining an assignment o and an update o[x — v] as usual, the satisfaction
relation |= is defined as before, together with (G, o) | I3®z.¢ iff (G, o[z — v]) E
@ for infinitely many v € V.

Using an extended Ehrenfeucht-Fraissé game, Bollig and Kuske [4] succeeded
in proving a Hanf-like result for these structures. It says that for a given k € N
and a fixed maximal degree, there exists a sufficiently large tile-radius r and a
threshold A such that two graphs which cannot be distinguished by an extended
occurrence constraint over r and h are also indistinguishable by any FO*-formula
up to quantifier depth k.

From this result, which was originally developed in a different context, namely
Muller message-passing automata, we can deduce the following corollary.

Corollary 4. Let ¢ be an FO*-sentence. Then there exists an extended occur-
rence constraint Occ such that G |= ¢ iff G |= Oce for all G € DG{°(A, B).

This result provides us with the means to prove our first main theorem.
Theorem 5. Let L C DG{°(A, B) be a set of infinite graphs. Then:

1. L is recognizable by a one-state GA™ iff L is definable by an FO™ -sentence.
2. L is recognizable iff L is definable by an EMSO™ -sentence.
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4 Weighted Graph Automata

In this section, we introduce and investigate a quantitative version of graph
acceptors for finite graphs. We follow the approach of [10], but use more general
structures than semirings, the (graph-) valuation monoid (cf. [14] for valuation
monoids over words), which are able to model aspects like average, discounting,
and other long-time behaviors of automata.

By abuse of notation, we also consider finite graphs DG;(M, B) over an
infinite set M. Note that we use this notation only in our weight assignments of
the weighted automaton and never as part of the input or within a tile.

Definition 6. A (graph-) valuation monoid D = (D, +,Val,0) consist of a
commutative monoid (D, +,0) together with an absorptive valuation function
Val : DG4(D, B) — D, i.e., Val(G) = 0 if at least one vertex of G is labeled 0.

In the following, D will always refer to a valuation monoid ' .

Note that we do not enforce distributivity or another form of compatibility
between + and Val. The choice of valuation monoids is a natural one when you
want to consider strictly more general structures than semirings and incorporate
examples like average or discounting, as follows. In the context of trees, another
closely related structure are multi-operator monoids (see e.g. [20]).

Ezample 7. Let dia(G) be the diameter of G = (G,u) € DG4(A, B). We define
avg(Q) = ﬁ > Labg(v) and discx(Gyu) = > > ALabg(v).

veV r=0,...,dia(G) dist(v,u)=r
Then Dy = (RU{—o0}, sup, avg, —oo) and Dy = (RU {—o0}, sup, discy, —o0) are
two valuation monoids. Note that ID; does not use the root of the graph; therefore,
we can omit it. In contrast, Dy is only utilizable for pointed graphs.

Definition 8. A weighted graph automaton (wGA) over DG;(4, B) and D is a
tuple A = (Q, A, wt, Occ, ) where

— A" =(Q, A,Occ,r) is a graph acceptor over DG(A, B),
— wt: A — D is the weight function assigning to every tile of A a value of D.

An accepting run p: V — Q of A on G € DG4(A, B) is defined as an accepting
run of A’ on G. As in the unweighted case, the pointing of G = (G, u) is optional.

For an accepting run p, we consider the graph G,’?, where every vertex is
labeled with the weight of the tile the run p defines around this vertex. More
precisely, for a vertex v of G, let 7,(v) be the r-tile of A which is isomorphic to
sph”(G,,v). Then GE is defined as the unique graph over DG, (D, B) resulting
from the graph G where for all vertices v, Labgp (v) = wt(71,(v)).

We denote by acc4(G) the set of all accepting runs of A on G. The behavior
[A] : DG:(A, B) — D of a wGA A is defined, for each G € DG4(A, B), as

[AlG) = > Val(GP) .
pEacca(G)

! [14] enforced Val(d) = d, which was later shown to be not required even in the word
case, see e.g. [21]
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We call any function S : DGt(A, B) — D a series. Then S is recognizable if
S = [A] for some wGA A. By the usual identification of languages with functions
assuming values in {0, 1}, we see that graph acceptors are expressively equivalent
to wGA over the Boolean semiring B.

Following [14], we call D regular if all constant series of D are recognizable,
i.e., for every d € D, there exists a wGA Ay with [A4](G) = d for every
G € DGy(A, B).

Ezample 9. Let A ={a,b} and B = {z}. For a given graph, we are interested in

the value max,c 4 |V |a&no_outgoing/| V| which is the maximal proportion of nodes

which are labeled with the same symbol and have no outgoing edges. For instance,

in a tree the numerator would refer to the number of leafs labeled with a. We can

compute this value with the following wGA over D; = (RU{—o00}, sup, avg, —00).
Set A= ({q1,q2}, A, wt, Occ,r), with r =1, A = {7 | 7 is a 1-tile}, and

Occ = /\ oce(r) =0V /\ oce(r) = 0.
{7 | center(r)e{(a,q1),(b:q2)}} {7 | center(r)€{(a,q2),(b,q1)}}

Furthermore, we define wt(7) = 1 if the center v of 7 is labeled with ¢; and the
center has no outgoing edges. Then [A](G) is the desired proportion. O

FEzxample 10. Let us assume our graph represents a social network. Now, we are
interested into the affinity of a person to a certain characteristic (a hobby, a
political tendency, an attribute, etc.) be it to use this information in a matching
process or for personalized advertising. We assume that this affinity is closely
related to the social environment of a person (e.g., I am more inclined to watch
soccer if T play soccer myself, or T have friends who are interested into it).

We define a one-state wGA A = ({¢},{7 | 7 is a 1-tile}, wt, true, 1) over
A ={a,b}, B={z}, and Dy = (RU{—00},sup, discy, —00), with wt(7) = #,(7),
where #,(7) is the number of vertices of 7 labeled with a. Then depending on A,
A computes for a pointed graph (G, ) the affinity of u to the characteristic a.

Additionally introducing a nondeterministic choice for the center vertex u
into the wGA, modifying the valuation function accordingly, and taking the
supremum of all resulting runs, we can construct a nondeterministic automaton
computing the maximal affinity of all vertices of a non-pointed graph. a

In the following, we give some results using ideas of [10]. These statements utilize
the following formula. Let 7* = {7, ..., 7, } be a finite set of tiles. For N € N,
we shall write

( Z occ(r)) = N short for \/ /\ oce(ry) = mn; . (1)
TET* S ni=N i=1,...m
n;€{0,...,N}

We can interpret 7% as a set of tiles matching a certain pattern. Then this formula

is true iff the occurrence number of all tiles matching this pattern is at least V.

Let S : DG¢(A, B) — D be a series recognizable by a wGA A with tile-radius

s. Then we can show that for all » > s, S is recognizable by a wGA B with
tile-radius 7.
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We extend the operation + of our valuation monoid to series by means of
point-wise definition, i.e., (S 4+ T)(G) = S(G) + T(G) for each G € DG;(A, B).

Proposition 11. The class of recognizable series is closed under +.

Let S : DG(A,B) — D and L C DG(A, B). We define the restriction SN L :
DG(A,B) — D by letting (SN L)(G) = S(G) if G € L and (SNL)(G) =0,
otherwise.

Proposition 12. Let S : DG4(A, B) — D be a recognizable series and L C
DG4(A, B) be recognizable by a one-state GA. Then S N L is recognizable.

Proof (sketch). We build the wGA recognizing S N L as a product-automaton
from the wGA A recognizing S and the GA B recognizing L. The occurrence-
constraint is combined by conjugating the projections to the constraints of A
and B together with formula (1). Since B has exactly one state, we can control
the number of runs of C.

In the following, we show that recognizable series are closed under projection.
Let h: A — A be a mapping between two alphabets. Then h naturally defines a
relabeling of graphs from DG;(A’, B) into graphs from DG;(A, B), also denoted
by h. Let S : DG¢(A’, B) — D be a series. We define h(S) : DG¢(A, B) — D by

h(S)(G) = > s(@) . (2)
G'eDG(A',B)
R(G")=G

Proposition 13. Let S : DG(A’, B) — D be a recognizable series and h : A" —
A. Then h(S) : DG4(A, B) — D is recognizable.

5 Weighted Logics for Graphs

In the following, we introduce a weighted MSO-Logic for finite graphs, following
the approach of Droste and Gastin [11] for words. We also incorporate an idea of
Bollig and Gastin [3] to consider unweighted MSO-formulas as explicit fragment
of our logic. We utilize an idea of Gastin and Monmege [21] to consider formulas
with an ‘if..then..else’-operator S7¢; : @9 instead of a weighted conjunction
©1 ® 2. This operator is able to model the essential step-functions (resp. the
almost FO-boolean fragment) without the need to add a second operation to the
valuation monoid (the product ©).

Note that our underlying structure may still provide a product (e.g. as in
the case of semirings). In this case, it remains possible to enrich our logic with a
second operation (previously denoted by ®), therefore getting a direct connection
to previous works [11, 14, 10].

In both cases, we are able to prove a Biichi-like connection between our
introduced weighted graph automata and the (restricted) weighted MSO logic.
Since the second operation enforces additional technical restrictions, we omit the
details for this case here.
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Definition 14. We define the weighted logic MSO(D, DG¢(A, B)), MSO(D), as

B = P,(x) | Ep(z,y) | root(z) |z=y |ze X |8 | VL |Txp | IXS
pu=d| @ |Bl0:p| B,p| Bxel Valbp

where d € D; x,y are first-order variables; and X is a second order variable.

Let G € DG(A, B) and ¢ € MSO(D). We follow classical approaches for logics
and semantics. Let free(p) be the set of all free variables in ¢, and let V be a
finite set of variables containing free(y). A (V, G)-assignment o is a function
assigning to every first-order variable of V an element of V' and to every second
order variable a subset of V. We define the update o[x — v] as the (V U {z}, G)-
assignment mapping x to v and equaling o everywhere else. The assignment
o[X — I] is defined analogously.

We represent the graph G together with the assignment o as a graph (G, o)
over the vertex alphabet Ay, = A x {0,1}Y where 1 denotes every position where
x resp. X holds. A graph over Ay is called wvalid if every first-order variable is
assigned to exactly one position.

We define the semantics of ¢ € MSO(ID) as a function [¢]y : DG¢(Ay, B) —
D inductively for all valid (G, o) € DG.(Ay, B), as seen in Fig. 1. For not valid
(G,0), we set [¢]v(G,0) = 0. We write [¢] for [¢]fee(y)-

[d]v(G, o) d forallde D

e ® ¥Iv(G,0) [[w[}[]v]](G(g) J; [[Q/fE\E(GG, t;)): 5
157 : ¥Iv(G,0) = [iﬂz(G: o) : otheljwise
[D. ¢lv(G, o) ;V[M]vu{x}(a olz = v])

(B ¢lv(Gro) = jczvu@ﬂvu{xm,a[x 1))

[Val. ¢]v(G, o) = Val((G,0),) where (G,0), is the graph (G, o) where every
vertex v is labeled with [¢]vu(a) (G, olz — v])

Fig. 1. Semantics

Whether a graph is valid can be checked by an FO-formula, hence the
language of all valid graphs over Ay, is recognizable. For the Boolean semiring B,
the unweighted MSO is expressively equivalent to MSO(B).

The following lemma shows that for each finite set of variables containing
free(y), the semantics [¢]y are consistent with each other (cf. [11]).

Lemma 15. Let ¢ € MSO(D) and V be a finite set of variables with V 2
free(p). Then [p]v(G,0) = [¢](G, O ltee(p)) for each valid (G, o) € DG¢(Ay, B).

Furthermore, if [¢] is recognizable, then [¢]y is recognizable.

Now, we show that recognizable series are closed under @, and @ , quantification
(in previous papers called the weighted existential quantification).

Lemma 16. Let [¢] be recognizable. Then [, ¢] and [ y ¢] are recognizable.
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The interesting case is the Val,-quantification (previously called the weighted
universal quantification [11]). Similarly to [11], our unrestricted logic is strictly
more powerful than our automata model. Therefore, inspired by [14] and [21], we
introduce the following fragment.

We call a formula ¢ € MSO(ID) almost FO-boolean if ¢ is built up inductively
from the grammar, ¢ := d | f?d : ¢ , where d € D and S is an unweighted
FO-formula.

This fragment is equivalent to all formulas ¢ such that [¢] is an FO-step
function, i.e., it takes only finitely many values and for each value its preimage
is FO-definable. Denoting the constant series d(G) = d for all G € DG(A, B)
also with d, we get the following. If ¢ is almost FO-boolean, then [¢] has a
representation [¢] = >, d;ily, = >t d; N L;, where m € N, d; € D, L;
are languages definable by an unweighted FO-formula, and (L;);=1.. .., form a
partition of DG¢(A, B).

Proposition 17. Let ¢ € MSO(D) such that [¢] is an FO-step function. Then
[Val, ¢] is recognizable.

Proof (sketch). Let V = free(Val, ¢) and W = VU{x}. Then [¢] = >_1", dilyp,,
where L; are FO-definable languages forming a partition of all of DG;(Ayw, B).

Now, we can encode the information in which language a given graph falls
into an FO-formula L over an extended alphabet. Using Theorem 2 yields a
one-state GA A with L(A) = L. Finally, we define a wGA A by adding weights
to every tile depending on the state-label at its center and taking special care of
the occurrence constraint. Then we can show that [A] = [Val, ¢].

Let ¢ € MSO(D). We call ¢ FO-restricted if all unweighted subformulas § are
FO-formulas and for all subformulas Val, ¥ of ¢, ¥ is almost FO-boolean.
These restrictions are motivated in [11] (restriction of Val, ¢) and [19] (re-
striction to FO) where it is shown that the unrestricted versions of the logic
are strictly more powerful than weighted automata on words, resp. pictures. For
graphs this is also true, even for the Boolean semiring. We summarize our results.

Proposition 18. If D is regular, then for every FO-restricted MSO(DD)-sentence
o, there exists a wGA A with [A] = [¢].

Proof (sketch). We use structural induction on ¢. One new case is [57¢; :
2] = [e1] N L(B) + [w2] N L(=5), which is recognizable by Proposition 11 and
Proposition 12, because L(f) and L(—f) are recognizable by a one-state GA,
since (8 is an FO-formula. The other cases are covered by regularity of D and the
proven closure results (Lemma 16 and Proposition 17 together with Lemma 15).

Now, we show that every wGA can be simulated by an MSO(D)-sentence.

Proposition 19. For every wGA A, there exists an FO-restricted MSO(D)-
sentence ¢ with [A] = [¢].

Together with Proposition 18, this gives our second main result, a Biichi-like
connection of the introduced weighted graph automata and the restricted weighted
logic.
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Theorem 20. Let D = (D,+,Val,0) be a reqular valuation monoid and let
S :DG¢(A, B) — D be a series. Then the following are equivalent:

1. S is recognizable.
2. S is definable by an FO-restricted MSO(D)-sentence.

Examples of a regular valuation monoid are the introduced valuation monoids
using average or discounting and all semirings.

6 Weighted Automata and Logics for Infinite Graphs

In the following, we extend our results in the weighted setting to infinite graphs.
We utilize co-valuation monoids to introduce weighted infinite graph automata.

We call a commutative monoid (D, +,0) complete if it has infinitary sum
operations Y ; : DT — D for any index set I such that

- ZjeJ(Zite dz) = Zie] dz if UjEJIj =1 and Ij ﬁ[k = @ fOI"j 7é k.

Definition 21. An oo-(graph)-valuation monoid (D, +,Val®™ 0) consists of a
complete monoid (D,+,0) together with an absorptive oo-valuation function

Val® : DG*(D, B) — D.

Ezample 22. Let Ry = {z € R | 2 > 0} U {oo, —o0}. Let ¢ > 1 be the maximal
degree of our graphs and 0 < A < 25. Then D = (R, sup, disc}’, —o00), with
discT (G, u) = le > > A Labg(v), is an co-valuation monoid.

N7 r=0 dist(v,u)=r
Definition 23. A4 weighted infinite graph automaton (wGA>°) over DG{°(A, B)
and D is a tuple A = (Q, A, wt, Occ,r) where

— A =(Q, A,Occ,r) is an infinite graph acceptor over DG;°(A, B),
— wt : A — D is the weight function assigning to every tile of A a value of D.

We transfer the previous notions of accepting run and recognizable series.

The weighted MSO®°-logic for infinite graphs and its fragments is defined
as extensions of MSO™ as in the finite case (using Val™ instead of Val) and
is denoted by MSO* (D). Again, the significant difference is that we have the
operator 3°°z in our underlying unweighted fragment. Adapting our previous
notations and results to the infinite setting, we get our third main result.

Theorem 24. Let D be a regular co-valuation monoid and let S : DG{°(A, B) —
D be a series. Then S is recognizable by a wGA if and only if S is definable by
an FO> -restricted MSO™ (D)-sentence.

The proof mainly follows the proof of Theorem 20. A notably difference is
found in the closure under Val, ¢ (in previous papers the weighted universal
quantification). Since we have to deal with the additional quantifier 3z, we
cannot apply Theorem 2. However, Theorem 5 gives us one-state infinite graph
acceptors A; recognizing L;. Then the automata constructions of Proposition 17
give us a wGA> A with [A] = [Val, ¢].
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7 Conclusion

Utilizing Bollig and Kuske [4] and a Hanf-like theorem for a first-order logic
together with an infinity operator, we have proven a Biichi-like theorem for
infinite graphs.

We introduced a weighted automata model over graphs which is robust
enough to compute very general weight functions and is adaptable to infinite
graphs. We gave new examples for this model, employing average and discounting.
Introducing a suitable weighted MSO-logic, we successfully generalized Biichi-like
results from the unweighted setting [35] to the weighted setting, from words [11]
to graphs and from finite graphs [10] to infinite graphs.

Similar to [10], it can be shown that weighted word, tree, picture, and nested
word automata are special instances of these weighted graph automata, which
gives us, e.g., results of [11,16, 19, 26] and [14,12] as corollaries. Note that these
lists are not exhaustive, as graphs are a very general structure comprising many
other structures like traces [27], texts [25], distributed systems [5], and others.

Infinite graphs cover for example infinite words [15], infinite trees [29], infinite
traces [8], and infinite nested words [9] and it would be interesting to study the
expressive power of weighted infinite graph automata over these special classes.
Acknowledgments: I want to thank Manfred Droste and Tobias Weihrauch for
helpful discussions and insightful remarks on earlier drafts of this paper.
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