
Weighted logics for unranked tree automata

Manfred Droste Heiko Vogler

Institute of Computer Science Department of Computer Science

Leipzig University Technische Universität Dresden

D-04109 Leipzig, Germany D-01062 Dresden, Germany

droste@informatik.uni-leipzig.de vogler@tcs.inf.tu-dresden.de

May 28, 2009

Abstract: We define a weighted monadic second order logic for unranked trees
and the concept of weighted unranked tree automata, and we investigate the ex-
pressive power of these two concepts. We show that weighted tree automata and
a syntactically restricted weighted MSO-logic have the same expressive power in
case the semiring is commutative or in case we deal only with ranked trees, but,
surprisingly, not in general. This demonstrates a crucial difference between the
theories of ranked trees and unranked trees in the weighted case.

1 Introduction

The investigations of formal languages, automata, and logic on (ranked) trees and unranked
trees started in the 60s of the previous century. For the ranked part, this is already a well-
established research area, cf., e.g. [GS84, GS97, CDG+97] for survey books on these topics.
To the unranked part, much attention has been payed recently [BW98, BMW01, Lib05] (also
cf. Chapter 8 of [CDG+97]) which is mainly due to the development of the modern document
language XML and the fact that (fully structured) XML-documents can be formalized as
unranked trees.

One of the fundamental results in the theory of tree automata is the fact that a tree language
is recognizable if and only if it is definable by a sentence of monadic second order (MSO) logic
(for the ranked case cf. [TW68, Don70], for the unranked case cf. [Lib05, Nev02, NS02]). This
characterization generalizes the corresponding theorem for the string case [Büc60, Elg61].

In MSO-logic for unranked trees one can pose qualitative questions like whether, in a given
bibliography database (formalized as an unranked tree), there is an entry which misses optional
information of a certain kind, or whether there is a paper with three authors. As extension of
this scenario, it is a natural problem for databases to pose quantitative queries to documents.
For instance, one might ask how many entries miss optional information. Or, as another
example: given the different efforts (measured as natural numbers) for completing a book-
entry and an article-entry, respectively; then one might want to know the weighted sum
which shows the whole effort to complete all book- and all article-entries in the database.
Such quantities we call weights.

In this paper we present a weighted logic which is suitable for the formulation of such quan-
titative queries for unranked trees (weighted MSO-logic). This logic was heavily inspired by
and goes back to the weighted MSO-logic presented in [DG05, DG07, DG09] for strings; the
latter has been extended to infinite strings [DR07], finite and infinite strings with discounting
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[DR07], trees [DV06], infinite trees [Rah07], trace languages [Mei06], picture languages [Fic09],
and texts and nested words [Mat07, Mat08]. In all these approaches the weights are computed
in some semiring which has shown to be the appropriate algebraic structures for coping with
different weight scenarios in a uniform way [Sch61, Eil74, SS78, KS86, BR88, Kui97, DKV09].

As an automata-theoretic counterpart of our weighted MSO-logic, we will introduce weighted
tree automata over unranked trees (for short: wta) where the weights are taken from a semir-
ing S. These generalize bottom-up finite tree automata over unranked trees [Tha67, BW98,
BMW01, Nev02, Lib05, Lib06] by adding weights. More precisely, in a wta M , with each
pair consisting of a state q ∈ Q and an input symbol σ, a weighted finite automaton Aq,σ

is associated which recognizes a formal power series over S and Q; then, for every w ∈ Q∗,
the value (||Aq,σ||, w) ∈ S is the weight of the state transition (w, q) at input symbol σ, where
||Aq,σ|| denotes the behavior of Aq,σ. Clearly, bottom-up finite tree automata over unranked
trees can be reobtained from our model by choosing the Boolean semiring for S. We note that
also weighted tree automata over ranked trees [AB87, BR82, Kui98, FV09] are special wta:
only those unranked trees which obey the given ranks of symbols are considered.

For the comparison of MSO-logic and wta, we describe both, the behavior of wta and the
semantics of sentences of our weighted MSO-logic by unranked tree series, i.e., by functions
associating to each unranked tree a value in S.

The main results of this paper involve the syntactically restricted MSO-logic as it has been
defined in [DG09] for words. It was shown for any semiring that weighted automata over words
have precisely the same expressive power as the syntactically restricted MSO-logic [DG09]. This
lifts up to ranked trees and, in case the semiring is commutative, also to unranked trees. Sur-
prisingly, the equivalence does not extend to the case of unranked trees and non-commutative
semirings. This demonstrates a crucial difference between the theories of ranked trees and
unranked trees in the weighted case.

More precisely, we show the following results:

(1) Let r be an unranked tree series which is definable in (syntactically) restricted MSO-logic.
Then r is recognizable (cf. Theorem 6.5).

(2) Let r be recognizable, then r is MSO-definable. Moreover, if S is commutative, then r is
definable in syntactically restricted existential MSO-logic (cf. Theorem 6.9).

(3) There is a recognizable unranked tree series which is not definable in syntactically re-
stricted MSO-logic (cf. Theorem 6.10).

(4) Let r be a ranked tree series. Then r is recognizable if and only if r is definable by ranked
syntactically restricted existential MSO-logic (cf. Theorem 7.2).

We prove our results by direct automata-theoretic constructions along the lines of [DG07, DG09]
by generalizing from the case of ranked trees [DV06] to that of unranked trees. Previous
alternative arguments using encoding of unranked trees as ranked trees turned out to be more
complicated. We note that, in contrast to [DG07, DV06] and in accordance with [DG09], our
results employ a purely syntactically defined subclass of weighted MSO-logic. Moreover, the
semirings occurring here need not be commutative. The latter fact implies that we need a
linear ordering on the nodes of unranked trees in order to evaluate products which occur in
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the run semantics of a wta and in the interpretation of universal quantifications in a correct
manner. This issue needs some care in handling. The construction of an MSO-sentence for the
simulation of a wta is slightly more complicated than in the ranked case, because here a wta
employs in its transitions weighted string automata over states, and the latter also have to be
modelled.

We also expose an extended example where we define a bibliography database with bibtex
entries and show how quantitative queries of the form mentioned above can be formulated in
syntactically restricted MSO-logic.

We note that in [SSM03], an MSO-logic for unranked trees with Presburger constraints on the
children of nodes was presented; the satisfiability of this logic was shown to be undecidable.
Recently, [SSMH04] presented a modal fixpoint logic with Presburger constraints which be-
comes decidable. It would be interesting to compare and possibly combine these approaches
with the present one formulated for arbitrary semirings of numerical weights.

In order to avoid repeating over and over again the attribute “unranked”, we make the con-
vention that the unranked case is the standard case for trees, tree automata, and tree series.
Whenever we mean the ranked case, we will state this explicitly.

2 Preliminaries

2.1 Basic Notions and Trees

Let N and N+ be the sets {0, 1, 2, . . .} and {1, 2, . . .}, respectively.

Let Σ be an alphabet, i.e., a finite nonempty set. The set of Σ-trees, denoted by UΣ, is the
smallest subset U of (Σ ∪ {(, )} ∪ {, })∗ such that if σ ∈ Σ and ξ1, . . . , ξk ∈ U with k ≥ 0, then
σ(ξ1, . . . , ξk) ∈ U . In case k = 0, we identify σ( ) with σ; thus Σ ⊆ UΣ. Any subset of UΣ is
called a (Σ-)tree language.

We define the set of positions in a Σ-tree by means of the mapping pos : UΣ → P(N∗
+)

inductively on the argument ξ ∈ UΣ as follows: if ξ = σ(ξ1, . . . , ξk) where σ ∈ Σ, k ≥ 0 and
ξ1, . . . , ξk ∈ UΣ, then pos(ξ) = {ε} ∪ {iv | 1 ≤ i ≤ k, v ∈ pos(ξi)}. Sometimes we will also write
i · v for iv.

For every ξ ∈ UΣ and w ∈ pos(ξ), the label of ξ at w, denoted by ξ(w) ∈ Σ, and the rank at w,
denoted by rkξ(w), are defined inductively as follows: if ξ = σ(ξ1, . . . , ξk) for some σ ∈ Σ with
k ≥ 0 and ξ1, . . . , ξk ∈ UΣ, then ξ(ε) = σ and rkξ(ε) = k, and if 1 ≤ i ≤ k and w = iv, then
ξ(w) = ξi(v) and rkξ(w) = rkξi

(v).

Later on, when we define the behavior of a weighted tree automaton on an input tree ξ, we will
need a linear ordering on the set pos(ξ). For this we choose here the depth-first left-to-right
traversal over ξ which, at a position w ∈ pos(ξ), visits the subtrees one by one from left to
right, and then it deals with w itself. We denote this linear ordering by ⊑ξ.

In this paper, Σ will always denote an arbitrary alphabet unless specified otherwise.
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2.2 Semirings, formal power series, and weighted finite automata

Here we recall the basic notions on semirings, formal power series, and weighted finite automata
on strings. We refer the reader for more information to [Eil74, SS78, KS86].

A semiring is a structure (S, +, ·, 0, 1) (often abbreviated by S) where (S, +, 0) is a commutative
monoid, (S, ·, 1) is a monoid, multiplication distributes over addition from both sides, and
0 · s = s · 0 = 0 for every s ∈ S. For A, B ⊆ S, we say that A and B commute elementwise, if
a · b = b · a for all a ∈ A and b ∈ B. A semiring is commutative if · is commutative.

In this paper, S will always denote an arbitrary semiring unless specified otherwise.

Let Z be an arbitrary set. A (formal) power series over S and Z is a mapping r : Z → S.
For z ∈ Z, the value r(z) is here, as usual, denoted as (r, z). The set Z \ r−1(0) is called the
support of r and denoted by supp(r). The set of all power series over S and Z is denoted by
S〈〈Z〉〉. Let L ⊆ Z. Then the characteristic series 1L ∈ S〈〈Z〉〉 of L is defined for every z ∈ Z

by (1L, z) = 1 if z ∈ L, and (1L, z) = 0 otherwise. Observe that if S = B, the mapping L 7→ 1L

provides a bijection between languages and characteristic series.

We define the operations sum and Hadamard-product on S〈〈Z〉〉 as follows: for r1, r2 ∈ S〈〈Z〉〉
and z ∈ Z we let (r1 + r2, z) = (r1, z) + (r2, z) and (r1 ⊙ r2, z) = (r1, z) · (r2, z). Let s ∈ S and
r ∈ S〈〈Z〉〉. Then r · s ∈ S〈〈Z〉〉 is defined by (r · s, z) = (r, z) · s for every z ∈ Z.

Let Σ be an alphabet. Then we call an element r ∈ S〈〈UΣ〉〉 a tree series.

Let ∆ be an alphabet. As usual, a weighted finite string automaton (for short: wsa) over S

and ∆ is a quadruple A = (P, λ, µ, ν) such that P is a finite set (of states), µ : P ×∆×P → S

is a mapping (called transition weight function), and λ, ν : P → S are functions (called initial
weight function and final weight function, respectively). A run (through A) is a sequence
r = (p0, a1, p1)(p1, a2, p2) . . . (pn−1, an, pn) where pi ∈ P and ai ∈ ∆ with 0 ≤ i ≤ n, and we
say that r is a run from p0 to pn with label w = a1 . . . an; the set of all such runs is denoted
by Pp0,pn(w). The weight of r is the product wt(r) =

∏n
i=1 µ(pi−1, ai, pi). Note that r = ε if

n = 0, and wt(ε) = 1 because, as usual, in S products over empty index sets are defined to be
1. The behavior of A (or: power series recognized by A) is the power series ||A|| ∈ S〈〈∆∗〉〉 such
that for every w ∈ ∆∗ we have

(||A||, w) =
∑

p,p′∈P

λ(p) · µ(p, w, p′) · ν(p′)

where µ(p, w, p′) =
∑

r∈Pp,p′ (w) wt(r). A power series r ∈ S〈〈∆∗〉〉 is recognizable over S and ∆

if there is a wsa A over S and ∆ such that r = ||A||.

3 Weighted tree automata

In this section we extend the concept of (nondeterministic) bottom-up finite tree automata
on trees [BMW01] (also cf. [Nev02, Lib05, Lib06]) by weights taken from some semiring
(S, +, ·, 0, 1). The classical concept of tree automata is obtained by letting S = B.

A weighted tree automaton (for short: wta) over S is a quadruple M = (Q,Σ, A, γ) where Q

is a finite set (of states), Σ is an alphabet (of input symbols), A = (Aq,σ | q ∈ Q, σ ∈ Σ) is a
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family of wsa over S and Q, and γ : Q → S is a mapping (root weight function). A wta M

is deterministic if for every σ ∈ Σ and q1 . . . qk ∈ Q∗ there is at most one q ∈ Q such that
(||Aq,σ||, q1 . . . qk) 6= 0.

Now we define the run semantics of a wta M . Given a tree ξ ∈ UΣ, any function κ : pos(ξ) → Q

is called a run of M on ξ, and we define the weight of κ by

wtM (κ) =
∏

w∈pos(ξ)

(
||Aκ(w),ξ(w)||, κ(w1) . . . κ(w rkξ(w))

)
;

in the product we follow the linear ordering ⊑ξ. Note that, if S is commutative, then one can
choose any linear ordering and obtain the same result for wtM (κ). Clearly, if M is deterministic,
then for every ξ ∈ UΣ there is at most one run κ on ξ such that wtM (κ) 6= 0. We let RM (ξ) be
the set of all runs of M on ξ.

The tree series accepted by M over S is the tree series rM ∈ S〈〈UΣ〉〉 defined by

(rM , ξ) =
∑

κ∈RM (ξ)

wtM (κ) · γ(κ(ε))

for every ξ ∈ UΣ. A tree series r ∈ S〈〈UΣ〉〉 is recognizable over S if there is a wta M over S

such that r = rM . We will denote the class of all recognizable tree series over S and Σ by
Rec(S, Σ).

Example 3.1. Let Σ = {α, β} and Trop be the (“tropical”) semiring (N∪ {∞}, min, +,∞, 0)
where the sum and the product operations are min and +, resp., extended to N ∪ {∞} in
the obvious way. Now we consider the tree series #αα ∈ Trop〈〈UΣ〉〉 such that (#αα, ξ) is the
number of positions w ∈ pos(ξ) for which the first and second descendant of w are labeled by
α, i.e., ξ(w · 1) = ξ(w · 2) = α.

As preparation we define Q = {qα, qβ} and the two power series ∞̃ and r over Trop and Q by
letting (∞̃, w) = ∞ and

(r, w) =

{
1 if w ∈ {qα}

2Q∗

0 otherwise

for every w ∈ Q∗. Clearly, r and ∞̃ are recognizable over Trop and Q.

Now we construct the wta M = (Q,Σ, A, γ) over Trop with γ(qα) = γ(qβ) = 0. Moreover,
for every qa ∈ Q and b ∈ Σ we choose a wsa Aqa,b over Trop and Q such that ||Aqa,b|| = r

if a = b, and ||Aqa,b|| = ∞̃ otherwise. It is clear that for every ξ ∈ UΣ there is exactly
one run κξ : pos(ξ) → Q such that wtM (κξ) 6= ∞: for every position w of ξ we have that
κξ(w) = qξ(w). Then wtM (κξ) = #αα(ξ), showing that rM = #αα. E.g., for the tree ξ =
α(α(α, β), α(α, α, β), β) we have

position w in ξ ε 1 11 12 2 21 22 23 3

(||Aqξ(w),ξ(w)||, qξ(w1), . . . , qξ(w rkξ(w))) 1 0 0 0 1 0 0 0 0

Hence (rM , ξ) = minκ∈RM (ξ){wtM (κ) + γ(κ(ε))} = wtM (κξ) = 2. ¤

The unweighted case can be obtained as follows. A tree language L ⊆ UΣ is recognizable if there
is a wta M over the Boolean semiring B = ({0, 1},∨,∧, 0, 1) with disjunction ∨ and conjunction

5



∧, such that L = supp(rM ). Using the bijection between tree languages and characteristic
series, it is easy to see that this notion coincides with the usual definition of recognizability for
tree languages. In fact, nondeterministic (and deterministic) bottom-up tree automata on trees
in the sense of [BMW01, Nev02] are precisely the wta (and deterministic wta, respectively)
over B. Subsequently, we will often use the fact that the class of recognizable tree languages
is closed under intersection and complement, cf. Theorem H of [BMW01] (also cf. Theorem
8.3.8 of [CDG+97]). In Theorem B of [BMW01] (also cf. Theorem 8.2.8 of [CDG+97]) it is
proved by using the well-known power set construction that every recognizable tree language
is recognizable by a deterministic wta over B. Using this property, it is easy to see that for
every recognizable tree language L, the series 1L ∈ S〈〈UΣ〉〉 is recognizable.

Next we note basic properties of the classes of recognizable step functions and recognizable tree
series. A tree series r ∈ S〈〈UΣ〉〉 is a recognizable step function if there are an n ≥ 1, coefficients
s1, . . . , sn ∈ S, and recognizable tree languages L1, . . . , Ln ⊆ UΣ such that r =

∑n
i=1 1Li

· si.
Equivalently, r assumes only finitely many values, and for each s ∈ S the language r−1(s) is
recognizable. In fact, we can choose L1, . . . , Ln as above such that they form a partition of UΣ.
The proofs of the following properties are completely analogous to the ranked case [DV06].

Proposition 3.2. Let r1, r2 ∈ S〈〈UΣ〉〉 and s ∈ S.

1. The constant tree series s̃ ∈ S〈〈UΣ〉〉 which maps every tree to s, is recognizable.

2. If r1 and r2 are recognizable, then r1 + r2 and r1 · s are recognizable.

3. Let S1, S2 ⊆ S be two subsemirings such that S1 and S2 commute elementwise. Let r1

and r2 be recognizable over S1 and S2, respectively. Then r1 ⊙ r2 is recognizable over S.

4. If r1 and r2 are recognizable step functions, then r1+r2, r1⊙r2, and r1 ·s are recognizable
step functions.

5. Every recognizable step function is a recognizable tree series.

6. Let S′ be another semiring, ϕ : S → S′ a semiring morphism, and r ∈ Rec(S, Σ). Then
the tree series ϕ(S) = ϕ ◦ r : UΣ → S′ with (ϕ(r), ξ) = ϕ((r, ξ)) for every ξ ∈ UΣ is
recognizable.

We note that, as in the ranked case, the class of recognizable tree series is closed under re-
labelings. For this, let Σ and ∆ be two alphabets and τ : Σ → P(∆) be a mapping. This
mapping is extended to a mapping τ ′ : UΣ → P(U∆) by defining inductively τ ′(σ(ξ1, . . . , ξk)) =
{β(ζ1, . . . , ζk) |β ∈ τ(σ), ζ1 ∈ τ ′(ξ1), . . . , ζk ∈ τ ′(ξk)} for every σ ∈ Σ, k ≥ 0, and ξ1, . . . , ξk ∈
UΣ. Note that the set (τ ′)−1(ζ) is finite for every ζ ∈ U∆. Next we extend τ ′ to a mapping
τ ′′ : S〈〈UΣ〉〉 → S〈〈U∆〉〉, called relabeling, by defining (τ ′′(r), ζ) =

∑
ξ∈UΣ,ζ∈τ ′(ξ)(r, ξ) for every

r ∈ S〈〈UΣ〉〉 and ζ ∈ U∆. In the sequel we will drop the primes from τ ′ and τ ′′. The proof of
the next lemma is again completely analogous to the ranked case (cf. Lemma 3.4 of [DV06]).

Lemma 3.3. Let r ∈ S〈〈UΣ〉〉 and τ : Σ → P(∆) be a relabeling. If r is recognizable, then
τ(r) is recognizable.

6



4 Weighted MSO-logic

In this section, we will introduce our weighted MSO-logic for trees. The set MSO(S, Σ) of all
formulas of weighted MSO-logic over S and Σ on trees is defined to be the smallest set F such
that:

1. F contains all the atomic formulas s, labelσ(x), desc(x, y), (x ≤ y), (x ⊑ y), and (x ∈ X)
and the negations ¬labelσ(x), ¬desc(x, y), ¬(x ≤ y), ¬(x ⊑ y), and ¬(x ∈ X), and

2. if ϕ and ψ are in F , then also ϕ ∨ ψ, ϕ ∧ ψ, ∃x.ϕ, ∀x.ϕ, ∃X.ϕ, ∀X.ϕ are in F ,

where s ∈ S, σ ∈ Σ, x, y are first order variables, and X is a second order variable. We denote
by MSO−(S, Σ) the fragment of all MSO(S, Σ)-formulas not containing formulas of the form s

with s ∈ S as subformulas.

In order to define the semantics of formulas with free variables, we extend the alphabet Σ in
the usual way. If V is a finite set of first and second order variables, we denote the alphabet
Σ × {0, 1}V by ΣV . A ΣV -tree ξ is valid if for every first order variable x ∈ V, ξ contains
precisely one position assigning 1 to x. The subset of UΣV

containing all valid trees is denoted
by Uv

ΣV
; clearly, the tree language Uv

ΣV
is recognizable. We put Σϕ = ΣFree(ϕ).

In the sequel we will identify a valid ΣV -tree ξ with the corresponding pair (ζ, ρ) where ζ ∈ UΣ

and ρ is a (V, ζ)-assignment; such an assignment maps first order variables in V to elements of
pos(ζ) and second order variables in V to subsets of pos(ζ).

Let ξ be an arbitrary ΣV -tree, x be a first order variable, and w ∈ pos(ξ). Then ξ[x → w] is
the ΣV∪{x}-labeled tree obtained from ξ which assigns 1 to x at position w, and 0 elsewhere.
Similarly, if X is a second order variable and I ⊆ pos(ξ), then ξ[X → I] is the ΣV∪{X}-tree
obtained from ξ which assigns 1 to X precisely at the positions in I. If here ξ = (ζ, ρ), we also
write ξ[x → w] = (ζ, ρ[x → w]) and ξ[X → I] = (ζ, ρ[X → I]). The following is analogous to
the corresponding definition for the case of strings in [DG05, DG07].

Definition 4.1. Let ϕ ∈ MSO(S, Σ) and V be a finite set of variables containing Free(ϕ). The
semantics of ϕ is the formal tree series [[ϕ]]V ∈ S〈〈UΣV

〉〉 defined as follows. If ξ ∈ UΣV
is not

valid, then we put ([[ϕ]]V , ξ) = 0. Otherwise, we define ([[ϕ]]V , ξ) ∈ S inductively as follows
where (ζ, ρ) corresponds to ξ.

([[s]]V , ξ) = s

([[labelσ(x)]]V , ξ) =

{
1 if ζ(ρ(x)) = σ

0 otherwise

([[desc(x, y)]]V , ξ) =

{
1 if there is an i such that ρ(y) = ρ(x) · i
0 otherwise

([[x ≤ y]]V , ξ) =





1 if ρ(x) = ρ(y) = ε or if there are w ∈ pos(ξ) and i, j ≥ 1
such that ρ(x) = w · i, ρ(y) = w · j, and i ≤ j

0 otherwise
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([[x ⊑ y]]V , ξ) =

{
1 if ρ(x) ⊑ξ ρ(y)
0 otherwise

([[x ∈ X]]V , ξ) =

{
1 if ρ(x) ∈ ρ(X)
0 otherwise

([[¬ϕ]]V , ξ) =

{
1 if ([[ϕ]]V , ξ) = 0
0 if ([[ϕ]]V , ξ) = 1

if ϕ is of the form labelσ(x), desc(x, y), (x ≤ y), (x ⊑ y), or (x ∈ X)

([[ϕ ∨ ψ]]V , ξ) = ([[ϕ]]V , ξ) + ([[ψ]]V , ξ)

([[ϕ ∧ ψ]]V , ξ) = ([[ϕ]]V , ξ) · ([[ψ]]V , ξ)

([[∃x.ϕ]]V , ξ) =
∑

w∈pos(ξ)([[ϕ]]V∪{x}, ξ[x → w])

([[∀x.ϕ]]V , ξ) =
∏

w∈pos(ξ)([[ϕ]]V∪{x}, ξ[x → w])

([[∃X.ϕ]]V , ξ) =
∑

I⊆pos(ξ)([[ϕ]]V∪{X}, ξ[X → I])

([[∀X.ϕ]]V , ξ) =
∏

I⊆pos(ξ)([[ϕ]]V∪{X}, ξ[X → I])

where in the product over pos(ξ) we follow the depth-first left-to-right traversal ⊑ξ over pos(ξ);
moreover, for the product over subsets I of pos(ξ), we employ the lexicographic linear order on
the set {0, 1}pos(ξ) of pos(ξ)-sequences of 0’s and 1’s where the sequences are ordered according
to ⊑ξ. ¤

We write [[ϕ]] rather than [[ϕ]]Free(ϕ). Let Z ⊆ MSO(S, Σ). A tree series r ∈ S〈〈UΣ〉〉 is called
Z-definable if there is a sentence ϕ ∈ Z such that r = [[ϕ]].

We note that, whereas in classical logic both disjunction and conjunction distribute over each
other, in general semirings only multiplication distributes over addition, and hence in our
weighted logic only conjunction distributes over disjunction. This phenomenon is well known
already in many-valued logics, e.g., restrictions of the ÃLukasiewicz logic.

As in the string case (Proposition 3.3 of [DG07]) and the ranked tree case (Lemma 4.7 of
[DV06]) we note that the semantics [[ϕ]]V for every V containing Free(ϕ) are consistent, which
follows by a standard induction on the structure of ϕ.

Lemma 4.2. Let ϕ ∈ MSO(S, Σ) and V a finite set of variables containing Free(ϕ). Then,
for every (ζ, ρ) ∈ Uv

ΣV
, we have that ([[ϕ]]V , (ζ, ρ)) = ([[ϕ]], (ζ, ρ|Free(ϕ))). In particular, [[ϕ]]

is recognizable iff [[ϕ]]V is recognizable, and [[ϕ]] is a recognizable step function iff [[ϕ]]V is a
recognizable step function.

Now we recall how the classical equivalence result between MSO-definable and recognizable tree
languages [Lib05, Nev02, NS02] can be formulated in the present context. Let ϕ ∈ MSO−(B, Σ).
The tree language defined by ϕ, denoted by L(ϕ), is the set supp([[ϕ]]). We call a tree language
L ⊆ Uv

ΣV
definable if there is an MSO−(B, Σ)-formula ϕ with Free(ϕ) ⊆ V such that L = L(ϕ).

Using the bijection between tree languages and characteristic series, it is easy to see that
this notion coincides with the usual definition of definability for tree languages. Then a tree
language L ⊆ UΣ is recognizable iff L is definable by a sentence over Σ.
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5 Unambiguous formulas

Here we introduce unambiguous formulas for trees; for this we follow the lines of [DG09]. As
motivation, consider ϕ, ψ ∈ MSO(N, Σ) over the semiring N of natural numbers and suppose
that [[ϕ]] and [[ψ]] both assume only values 0 or 1. Then [[ϕ∨ψ]] may assume value 2, and [[∃x.ϕ]]
may assume arbitrarily high numbers as value. Next we introduce a subclass of formulas for
which this phenomenon cannot occur.

Definition 5.1 ([DG07], Def. 5.1). The class of unambiguous formulas in MSO(S, Σ) is defined
inductively as follows:

1. Every atomic formula of the form labelσ(x), desc(x, y), (x ≤ y), (x ⊑ y), or (x ∈ X), and
their negations are unambiguous.

2. If ϕ, ψ are unambiguous, then ϕ ∧ ψ, ∀x.ϕ, and ∀X.ϕ are unambiguous.

3. If ϕ, ψ are unambiguous and supp([[ϕ]]) ∩ supp([[ψ]]) = ∅, then ϕ ∨ ψ is unambiguous.

4. Let ϕ be unambiguous and V = Free(ϕ). If for every ξ ∈ UΣV
there is at most one

position w ∈ pos(ξ) such that ([[ϕ]]V∪{x}, ξ[x → w]) 6= 0, then ∃x.ϕ is unambiguous.

5. Let ϕ be unambiguous and V = Free(ϕ). If for every ξ ∈ UΣV
there is at most one set

I ⊆ pos(ξ) such that ([[ϕ]]V∪{X}, ξ[X → I]) 6= 0, then ∃X.ϕ is unambiguous.

Proposition 5.2 ([DG07], Prop. 5.2). Let ϕ ∈ MSO(S, Σ) be unambiguous. Then, viewing
ϕ as an MSO−(B, Σ)-formula defining the tree language L(ϕ), it holds that [[ϕ]] = 1L(ϕ). In
particular, [[ϕ]] is a recognizable step function.

Proof. We proceed by structural induction similar to [DG07]. We note that, if ϕ = (x ⊑ y),
then L(ϕ) is a recognizable tree language by our choice of the linear order ⊑ξ.

Next we note that there is a purely syntactic definition of formulas ϕ+ and ϕ− in MSO−(S, Σ)
for any ϕ ∈ MSO−(S, Σ) with the following properties:

• the formulas ϕ+ and ϕ− are unambiguous,

• L(ϕ+) = L(ϕ) and L(ϕ−) = L(¬ϕ), and

• [[ϕ+]] = 1L(ϕ) and [[ϕ−]] = 1L(¬ϕ).

For this we can proceed completely analogously to Definition 4.3 of [DG09] using the atomic
formula x ⊑ y for first order quantifications. Extending [DV06], this includes the case of
formulas containing set quantifiers for which we extend the depth-first left-to-right ordering on
pos(ξ) to the lexicographic linear order on the set {0, 1}pos(ξ) of subsets of pos(ξ).

Moreover, for any ϕ, ψ ∈ MSO−(S, Σ), we define the formulas ϕ
+
→ ψ and ϕ

+
↔ ψ in

MSO−(S, Σ) as follows: ϕ
+
→ ψ = ϕ− ∨ (ϕ+ ∧ψ+) and ϕ

+
↔ ψ = (ϕ+ ∧ψ+)∨ (ϕ− ∧ψ−). Using

this, we define a formula to be syntactically unambiguous if it is of the form ϕ+, ϕ−, ϕ
+
→ ψ or

ϕ
+
↔ ψ for ϕ, ψ ∈ MSO−(S, Σ). Clearly, each syntactically unambiguous formula is unambigu-

ous.
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Proposition 5.3. For each classical MSO-sentence ϕ, we can effectively construct a syntacti-
cally unambiguous MSO(S, Σ)-sentence ϕ′ defining the same language, i.e., [[ϕ′]] = 1L(ϕ).

Proof. Using also conjunctions and universal quantifications, transform ϕ into an equivalent
MSO-sentence ψ in which negation is only applied to atomic formulas. Then put ϕ′ = ψ+.

In the next example and also later (in the proof of Theorem 6.9) we will use the following
macro. For ϕ ∈ MSO−(S, Σ) and ψ ∈ MSO(S, Σ) let ϕ → ψ = ϕ− ∨ (ϕ+ ∧ ψ). Then for each
ξ ∈ UΣ we have that

([[ϕ → ψ]], ξ) =

{
([[ψ]], ξ) if ξ ∈ L(ϕ)

1 otherwise.

Example 5.4. We will show that the series #αα of Example 3.1 is MSO(Trop, Σ)-definable.
For this we construct the MSO(Trop, Σ)-formula

count = ∀x.∀y1.∀y2.

((
firstChild(x, y1) ∧ next(y1, y2) ∧ labelα(y1) ∧ labelα(y2)

)
→ 1

)

where we use the macros:

firstChild(x, y) = desc(x, y) ∧ ∀z.(desc(x, z)
+
→ y ≤ z)

next(y1, y2) = (y1 ≤ y2) ∧ ¬(y2 ≤ y1) ∧ ∀z.
(
y1 ≤ z

+
→ (z ≤ y1 ∨ y2 ≤ z)

)
.

Clearly, the implication in count can only yield the semiring-1, i.e., the natural number 0,
or the semiring-constant 1, which is the natural number 1. Since universal quantification is
interpreted in Trop as the summation of natural numbers, it is easy to see that [[count]] = #αα.
¤

Finally we give a characterization of recognizable step functions. For this we define the col-
lection of almost unambiguous formulas in MSO(S, Σ), denoted by auMSO(S, Σ), to be the
smallest subset of MSO(S, Σ) containing all constants s (s ∈ S) and all syntactically unam-
biguous formulas and which is closed under disjunction and conjunction. We call two formulas
ϕ, ψ ∈ MSO(S, Σ) equivalent if [[ϕ]] = [[ψ]]. Since in S multiplication distributes over addition,
one can check that each almost unambiguous formula ψ is equivalent to a formula ψ′ of the
form ψ′ =

∨n
j=1(ψ

+
j ∧ sj) for some n ∈ N, sj ∈ S, and ψj ∈ MSO−(S, Σ) (j = 1, . . . , n).

Proposition 5.5. For each ψ ∈ auMSO(S, Σ), the series [[ψ]] is a recognizable step function.
Conversely, each recognizable step function r ∈ S〈〈UΣ〉〉 is auMSO(S, Σ)-definable.

Proof. The first part is a consequence of the description of ψ noted before, Lemma 4.2 and
Proposition 3.2. For the converse, let r =

∑n
i=1 1Li

· si. Since each language Li (i = 1, . . . , n)
is recognizable, it is definable by an MSO−(B, Σ)-sentence ϕi. Now we consider ϕi as an
MSO−(S, Σ)-sentence. Then ψ =

∨n
i=1 ϕ+

i ∧ si is almost unambiguous and defines r.

6 Syntactically restricted weighted MSO-logic

In this section we present our syntactically defined weighted MSO-logic and show our first main
result.

For an arbitrary formula ϕ ∈ MSO(S, Σ), let val(ϕ) denote the set containing all values of S

occurring in ϕ. Now we define the syntactically restricted MSO(S, Σ)-formulas as in [DG09].
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Definition 6.1. A formula ϕ ∈ MSO(S, Σ) is called syntactically restricted, if it satisfies the
following conditions:

1. Whenever ϕ contains a conjunction ψ∧ψ′ as subformula but not in the scope of a universal
first order quantifier, then val(ψ) and val(ψ′) commute elementwise.

2. Whenever ϕ contains ∀X.ψ as a subformula, then ψ is a syntactically unambiguous
formula.

3. Whenever ϕ contains ∀x.ψ as a subformula, then ψ is almost unambiguous.

We let srMSO(S, Σ) denote the set of all syntactically restricted formulas of MSO(S, Σ).

Here condition (1) requires us to be able to check for s, s′ ∈ S whether s · s′ = s′ · s. We
assume this basic ability to be given in syntax checks of formulas from MSO(S, Σ). Note that
for ψ, ψ′ ∈ MSO(S, Σ), val(ψ) and val(ψ′) trivially commute elementwise, if S is commutative
(which was the general assumption of [DV06]) or if ψ or ψ′ is in MSO−(S, Σ), thus in particular,
if ψ or ψ′ is unambiguous. Hence for each MSO(S, Σ)-formula ϕ it can be easily checked
effectively whether ϕ is syntactically restricted or not.

A formula ϕ ∈ MSO(S, Σ) is existential, if it is of the form ϕ = ∃X1. . . .∃Xn.ψ where ψ does
not contain any set quantifier. The set of all syntactically restricted and existential formulas
of MSO(S, Σ) is denoted srEMSO(S, Σ).

The first three main results of our paper are summarized in the following theorem; it will be
proved in Subsections 6.1 and 6.2.

Theorem 6.2. Let S be any semiring and Σ an alphabet. Let r ∈ S〈〈UΣ〉〉 be a tree series. The
following implications hold.

1. If r is srMSO(S, Σ)-definable, then r is recognizable.

2. If r is recognizable, then r is MSO-definable.

3. If S is commutative and r is recognizable, then r is srEMSO(S, Σ)-definable.

We note that our proofs will be effective. That is, given a syntactically restricted sentence ϕ of
MSO(S, Σ), we can construct a wta M with rM = [[ϕ]] (provided the operations of S are given
effectively). For the converse, given M , we will explicitly describe a sentence ϕ ∈ srEMSO(S, Σ)
with [[ϕ]] = rM .

Slightly extending [DV06], we call an MSO(S, Σ)-formula ϕ restricted, if

1. Whenever ϕ contains a conjunction ψ∧ψ′ as subformula but not in the scope of a universal
first order quantifier, then val(ψ) and val(ψ′) commute elementwise.

2. Whenever ϕ contains ∀X.ψ as a subformula, then ψ is an unambiguous formula.

3. Whenever ϕ contains ∀x.ψ as a subformula, then [[ψ]] is a recognizable step function.

Note that in particular conditions (2) and (3) are not purely syntactic, but use the semantics
of formulas. By Proposition 5.5 clearly each syntactically restricted formula ϕ ∈ MSO(S, Σ)
is restricted. Vice versa, by Propositions 5.5 and 5.3 each restricted formula is equivalent to a
syntactically restricted formula.
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6.1 Definable series are recognizable

As in the string case [DG07, DG09] and that of ranked trees [DV06], we prove this implication by
induction on the structure of the formula. For any formula ϕ ∈ MSO(S, Σ), we let Sϕ = Sval(ϕ),
the subsemiring of S generated by all constants occuring in ϕ.

Lemma 6.3. Let ϕ, ψ ∈ MSO(S, Σ).

1. Let ϕ be atomic or the negation of an atomic formula. Then [[ϕ]] is a recognizable step
function.

2. If [[ϕ]] and [[ψ]] are recognizable tree series, then [[ϕ ∨ ψ]] is recognizable.

3. Assume that val(ϕ) and val(ψ) commute elementwise and that [[ϕ]] ∈ Rec(Sϕ, Σϕ) and
[[ψ]] ∈ Rec(Sψ, Σψ). Then [[ϕ ∧ ψ]] is recognizable.

4. If [[ϕ]] is recognizable, then [[∃x.ϕ]] and [[∃X.ϕ]] are recognizable.

5. If ϕ is unambiguous, then [[∀X.ϕ]] is a recognizable step function.

Proof. 1. If ϕ = s where s ∈ S, then [[ϕ]] = 1UΣ
· s is a recognizable step function. For the

other cases apply Proposition 5.2.

2. and 3. Let V = Free(ϕ) ∪ Free(ψ). By Definition 4.1, [[ϕ ∨ ψ]] = [[ϕ]]V + [[ψ]]V and [[ϕ ∧ ψ]] =
[[ϕ]]V ⊙ [[ψ]]V . Now we can apply Proposition 3.2 and Lemma 4.2.

4. Analogous to the corresponding result for ranked trees (compare [DV06]), using Lemma 3.3.

5. Since ϕ is unambiguous, so is ∀X.ϕ, and we can apply Proposition 5.2.

For the proof that recognizability is preserved under universal first order quantification, we use
the proof technique of [DG07, DG09].

Lemma 6.4. Let ϕ ∈ MSO(S, Σ) such that [[ϕ]] is a recognizable step function. Then [[∀x.ϕ]]
is recognizable.

Proof. Let W = Free(ϕ) ∪ {x} and V = Free(∀x.ϕ) = W \ {x}. By Proposition 4.2, [[ϕ]]W =∑n
j=1 1Lj

· sj for some n ≥ 0, sj ∈ S, and recognizable tree languages L1, . . . , Ln ⊆ UΣW
. We

can assume that the sets L1, . . . , Ln form a partition of UΣW
.

Let Σ̃ = Σ × {1, . . . , n}. A tree ξ ∈ UeΣV
corresponds to the tuple (ζ, ν) where ζ ∈ UΣV

is obtained from ξ by dropping the second component from the label of every node, and
ν : pos(ξ) → {1, . . . , n} is defined by ν(w) = j if ξ(w) = (σ, j, f) for some σ ∈ Σ and
f ∈ {0, 1}V . Vice versa, every such tuple (ζ, ν) corresponds to a tree ξ ∈ UeΣV

. Hence we can
assume that elements of UeΣV

have the form (ζ, ν). Then let

L̃ = {(ζ, ν) ∈ UeΣV
| ∀w ∈ pos(ζ), 1 ≤ j ≤ n : if ν(w) = j, then ζ[x → w] ∈ Lj}.

Note that for every ζ ∈ UΣV
there is a unique ν such that (ζ, ν) ∈ L̃, because the Lj ’s form a

partition of UΣW
. Next we claim that L̃ is a recognizable tree language.
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Let j ∈ {1, . . . , n}. Since Lj ⊆ UΣW
is a recognizable tree language, Lj is definable by a sentence

ψj over ΣW . By a standard procedure, we can find a formula ψ′
j over Σ with Free(ψ′

j) ⊆ W
which defines Lj .

Now we can follow the argument in the proof of Lemma 5.4 of [DG09] to obtain a sentence
defining the language L̃, proving our claim.

By Theorem 3.1 of [Lib06] (also cf. [Nev99]) there is a wta M̃ = (Q̃, Σ̃V , Ã, F̃ ) over B such that

L(M̃) = L̃. We can assume that M̃ is deterministic. Now we define the wta M = (Q̃, Σ̃V , A, γ)
over S by constructing, for every q ∈ Q̃ and (σ, l, f) ∈ Σ̃V , a wsa Aq,(σ,l,f) over S and Q̃ such

that for every m ≥ 0 and q1, . . . , qm ∈ Q̃,

(||Aq,(σ,l,f)||, q1 . . . qm) =

{
sl if (||Ãq,(σ,l,f)||, q1, . . . , qm) = 1

0 otherwise .

It is obvious how to construct such a Aq,(σ,l,f). Moreover, for every q ∈ Q̃, we define γ(q) = 1

if q ∈ F̃ , and 0 otherwise. Clearly, M is also deterministic. Thus, for every (ζ, ν) ∈ UeΣV
, we

have that

(rM , (ζ, ν)) =

{ ∏
w∈pos(ζ) sν(w) if (ζ, ν) ∈ L̃

0 otherwise .

Now we define the deterministic relabeling τ : S〈〈UeΣV
〉〉 → S〈〈UΣV

〉〉 by τ((σ, ν, f)) = (σ, f) for

every (σ, ν, f) ∈ Σ̃V . Then for ζ ∈ UΣV
let ν : pos(ζ) → {1, . . . , n} is the unique mapping such

that (ζ, ν) ∈ L̃. Observing the form of [[ϕ]], we have:

(τ(rM ), ζ) =
∑

(ζ,θ)∈τ−1(ζ)(rM , (ζ, θ)) = (rM , (ζ, ν)) =
∏

w∈pos(ζ) sν(w)

=
∏

w∈pos(ζ)([[ϕ]], ζ[x → w]) = ([[∀x.ϕ]], ζ).

Hence τ(rM ) = [[∀x.ϕ]] and thus, by Lemma 3.3, [[∀x.ϕ]] is recognizable.

Theorem 6.5. Let ϕ ∈ MSO(S, Σ) be restricted. Then [[ϕ]] ∈ Rec(S, Σ).

Proof. We claim that [[ϕ]] ∈ Rec(Sϕ, Σϕ) for any formula ϕ ∈ MSO(S, Σ), which implies the
result. Our claim follows by induction over the structure of ϕ from Lemma 6.3 and 6.4, applied
to suitable subsemirings of S.

Corollary 6.6. Let S be a computable semiring. There is an effective procedure which produces,
for a given srMSO(S, Σ)-formula ϕ, a wta M such that [[ϕ]] = rM .

Proof. We can construct M by following the proof of Proposition 5.5 and Theorem 6.5.

6.2 Recognizable series are definable

In this section we will construct for each wta M an MSO-sentence θM such that rM = [[θM ]].
Moreover, if S is , then we can even take θM to be a syntactically restricted existential MSO-
sentence.

When proving that for every wta M = (Q,Σ, A, γ) the tree series rM is definable, we will have
to specify the behavior of the wsa Aq,σ on an input tree ξ by means of a formula. In order
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to do this succinctly, we make the following assumptions for the rest of this section. Each
wsa Aq,σ is described by the tuple (Pq,σ, λq,σ, µq,σ, νq,σ). We assume that the state sets of two
different wsa are disjoint. Moreover, we denote the union of all the state sets Pq,σ, initial weight
mappings λq,σ, transition functions µq,σ, and final weight mappings νq,σ by PA, λA, µA, and
νA, respectively. Moreover, Q and PA are disjoint. Given a triple α of elements, we denote by
αi its i-th component (1 ≤ i ≤ 3).

Definition 6.7. Let M = (Q,Σ, A, γ) be a wta and ξ ∈ UΣ.

• The set of all Q-transitions (of M) is the set BM =
⋃

q∈Q,σ∈Σ Pq,σ × Q × Pq,σ.

• An extended run on ξ is a triple (q, s, t) where q ∈ Q, s : pos(ξ) \ {ε} → BM , and
t : posleaf(ξ) → PA where posleaf(ξ) are the positions of ξ which are leaves.

• An extended run (q, s, t) on ξ is valid if for every w ∈ pos(ξ) the following conditions
hold:

1. for every i with 1 ≤ i ≤ rkξ(w), we have that s(wi)1, s(wi)3 ∈ Pq,ξ(w) if w = ε, and
s(wi)1, s(wi)3 ∈ Ps(w)2,ξ(w) otherwise,

2. for every i with 1 ≤ i ≤ rkξ(w) − 1 we have that s(wi)3 = s(w(i + 1))1, and

3. if w ∈ posleaf(ξ) and w = ε (i.e., ξ ∈ Σ), then t(w) ∈ Pq,ξ(ε) and

if w ∈ posleaf(ξ) and w 6= ε, then t(w) ∈ Ps(w)2,ξ(w).

• The set of all valid extended runs on ξ is denoted by Re
M (ξ).

• For every valid extended run (q, s, t) on ξ we define its weight wt(q, s, t) ∈ S by

wt(q, s, t) =
∏

w∈pos(ξ)

wt(q, s, t)w

where in the product we follow the depth-first left-to-right traversal over pos(ξ); and for
every w ∈ pos(ξ) \ posleaf(ξ) we let

wt(q, s, t)w = λA(s(w1)1) · µA(s(w1)) · . . . · µA(s(w rkξ(w))) · νA(s(w rkξ(w))3);

if w ∈ posleaf(ξ), we let wt(q, s, t)w = λA(t(w)) · νA(t(w)).

Clearly, for every ξ ∈ UΣ, we can express the weight of a run κ ∈ RM (ξ) also in terms of the
weights of extended runs. For this we define the mapping projξ : Re

M (ξ) → RM (ξ) for every
(q, s, t) ∈ Re

M (ξ) and w ∈ pos(ξ) by

projξ((q, s, t))(w) =

{
q if w = ε

s(w)2 otherwise.

Observation 6.8. Let M = (Q,Σ, A, γ) be a wta. Then for every run κ ∈ RM (ξ) we have
that

wtM (κ) =
∑

(q,s,t)∈proj−1
ξ

(κ)

wt(q, s, t).
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Proof. This follows directly from the definition of wtM (κ), applying the distributivity law
(which preserves the order of the factors) and putting all the individual runs of the wsa at
positions of ξ together to a single extended run on ξ.

Theorem 6.9. Let r ∈ S〈〈UΣ〉〉 be recognizable. Then r is MSO-definable. Moreover, if S is
commutative, then r is srEMSO(S, Σ)-definable.

Proof. Let r be recognized by some wta M = (Q,Σ, A, γ) over S. As preparation for the proof
of both statements, we will first describe valid extended runs on trees in UΣ by means of an
srMSO(S, Σ)-formula validM .

Subsequently we will use second order variables Xq (q ∈ Q), Yt (t ∈ BM ), and Zp (p ∈ P ).
We choose arbitrary but fixed enumerations Q = {q1, . . . , qn}, BM = {t1, . . . , tm}, and P =
{p1, . . . , pl}. In finite conjunctions (and disjunctions) over the index sets Q, BM , and P we
follow the ordering induced by these enumerations.

Recall the macros next(x, y) and firstChild(x, y) from Example 5.4. Moreover, let

• root(x) = ∀y.¬(desc(y, x)) and ¬root(x) = ∃y.desc(y, x),

• leaf(x) = ∀y.¬desc(x, y) and ¬leaf(x) = ∃y.firstChild(x, y), and

• lastChild(x, y) = desc(x, y) ∧ ∀z.(desc(x, z)
+
→ z ≤ y).

The extended run formula is the formula runM ∈ MSO−(Σ) which checks whether the given
structure corresponds to an extended run. Formally,

runM = ∀x.

(
runM,1(x) ∧ runM,2(x) ∧ runM,3(x)

)

where

runM,1(x) = root(x)
+
→

( ∨
q∈Q

(x ∈ Xq) ∧
∧

q′∈Q,
q′ 6=q

¬(x ∈ Xq) ∧
∧

t∈BM

¬(x ∈ Yt)

)

runM,2(x) = ¬root(x)
+
→

( ∨
t∈BM

(x ∈ Yt) ∧
∧

t′∈BM ,
t′ 6=t

¬(x ∈ Yt′) ∧
∧

q∈Q ¬(x ∈ Xq)

)

runM,3(x) =

(
leaf(x)

+
→

∨
p∈P

(
(x ∈ Zp) ∧

∧
p′∈P,
p′ 6=p

¬(x ∈ Zp′)
))

∧

(( ∨
p∈P

(x ∈ Zp)
)

+
→ leaf(x)

)

Next we define the formula validM which has all the valid extended runs as models. We set

validM =

(
runM ∧ validM,1 ∧ validM,2 ∧ validM,3

)+

where validM,i describes Property (i) of the definition of valid extended runs. Formally,

validM,1 = ∀x.
∧

σ∈Σ

∧
q∈Q

∧
(p,q,p′)∈BM

(
labelσ(x) ∧ ((x ∈ Xq) ∨ (x ∈ Y(p,q,p′)))

)
+
→ inY (x, q, σ)
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where inY (x, q, σ) = ∀y. desc(x, y)
+
→

∨
p1,p2∈Pq,σ,

q′∈Q

(y ∈ Y(p1,q′,p2))

validM,2 = ∀x.∀y. next(x, y)
+
→

( ∧
(p,q,p′)∈BM

(x ∈ Y(p,q,p′))
+
→

∨
(p′′,q′,p)∈BM ,

p′=p′′

(y ∈ Y(p′′,q′,p))

)

validM,3 = ∀x.
∧

σ∈Σ

∧
q∈Q

∧
(p,q,p′)∈BM(

leaf(x)∧labelσ(x)∧((x ∈ Xq)∨(x ∈ Y(p,q,p′)))
+
→

∨
p∈Pq,σ

(x ∈ Zp)
)
.

Now we prove the first statement of the theorem. Intuitively, we describe the weight of a valid
extended run by means of the formula ϕM . According to the definition, the outermost universal
quantification over x performs a depth-first left-to-right traversal over the input tree ξ, thereby
touching the positions of ξ in the linear ordering ⊑ξ. When a leaf w ∈ pos(ξ) with label σ and
state p ∈ PA is next, the interpretation of the formula accumulates the product λA(p) · νA(p).
When a non-leaf w is next, it accumulates the initial weight λA(p) if the valid extended run on
ξ at w1 is the state (p, q, p′) for some q, p′; moreover, using another universal quantification, the
descendants of w are traversed one by one from left to right, and at each descendant the value
µA(p, q, p′) is appended to the current product; at the last child of w, additionally the value
νA(p′) is taken into the product as its last factor. Finally, at the root of ξ, the root weight is
accumulated. Recall the definition of the macro ϕ → ψ given before Example 5.4.

ϕM = validM ∧

∀x.

[(
leaf(x) →

∧
p∈P

(
(x ∈ Zp) → λA(p) · νA(p)

))

∧

(
¬leaf(x) → ∀y.

∧
(p,q,p′)∈BM

([
(firstChild(x, y) ∧ (y ∈ Y(p,q,p′))) → λA(p)

]

∧
[
(desc(x, y) ∧ (y ∈ Y(p,q,p′))) → µA(p, q, p′)

]

∧
[
(lastChild(x, y) ∧ (y ∈ Y(p,q,p′))) → νA(p′)

]))

∧

(
root(x) →

∨
q∈Q((x ∈ Xq) ∧ γ(q))

)]

Due to the nested universal quantification, the formula ϕM is not syntactically restricted.
Finally, let

θM = ∃Xq1 . . . .∃Xqn .∃Yt1 . . . .∃Ytm .∃Zp1 . . . .∃Zpl
. ϕM .

Then, by Observation 6.8 and the analysis of the weights of valid extended runs, we obtain
rM = [[θM ]].

Now let us prove the second statement of the theorem and assume that S is commutative.
Then we replace in θM the formula ϕM by the formula ϕ∗

M and obtain the formula θ∗M .

ϕ∗
M = validM ∧ ∀y.

[(
leaf(y) →

∧
p∈P ((y ∈ Zp) → λA(p) · νA(p))

)

∧

( ∧
(p,q,p′)∈BM

([
(∃x.firstChild(x, y) ∧ (y ∈ Y(p,q,p′))) → λA(p)

]

∧
[
(y ∈ Y(p,q,p′)) → µA(p, q, p′)

]
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∧
[
(∃x.lastChild(x, y) ∧ (y ∈ Y(p,q,p′))) → νA(p′)

]))

∧

(
root(y) →

∨
q∈Q((y ∈ Xq) ∧ γA(q))

)]
.

Now it can be easily checked that θ∗M is syntactically restricted. Since S is commutative, we
obtain that [[θ∗M ]] = rM .

Finally we show that the conditions in Theorem 6.9(2) on the commutation of elements cannot
be dropped.

Theorem 6.10. There is a semiring S and a recognizable tree series r ∈ S〈〈UΣ〉〉 which is not
srMSO(Σ, S)-definable.

Proof. We consider the semiring S of finite formal languages S = (Fin({a, b}∗),∪, ◦, ∅, {ε})
where Fin({a, b}∗) comprises all finite subsets of {a, b}∗ and ◦ is the usual (non-commutative)
concatenation of formal languages; we will identify a singleton {w} ∈ P({a, b}∗) with its element
w. Let Σ = {σ} and flat ∈ S〈〈UΣ〉〉 be the tree series such that for every ξ ∈ UΣ we have that

(flat, ξ) =





anbn if ξ = σ(σ, . . . , σ︸ ︷︷ ︸
n

) for some n ≥ 1

∅ otherwise

Now consider the wta M = (Q,Σ, A, γ) over S where Q = {q0, q1}, γ(q0) = ∅, and γ(q1) = {ε}.
Moreover, for every q ∈ Q we need a wsa Aq,σ such that for every w ∈ Q∗ we have

(||Aq0,σ||, w) =

{
a if w = ε

∅ otherwise

and

(||Aq1,σ||, w) =

{
bn if w = qn

0 and n ≥ 1
∅ otherwise

It is clear that such two wsa exist, and in fact, rM = flat.

We prove that flat 6∈ srMSO(Σ, S) by contradiction. Assume that ϕ is a sentence in
srMSO(Σ, S) such that [[ϕ]] = flat. We translate the scenario on trees into one on words.
For this we transform the tree ξ = σ(σ, . . . , σ︸ ︷︷ ︸

n

) into the word ξ′ = σ . . . σ︸ ︷︷ ︸
n

σ, and the sentence ϕ

into a sentence ϕ′ of the syntactically restricted weighted MSO on words (as defined in [DG09])
such that ([[ϕ]], ξ) = ([[ϕ′]], ξ′). The sentence ϕ′ is obtained from ϕ by replacing

• x ⊑ y by: x ≤ y,

• x ≤ y by:
(
(x = y) ∧ max(y)

)
∨

(
∃z.(x ≤ y) ∧ (y ≤ z) ∧ ¬(z ≤ y)

)+
,

• desc(x, y) by: max(x) ∧ ¬(x ≤ y)

where max(y) is the macro ∀z.z ≤ y. Since ϕ is syntactically restricted, so is ϕ′.
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By Theorem 4.7 of [DG09], the power series [[ϕ′]] is recognizable by a wsa A over S and Σ.
That is, for the input word σn+1 the wsa A computes the semiring value anbn, for every n ≥ 1.
But this will lead to a contradiction using a pumping argument as follows.

We choose n = |P | · l + 1 where P is the set of states of A and l is the maximal length of a
word which occurs in the initial-final weight function and the transitions of A. Due to S and
the fact that ([[ϕ′]], σn+1) = anbn, there is at least one path of A with label σn+1 and weight
anbn. This path is longer than |P |, thus it uses a state at least twice. Now consider an input
word σk+n+1 where k is the length of the identified cycle. Since (||A||, σk+n+1) = ak+nbk+n, the
cycle must have a weight 6= ε, and an easy analysis of its weight yields a contradiction.

7 The ranked case

In this section we derive from the results of the previous sections the fact that every ranked
tree series r over an arbitrary semiring is recognizable if and only if it is definable by a ranked
srEMSO(S, Σ)-sentence. For this we first introduce recognizable ranked trees series and ranked
srEMSO(S, Σ)-logic.

A ranked alphabet is a tuple (Σ, rk) such that Σ is an alphabet and the mapping rk : Σ → N

associates with every symbol σ a natural number, called the rank of σ. Then Σ(k) = {σ ∈
Σ | rk(σ) = k} (k ∈ N). A ranked Σ-tree over (Σ, rk) is a Σ-tree ξ such that rk(ξ(w)) = rkξ(w)
for every w ∈ pos(ξ). We denote the set of ranked Σ-trees by TΣ; clearly, TΣ ⊆ UΣ. Thus, in a
Σ-tree ξ (in contrast to ranked trees) there can be different positions w, w′ ∈ pos(ξ) which are
labeled by the same symbol (i.e., ξ(w) = ξ(w′)), but the ranks of w and w′ are different (i.e.,
rkξ(w) 6= rkξ(w

′)).

A weighted ranked tree automaton over S (for short: ranked wta) is a tuple N = (Q,Σ, µ, γ)
where Q is a finite nonempty set (of states), Σ is the ranked alphabet (of input symbols),

µ = (µk | k ∈ N) is a family of transition mappings µk : Σ(k) → SQk×Q, and γ : Q → S (the
root weight function).

A run of N on ξ ∈ TΣ is a mapping κ : pos(ξ) → Q. Then the weight wtN (κ) ∈ S of κ is
defined by

wtN (κ) =
∏

w∈pos(ξ)

µk(σ)κ(w1)...κ(wk),κ(w)

where, in the product, we follow the linear ordering ⊑ξ. The set of all runs of N on ξ is
denoted by RN (ξ). The run semantics of N is the tree series rN ∈ S〈〈TΣ〉〉 such that for every
ξ ∈ TΣ

(rN , ξ) =
∑

κ∈RN (ξ)

wt(κ) · γ(κ(ε)).

The next lemma shows an obvious relationship between ranked wta and wta restricted to
ranked trees. For a ranked wta (Q,Σ, µ, γ) we call Σ its input alphabet; similarly for wta.

Lemma 7.1.

1. For every ranked wta N with ranked input alphabet Σ there is a wta M such that (rM )|TΣ
=

rN and (rM )|(UΣ\TΣ) = 0̃.
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2. For every wta M with input alphabet Σ there is a ranked wta N such that (rM )|TΣ
= rN .

Proof. For the first statement let N = (Q,Σ, µ, γ) be a ranked wta. For every q ∈ Q, k ≥ 0, and
σ ∈ Σ(k) we define the power series rq,σ ∈ S〈〈Q∗〉〉 by letting (rq,σ, ~q) = µk(σ)~q,q if ~q ∈ Qk, and 0
otherwise. Clearly, there is a wsa Aq,σ such that rq,σ = ||Aq,σ||. Then the wta M = (Q,Σ, A, γ)
satifies statement 1.

The construction for the second statement is, roughly speaking, the reverse of that one for the
first statement.

The ranked weighted MSO-logic is the same as the weighted MSO-logic, but we drop the atomic
formulas of the form desc(x, y) and (x ≤ y), and we add the atomic formulas edgei(x, y) where
1 ≤ i ≤ maxΣ and maxΣ = max{k | Σ(k) 6= ∅}. Note that we keep the atomic formula (x ⊑ y)
because they are needed in the disambiguation ϕ+ of a formula ϕ.

Theorem 7.2. Let Σ be a ranked alphabet, S be an arbitrary semiring, and r ∈ S〈〈TΣ〉〉.
Then r is recognizable if and only if r is definable by a syntactically restricted ranked weighted
MSO-sentence.

This result follows immedately from Lemmas 7.3 and 7.4 given below. First we show:

Lemma 7.3. Let Σ be a ranked alphabet and ϕ be a syntactically restricted ranked weighted
MSO-sentence. Then [[ϕ]] ∈ S〈〈TΣ〉〉 is recognizable.

Proof. Given ϕ, we can construct the weighted MSO-sentence ψ by replacing in ϕ every atomic
formula edgei(x, y) by the macro:


∃y1. . . .∃yi.firstChild(x, y1) ∧

∧

1≤j≤i−1

next(yj , yj+1) ∧ (yi = y)




+

.

Then ψ is syntactically restricted and clearly, [[ϕ]] = [[ψ]]|TΣ
. By Theorem 6.5 there is a wta

M such that rM = [[ψ]]. By Lemma 7.1(2) there is a ranked wta N such that rN = (rM )|TΣ
.

Hence [[ϕ]] = rN .

Lemma 7.4. Let Σ be a ranked alphabet and r ∈ S〈〈TΣ〉〉 be recognizable. Then r is definable
by a syntactically restricted ranked weighted MSO-sentence.

Proof. Let N = (Q,Σ, µ, γ) be a ranked wta. The set of all transitions at Σ-symbols is the set
BN = {(~q, σ, q) | m ≥ 0, ~q ∈ Qm, σ ∈ Σ(m), q ∈ Q}. Choose an unambiguous run-formula ψ

with free variables Yt where t ∈ BN (e.g., as in Definition 5.10 of [DV06]) such that for every
ξ ∈ TΣ, there is a bijection between the set RN (ξ) and the set of those assignments (ξ, ρ) which
satisfy ψ. Then, we define the weighted MSO-sentence

ϕ = ψ∧∀y.

( ∧

(~q,σ,q)∈BN

~q∈Qm,m≥0

[
(y ∈ Y(~q,σ,q)) → µm(σ)~q,q

]
∧

[
root(y) →

∨

(~q,σ,q)∈BN

(y ∈ Y(~q,σ,q))∧γ(q)
])

Then ϕ is syntactically restricted and rN = [[ϕ]].
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8 An XML example

In this section we show how formulas of weighted MSO-logic can be used to specify quantitative
queries in XML-oriented databases. In fact, every formula used here will be syntactically
restricted. For this purpose, let us assume that we want to maintain our private database in
which we have stored all the bibtex entries which are relevant for our work. The syntax of such
a database bibliography can be easily expressed by the following document type definition
(DTD) [ABS00, KSS03, BPSM98] (here we only show a fragment):

<!DOCTYPE biblography [

<!ELEMENT bibliography (entry)*>

<!ELEMENT entry ((key)+,article|book)>

<!ELEMENT key (#PCDATA)>

<!ELEMENT article (mandatory,(empty|optional)>

<!ELEMENT mandatory (author*,title,journal,year)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT title (#PCDATA)>

...

<!ELEMENT empty EMPTY>

<!ELEMENT optional (volume,pages)>

...

]>

In the DTD the comma, vertical bar, and star represent the sequence, alternative, resp. itera-
tion of syntactic constructs; at (#PCDATA) an arbitrary text is allowed. This DTD specifies a
set of XML-documents, in particular, a set of databases with bibtex entries; note that an entry
can have any number of keys.

bibliography

entry

key

car71 Carre71 BAC71

article

mandatory

author

B.A. Carré

title

. . .

journal

. . .

year

1977

empty

EMPTY

entry

. . . . . .

entry

key

knu77 Knuth77

article

mandatory

author

D.E. Knuth

title

. . .

journal

. . .

year

1977

optional

volume

6

pages

1-5

Figure 1: An example of an XML-database.

An example of such a database is partially shown in Figure 1 as an unranked tree. It has
three entries; the leftmost entry contains the mandatory pieces of information only (incom-
plete entry), the rightmost one contains the mandatory and the optional pieces of information
(complete entry). Now let us assume that we would like to complete our database in the sense
of adding the optional pieces of information to every incomplete article entry. However, before
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doing so, we would like to estimate the effort for this maintenance, i.e., count the number
of incomplete bibtex entries. For this purpose we can use the following formula of weighted
MSO-logic:

how-many-incomplete? = ∃x. labelarticle(x) ∧ incomplete(x)

incomplete(x) = ∃y.
(
desc(x, y) ∧ labelempty(y)

)
.

If we interpret our formula how-many-incomplete? on the tree of Figure 1 where the middle
entry is assumed to be incomplete, then we obtain the value 2 (assuming that we use the usual
semiring of natural numbers).

To show another use of weighted MSO-logic, let us now assume that the document type defi-
nition as shown above is extended as follows:

<!ELEMENT book (mandatory-b,(empty-b|optional-b)>

<!ELEMENT mandatory-b (author*,title,publisher,year)>

<!ELEMENT empty-b EMPTY>

<!ELEMENT optional-b (volume,edition,summary)>

<!ELEMENT summary (#PCDATA)>

In the part optional-b a short summary of the book should occur. Now let us again try to
estimate the effort for completing bibtex entries. Clearly, to write a summary of a book takes
much more effort than just to add the optional information pieces of an article. So let us describe
the corresponding efforts by k and m (time units), respectively, for some natural numbers k and
m. Then the estimation of the total effort is computed by the following syntactically restricted
sentence in MSO(N, Σ):

how-much-effort? =

∃x.
(
labelbook(x) ∧ incomplete(x) ∧ k

)
∨

(
labelarticle(x) ∧ incomplete(x) ∧ m

)
.

If, e.g., our database contains 20 incomplete book entries and 500 incomplete article entries,
then the interpretation of how-much-effort? on the corresponding tree would yield the effort
20 · k + 500 · m (time units).

As a final example, we would like to count the number of article-entries with k authors
where k is any natural number. This can be achieved by interpreting the following sentence of
srMSO(N, Σ):

number-k-authored? = ∃x. labelmandatory(x) ∧ has-k-authors(x)

has-k-authors(x) =

∃y1. . . .∃yk. firstChild(x, y1) ∧
∧

1≤i≤k−1(labelauthor(yi) ∧ next(yi, yi+1))

∧ labelauthor(yk) ∧

(
∀z.next(yk, z)

+
→ labeltitle(z)

)
.

9 Discussion and open problems

In [DG09], the authors considered also several classes of syntactically defined sentences properly
containing the class of syntactically restricted sentences, and they showed that their expressive
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power is still captured by weighted finite automata provided that the semiring satisfies suitable
local finiteness conditions. We note that these results for words also transfer almost verbatim
to the present setting of unranked trees, with analogous proofs.

From our results the following open problems arise:

1. Find an extension of the syntactically restricted MSO(Σ, S)-logic which is still syntactically
definable and expressively equivalent to the class of wta.

2. Find a subclass of wta which is expressively equivalent to the syntactically restricted
MSO(S, Σ)-logic.

3. Are there crucially different results if we replace our depth-first left-to-right order on trees
by another linear order?

Acknowledgements: We thank the anonymous referees whose careful suggestions have re-
sulted in improvements of this paper.
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