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Abstract. Weighted automata model quantitative features of the behav-
ior of systems and have been investigated for various structures like words,
trees, traces, pictures, and nested words. In this paper, we introduce a
general model of weighted automata acting on graphs, which form a
quantitative version of Thomas’ unweighted model of graph acceptors.
We derive a Nivat theorem for weighted graph automata which shows
that their behaviors are precisely those obtainable from very particular
weighted graph automata and unweighted graph acceptors with a few
simple operations. We also show that a suitable weighted MSO logic is
expressively equivalent to weighted graph automata. As a consequence,
we obtain corresponding Büchi-type equivalence results known from the
recent literature for weighted automata and weighted logics on words,
trees, pictures, and nested words. Establishing such a general result has
been an open problem for weighted logic for some time.

Keywords: quantitative automata, graphs, quantitative logic, weighted
automata, Büchi, Nivat

1 Introduction

In automata theory, the fundamental Büchi-Elgot-Trakhtenbrot theorem [6, 16,
35] established the coincidence of regular languages with languages definable
in monadic second order logic. This led both to practical applications, e.g. in
verification of finite-state programs, and to important extensions covering, for
example, trees [7, 28, 31], traces [32], pictures [18], nested words [1], and texts
[21]; a general result for graphs was given in [33].

At the same time as Büchi, Schützenberger [30] introduced weighted finite
automata and characterized their quantitative behaviors as rational formal power
series. This model also quickly developed a flourishing theory (see [15, 29, 22,
3, 11]). Recently, Droste and Gastin [9] introduced a weighted MSO logic and
showed its expressive equivalence to weighted automata. Soon, different authors
extended this result to weighted automata and weighted logics on trees [14],
traces [25], pictures [17], nested words [24, 8], and texts [23].

However, a general result for weighted automata and weighted logics covering
graphs and linking the previous results remained, up to now, open. The main
contributions of this paper are the following.
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• We establish a model of weighted automata on graphs, which extends both
Thomas’ graph acceptors [34] and the previous weighted automata models
for words, trees, pictures, and others. We show that this enables us to model
new quantitative properties of graphs which could not be expressed by the
previous models.

• To show the robustness of our model, we extend a classical result of Nivat
[27] to weighted automata on graphs, showing that their behaviors are
exactly those which can be constructed from very particular weighted graph
automata and recognizable graph languages using operations like morphisms
and intersections.

• We derive a Büchi-type equivalence result for the expressive power of weighted
automata and a suitable weighted logic on graphs. We obtain corresponding
equivalence results for structures like words, trees, pictures, and nested words
as a consequence.

• We show that if the underlying semiring of weights is idempotent, then both
our Nivat and Büchi type equivalence results can be sharpened, but not in
general.

We note that an interesting approach connecting pebble navigating weighted
automata and weighted first-order logic was given in [5, 26]. The present automata
model is different, using tiles of graphs.

In our proofs, in comparison to the situation for words, trees, or pictures,
several difficulties arise. The crucial difference to previous approaches is a global
acceptance condition in form of a check of occurrence numbers of finite tiles
in runs of our automata on graphs; we need this condition to connect logic
and automata. Furthermore, since we are dealing with graphs, the underlying
unweighted automata model cannot be determinized. Accordingly, the unweighted
logic subfragment covers only existential MSO. Also, the closure under weighted
universal quantifications requires new methods; here we employ a theorem of
Thomas [34] whose proof in turn relied on Hanf’s theorem [20]. Finally, in
contrast to words, trees, pictures, or nested words, our general graphs do not
have a distinguished vertex, which yields technical complications.

All our constructions of weighted graph automata are effective. For technical
simplicity, here we assume that the weights stem from a commutative semiring.
Several constructions would also work for general semirings or for e.g. average
computations of weights; this will be later work. It is also tempting to investigate
now how the rich field of weighted graph algorithms could be utilized, e.g., for
developing decision procedures for weighted graph automata.

2 Graph Acceptors

In this section, we introduce the basic concepts around graphs and graph ac-
ceptors. Following [34], we define a (directed) graph as a relational structure
G = (V, (Pa)a∈A, (Eb)b∈B) over two finite alphabets A and B, where V is the
set of vertices, the sets Pa (a ∈ A) form a partition of V , and the sets Eb
(b ∈ B) are disjoint irreflexive binary relations on V , called edges. We denote



with E =
⋃
b∈B Eb the set of all edges. A graph is bounded by t if every vertex has

an (in- plus out-) degree smaller than or equal to t. We denote with DGt(A,B)
the class of all finite directed graphs over A and B bounded by t.

We call a class of graphs pointed if every graph G of this class is pointed with
a vertex v, i.e. it has a unique designated vertex v ∈ V . Formally, this assumption
can be defined by adding a unary relation center to G with center = {v}.

Let r ≥ 0. We say the distance of u and v is at most r if there exists a
path (u = u0, u1, ..., uj = v) with j ≤ r and (ui, ui+1) ∈ E or (ui+1, ui) ∈ E
for all i < j. We denote with sphr(G, v), the r-sphere of G around the vertex v,
the unique subgraph of G pointed with v and consisting of all vertices with a
distance to v of at most r, together with their edges. We call τ = (G, v) an r-tile
if (G, v) = sphr(G, v), and may omit the r if the context is clear. The bound t
ensures that there exists only finitely many pairwise non-isomorphic r-tiles.

Definition 1 ([33, 34]). A graph acceptor (GA) A over the alphabets A and B
is defined as a quadruple A = (Q,∆,Occ, r) where

– Q is a finite set of states,
– r ∈ N0, the tile-size,
– ∆ is a finite set of pairwise non-isomorphic r-tiles over A×Q and B,
– Occ, the occurrence constraint, is a boolean combination of formulas

“occ(τ) ≥ n”, where n ∈ N and τ ∈ ∆

Given a graph G of DGt(A,B) and a mapping ρ : V → Q, we consider the
Q-labeled graph Gρ ∈ DGt(A×Q,B), obtained by labeling every vertex v ∈ V
also with ρ(v). We call ρ a run (or tiling) of A on G if for every v ∈ V , sphr(Gρ, v)
is isomorphic to a tile in ∆.

We say Gρ satisfies occ(τ) ≥ n if there exist at least n vertices v ∈ V such that
sphr(Gρ, v) is isomorphic to τ . The semantics of Gρ satisfies Occ is then defined in
the usual way. We call a run ρ accepting if Gρ satisfies the constraint Occ. We let
L(A) = {G ∈ DGt(A,B) | there exists an accepting run ρ : V → Q of A on G},
the language accepted by A. We call a language L ⊆ DGt(A,B) recognizable if
L = L(A) for some GA A.

Next, we introduce the logic MSO(DGt(A,B)), short MSO, cf. [34]. We denote
with x, y, ... and X,Y, ... first- and second-order variables ranging over vertices,
resp. over sets of vertices. The formulas of MSO are defined inductively by

ϕ ::= Pa(x) | Eb(x, y) | x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ A and b ∈ B. An FO-formula is a formula of MSO without ∃X. An
EMSO-formula is a formula of the form ∃X1...∃Xk.ϕ where ϕ is an FO-formula.

The satisfaction relation |= for graphs and MSO-sentences is defined in
the natural way. For a sentence ϕ ∈ MSO, we define the language of ϕ as
L(ϕ) = {G ∈ DGt(A,B) | G |= ϕ}. We call a language L ⊆ DGt(A,B) MSO-
(resp. FO-) definable if L = L(ϕ) for some MSO- (resp. FO-) sentence ϕ.

Theorem 2 ([34]). Let L ⊆ DGt(A,B) be a set of graphs. Then:

1. L is recognizable by a one-state GA iff L is definable by an FO-sentence.
2. L is recognizable iff L is definable by an EMSO-sentence.



3 Weighted Graph Automata

In this section, we introduce and investigate a quantitative version of graph
acceptors. In the following, let K = (K,+, ·, 0, 1) be a commutative semiring, i.e.
(K,+, 0) and (K, ·, 1) are commutative monoids, (x+y) ·z = x ·z+y ·z and 0 ·x =
x · 0 = 0 for all x, y, z ∈ K. Important examples of commutative semirings are
the Boolean semiring B = ({0, 1},∨,∧, 0, 1), the semiring of the natural numbers
N = (N,+, ·, 0, 1), and the tropical semirings Rmax = (R∪{−∞},max,+,−∞, 0)
and Rmin = (R ∪ {∞},min,+,∞, 0).

We say K is idempotent if the addition is idempotent, i.e. x + x = x for
all x ∈ K. The semirings B, Rmax, and Rmin are idempotent. For a general
introduction into the theory of semirings and extensive examples, see [11, 19].

Definition 3. A weighted graph automaton (or weighted graph acceptor; wGA)
over A, B, and K is a tuple A = (Q,∆,wt,Occ, r) where

– A′ = (Q,∆,Occ, r) is a graph acceptor over the alphabets A and B,
– wt : ∆→ K is the weight function assigning to every tile of ∆ a value of K.

An accepting run ρ : V → Q of A on G is defined as an accepting run of A′ on
G. Let sphrA(Gρ, v) be the tile of ∆ which is isomorphic to sphr(Gρ, v). We let

wtA,G,ρ(v) = wt(sphrA(Gρ, v)) .

We define the weight wtA,G(ρ) of the run ρ of A on G as

wtA,G(ρ) =
∏
v∈V

wtA,G,ρ(v) .

The behavior ‖A‖ : DGt(A,B)→ K of A is defined, for each G ∈ DGt(A,B), as

‖A‖(G) =
∑

ρ accepting run of A on G

wtA,G(ρ) .

We call any function S : DGt(A,B) → K a series. Then S is recognizable if
S = ‖A‖ for some wGA A.

By the usual identification of languages with functions assuming values in
{0, 1}, we see that graph acceptors are expressively equivalent to weighted graph
automata over the Boolean semiring B.

Example 4. The following wGA A counts the number of connected components
as exponent of 2. We define A = (Q,∆,wt,Occ, r) over arbitrary alphabets A
and B, and the semiring K = (N,+, ·, 0, 1). We set r = 1, Occ = true, wt ≡ 1,
and Q = {q1, q2}. The set of tiles is defined as ∆ = ∆1 ∪∆2, where

∆i = {τ | every vertex of τ is labeled with some (a, qi), a ∈ A}, i ∈ {1, 2} .

Then every connected component of a given graph G is tiled either completely
with q1 or completely with q2, thus ‖A‖(G) = 2m(G), where m(G) is the number
of connected components of G.



To count occurrences of tiles with a certain pattern, we introduce the following
notation. Let τ∗ be a finite set of tiles enumerated by τ∗ = {τ1, ..., τm}. For
N ∈ N, we define the formula( ∑

τ∈τ∗
occ(τ)

)
≥ N as

∨
∑m

i=1 ni=N
ni∈{0,...,N}

∧
i=1,...,m

occ(τi) ≥ ni . (1)

Using this formula, we can prove the following.

Lemma 5. Let S : DGt(A,B)→ K be a series recognizable by a wGA A with
tile-size s. Then for all r ≥ s, S is recognizable by a wGA B with tile-size r.

Example 6. Using a weight function which applies the degree of the center of a tile
as weight, we can construct a wGA A1 satisfying ‖A1‖(G) =

∏
v∈V degree(v). Us-

ing formula (1), we can also construct a wGAA2 with ‖A2‖(G) =
∑
v∈V degree(v).

In both cases, we are free to choose a semiring with the desired product or sum-
mation, and adjusting wt, we are able to only multiply or sum over vertices of a
certain form, e.g., only over vertices labeled with a.

Example 7. The following wGA computes the ‘weighted diameter’ (i.e. the maxi-
mal distance between two vertices) of edge-weighted graphs up to a threshold
N ∈ N. Let A be a finite set and B = {1, ..., N} be the edge labels. Note that, here,
we sum over the edge labels when computing shortest paths between vertices.

We define A = (Q,∆,wt,Occ, 1) over A, B, and Rmax as follows. We set
Q = {0, ..., N} × {0, 1}. For a vertex v labeled also with (q,m) ∈ Q, we refer to
q as the state of v, and say v is marked if m = 1.

Let τ = (H, v) be a 1-tile with state k at the center v. Then ∆ checks that
every vertex connected to v by an edge i has a state between max{0, k − i} and
min{k + i,N}. Furthermore, ∆ checks that whenever k /∈ {0, N}, then there has
to be at least one vertex in τ which has state k − i. The weight function wt
assigns to τ the weight k if v is marked, and 0 otherwise. Finally, Occ checks
that we have exactly one vertex y with state 0 and exactly one marked vertex z.

Then we can show by induction that every state of a vertex has to be equal
to the distance of this vertex to y up to the threshold N . Furthermore, every
run has the weight of the vertex z. Thus, A computes the maximum distance
between two vertices up to the threshold N , which is our desired property. Here,
the distance takes the edge-labels into account, whereas setting B = {1} yields
the unweighted setting and the geodesic distance to y up to the threshold N .

For a class C of graphs, we call the semiring K C-regular if for every k ∈ K, there
exists a wGA Ak with ‖Ak‖(G) = k for every G ∈ C. We call K regular if K is
DGt(A,B)-regular. We give two easy conditions which ensure regularity of K.

Lemma 8. If K is idempotent, then K is regular. If C is a class of pointed graphs,
then K is C-regular.

We extend the operations + and · of our semiring to series by defining point-wise
(S+T )(G) = S(G)+T (G) and (S�T )(G) = S(G)·T (G) for each G ∈ DGt(A,B).



Proposition 9. The class of recognizable series is closed under + and �.

In the following, we show that recognizable series are closed under projection.
Let h : A′ → A be a mapping between two alphabets. Then h defines naturally a
relabeling of graphs from DGt(A

′, B) into graphs from DGt(A,B), also denoted
by h. Let S : DGt(A

′, B)→ K be a series. We define h(S) : DGt(A,B)→ K by

h(S)(G) =
∑

G′∈DGt(A,B), h(G′)=G

S(G′) . (2)

Proposition 10. Let S : DGt(A
′, B)→ K be a recognizable series and h : A′ →

A. Then h(S) : DGt(A,B)→ K is recognizable.

4 A Nivat Theorem for Weighted Graph Automata

In this section, we establish a connection between unweighted recognizable
languages and recognizable graph series. Note that a corresponding result for
weighted automata on words (cf. [12]) makes crucial use of the possible deter-
minization of every unweighted word automaton. Unfortunately, this is not the
case for graph languages. To deal with this problem, we require either the under-
lying semiring to be idempotent or the considered languages to be recognizable
by a one-state graph acceptor. For a similar distinction, see [13].

Let S : DGt(A
′, B)→ K and L ⊆ DGt(A

′, B). We consider h : A′ → A, and
the induced mappings h : DGt(A

′, B)→ DGt(A,B), and h(S) : DGt(A,B)→ K,
as before, see formula (2). We define the restriction S ∩ L : DGt(A

′, B)→ K by
letting (S ∩ L)(G) = S(G) if G ∈ L and (S ∩ L)(G) = 0, otherwise.

Let g : A′ → K be a map. Let G ∈ DGt(A
′, B) and let LabG(v) ∈ A′ be

the label of a vertex v of G. We define the map prod ◦ g : DGt(A
′, B) → K

by (prod ◦ g)(G) =
∏
v∈V g(LabG(v)). So, prod ◦ g : DGt(A

′, B)→ K is a very
particular series obtained by assigning, for a graph G ∈ DGt(A

′, B), to each
vertex a weight (depending only on its label) and then multiplying all these
weights.

Let Nt(A,B,K) comprise all series S : DGt(A,B)→ K for which there exist
an alphabet A′, a map g : A′ → K, a map h : A′ → A, and a recognizable language
L ⊆ DGt(A

′, B) such that S = h((prod ◦ g) ∩ L). We denote by N one
t (A,B,K)

the set of series defined similarly but with a language L which is recognizable by
a one-state GA. Trivially, N one

t (A,B,K) ⊆ Nt(A,B,K).
Using closure properties of series, we get the following Nivat-Theorem for

weighted graph automata.

Theorem 11. Let K be a commutative semiring and S : DGt(A,B)→ K be a
series. Then S is recognizable if and only if S ∈ N one

t (A,B,K). If K is idempotent,
then S is recognizable if and only if S ∈ Nt(A,B,K).

Proof (sketch). First, let S be recognizable by the wGA A = (Q,∆,wt,Occ, r)
over A, B, and K. We set A′ = A×Q× wt(∆). Let h be the projection of A′ to
A and let g be the projection of A′ to wt(∆).



Let L ⊆ DGt(A
′, B) be the language consisting of all graphs G′ over A′ and

B such that assigning to every vertex v′ of G′ the second component of the label
of v′ defines an accepting run of A on h(G′) and the added weights are consistent
with the weight function wt of A. We can construct a one-state GA accepting L.
It follows that S = h((prod ◦ g) ∩ L) ∈ N one

t (A,B,K).
For the converse, let A′ be an alphabet, g : A′ → K, h : A′ → A, L ⊆

DGt(A
′, B) be a recognizable language, and S = h((prod ◦ g) ∩ L). We can

construct a wGA C which simulates prod ◦ g. Using that L is recognizable by a
one-state GA or that K is idempotent, we construct a wGA B with ‖B‖ = 1L.
Then Propositions 9 and 10 yield the result. ut

The following lemma and example show that in the general setting there exist
series in Nt(A,B,K) which are not recognizable. For this purpose, we say that a
GA A is unambiguous if for every graph G, A has at most one accepting run
on G. We call a graph language L unambiguously recognizable if there exists an
unambiguous GA accepting L.

We can show that the set of unconnected graphs is a recognizable language
which is not unambiguously recognizable. Showing that for every language which
is not unambiguously recognizable, the series 1L is not recognizable over N, we
obtain:

Lemma 12. 1. The class of unambiguously recognizable languages is a proper
subclass of all recognizable languages.

2. There exists a recognizable language L such that 1L is not recognizable over
the semiring of the natural numbers N.

Example 13. Using ideas of [13], we construct a series in Nt(A,B,K) which
is not recognizable, as follows. We let K = (N,+, ·, 0, 1), A′ = A, h be the
identity function, and g ≡ 1 be the constant function to 1. By Part 2 of Lemma
12, let L be a recognizable language such that 1L is not recognizable. Then
1L = h(prod ◦ g ∩ L) ∈ Nt(A,B,K).

There also exist recognizable but not unambiguously recognizable languages
if we consider connected graphs. Over the class of pictures, the existence of such
a language was shown in [2].

5 Weighted Logics for Graphs

In the following, we introduce a weighted MSO logic for graphs, following the
approach of Droste and Gastin [9] for words. We also incorporate an idea of
Bollig and Gastin [4] to consider Boolean formulas.

Definition 14. We define the weighted logic MSO(K,DGt(A,B)), short
MSO(K), as

β :: = Pa(x) | Eb(x, y) | x = y | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β
ϕ :: = β | k | ϕ⊕ ϕ | ϕ⊗ ϕ |

⊕
x ϕ |

⊕
X ϕ |

⊗
x ϕ

where k ∈ K; x, y are first-order variables; and X is a second order variable.



In [9], the weighted connectors were also denoted by ∨, ∧, ∃x, ∃X, and ∀x. We
employ this symbolic change to stress the quantitative evaluation of formulas.

Let G ∈ DGt(A,B) and ϕ ∈ MSO(K). We follow classical approaches for
logics and semantics. Let free(ϕ) be the set of all free variables in ϕ, and let V be
a finite set of variables containing free(ϕ). A (V, G)-assignment σ is a function
assigning to every first-order variable of V an element of V and to every second
order variable a subset of V . We define σ[x→ v] as the (V ∪ {x}, G)-assignment
mapping x to v and equaling σ everywhere else. The assignment σ[X → I] is
defined analogously.

We represent the graph G together with the assignment σ as a graph (G, σ)
over the vertex alphabet AV = A× {0, 1}V where 1 denotes every position where
x resp. X holds. A graph over AV is called valid, if every first-order variable is
assigned to exactly one position.

We define the semantics of ϕ ∈ MSO(K) as a function JϕKV : DGt(AV , B)→
K inductively for all valid (G, σ) ∈ DGt(AV , B), as seen in Figure 1. For not
valid (G, σ), we set JϕKV(G, σ) = 0. We write JϕK for JϕKfree(ϕ).

JβKV(G, σ) =

{
1 , if (G, σ) |= β
0 , otherwise

JkKV(G, σ) = k for all k ∈ K

Jϕ⊕ ψKV(G, σ) = JϕKV(G, σ) + JψKV(G, σ)
Jϕ⊗ ψKV(G, σ) = JϕKV(G, σ) · JψKV(G, σ)
J
⊕

x ϕKV(G, σ) =
∑
v∈V

JϕKV∪{x}(G, σ[x→ v])

J
⊕

X ϕKV(G, σ) =
∑
I⊆V

JϕKV∪{X}(G, σ[X → I])

J
⊗

x ϕKV(G, σ) =
∏

v∈V
JϕKV∪{x}(G, σ[x→ v])

Fig. 1. Semantics

Whether a graph is valid can be checked by an FO-formula, hence the
language of all valid graphs over AV is recognizable. For the Boolean semiring B,
the unweighted MSO is expressively equivalent to MSO(B).

Lemma 15. Let ϕ ∈ MSO(K) and V a finite set of variables with V ⊇ free(ϕ).
Then JϕKV(G, σ) = JϕK(G, σ � free(ϕ)) for each valid (G, σ) ∈ DGt(AV , B).
Furthermore, if JϕK is recognizable, then JϕKV is recognizable.

We note that, in contrast to all previous papers of the literature on weighted
logic, in general, the converse of the second statement of Lemma 15 is not true.
If we restrict ourselves to pointed graphs or to an idempotent semiring, we can
show that JϕK is recognizable if and only if JϕKV is recognizable. However, to
prove the following statements, the implication above together with Proposition
10 suffices.

Lemma 16. Let JϕK be recognizable. Then J
⊕

x ϕK and J
⊕

X ϕK are recognizable.

The difficult case is the
⊗

x-quantification (previously the universal quantification
[9]). Similarly to [9], our unrestricted logic is strictly more powerful than our
automata model. Therefore, we introduce the following fragment.

We call a formula ϕ ∈ MSO(K) almost FO-boolean if ϕ is built up inductively
from unweighted FO-formulas β and constants k using the connectives ⊕ and ⊗.



Proposition 17. Let ϕ be almost FO-boolean. Then J
⊗

x ϕK is recognizable.

Proof (sketch). We follow the proof for the universal quantification for words [9]
with the crucial difference that we cannot determinize a GA. Let ϕ be almost FO-
boolean. We can show that ϕ is semantically equivalent to (k1⊗ϕ1)⊕...⊕(km⊗ϕm),
where m ∈ N, ki ∈ K, and ϕi are unweighted FO-formulas. Using an extended
alphabet Ã = A× {1, ...,m}, we can encode the finitary structure of JϕK into a
language L̃. Since all ϕi are FO-formulas, we can show that L̃ is FO-definable.

Applying Part 1 of Theorem 2, we get a one-state (in particular an unam-
biguous) GA Ã, accepting L̃. We transform Ã into a wGA A which adds the
weight defined by the second component of Ã to the tiles. Then we can show
that ‖A‖ = J

⊗
x ϕK. ut

Let ϕ ∈ MSO(K). We call ϕ restricted if all unweighted subformulas β are
EMSO-formulas and for all subformulas

⊗
x ψ of ϕ, ψ is almost FO-boolean.

We call ϕ FO-restricted, if ϕ is restricted and all unweighted subformulas β are
FO-formulas. For the Boolean semiring B, the unweighted EMSO is expressively
equivalent to restricted MSO(B).

Note that, contrary to [9], we cannot relax our restriction to include unweighted
EMSO-formulas after

⊗
x because then our restricted weighted logic would still

be strictly stronger than EMSO, even for the Boolean semiring.
We can show that every weighted graph automaton can be simulated by an

FO-restricted MSO(K)-sentence. Together with the closure properties of this
section and Section 3, we obtain our main result.

Theorem 18. Let K = (K,+, ·, 0, 1) be a commutative and regular semiring,
and let S : DGt(A,B)→ K be a series. Then the following are equivalent:

1. S is recognizable.
2. S is definable by an FO-restricted MSO(K)-sentence.

If K is idempotent, then 1. and 2. are equivalent to

3. S is definable by a restricted MSO(K)-sentence.

Note that to ensure regularity of K, it suffices to assume K to be idempotent
(for instance as in the case of the tropical semirings) or to consider only pointed
graphs (cf. Lemma 8). Words, trees, pictures, and nested words can be seen as
pointed structures.

6 Words, Trees, and other Structures

In this section, using ideas from Thomas [34], we show that existing quantitative
automata models over words [9], trees [14], pictures [17], and nested words [24]
can be seen as special incidences of weighted graph automata with the same
expressive power. Hence, we get previous equivalence results connecting weighted
logic and weighted automata over these structures as a consequence (in a slightly
modified version).



As already stated by [34], two significant differences to the previous models are
the occurrence constraint and the possibly bigger tile-size. As first step, following
[34], we give a sufficient condition to drop the occurrence constraint. We say
that a weighted graph automaton A = (Q,∆,wt,Occ, r) is without occurrence
constraint, if Occ = true.

We call a class of graphs C ⊆ DGt(A,B) partial sortable if there exists an
element b0 ∈ B such that for every graph G = (V, (Pa)a∈A, (Eb)b∈B) of C, the
subgraph G′ = (V, (Pa)a∈A, Eb0) is acyclic, connected, and every vertex of G′

has at most one outgoing edge.
Note that words, trees, pictures, and nested words can be seen as graph

classes of this type. The following result is a weighted (and slightly more general)
version of Proposition 5.3 in [34].

Lemma 19. Let C ⊆ DGt(A,B) be partial sortable and S : C → K a recognizable
series. Then there exists a wGA B without occurrence constraint with ‖B‖ = S.

Definition 20. A weighted finite automata (wFA) A = (Q, I, F, δ, µ) consists
of a finite set of states Q, a set of initial states I ⊆ Q, a set of final states F ⊆ Q,
a set the transitions δ ⊆ Q×A×Q, and a weight function µ : δ → K. We define
an accepting run, the language of A, and recognizable word series as usual (cf.
[9, 11, 30]).

Now we consider words (trees, pictures, nested words, respectively) as relational
structures, and hence also as graphs. Using Lemma 19, we can prove the following.

Proposition 21. Let S : A∗ → K be a word series. Then S is recognizable by a
weighted graph automaton iff S is recognizable by a weighted finite automaton.

A similar result can be proved for trees, pictures, and nested words, and their
respective automata models defining recognizable series.

Note that this is possible because, essentially, we can reduce the tile-size of a
weighted graph automaton over these specific graphs from r to 1. In general, this
is not possible, and it is already stated by Thomas [34] as an open question to
precisely describe the class of graphs where the use of 1-tiles suffices.

We obtain the following consequence of Theorem 18 and Proposition 21.

Corollary 22 ([9]). For a word series S : A∗ → K the following are equivalent:

1. S is recognizable by a weighted finite automata.
2. S is definable by an FO-restricted MSO(K)-sentence.

If we replace “word” by “tree”, “picture”, or “nested word”, we get a similar
result for all four automata models and and their respective logics.

Note that our implication (2)⇒ (1) is a slightly weaker version of the results in [9]
since in our logic, we can apply

⊗
x-quantification (resp. universal quantification)

only to almost FO-boolean formulas, whereas in [9, 10], we can use almost MSO-
boolean formulas.

As shown before, this difference originates from the fact that in the word case
EMSO = MSO, which is not true for pictures or graphs. In this sense, our result
captures the ‘biggest logic possible’, if we want to include pictures.



7 Conclusion

We introduced a weighted generalization of Thomas’ graph acceptors [33, 34] and
a suitable weighted logic in the sense of Droste and Gastin [9]. For commutative
semirings, we proved a Nivat-like and a Büchi-like characterization of the expres-
sive power of weighted graph automata. We showed slightly stronger results in
the case of an idempotent semiring.

We showed that weighted word, tree, picture, or nested word automata are
special instances of these general weighted graph automata, which gives us results
of [9], [14], [17], and [24] as corollaries (under the appropriate restrictions to
the underlying logic). Although not considered explicitly, we conjecture that
similar equivalence results also hold for other finite structures like traces [25] or
texts [23] and their respective automata models. We gave several examples that
our weighted graph automata can recognize particular quantitative properties of
graphs which were not covered by previous automata models.

Most statements in this paper can also be proven for general semirings. In
this case, however, we would have to enforce an ordering of our graphs to get a
well-defined product of weights. Furthermore, we would need some restrictions on
the conjunction of our logic (similar to, e.g., [10]). Here, we restricted ourselves
to commutative semirings in order to avoid technical conditions.

All the constructions given in this paper are effective. Subsequent research
could investigate applications of weighted graph algorithms for developing decision
procedures for weighted graph automata.
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