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Abstract. Weighted automata are classical finite automata in which the transitions carry weights.7

These weights may model quantitative properties like the amount of resources needed for executing8

a transition or the probability or reliability of its successful execution. Using weighted automata,9

we may also count the number of successful paths labeled by a given word.10

As an introduction into this field, we present selected classical and recentresults concentrating11

on the expressive power of weighted automata.12
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1 Introduction27

Classical automata provide acceptance mechanisms for words. The starting point of28

weighted automata is to determine the number of ways a word can be accepted or the29

amount of resources used for this. The behavior of weighted automata thus associates30

a quantity or weight to every word. The goal of this chapter isto study the possible31

behaviors.32

Historically, weighted automata were introduced in the seminal paper by Scḧutzen-33

berger [85]. A close relationship to probabilistic automata was mutually influential in the34

beginning [77, 19, 95]. For the domain of weights and their computations, the algebraic35

structure of semirings proved to be very fruitful. This soonled to a rich mathematical36

theory including applications for purely language theoretic questions as well as practical37

applications in digital image compression and algorithms for natural language process-38

ing. Excellent treatments of this are provided by the books [38, 84, 95, 66, 11, 82] and39

the surveys in the recent handbook [30].40

In this chapter, we describe the behavior of weighted automata by equivalent for-41

malisms. These include rational expressions and series, algebraic means like linear pre-42

sentations and semimodules, decomposition into simple behaviors, and quantitative log-43

ics. We also touch on decidability questions (including Colcombet’s new proof of a cel-44

ebrated result by Krob) and languages naturally associatedto the behaviors of weighted45

automata.46

We had to choose from the substantial amount of theory and applications of this topic47

and our choice is biased by our personal interests. We hope towet the reader’s appetite48

for this exciting field and for consulting the abovementioned books.49

Acknowledgement The authors would like to thank Werner Kuich for valuable sugges-50

tions regarding this chapter and Ingmar Meinecke for some improvements in Section 6.51
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Figure 1. A nondeterministic finite automaton

2 Weighted automata and their behavior52

We start with a simple automaton exemplifying different possible interpretations of its53

behavior. We identify a common feature that will permit us toconsider them as instances54

of the unified concept of a weighted automaton. So letΣ = {a, b} andQ = {p1, p2} and55

consider the automaton from Figure 1.56

Example 2.1. Classically, the language accepted describes the behaviorof a finite au-57

tomaton. In our case, this is the languageΣ∗bΣ∗.58

Now setin(p1) = out(p2) = true, out(p1) = in(p2) = false, andwt(p, c, q) = true59

if (p, c, q) is a transition of the automaton andfalse otherwise. Then a worda1a2 . . . an60

is accepted by the automaton if and only if61

∨

q0,q1,...,qn∈Q



in(q0) ∧
∧

16i6n

wt(qi−1, ai, qi) ∧ out(qn)





evaluates totrue.62

Example 2.2. For any wordw ∈ Σ∗, let f(w) denote the number of accepting paths63

labeledw. In our case,f(w) equals the number of occurrences of the letterb.64

Setin(p1) = out(p2) = 1, out(p1) = in(p2) = 0, andwt(p, c, q) = 1 if (p, c, q) is a65

transition of the automaton and0 otherwise. Thenf(a1 . . . an) equals66

∑

q0,q1,...,qn∈Q



in(q0) ·
∏

16i6n

wt(qi−1, ai, qi) · out(qn)



 . (2.1)

Note that the above two examples would in fact work correspondingly for any finite67

automaton. The following two examples are specific for the particular automaton from68

Fig. 1.69

Example 2.3. Define the functionsin and out as in Example 2.2. But this time, set70

wt(p, c, q) = 1 if (p, c, q) is a transition of the automaton andp = p1, wt(p2, c, p2) = 271

for c ∈ Σ, andwt(p, c, q) = 0 otherwise. If we now evaluate the formula (2.1) for a word72

w ∈ Σ∗, we obtain the value of the wordw if understood as a binary number wherea73

stands for the digit0 andb for the digit1.74
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Example 2.4. Let the deficit of a wordv ∈ Σ∗ be the number|v|b − |v|a where|v|a is75

the number of occurrences ofa in v and|v|b is defined analogously. We want to compute76

using the automaton from Fig. 1 the maximal deficit of a prefix of a wordw. To this77

aim, setin(p1) = out(p2) = 0 andout(p1) = in(p2) = −∞. Furthermore, we set78

wt(p1, b, pi) = 1 for i = 1, 2, wt(p1, a, p1) = −1, wt(p2, c, p2) = 0 for c ∈ Σ, and79

wt(p, c, q) = −∞ in the remaining cases. Then the maximal deficit of a prefix of the80

wordw = a1a2 . . . an ∈ Σ∗bΣ∗ equals81

max
q0,q1,...,qn∈Q



in(q0) +
∑

16i6n

wt(qi−1, ai, qi) + out(qn)



 .

The similarities between the above examples naturally leadto the definition of a82

weighted automaton.83

Definition 2.1. Let S be a set andΣ an alphabet. Aweighted automaton overS andΣ is84

a quadrupleA = (Q, in,wt, out) where85

• Q is a finite set of states,86

• in, out : Q→ S are weight functions for entering and leaving a state, resp., and87

• wt: Q× Σ×Q→ S is a transition weight function.88

The r̂ole of S in the examples above is played by{true, false}, N, andZ ∪ {−∞},89

resp., i.e., we reformulated all the examples as weighted automata over some appropriate90

setS.91

Note also the similarity of the description of the behaviorsin all the examples above.92

We now introduce semirings that formalize the similaritiesbetween the operations∨, +,93

andmax on the one hand, and∧, ·, and+ on the other:94

Definition 2.2. A semiringis a structure(S,+S , ·S , 0S , 1S) such that95

• (S,+S , 0S) is a commutative monoid,96

• (S, ·S , 1S) is a monoid,97

• multiplication distributes over addition from the left andfrom the right, and98

• 0S ·S s = s ·S 0S = 0S for all s ∈ S.99

If no confusion can occur, we often writeS for the semiring(S,+S , ·S , 0S , 1S).100

It is easy to check that the structuresB = ({0, 1},∨,∧, 0, 1), (N,+, ·, 0, 1), and(Z ∪101

{−∞},max,+,−∞, 0) are semirings (with0 = false and1 = true, B is the semiring102

underlying Example 2.1); many further examples are given in[29] and throughout this103

chapter. The theory of semirings is described in [49]. The notion of a semiring allows104

us to give a common definition of the behavior of weighted automata that subsumes all105

those from our examples and, with the language semiring(P(Γ∗),∪, ·, ∅, {ε}), we even106

capture the important notion of a transducer [9]; hereP(Γ∗) denotes the powerset ofΓ∗.107

Definition 2.3. Let S be a semiring andA a weighted automaton overS. A path inA is108

an alternating sequenceP = q0a1q1 . . . anqn ∈ Q(ΣQ)∗. Its run weightis the product109

rweight(P ) =
∏

06i<n

wt(qi, ai+1, qi+1)
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(for n = 0, this is defined to be1); theweightof P is then defined by110

weight(P ) = in(q0) · rweight(P ) · out(qn) .

Furthermore, thelabel of P is the wordlabel(P ) = a1a2 . . . an. Then thebehaviorof111

the weighted automatonA is the function||A|| : Σ∗ → S with112

||A||(w) =
∑

P path with
label(P )=w

weight(P ) . (2.2)

Whereas classical automata determine whether a word is accepted or not, weighted113

automata over the natural semiringN allow us tocount the number of successful paths114

labeled by a word (cf. Example 2.2). Over the semiring(N ∪ {−∞},max,+,−∞, 0),115

weighted automata can be viewed as determining the maximal amount of resources needed116

for the execution of a given sequence of actions. Thus, weighted automata determine117

quantitative properties.118

Notational convention We writeP : p
w
−→A q for “P is a path in the weighted automa-119

tonA from p to q with labelw”. From now on, all weighted automata will be over some120

semiring(S,+, ·, 0, 1). We will call functions fromΣ∗ into S series. For such a seriesr,121

it is customary to write(r, w) for r(w). The set of all series fromΣ∗ into S will be de-122

noted byS 〈〈Σ∗〉〉. If A is a weighted automaton, then we get in particular||A|| ∈ S 〈〈Σ∗〉〉123

and in the above definition, we could have written(||A||, w) instead of||A||(w).124

Definition 2.4. A seriesr ∈ S 〈〈Σ∗〉〉 is recognizableif it is the behavior of some weighted125

automaton. The set of all recognizable series is denoted bySrec〈〈Σ∗〉〉.126

For a seriesr ∈ S 〈〈Σ∗〉〉, thesupportof r is the setsupp(r) = {w ∈ Σ∗ | (r, w) 6= 0}.127

Also, for a languageL ⊆ Σ∗, we write1L for the series with(1L, w) = 1S if w ∈ L and128

(1L, w) = 0S otherwise;1L is called thecharacteristic series ofL. From Example 2.1,129

it should be clear that a seriesr in B 〈〈Σ∗〉〉 is recognizable if and only if the language130

supp(r) is regular. Later, we will see that many properties of regular languages transfer131

to recognizable series (sometimes with very similar proofs). But first, we want to point132

out some differences.133

Example 2.5. Let S = (P(Σ∗),∪, ·, ∅, {ε}) and consider the seriesr with (r, wa) =134

{aw} for all wordsw ∈ Σ∗ and lettersa ∈ Σ, and(r, ε) = ∅. Thenr ∈ Srec〈〈Σ∗〉〉,135

but there is no deterministic transducer whose behavior equals r. Hence deterministic136

weighted automata are in general weaker than general weighted automata, i.e., a funda-137

mental property of finite automata (see Chapter 1) does not transfer to weighted automata.138

Example 2.6. Let S = (N,+, ·, 0, 1) anda ∈ Σ. We consider the seriesr with (r, aa) =139

2 and(r, w) = 0 forw 6= aa. Then there are4 different (deterministic) weighted automata140

with three states and behaviorr (and none with only two states). Hence, another funda-141

mental property of finite automata, namely the existence of unique minimal deterministic142

automata, does not transfer.143
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Recall that the existence of a unique minimal deterministicautomaton for a regular144

language can be used to decide whether two finite automata accept the same language.145

Above, we saw that this approach cannot be used for weighted automata over the semi-146

ring (N,+, ·, 0, 1), but other methods work in this case. However, there are no universal147

methods since the equivalence problem over the semiring(N ∪ {−∞},max,+,−∞, 0)148

is undecidable, see Section 8.149

3 Linear presentations150

LetS be a semiring andQ1 andQ2 sets. We will consider a function fromQ1×Q2 intoS
as a matrix whose rows and columns are indexed by elements ofQ1 andQ2, respectively.
Therefore, we will writeMp,q for M(p, q) whereM ∈ SQ1×Q2 , p ∈ Q1, andq ∈ Q2.
For finite setsQ1, Q2, Q3, this allows us to define the sum and the product of two matrices
as usual:

(K +M)p,q = Kp,q +Mp,q (M ·N)p,r =
∑

q∈Q2

Mp,q ·Nq,r

for K,M ∈ SQ1×Q2 , N ∈ SQ2×Q3 , p ∈ Q1, q ∈ Q2, andr ∈ Q3. Since in semirings,151

multiplication distributes over addition from both sides,matrix multiplication is associa-152

tive. For a finite setQ, theunit matrixE ∈ SQ×Q with Ep,q = 1 for p = q andEp,q = 0153

otherwise is the neutral element of the multiplication of matrices. Hence(SQ×Q, ·, E) is154

a monoid. It is useful to note that with pointwise addition ofmatrices,SQ×Q even forms155

a semiring.156

Lemma 3.1. Let A = (Q, in,wt, out) be a weighted automaton and define a mapping157

µ : Σ∗ → SQ×Q by158

µ(w)p,q =
∑

P : p
w−→Aq

rweight(P ) . (3.1)

Thenµ is a homomorphism from the free monoidΣ∗ to the multiplicative monoid of159

matrices(SQ×Q, ·, E).160

Proof. Let P = p0a1p1 . . . anpn be a path with labeluv and let|u| = k. ThenP1 =161

p0a1 . . . akpk is a u-labeled path,P2 = pkak+1 . . . anpn is a v-labeled path, and we162

haverweight(P ) = rweight(P1) · rweight(P2). This simple observation, together with163

distributivity in the semiringS, allows us to prove the claim.164

Now let A = (Q, in,wt, out) be a weighted automaton. Defineλ ∈ S{1}×Q and165

γ ∈ SQ×{1} by λ1,q = in(q) andγq,1 = out(q). With the homomorphismµ from166

Lemma 3.1, we obtain for any wordw ∈ Σ∗ (where we identify a{1} × {1}-matrix with167

its entry):168

(||A||, w) =
∑

p,q∈Q

λ1,p · µ(w)p,q · γq,1 = λ · µ(w) · γ . (3.2)
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Subsequently, we considerλ (as usual) as a row vector andγ as a colum vector and we169

simply writeλ, γ ∈ SQ.170

This motives the following definition.171

Definition 3.1 (Scḧutzenberger [85]). Alinear presentationof dimensionQ (whereQ is172

some finite set) is a triple(λ, µ, γ) such thatλ, γ ∈ SQ andµ : (Σ∗, ·, ε) → (SQ×Q, ·, E)173

is a monoid homomorphism. It defines the seriesr = ||(λ, µ, γ)|| with174

(r, w) = λ · µ(w) · γ (3.3)

for all w ∈ Σ∗.175

Above, we saw that any weighted automaton can be transformedinto an equivalent176

linear presentation. Now we describe the converse transformation. So let(λ, µ, γ) be a177

linear presentation of dimensionQ. Fora ∈ Σ andp, q ∈ Q, setwt(p, a, q) = µ(a)p,q,178

in(q) = λq, andout(q) = γq, and defineA = (Q, in,wt, out). Since the morphismµ is179

uniquely determined by its restriction toΣ, the linear representation associated withA is180

precisely(λ, µ, γ), so by Equation (3.2) we obtain||A|| = ||(λ, µ, γ)||. Hence we showed181

Theorem 3.2. LetS be a semiring,Σ an alphabet, andr ∈ S 〈〈Σ∗〉〉. Thenr is recogniz-182

able if and only if there exists a linear presentation(λ, µ, γ) with r = ||(λ, µ, γ)||.183

This theorem explains why some authors use linear presentations to define recogniz-184

able series or even weighted automata.185

4 The Kleene-Scḧutzenberger theorem186

The goal of this section is to derive a generalization of Kleene’s classical result on the co-187

incidence of rational and regular languages in the realm of series over semirings. There-188

fore, first we introduce operations inS 〈〈Σ∗〉〉 that correspond to the language-theoretic189

operations union, intersection, concatenation, and Kleene iteration.190

Let r1 andr2 be series. Pointwise addition is defined by191

(r1 + r2, w) = (r1, w) + (r2, w) .

Clearly, this operation is associative and has the constantseries with value0 as neutral192

element. Furthermore, it generalizes the union of languages since, in the Boolean semi-193

ringB, we havesupp(r1 + r2) = supp(r1) ∪ supp(r2) and1K∪L = 1K +1L.194

Any family of languages has a union, so one is tempted to also define the sum of195

arbitrary sets of series. But this fails in general since it would require the sum of infinitely196

many elements of the semiringS (which, e.g. in(N,+, ·, 0, 1), does not exist). But certain197

families can be summed: a family(ri)i∈I of series islocally finite if, for any wordw ∈198

Σ∗, there are only finitely manyi ∈ I with (ri, w) 6= 0. For such families, we can define199

(

∑

i∈I

ri, w

)

=
∑

i∈I with
(ri,w) 6=0

(ri, w) .
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Let r1, r2 ∈ S 〈〈Σ∗〉〉. Pointwise multiplication is defined by200

(r1 ⊙ r2, w) = (r1, w) · (r2, w) .

This operation is calledHadamard product, is clearly associative, has the constant se-201

ries with value1 as neutral element, and distributes over addition. IfS is the Boolean202

semiringB, then the Hadamard product corresponds to intersection:203

supp(r1 ⊙ r2) = supp(r1) ∩ supp(r2) and 1K ⊙1L = 1K∩L

Other simple and natural operations are theleft andright scalar multiplicationthat are204

defined by205

(s · r, w) = s · (r, w) and(r · s, w) = (r, w) · s

for s ∈ S andr ∈ S 〈〈Σ∗〉〉. These two scalar multiplications do not have natural counter-206

parts in language theory.207

The counterpart of singleton languages in the realm of series are monomials: amono-208

mial is a seriesr with |supp(r)| 6 1. With w ∈ Σ∗ ands ∈ S, we will write sw for the209

monomialr with (r, w) = s. Let r be an arbitrary series. Then the family of monomials210

((r, w)w)w∈Σ∗ is locally finite and can therefore be summed. Then one obtains211

r =
∑

w∈Σ∗

(r, w)w =
∑

w∈supp(r)

(r, w)w .

If the support ofr is finite, then the second sum has only finitely many summands which212

is the reason to callr apolynomialin this case; the set of polynomials is denotedS 〈Σ∗〉,213

soS 〈Σ∗〉 ⊆ S 〈〈Σ∗〉〉. The similarity with polynomials makes it natural to define another214

product of the seriesr1 andr2 by215

(r1 · r2, w) =
∑

w=uv

(r1, u) · (r2, v) .

Since the wordw has only finitely many factorizations intou andv, the right-hand side216

has only finitely many summands and is therefore well-defined. This important product217

is calledCauchy-productof the seriesr1 andr2. If r1 andr2 are polynomials, thenr1 · r2218

is precisely the usual product of polynomials. For the Boolean semiring, we get219

supp(r1 · r2) = supp(r1) · supp(r2) and 1K ·1L = 1K·L ,

i.e., the Cauchy-product is the counterpart of concatenation of languages. For any semi-220

ring S, the monomial1ε is the neutral element of the Cauchy-product. It requires a short221

calculation to show that the Cauchy-product is associativeand distributes over the addi-222

tion of series. As a very useful consequence,(S 〈〈Σ∗〉〉,+, ·, 0, 1ε) is a semiring (note that223

the set of polynomialsS 〈Σ∗〉 forms a subsemiring of this semiring). For the Boolean224

semiringB, this semiring is isomorphic to(P(Σ∗),∪, ·, ∅, {ε}), an isomorphism is given225

by r 7→ supp(r) with inverseL 7→ 1L.226

In the theory of recognizable languages, the Kleene-iterationL∗ of a languageL is of227

central importance. It is defined as the union of all the powersLn of L (for n > 0). To228

also define the iterationr∗ of a series, one would therefore try to sum all finite powersrn229

(defined byr0 = 1ε andrn+1 = rn · r). In general, the family(rn)n>0 is not locally230

finite, so it cannot be summed. We therefore define the iteration r∗ only for r proper: a231
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seriesr is proper if (r, ε) = 0. Then, forn > |w|, one has(rn, w) = 0, so the family232

(rn)n>0 is locally finite and we can set233

r∗ =
∑

n>0

rn or equivalently(r∗, w) =
∑

06n6|w|

(rn, w) .

For the Boolean semiring andL ⊆ Σ+, we get234

supp(r∗) = (supp(r))∗ and(1L)
∗ = 1L∗ .

Recall that a language is rational if it can be constructed from the finite languages by235

union, concatenation, and Kleene-iteration. Here, we givethe analogous definition for236

series:237

Definition 4.1. A series fromS 〈〈Σ∗〉〉 is rational if it can be constructed from the mono-238

mialssa for s ∈ S anda ∈ Σ ∪ {ε} by addition, Cauchy-product, and iteration (applied239

to proper series, only). The set of all rational series is denoted bySrat〈〈Σ∗〉〉.240

Observe that the class of rational series is closed under scalar multiplication sincesε241

is a monomial,s · r = sε · r andr · s = r · sε for r ∈ S 〈〈Σ∗〉〉 ands ∈ S.242

Example 4.1. Consider the Boolean semiringB andr ∈ B 〈〈Σ∗〉〉. If r is a rational series,243

then the above formulas show thatsupp(r) is a rational language sincesupp commutes244

with the rational operations+, ·, and∗ for series and∪, ·, and∗ for languages. Now245

suppose that, conversely,supp(r) is a rational lanuage. To show that alsor is a ratio-246

nal series, one needs that any rational language can be constructed in such a way that247

Kleene-iteration is only applied to languages inΣ+. Having ensured this, the remaining248

calculations are again straightforward. Thus, indeed, ournotion of rational series is the249

counterpart of the notion of a rational language.250

Hence, rational languages are precisely the supports of series inB
rat〈〈Σ∗〉〉 and rec-251

ognizable languages are the supports of series inB
rec〈〈Σ∗〉〉 (see above). Now Kleene’s252

theorem from Chapter 1 impliesBrec〈〈Σ∗〉〉 = B
rat〈〈Σ∗〉〉. It is the aim of this section to253

prove this equality for arbitrary semirings. This is achieved by first showing that every254

rational series is recognizable. The other inclusion will be shown in Section 4.2.255

4.1 Rational series are recognizable256

For this implication, we prove that the set of recognizable series contains the monomials257

sa andsε and is closed under the necessary operations. To show this closure, we have258

two possibilities (a third one is sketched after the proof ofTheorem 5.1): either the purely259

automata-theoretic approach that constructs weighted automata, or the more algebraic260

approach that handles linear presentations. We chose to give the automata constructions261

for monomials and addition, and the linear presentations for the Cauchy-product and the262

iteration. The reader might decide which approach she prefers and translate some of the263

constructions from one to the other.264

There is a weighted automaton with just one stateq and behavior the monomialsε:265

just setin(q) = s, out(q) = 1 andwt(q, a, q) = 0 for all a ∈ Σ. For anya ∈ Σ, there266
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is a two-states weighted automaton with the monomialsa as behavior. IfA1 andA2 are267

two weighted automata, then the behavior of their disjoint union equals||A1||+ ||A2||.268

We next show that also the Cauchy-product of two recognizable series is recognizable:269

Lemma 4.1. If r1 andr2 are recognizable series, then so isr1 · r2.270

Proof. By Theorem 3.2, the seriesri has a linear presentation(λi, µi, γi) of dimensionQi

with Q1 ∩ Q2 = ∅. We define a row vectorλ and a column vectorγ of dimension
Q = Q1 ∪Q2 as well as a matrixµ(w) for w ∈ Σ∗ of dimensionQ×Q:

λ =
(

λ1 0
)

µ(w) =





µ1(w)
∑

w=uv,v 6=ε

µ1(u)γ1λ2µ2(v)

0 µ2(w)



 γ =





γ1λ2γ2

γ2





The reader is invited to check thatµ is actually a monoid homomorphism from(Σ∗, ·, ε)
into (SQ×Q, ·, E), i.e., that(λ, µ, γ) is a linear presentation. One then gets

λ · µ(w) · γ = λ1 µ1(w) γ1λ2γ2 + λ1
∑

w=uv
v 6=ε

µ1(u)γ1λ2µ2(v) γ2

= (r1, w) · (r2, ε) +
∑

w=uv
v 6=ε

(r1, u)(r2, v)

= (r1 · r2, w) .

By Theorem 3.2, the series||(λ, µ, γ)|| = r1 · r2 is recognizable.271

Lemma 4.2. Let r be a proper and recognizable series. Thenr∗ is recognizable.272

Proof. There exists a linear presentation(λ, µ, γ) of dimensionQ with r = ||(λ, µ, γ)||.273

Consider the homomorphismµ′ : (Σ∗, ·, ε) → (SQ×Q, ·, E) defined, fora ∈ Σ, by274

µ′(a) = µ(a) + γ λµ(a) .

Let w = a1a2 . . . an ∈ Σ+. Using distributivity of matrix multiplication or, alterna-
tively, induction onn, it follows

µ′(w) =
∏

16i6n

(µ(ai) + γ λµ(ai))

=
∑

w=w1...wk

wi∈Σ+



(µ(w1) + γ λµ(w1)) ·
∏

26j6k

γ λµ(wj)



 .
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Note thatλ γ = λµ(ε) γ = (r, ε) = 0. Hence we obtain

λµ′(w) γ =
∑

w=w1...wk

wi∈Σ+



λ (µ(w1) + γ λµ(w1)) ·
∏

26j6k

γ λµ(wj)



 γ

=
∑

w=w1...wk

wi∈Σ+

∏

16j6k

λµ(wi) γ

= (r∗, w)

as well asλµ′(ε) γ = 0. Hencer∗ = ||(λ, µ′, γ)||+ 1ε is recognizable.275

Recall that the Hadamard-product generalizes the intersection of languages and that276

the intersection of regular languages is regular. The following result extends this latter277

fact to the weighted setting (since the Boolean semiring is commutative). We say that two278

subsetsS1, S2 ⊆ S commute, if s1 · s2 = s2 · s1 for all s1 ∈ S1, s2 ∈ S2.279

Lemma 4.3. LetS1 andS2 be two subsemirings of the semiringS such thatS1 andS2280

commute. Ifr1 ∈ Srec
1 〈〈Σ∗〉〉 andr2 ∈ Srec

2 〈〈Σ∗〉〉, thenr1 ⊙ r2 ∈ Srec〈〈Σ∗〉〉.281

Proof. For i = 1, 2, let Ai = (Qi, ini,wti, outi) be weighted automata overSi with
||Ai|| = ri. We define the product automatonA with statesQ1 ×Q2 as follows:

in(p1, p2) = in1(p1) · in2(p2)

wt((p1, p2), a, (q1, q2)) = wt1(p1, a, q1) · wt2(p2, a, q2)

out(p1, p2) = out1(p1) · out2(p2)

Then,(||A||, w) = (||A1|| ⊙ ||A2||, w) follows for all wordsw. For example, for a letter
a ∈ Σ we calculate as follows using the commutativity assumptionand distributivity:

(||A||, a) =
∑

(p1,p2),(q1,q2)∈Q

(

(in1(p1) · in2(p2)) · (wt1(p1, a, q1) · wt2(p2, a, q2))
· (out1(q1) · out2(q2))

)

=
∑

(p1,p2),(q1,q2)∈Q

(

in1(p1) · wt1(p1, a, q1) · out1(q1)
· in2(p2) · wt2(p2, a, q2) · out2(q2)

)

=





∑

p1,q1∈Q1

in1(p1) · wt1(p1, a, q1) · out1(q1)





·





∑

p2,q2∈Q2

in2(p2) · wt2(p2, a, q2) · out2(q2)





= (||A1||, a) · (||A2||, a) = (||A1|| ⊙ ||A2||, a)

282

We remark that the above lemma does not hold without the commutativity assumption:283
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Example 4.2. Let Σ = {a, b}, S = (P(Σ∗),∪, ·, ∅, {ε}), and consider the recognizable284

seriesr given by(r, w) = {w} for w ∈ Σ∗. Then(r ⊙ r, w) = {ww} and pumping285

arguments show thatr ⊙ r is not recognizable.286

As a consequence of Lemma 4.3, we obtain that “restrictions”of recognizable series287

to regular languages are again recognizable, more precisely:288

Corollary 4.4. Let r ∈ S 〈〈Σ∗〉〉 be recognizable and letL ⊆ Σ∗ be a regular language.289

Thenr ⊙ 1L is recognizable.290

Proof. LetA be a deterministic automaton acceptingL with set of statesQ. Then weight291

by 1 those triples(p, a, q) ∈ Q × Σ × Q that are transitions, the initial resp. final states292

with initial resp. final weight by1, and all other triples resp. states with0. This gives a293

weighted automaton with behavior1L. SinceS commutes with its subsemiring generated294

by 1, Lemma 4.3 implies the result.295

4.2 Recognizable series are rational296

For this implication, we will transform a weighted automaton into a system of equations297

and then show that any solution of such a system is rational. The following lemma will298

be helpful and is also of independent interest (cf. [29, Section 5]).299

Lemma 4.5. Lets, r, r′ ∈ S 〈〈Σ∗〉〉 with r proper ands = r · s+ r′. Thens = r∗r′.300

Proof. Letw ∈ Σ∗. First observe that

s = rs+ r′

= r(rs+ r′) + r′ = r2s+ rr′ + r′

...

= r|w|+1s+
∑

06i6|w|

rir′ .

Sincer is proper, we have(ri, u) = 0 for all u ∈ Σ∗ andi > |u|. This implies

(r∗r′, w) =
∑

w=uv

(r∗, u) · (r′, v) =
∑

w=uv





∑

06i6|w|

(ri, u)



 · (r′, v) =
∑

06i6|w|

(rir′, w)

= (s, w) .

Now let A = (Q, in,wt, out) be a weighted automaton. Forp ∈ Q, define a new
weighted automatonAp = (Q, inp,wt, out) by inp(p

′) = 1 for p = p′ andinp(p′) = 0
otherwise. Since all the entry weights of these weighted automata are0 or 1, we have

||A|| =
∑

(p,a,q)∈Q×Σ×Q

in(p)wt(p, a, q)a · ||Aq||+
∑

p∈Q

in(p)out(p)ε
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and for allp ∈ Q

||Ap|| =
∑

(p,a,q)∈Q×Σ×Q

wt(p, a, q)a · ||Aq||+ out(p)ε .

This transformation proves301

Lemma 4.6. Let r be a recognizable series. Then there are rational seriesrij , ri ∈302

S 〈〈Σ∗〉〉 with rij proper and a solution(s1, . . . , sn) with s1 = r of a system of equations303



Xi =
∑

16j6n

rijXj + ri





16i6n

. (4.1)

A seriess is rational over the series{s1, . . . , sn} if it can be constructed from the304

monomials and the seriess1, . . . , sn by addition, Cauchy-product, and iteration (applied305

to proper series, only).306

We prove by induction onn that any solution of a system of the form (4.1) consists of307

rational series. Forn = 1, the system is a single equation of the formX1 = r11X1 + r1308

with r11, r1 ∈ Srat〈〈Σ∗〉〉 andr11 proper. Hence, by Lemma 4.5, the solutions1 equals309

r∗11r1 and is therefore rational. Now assume that any system withn − 1 unknowns has310

only rational solutions and consider a solution(s1, . . . , sn) of (4.1). Then we have311

sn = rnnsn +
∑

16j<n

rnjsj + rn

and therefore by Lemma 4.5312

sn = r∗nn ·





∑

16j<n

rnjsj + rn



 .

In particular,sn is rational over{s1, s2, . . . , sn−1} sincernj andrn are all rational. Since313

(s1, . . . , sn) is a solution of the system (4.1), we obtain314

si =
∑

16j<n

(rij + rinr
∗
nnrnj)sj + rinr

∗
nnrn + ri

for all 1 6 i < n. Sincerij andrin are proper and rational, so isrij + rinr
∗
nnrnj . Hence315

(s1, . . . , sn−1) is a solution of a system of equations of the form (4.1) withn−1 unknowns316

implying by the induction hypothesis that the seriess1, . . . , sn−1 are all rational. Since317

sn is rational overs1, . . . , sn−1, it is therefore rational, too. This completes the inductive318

proof of the following lemma.319

Lemma 4.7. Letrij , ri ∈ Srat〈〈Σ∗〉〉 with rij proper and let(s1, . . . , sn) be a solution of320

the system of equations (4.1). Then all the seriess1, . . . , sn are rational.321

From Lemmas 4.6 and 4.7, we obtain that any recognizable series is rational. Together322

with Lemmas 4.1, 4.2, and the arguments from the beginning ofSection 4.1, we obtain323
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Theorem 4.8 (Scḧutzenberger [85]).Let S be a semiring,Σ an alphabet, andr ∈324

S 〈〈Σ∗〉〉. Thenr is recognizable if and only if it is rational, i.e.,Srec〈〈Σ∗〉〉 = Srat〈〈Σ∗〉〉.325

5 Semimodules326

If, in the definition of a vector space, one replaces the underlying field by a semiring,
one obtains a semimodule. More formally, letS be a semiring. AnS-semimoduleis a
commutative monoid(M,+, 0M ) together with a left scalar multiplicationS ×M →M
satisfying all the usual laws (withs, s′ ∈ S andr, r′ ∈M ):

(s+ s′)r = sr + s′r (s · s′)r = s(s′r)

s(r + r′) = sr + sr′ 1r = r

0r = 0M

In our context, the most interesting example is theS-semimoduleS 〈〈Σ∗〉〉 of series327

overΣ. The additive structure of the semimodule is pointwise addition and the left scalar328

multiplication is as defined before.329

A subsemimoduleof theS-semimodule(M,+, 0M ) is a setN ⊆ M that is closed330

under addition and left scalar multiplication. A setX ⊆ M generatesthe subsemimod-331

uleN = 〈X〉 if N is the least subsemimodule containingX. Equivalently, all elements of332

N can be written as linear combinations of elements fromX. The subsemimoduleN is333

finitely generatedif it is generated by a finite set. A simple example of a subsemimodule334

of S 〈〈Σ∗〉〉 is the set of polynomialsS 〈Σ∗〉, i.e. of series with finite support. But this335

subsemimodule is not finitely generated. The set of constantseries is a finitely generated336

subsemimodule.337

The following is specific for the semimodule of series. Forr ∈ S 〈〈Σ∗〉〉 andu ∈ Σ∗,338

the seriesu−1r is defined by339

(u−1r, w) = (r, uw)

for all w ∈ Σ∗. A subsemimoduleN of S 〈〈Σ∗〉〉 is stableif r ∈ N impliesu−1r ∈ N for340

all u ∈ Σ∗.341

Theorem 5.1 (Fliess [46] and Jacob [55]).Let S be a semiring,Σ an alphabet, and342

r ∈ S 〈〈Σ∗〉〉. Thenr is recognizable if and only if there exists a finitely generated and343

stable subsemimoduleN of S 〈〈Σ∗〉〉 with r ∈ N .344

For the boolean semiringB, any finitely generated subsemimodule ofB 〈〈Σ∗〉〉 is finite.345

Therefore the above equivalence extends the well-known result that a language is regular346

if and only if it has finitely many left-quotients.347

Proof. First, letA = (Q, in,wt, out) be a weighted automaton withr = ||A||. For348

q ∈ Q, defineinq : Q → S by inq(q) = 1 and inq(p) = 0 for p 6= q, and letAq =349

(Q, inq,wt, out). Let N be the subsemimodule generated by{||Aq|| | q ∈ Q}. Since350
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r = ||A|| =
∑

q∈Q in(q)||Aq||, we getr ∈ N . Note that, fora ∈ Σ andp ∈ Q, we have351

a−1||Ap|| =
∑

q∈Q

wt(p, a, q)||Aq||

which allows us to prove by simple calculations thatN is stable.352

Conversely, letN be finitely generated by{r1, . . . , rn} and stable and letr ∈ N .
For all a ∈ Σ and1 6 i 6 n, we havea−1ri =

∑

16j6n sijrj with suitablesij ∈ S.
Then there exists a unique morphismµ : Σ∗ → Sn×n with µ(a)ij = sij for a ∈ Σ. By
induction on the length ofw ∈ Σ∗, we can show thatw−1ri =

∑

16j6n µ(w)ijrj . Hence

(ri, w) = (w−1ri, ε) =
∑

16j6n

µ(w)ij(rj , ε) .

Sincer ∈ N , we haver =
∑

16i6n λiri for someλi ∈ S. With γj = (rj , ε), we obtain353

(r, w) =
∑

16i,j6n

λi · µ(w)ij · γj = λ · µ(w) · γ

showing that(λ, µ, γ) is a linear presentation ofr. Hencer is recognizable by Theo-354

rem 3.2.355

Inductively, one can show that every rational series belongs to a finitely generated and356

stable subsemimodule, cf. [11]. Together with the theorem above, this is an alternative357

proof of the fact that every rational series is recognizable(cf. Theorem 4.8).358

6 Nivat’s theorem359

Nivat’s theorem [75] provides an insight into the concatenation of mappings and, as we360

will see, recognizability of certain simple series. More precisely, it asserts that every361

proper recognizable seriesr ∈ S 〈〈Σ∗〉〉 can be decomposed into three particular rec-362

ognizable series, namely an inverse monoid homomorphismh−1 : Σ∗ → P(Γ∗) with363

h : Γ∗ → Σ∗, a recognizable “selection series”sel : Γ∗ → P(Γ∗) satisfying(sel, v) ⊆364

{v}, and a homomorphismc : (Γ∗, ·, ε) → (S, ·, 1). Conversely, assumingh(a) 6= ε for365

all a ∈ Γ, the composition ofh−1, sel, andc is recognizable.366

A mappingsel : Γ∗ → P(Γ∗) is a selection seriesif (sel, v) ⊆ {v} for all v ∈ Γ∗.367

Let fin(Γ∗) denote the set of all finite subsets ofΓ∗. Then (fin(Γ∗),∪, ·, ∅, {ε}) is a368

(computable) subsemiring ofP(Γ∗). For brevity, this subsemiring is denoted byfin(Γ∗).369

Lemma 6.1. (1) If h : Γ∗ → Σ∗ is a homomorphism withh(a) 6= ε for all a ∈ Γ, then370

h−1 ∈ fin(Γ∗) 〈〈Σ∗〉〉 with (h−1, w) = {v ∈ Γ∗ | h(v) = w} is a recognizable371

series.372

(2) A selection seriessel ∈ fin(Γ∗) 〈〈Γ∗〉〉 is recognizable if and only if its support373

K = {v ∈ Γ∗ | v ∈ (sel, v)} is regular.374

(3) If c : (Γ∗, ·, ε) → (S, ·, 1) is a monoid homomorphism, thenc is a recognizable375

series inS 〈〈Γ∗〉〉.376
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Proof. (1) Sinceh(a) 6= ε for all lettersa ∈ Γ, the set(h−1, w) is indeed finite, i.e.,377

h−1 ∈ fin(Γ∗) 〈〈Σ∗〉〉. Furthermore, this series equals(
∑

a∈Γ{a}h(a))
∗ which is378

rational and therefore recognizable by Theorem 4.8. Alternatively, one observes379

that a weighted automaton with just one state suffices for this series where thea-380

transition gets weighth−1(a) for a ∈ Γ.381

(2) We first prove the implication “⇐”. So letK be regular. Then, in an arbitrary finite382

automaton acceptingK, weight anya-labeled transition with{a} (for a ∈ Γ), and383

weight the initial and final states by{ε}. This gives a weighted automaton with384

behaviorsel.385

The other direction follows from more general results on thesupport of recogniz-386

able series over positive semirings sinceK = supp(sel). A direct argument goes387

as follows: take a weighted automaton with behaviorsel and delete all its weights388

(and all transitions with weight∅). This results in a finite automaton that accepts389

the support ofsel.390

(3) This series is the behavior of a weighted automaton with just one state.391

Next we show that morphisms and inverses of non-deleting morphisms preserve rec-392

ognizability which is also of independent interest.393

Lemma 6.2. Let r ∈ S 〈〈Γ∗〉〉 be recognizable.394

(1) If h : Σ∗ → Γ∗ is a homomorphism, then the seriesr◦h ∈ S 〈〈Σ∗〉〉 with (r◦h,w) =395

(r, h(w)) is recognizable.396

(2) If h : Γ∗ → Σ∗ is a homomorphism withh(a) 6= ε for all a ∈ Γ, then the series397

r ◦ h−1 ∈ S 〈〈Σ∗〉〉 with (r ◦ h−1, w) =
∑

v∈h−1(w)(r, v) is recognizable.398

Note thath(a) 6= ε in the second statement implies|h(v)| > |v|. Hence, for any399

w ∈ Σ∗, there are only finitely many wordsv with h(v) = w. Hence the series is well-400

defined.401

Proof. (1) If (λ, µ, γ) is a representation ofr, thenµ◦h is a morphism and(λ, µ◦h, γ)402

representsr ◦ h, as is easy to check.403

(2) By Theorem 4.8,r is rational, and an inductive proof shows thatr ◦h−1 is rational,404

too. Hence it is recognizable by Theorem 4.8, again.405

Next, if c : Γ∗ → S is a mapping andsel : Γ∗ → fin(Γ∗) is a selection series, then we406

define the seriesc ◦ sel : Γ∗ → S by407

(c ◦ sel, v) =

{

c(v) if (sel, v) = {v}

0 otherwise.

Theorem 6.3 (cf. Nivat [75]). Let S be a semiring,Σ an alphabet, andr ∈ S 〈〈Σ∗〉〉408

with (r, ε) = 0. Thenr is recognizable if and only if there exist an alphabetΓ, a409

homomorphismh : Γ∗ → Σ∗ with h(a) 6= ε for all a ∈ Γ, a recognizable selection410

seriessel ∈ fin(Γ∗) 〈〈Γ∗〉〉, and a homomorphismc : (Γ∗, ·, ε) → (S, ·, 1) such that411

r = c ◦ sel ◦ h−1.412
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Proof. We first prove the implication “⇐”. Let K = supp(sel). By Lemma 6.1(2),K413

is regular. Note thatc ◦ sel = c ⊙ 1K . Hencec ◦ sel is recognizable by Corollary 4.4.414

Therefore,c ◦ sel ◦ h−1 is recognizable by Lemma 6.2(2).415

Conversely, letA = (Q, in,wt, out) be a weighted automaton withr = ||A||. Set

Γ = (Q ⊎Q× {1})× Σ× (Q ⊎Q× {2}) ,

h(p′, a, q′) = a , and

c(p′, a, q′) =































wt(p′, a, q′) if p′, q′ ∈ Q

in(p) · wt(p, a, q′) if p′ = (p, 1), q′ ∈ Q

wt(p′, a, q) · out(q) if p′ ∈ Q, q′ = (q, 2)

in(p) · wt(p, a, q) · out(q) if p′ = (p, 1), q′ = (q, 2)

0 otherwise

for (p′, a, q′) ∈ Γ. Furthermore, letK be the set of words416

((p0, 1), a1, p1)(p1, a2, p2) . . . (pn−1, an, (pn, 2))

with pi ∈ Q for all 0 6 i 6 n. ThenK is regular and corresponds to the set of paths inA.417

This allows us to prove(r, w) = (||A||, w) =
∑

v∈h−1(w)∩K c(v), i.e.,r = c◦selK ◦h−1
418

with selK(v) = {v} ∩K. But selK is recognizable by Lemma 6.1(2).419

7 Weighted monadic second order logic420

Fundamental results by Büchi, by Elgot and by Trakhtenbrot [18, 39, 92] state that a421

language is regular if and only if it is definable in monadic second order (MSO) logic.422

Here, we wish to extend this result to a quantitative settingand thereby obtain a further423

characterization of the recognizability of a seriesr : Σ∗ → S, using a weighted version424

of monadic second order logic. We follow [26, 28].425

We will enrich MSO-logic by permitting all elements ofS as atomic formulas. The426

semantics of a sentence from the weighted MSO-logic will be aseries inS 〈〈Σ∗〉〉. In427

general, this weighted MSO-logic is more expressive than weighted automata. But a428

suitable, syntactically defined restriction of the logic, which contains classical MSO-logic,429

has the same expressive power as weighted automata.430

For the convenience of the reader we will recall basic background of classical MSO-431

logic, cf. [91, 57]. LetΣ be an alphabet. The syntax of formulas ofMSO(Σ), the monadic432

second order logic overΣ, is usually given by the grammar433

ϕ ::= Pa(x) | x 6 y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

wherea ∈ Σ, x, y are first-order variables, andX is a set variable. We letFree(ϕ) denote434

the set of all free variables ofϕ.435

As usual, a wordw = a1 . . . an ∈ Σ∗ is represented by the relational structure436

(dom(w),6, (Ra)a∈Σ) wheredom(w) = {1, . . . , n}, 6 is the usual order ondom(w)437

andRa = {i ∈ dom(w) | ai = a} for a ∈ Σ.438

Let V be a finite set of first-order or second-order variables. A(V, w)-assignment439
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σ is a function mapping first-order variables inV to elements ofdom(w) and second-440

order variables inV to subsets ofdom(w). For a first-order variablex andi ∈ dom(w),441

σ[x 7→ i] denotes the(V ∪ {x}, w)-assignment which mapsx to i and coincides withσ442

otherwise. Similarly,σ[X 7→ I] is defined forI ⊆ dom(w). Forϕ ∈ MSO(Σ) with443

Free(ϕ) ⊆ V, the satisfaction relation(w, σ) |= ϕ is defined as usual.444

Subsequently, we will encode a pair(w, σ) as above as a word over the extended445

alphabetΣV = Σ × {0, 1}V (with Σ∅ = Σ). We write a word(a1, σ1) . . . (an, σn) over446

ΣV as(w, σ) wherew = a1 . . . an andσ = σ1 . . . σn. We call(w, σ) valid, if it is empty447

or if for each first order variablex ∈ V, there is a unique positioni with σi(x) = 1. In448

this case, we identifyσ with the(V, w)-assignment that maps each first order variablex449

to the unique positioni with σi(x) = 1 and each set variableX to the set of positionsi450

with σi(X) = 1. Clearly the language451

NV = {(w, σ) ∈ Σ∗
V | (w, σ) is valid}

is recognizable (here and later we writeΣ∗
V for (ΣV)

∗). If Free(ϕ) ⊆ V, we let452

LV(ϕ) = {(w, σ) ∈ NV | (w, σ) |= ϕ}.

We simply writeΣϕ = ΣFree(ϕ), Nϕ = NFree(ϕ), andL(ϕ) = LFree(ϕ)(ϕ).453

By the Büchi-Elgot-Trakhtenbrot theorem [18, 39, 92], a languageL ⊆ Σ∗ is regular454

if and only if it is definable by some MSO-sentence. In the proof of the implication⇒,455

given an automaton, one constructs directly an MSO-sentence that defines the language456

of the automaton. For the other implication, one shows inductively the stronger fact that457

LV(ϕ) is regular for each formulaϕ (whereFree(ϕ) ⊆ V). Our goal is to proceed458

similarly in the present weighted setting.459

We start by defining the syntax of our weighted MSO-logic as in[26, 28] but we460

include arbitrary negation here.461

Definition 7.1. The syntax of formulas of theweighted MSO-logicoverS andΣ is given
by the grammar

ϕ ::= s | Pa(x) | x 6 y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

| ∃x.ϕ | ∀x.ϕ | ∃X.ϕ | ∀X.ϕ

wheres ∈ S anda ∈ Σ. We letMSO(S,Σ) be the collection of all such weighted462

MSO-formulasϕ.463

Next we define theV-semantics of formulasϕ ∈ MSO(S,Σ) as a series[[ϕ]]V : Σ∗
V →464

S.465

Definition 7.2. Letϕ ∈ MSO(S,Σ) andV be a finite set of variables withFree(ϕ) ⊆ V.466

TheV-semanticsof ϕ is the series[[ϕ]]V ∈ S 〈〈Σ∗
V〉〉 defined as follows. Let(w, σ) ∈ Σ∗

V .467

If (w, σ) is not valid, we put[[ϕ]]V(w, σ) = 0. If (w, σ) with w = a1 . . . an is valid, we468

define[[ϕ]]V(w, σ) ∈ S inductively as in Table 1. Note that the product
∏

i∈dom(w) is469

calculated following the natural order of the position inw. For the product
∏

X⊆dom(w),470

we use the lexicographic order on the powerset ofdom(w).471

For brevity, we write[[ϕ]] for [[ϕ]]Free(ϕ). Note that ifϕ is a sentence, i.e.Free(ϕ) = ∅,472

then[[ϕ]] ∈ S 〈〈Σ∗〉〉.473
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Table 1.MSO(S,Σ) semantics

ϕ [[ϕ]]V(w, σ)

s s

Pa(x)

{

1 if aσ(x) = a

0 otherwise

x 6 y

{

1 if σ(x) 6 σ(y)

0 otherwise

x ∈ X

{

1 if σ(x) ∈ σ(X)

0 otherwise

¬ψ

{

1 if [[ψ]]V(w, σ) = 0

0 otherwise

ϕ [[ϕ]]V(w, σ)

ψ ∨ ̺ [[ψ]]V(w, σ) + [[̺]]V(w, σ)

ψ ∧ ̺ [[ψ]]V(w, σ) · [[̺]]V(w, σ)

∃x.ψ
∑

i∈dom(w)

[[ψ]]V(w, σ[x 7→ i])

∀x.ψ
∏

i∈dom(w)

[[ψ]]V(w, σ[x 7→ i])

∃X.ψ
∑

I⊆dom(w)

[[ψ]]V(w, σ[X 7→ I])

∀X.ψ
∏

I⊆dom(w)

[[ψ]]V(w, σ[X 7→ I])

Similar definitions of the semantics occur in multivalued logic, cf. [51, 50]. In par-474

ticular, a similar definition of the semantics of negated formulas is also used for G̈odel475

logics. We give several examples of possible interpretations of weighted formulas:476

(1) Let S be an arbitrary bounded distributive lattice(S,∨,∧, 0, 1) with smallest el-477

ement 0 and largest element 1. In this case, sums correspond to suprema, and478

products to infima. For instance, we have[[ϕ ∨ ψ]] = [[ϕ]] ∨ [[ψ]] for sentencesϕ,ψ.479

Thus our logic may be interpreted as a multi-valued logic. Inparticular, ifS = B,480

the 2-valued Boolean algebra, our semantics coincides withthe usual semantics of481

unweighted MSO-formulas, identifying characteristic series with their supports.482

(2) The formula∃x.Pa(x) counts how oftena occurs in the word. Here,how often483

depends on the semiring: e.g., natural numbers, Boolean semiring, integers modulo484

2, . . . .485

(3) LetS = (N,+, ·, 0, 1) and assumeϕ does not contain constantss ∈ N and negation486

is applied only to atomic formulasPa(x), x 6 y, or x ∈ X. Then[[ϕ]](w, σ) gives487

the number of ways a machine could present to show that(w, σ) |= ϕ. Indeed,488

the machine could proceed inductively over the structure ofϕ. For the atomic489

subformulas and their negations, the number should be 1 or 0 depending on whether490

the formula holds or not. Now, if[[ϕ]](w, σ) = m and[[ψ]](w, σ) = n, the number491

for [[ϕ ∨ ψ]](w, σ) should bem + n (since any reason forϕ or ψ suffices), and for492

[[ϕ ∧ ψ]](w, σ) it should bem · n (since the machine could pair the reasons forϕ493

resp.ψ arbitrarily). Similarly, the machine could deal with existential and universal494

quantifications.495

(4) The semiringS = (N∪{−∞},max,+,−∞, 0) is often used for settings with costs496
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or rewards as weights. For the semantics of formulas, a choice like in a disjunction497

or existential quantification is resolved by maximum. Conjunction is resolved by498

a sum of the costs, and∀x.ϕ can be interpreted by the sum of the costs from all499

positionsx.500

(5) Consider the reliability semiringS = ([0, 1],max, ·, 0, 1) andΣ = {a1, . . . , an}.501

Assume that every letterai has a reliabilitypi ∈ [0, 1]. Letϕ = ∀x.
∨n

i=1(Pai
(x)∧502

pi). Then([[ϕ]], w) can be considered as the reliability of the wordw ∈ Σ∗.503

(6) PCTL is a well-studied probabilistic extension of computational tree logicCTL504

that is applied in verification. As shown recently in [12],PCTL can be considered505

as a fragment of weighted MSO logic.506

The following basic consistency property of the semantics definition can be shown by507

induction over the structure of the formula using also Lemma6.2.508

Proposition 7.1. Letϕ ∈ MSO(S,Σ) andV be a finite set of variables withFree(ϕ) ⊆509

V. Then510

[[ϕ]]V(w, σ) = [[ϕ]](w, σ|Free(ϕ))

for each valid(w, σ) ∈ Σ∗
V . Also, the series[[ϕ]] is recognizable iff[[ϕ]]V is recognizable.511

Our goal is to compare the expressive power of suitable fragments ofMSO(S,Σ)512

with weighted automata. Crucial for this will be closure properties of recognizable series513

under the constructs of our weighted logic. In general, neither negation, conjunction, or514

universal quantification preserves recognizability.515

Example 7.1. Let S = (Z,+, ·, 0, 1) be the ring of integers and consider the sentence516

ϕ = ∃x.Pa(x) ∨ ((−1) ∧ ∃x.Pb(x)) .

Then([[ϕ]], w) is the difference of the numbers of occurrences ofa andb in w. Note that517

([[¬ϕ]], w) = 1 if and only if these numbers are equal, so[[¬ϕ]] = 1L for a non-regular518

languageL. Therefore[[¬ϕ]] is not recognizable (see Theorem 9.2 below).519

Example 7.2. LetΣ = {a, b}, S = (P(Σ∗),∪, ·, ∅, {ε}), andϕ = ∀x.
(

(Pa(x) ∧ {a}) ∨520

(Pb(x) ∧ {b})
)

. With r the series from Example 4.2,[[ϕ]] = r which is recognizable. On521

the other hand,[[ϕ ∧ ϕ]] = r ⊙ r is not recognizable.522

Example 7.3. Let S = (N,+, ·, 0, 1). Then([[∃x.1]], w) = |w| and([[∀y.∃x.1]], w) =523

|w||w| for eachw ∈ Σ∗. So [[∃x.1]] is recognizable, but[[∀y.∃x.1]] is not recogniz-524

able. Indeed, letA = (Q, in,wt, out) be any weighted automaton overS. Let M =525

max{in(p), out(p),wt(p, a, q) | p, q ∈ Q, a ∈ Σ}. Then(||A||, w) 6 |Q||w|+1 ·M |w|+2
526

for eachw ∈ Σ∗, showing||A|| 6= [[∀y.∃x.1]]. Similarly, ([[∀X.2]], w) = 22
|w|

for each527

w ∈ Σ∗, and[[∀X.2]] is not recognizable due to its growth.528

These examples lead us to consider fragments ofMSO(S,Σ). As in [12], we define529

the syntax ofBoolean formulasof MSO(S,Σ) by530

ϕ ::= Pa(x) | x 6 y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀x.ϕ | ∀X.ϕ
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wherea ∈ Σ. Note that in comparison to the syntax ofMSO(Σ), we only replaced531

disjunction by conjunction and existential by universal quantifications. Now, clearly,532

[[ϕ]]V(w, σ) ∈ {0, 1} for each Boolean formulaϕ and (w, σ) ∈ Σ∗
V if Free(ϕ) ⊆ V.533

Expressing disjunction and existential quantifications bynegation and conjunction resp.534

universal quantifications, for eachϕ ∈ MSO(Σ) there is a Boolean formulaψ such535

that [[ψ]] = 1L(ϕ), and conversely. Hence Boolean formulas capture the full power of536

MSO(Σ).537

Now the class ofalmost unambiguous formulasof MSO(S,Σ) is the smallest class538

containing all constantss ∈ S and all Boolean formulas which is closed under disjunction,539

conjunction, and negation.540

It is useful to introduce the closely related notion of recognizable step functions: these541

are precisely the finite sums of seriess1L wheres ∈ S andL ⊆ Σ∗ is regular. By542

induction it follows that[[ϕ]] is a recognizable step function for any almost unambiguous543

formulaϕ ∈ MSO(S,Σ). Conversely, ifr : Σ∗ → S is a recognizable step function,544

by the B̈uchi-Elgot-Trakhtenbrot theorem, we obtain an almost unambiguous sentenceϕ545

with r = [[ϕ]].546

Forϕ ∈ MSO(S,Σ), let const(ϕ) be the set of all elements ofS occurring inϕ. We547

recall that two subsetsA,B ⊆ S commute, ifa · b = b · a for all a ∈ A, b ∈ B.548

Definition 7.3. A formula ϕ ∈ MSO(S,Σ) is syntactically restricted, if it satisfies the549

following conditions:550

(1) for all subformulasψ ∧ ψ′ of ϕ, the setsconst(ψ) andconst(ψ′) commute orψ or551

ψ′ is almost unambiguous,552

(2) wheneverϕ contains a subformula∀x.ψ or¬ψ, thenψ is almost unambiguous,553

(3) wheneverϕ contains a subformula∀X.ψ, thenψ is Boolean.554

We let srMSO(S,Σ) denote the collection of all syntactically restricted formulas from555

MSO(S,Σ).556

Also, a formulaϕ ∈ MSO(S,Σ) is calledexistential, if it has the form∃X1. . . . ∃Xn.ψ557

whereψ contains only first order quantifiers.558

Theorem 7.2 (Droste and Gastin [28]).Let S be any semiring,Σ an alphabet, and559

r : Σ∗ → S a series. The following are equivalent:560

(1) r is recognizable.561

(2) r = [[ϕ]] for some syntactically restricted and existential sentenceϕ ofMSO(S,Σ).562

(3) r = [[ϕ]] for some syntactically restricted sentenceϕ of MSO(S,Σ).563

Proof (sketch). (1)→ (2): We haver = ||A|| for some weighted automatonA =564

(Q, in,wt, out). Then we can use the structure ofA to define a sentenceϕ as required565

such that||A|| = [[ϕ]].566

(2)→ (3): Trivial.567

(3) → (1): By structural induction we show for each formulaϕ ∈ srMSO(S,Σ) that568

[[ϕ]] = ||A|| for some weighted automatonA overΣϕ andSϕ whereSϕ = 〈const(ϕ)〉 is569

the subsemiring ofS generated by the setconst(ϕ). For Boolean formulas, this is easy.570

For disjunction and existential quantification, we use closure properties of the class of rec-571

ognizable series. For conjunction, the assumption of Definition 7.3(1) and the particular572
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induction hypothesis allow us to employ the construction from Lemma 4.3. Ifϕ = ∀x.ψ573

whereψ is almost unambiguous, we can use the description of[[ψ]] as a recognizable step574

function to construct a weighted automaton with the behavior [[ϕ]].575

Note that the caseϕ = ∀x.ψ requires a crucial new construction of weighted au-576

tomata which does not occur in the unweighted setting since,in general, we cannot reduce577

(weighted) universal quantification to existential quantification.578

A semiringS is locally finiteif each finitely generated subsemiring is finite. Examples579

include any bounded distributive lattice, thus in particular all Boolean algebras and the580

semiring([0, 1],max,min, 0, 1). Another example is given by([0, 1],min,⊕, 1, 0) with581

x⊕ y = min(1, x+ y).582

We call a formulaϕ ∈ MSO(S,Σ) weakly existential, if wheneverϕ contains a sub-583

formula∀X.ψ, thenψ is Boolean.584

Theorem 7.3 (Droste and Gastin [26, 28]).Let S be locally finite andr : Σ∗ → S a585

series. The following are equivalent:586

(1) r is recognizable.587

(2) r = [[ϕ]] for some weakly existential sentenceϕ of MSO(S,Σ).588

If moreover,S is commutative, these conditions are equivalent to the following one:589

(3) r = [[ϕ]] for some sentenceϕ of MSO(S,Σ).590

The proof uses the fact that ifS is locally finite, then each recognizable seriesr ∈591

S 〈〈Σ∗〉〉 can be shown to be a recognizable step function.592

Observe that Theorem 7.3 applies to all bounded distributive lattices and to all fi-593

nite semirings; in particular, withS = B it contains our starting point, the Büchi-Elgot-594

Trakhtenbrot theorem, as a very special case.595

Given a syntactically restricted formulaϕ of MSO(S,Σ), by the proofs of Theo-596

rem 7.2 we canconstructa weighted automatonA such that||A|| = [[ϕ]] (provided the597

operations of the semiringS are given in an effective way, i.e.,S is computable). Since598

the equivalence problem for weighted automata over computable fields is decidable by599

Corollary 8.4 below, we obtain:600

Corollary 7.4. LetS be a computable field. Then the equivalence problem whether[[ϕ]] =601

[[ψ]] for syntactically restricted sentencesϕ, ψ of MSO(S,Σ) is decidable.602

In contrast, the equivalence problem for weighted automatais undecidable for the603

semirings(N ∪ {∞},min,+,∞, 0) and (N ∪ {−∞},max,+,−∞, 0) (Theorem 8.6).604

Since the proof of Theorem 7.2 is effective, for these semirings also the equivalence prob-605

lem for syntactically restricted sentences ofMSO(S,Σ) is undecidable.606

8 Decidability of “ r1 = r2?”607

In this section, we investigate when it is decidable whethertwo given recognizable series608

are equal. For this, we assumeS to be a computable semiring, i.e., the underlying set of609
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S forms a decidable set and addition and multiplication can beperformed effectively. In610

the first part, we fix one of the two series to be the constant series with value0.611

Let P = (λ, µ, γ) be a linear presentation of dimensionQ of the seriesr ∈ S 〈〈Σ∗〉〉.612

For n ∈ N, let UP
n = 〈{λµ(w) | w ∈ Σ∗, |w| 6 n}〉 andUP = 〈{λµ(w) | w ∈ Σ∗}〉,613

soUP
n andUP are subsemimodules ofS{1}×Q. ThenUP

0 ⊆ UP
1 ⊆ UP

2 · · · ⊆ UP =614
⋃

n∈N
UP
n , and each of the semimodulesUP

n is finitely generated.615

Lemma 8.1. The set of all pairs(P, n) such thatP is a linear presentation andUP
n =616

UP
n+1 is recursively enumerable (here, the homomorphismµ from the presentationP is617

given by its restriction toΣ).618

Proof. Note thatUP
n = UP

n+1 if and only if every vectorλµ(w) with |w| = n+1 belongs619

toUP
n if and only if for eachw ∈ Σ∗ of lengthn+ 1,620

λµ(w) =
∑

v∈Σ∗

|v|6n

svλµ(v)

for somesv ∈ S. A non-deterministic Turing-machine can check the solvability of this621

equation by just guessing the coefficientssv and checking the required equality.622

Corollary 8.2. Assume that, for any linear presentationP , UP is a finitely generated623

semimodule. Then, from a linear presentationP of dimensionQ, one can computen ∈ N624

with UP
n = UP and finitely many vectorsx1, . . . , xm ∈ S{1}×Q with 〈{x1, . . . , xm}〉 =625

UP .626

Proof. SinceUP is finitely generated, there is somen ∈ N such thatUP = UP
n and627

thereforeUP
n = UP

n+1. Hence, for somen ∈ N, the pair(P, n) appears in the list from628

the previous lemma. ThenUP = UP
n = 〈{λµ(v) | v ∈ Σ∗, |v| 6 n}〉.629

Clearly, every finite semiring satisfies the condition of thecorollary above, but not all630

semirings do.631

Example 8.1. Let S be the semiring(N,+, ·, 0, 1) and consider a presentationP with632

λ =
(

1 0
)

andµ(w) =

(

1 |w|
0 1

)

.

ThenUP
n is generated by all the vectors

(

1 m
)

for 0 6 m 6 n so that
(

1 n+ 1
)

∈633

UP
n+1 \ U

P
n ; henceUP is not finitely generated.634

As a positive example, we have the following.635

Example 8.2. If S is a skew-field (i.e., a semiring such that(S,+, 0) and(S\{0}, ·, 1) are636

groups), then we can considerUP
n as a vector space. Then the dimensions of the spaces637

UP
i ⊆ S{1}×Q are bounded by|Q| anddim(UP

i ) 6 dim(UP
i+1) implying UP

|Q| = UP .638

Hence, for any skew-fieldS, in the corollary above we can setn = |Q|.639

We only note that all Noetherian rings (that include all polynomial rings in several640

indeterminates over fields, by Hilbert’s basis theorem) satisfy the assumption of Corol-641

lary 8.2.642
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Theorem 8.3(Scḧutzenberger [85]).LetS be a computable semiring such that, for any643

linear presentationP , UP is a finitely generated semimodule. Then, for a linear presen-644

tationP , one can decide whether||P || = 0.645

Proof. We have to decide whetheryγ = 0 for all vectorsy ∈ UP . By the previous646

lemma, we can compute a finite listx1, . . . , xm of vectors that generateU . So one only647

has to check whetherxiγ = 0 for 1 6 i 6 m.648

Example 8.3. If S is a skew-field, a basis ofUP can be obtained in time|Σ| · |Q|3649

(where the operations in the skew-fieldS are assumed to require constant time). The650

algorithm actually computes a prefix-closed set of wordsu1, . . . , udim(UP ) such that the651

vectorsλµ(ui) form a basis ofUP (cf. [83]). This basis consists of at most|Q| vectors652

(cf. Example 8.2), each of size|Q|. Hence||P || = 0 can be decided in time|Σ||Q|3.653

If S is a finite semiring, thenUP = UP
|SQ|. Hence the vectorsλµ(w) with |w| 6 |S||Q|

654

form a generating set. To check whetherλµ(w)γ = 0 for all such wordsw, time |Σ||S||Q|

655

suffices. Within the same time bound, one can decide whether||P || = 0 holds.656

Corollary 8.4. Let S be a computable ring such that, for any linear presentationP ,657

UP is a finitely generated semimodule. Then one can decide for two linear presentations658

P1 andP2 whether||P1|| = ||P2||.659

Proof. SinceS is a ring, there is an element−1 ∈ S with x+(−1) ·x = 0 for anyx ∈ S.660

Replacing the initial vectorλ from P2 by −λ, one obtains a linear presentation for the661

series(−1)||P2||. This yields a linear presentationP with ||P || = ||P1|| + (−1)||P2||.662

Now ||P1|| = ||P2|| if and only if ||P || = 0 which is decidable by Theorem 8.3.663

Remark 8.5. Letn1 andn2 be the dimensions ofP1 andP2, respectively. Then the linear664

presentationP from the proof above can be computed in timen1 · n2 and has dimension665

n1+n2. If S is a skew-field, then we can therefore decide whether||P1|| = ||P2|| in time666

|Σ|(n1 + n2)
3.667

Let S be a finite semiring. Then froms ∈ S and weighted automata for||P1|| and668

for ||P2||, one can construct automata accepting{w ∈ Σ∗ | (||Pi||, w) = s} for i = 1, 2.669

This allows us to decide||P1|| = ||P2|| in doubly exponential time. IfS is a finite ring,670

this result follows also from the proof of the corollary above and Example 8.3.671

However, the following result is in sharp contrast to Corollary 8.4. For two seriesr ands672

with values inN ∪ {−∞}, we writer 6 s if (r, w) 6 (s, w) for all wordsw.673

Theorem 8.6 (cf. Krob [63]). There is a seriesrgood : Σ∗ → N ∪ {−∞} such that674

the sets of weighted automataA over the semiring(N ∪ {−∞},max,+,−∞, 0) with675

||A|| = rgood (with rgood 6 ||A||, resp.) are undecidable.676

We remark that analogous statements hold for the semiring(N ∪ {∞},min,+,∞, 0)677

(where rgood > ||A|| is undecidable). As a consequence, the equivalence problem678

of weighted automata over these two semirings is undecidable (this undecidability was679

shown by Krob). The original proof by Krob is rather involvedreducing Hilbert’s 10th680
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0
0

0

A ∪ {$}/1 a+/1 a/1 A ∪ {b, $}/1

Σ ∪ {$}/1 a/0

b/1

a/2 Σ ∪ {$}/1

0
0

0

A ∪ {$}/1 b+, b−, b?/1 A ∪ {b, $}/1

Σ ∪ {$}/1 a/0

b/1

a/2 Σ ∪ {$}/1

Figure 2. Automata for the proof of Theorem 8.6

problem to the equivalence problem. Colcombet presented a radical simplification at681

the Dagstuhl seminar “Advances and Applications of Automata on Words and Trees” in682

2010 starting from the undecidability of the question whether a 2-counter machineA683

accepts the number0 (this undecidable problem has also been used by Almagor, Boker684

and Kupferman in [3] to show the undecidabilities of the questions ||A|| = ||B|| and685

||A|| 6 ||B|| for weighted automata over this semiring). The following isa slight exten-686

sion of Colcombet’s proof that he kindly allowed us to publish in this survey.687

Proof. Let A be a 2-counter machine, i.e., a nondeterministic finite automaton over the688

alphabetA = {a+, a−, a?, b+, b−, b?}. For a wordw ∈ (A ∪ {a, b, $})∗, let πA(w)689

denote the projection ontoA∗.690

A counter trace is a wordw ∈ $ a∗(Aa∗b∗)∗ $ such thatπA(w) is accepted by the691

finite automatonA and, for any maximal factor of the formambncam
′

bn
′

with c ∈ A,692

one of the following holds:693

• c = a+,m′ = m+ 1, andn′ = n
• c = a−,m′ + 1 = m, andn′ = n
• c = a?,m′ = m = 0, andn′ = n

• c = b+,m′ = m, andn′ = n+ 1
• c = b−,m′ = m, andn′ + 1 = n
• c = b?,m′ = m, andn′ = n = 0

694

Then a numberm ∈ N is accepted by the 2-counter machineA if there exists a counter695

tracesw ∈ $am(Aa∗b∗)∗$. By Minsky’s theorem, we can assume that the set of numbers696

m accepted byA is undecidable. LetCT denote the set of all counter traces and let697

CTm = CT ∩ $am(Aa∗b∗)∗$ for m ∈ N.698

Note that no counter trace contains any factor from the following set:

a+(A ∪ {b, $}) ∪ (A ∪ {$})b∗a− ∪ ab∗a? ∪ {a?a}

∪ b+a
∗(A ∪ {$}) ∪ (A ∪ {$, a})b− ∪ b?a

∗b ∪ {bb?}

Therefore, letw ∈ CTreg if w ∈ $a∗(Aa∗b∗)∗$ does not contain any such factor and699

if πA(w) is accepted by the finite automatonA (note that this set is regular). Furthermore,700

let CTreg,m = CTreg ∩ $am(Aa∗b∗)∗$. We will now construct a recognizable seriesr701
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such that(r, w) = |w| for w ∈ CT, (r, w) > |w| for w ∈ CTreg \CT, and(r, w) = −∞702

for w /∈ CT.703

Consider the first weighted automaton from Fig. 2 (whereΣ = A∪{a, b}). Its behav-704

ior maps a wordw ∈ $a∗(Aa∗b∗)∗$ to705

max{|w|, |w|+ ℓ | ∃k ∈ N : w ∈ $(Σ∗A ∪ {ε})akb∗a+a
1+k+ℓ((A ∪ {b})Σ∗ ∪ {ε})$} .

If we exchange the weights0 and2 at the twoa-loops, the behavior forw ∈ $a∗(Aa∗b∗)∗$706

yields707

max{|w|, |w|+ ℓ | ∃k ∈ N : w ∈ $(Σ∗A ∪ {ε})akb∗a+a
1+k−ℓ((A ∪ {b})Σ∗ ∪ {ε})$} .

By taking the union of these two weighted automata, we obtaina recognizable seriesra+
708

that mapsw ∈ $a∗(Aa∗b∗)∗$ to709

max{|w|, |w|+ ℓ | ∃k ∈ N : w ∈ $(Σ∗A ∪ {ε})akb∗a+a
1+k±ℓ((A ∪ {b})Σ∗ ∪ {ε})$} .

i.e., (ra+
, w) = |w| if and only if any maximal factor ofw of the formamb∗a+a

1+n
710

satisfiesm = n (and(ra+
, w) > |w| otherwise).711

Similarly, one can construct a recognizable seriesra−
such that, forw ∈ $a∗(Aa∗b∗)∗$,712

we have(ra−
, w) = |w| if and only if any maximal factor ofw of the forma1+mb∗a−a

n
713

satisfiesm = n (and(ra−
, w) > |w| otherwise).714

Next consider the second weighted automaton from Fig. 2. Itsbehavior maps a word715

w ∈ $a∗(Aa∗b∗)∗$ to716

max{|w|, |w|+ ℓ | ∃k ∈ N : w ∈ $(Σ∗A ∪ {ε})akb∗{b+, b−, b?}
ak+ℓ((A ∪ {b})Σ∗ ∪ {ε})$} .

As above, we get a recognizable seriesra such that, forw ∈ $a∗(Aa∗b∗)∗$, we have717

(ra, w) = |w| if and only if any maximal factor ofw of the formamb∗{b+, b−, b?}a
n

718

satisfiesm = n (and(ra, w) > |w| otherwise).719

Hence, there is a recognizable seriesr′ such that, for a wordw ∈ $a∗(Aa∗b∗)∗$,720

we have(r′, w) = |w| if and only if any maximal factor of any of the following forms721

satisfiesm = n:722

amb∗a+a
1+n a1+mb∗a−a

n amb∗{b+, b−, b?}a
n

bmb+a
∗b1+n b1+mb−a

∗bn bm{a+, a−, a?}a
∗bn

For all other wordsw ∈ $a∗(Aa∗b∗)∗$, we have(r′, w) > |w|. From this series, we723

easily get the recognizable seriesr = r′ ⊙ 1CTreg
satisfying724

(r, w)











= |w| for w ∈ CT

> |w| for w ∈ CTreg \ CT

= −∞ otherwise.

Now define the recognizable seriesrgood andrm for m ∈ N as follows:725

(rgood, w) = max(|w|+ 1, (r, w)) and(rm, w) =

{

(r, w) for w ∈ CTreg,m

(rgood, w) otherwise.
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Then we have form ∈ N

rgood = rm ⇐⇒ (rgood, w) = (rm, w) for all w ∈ CTreg,m

⇐⇒ (r, w) > |w| for all w ∈ CTreg,m

⇐⇒ CTm = ∅

⇐⇒ m is not accepted by the 2-counter machineA .

Since by our assumption onA this last statement is undecidable, the first claim follows.726

Note thatrm 6 rgood. Hencerm = rgood is equivalent to sayingrgood 6 rm.727

Therefore the second claim holds as well.728

9 Characteristic series and supports729

The goal of this section to investigate the regularity of thesupport of recognizable (char-730

acteristic) series.731

Lemma 9.1. LetS be any semiring andL ⊆ Σ∗ a regular language. Then the charac-732

teristic series1L ofL is recognizable.733

Proof. Take a deterministic finite automaton acceptingL and weight the initial state, the734

transitions, and the final states with1 and all the non-initial states, the non-transitions,735

and the non-final states with0. Since every word has at most one successful path in the736

deterministic finite automaton, the behavior of the weighted automaton constructed this737

way is the characteristic series ofL overS.738

For all commutative semirings, also the converse of this lemma holds. This was first739

shown for commutative rings where one actually has the following more general result:740

Theorem 9.2(Scḧutzenberger [85] and Sontag [89]).LetS be a commutative ring, and741

let r ∈ Srec〈〈Σ∗〉〉 have finite image. Thenr−1(s) is recognizable for anys ∈ S.742

It remains to consider commutative semirings that are not rings. LetS be a semiring.743

A subsetI ⊆ S is called anideal, if for all a, b ∈ I ands ∈ S we havea+ b, a · s, s ·a ∈744

I. Dually, a subsetF ⊆ S is called afilter, if for all a, b ∈ F and s ∈ S we have745

a · b, s+ a ∈ F . Given a subsetA ⊆ S, the smallest filter containingA is the set746

F(A) = {a1 · · · an + s | ai ∈ A for 1 6 i 6 n, ands ∈ S} .

Lemma 9.3 (Wang [94]). Let S be a commutative semiring which is not a ring. Then747

there is a semiring morphism ontoB.748

Proof. Consider the collectionC of all filtersF of S with 0 6∈ F . SinceS is not a ring,749

we haveF({1}) ∈ C. By Zorn’s lemma,(C,⊆) contains a maximal elementM with750

F({1}) ⊆ M . We defineh : S → B by letting h(s) = 1 if s ∈ M , andh(s) = 0751

otherwise. Clearlyh(0) = 0 andh(1) = 1.752
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Now leta, b ∈ S. We claim thath(a+b) = h(a)+h(b). By contradiction, we assume753

thata, b 6∈ M but a + b ∈ M . Then0 ∈ F(M ∪ {a}) and0 ∈ F(M ∪ {b}). SinceS is754

commutative, we have0 = m · an + s = m′ · bn
′

+ s′ for somem,m′ ∈ M , n, n′ ∈ N755

ands, s′ ∈ S. This implies that0 = m ·m′ · (a+ b)n+n′

+ s′′ for somes′′ ∈ S. But now756

a+ b ∈M implies0 ∈M , a contradiction.757

Finally, we claim thath(a · b) = h(a) · h(b). If a, b ∈M , then alsoab ∈M , showing758

our claim. Now assumea 6∈M butab ∈M . As above, we have0 = m · an + s for some759

m ∈M , n ∈ N, ands ∈ S. But then0 = m · an · bn + s · bn = m · (ab)n + sbn ∈M by760

ab ∈M , a contradiction.761

Theorem 9.4(Wang [94]). Let S be a commutative semiring andL ⊆ Σ∗. ThenL is762

regular iff 1L is recognizable.763

Proof. One implication is part of Lemma 9.1. Now assume that1L is recognizable. IfS764

is a ring, the result is immediate by Theorem 9.2. IfS is not a ring, by Lemma 9.3 there765

is a semiring morphismh from S to B. LetA be a weighted automaton with||A|| = 1L.766

In this automaton, replace all weightss by h(s). The behavior of the resulting weighted767

automaton over the Boolean semiringB is 1L ∈ B 〈〈Σ∗〉〉. HenceL is regular.768

Now we turn to supports of arbitrary recognizable series. Already forS = Z, the769

ring of integers, such a language is not necessarily regular(cf. Example 7.1). One can770

characterize those semirings for which the support of any recognizable series is regular:771

Theorem 9.5(Kirsten [59]). For a semiringS, the following are equivalent:772

(1) The support of every recognizable series overS is regular.773

(2) For any finitely generated semiringS′ ⊆ S, there exists a finite semiringSfin and774

a homomorphismη : S′ → Sfin with η−1(0) = {0}.775

It is not hard to see that positive (i.e., zero-sum- and zero-divisor-free) semirings like776

(N,+, ·, 0, 1) and locally finite semirings (like(Z/4Z)ω or bounded distributive lattices)777

satisfy condition (2) and therefore (1). By [60], also zero-sum-free commutative semi-778

rings likeN× N satisfy condition (1) and therefore (2).779

Given a semiringS, by Lemma 9.1, the classSR(S) of all supports of recognizable780

series overS contains all regular languages. Closure properties of thisclassSR(S) have781

been studied extensively, see e.g. [11]. A further result isthe following.782

Theorem 9.6(Restivo and Reutenauer [81]).Let S be a field andL ⊆ Σ∗ a language783

such thatL and its complementΣ∗ \ L both belong toSR(S). ThenL is regular.784

In contrast, we note the following result which was also observed by Kirsten:785

Theorem 9.7. There exists a semiringS such thatL ∈ SR(S) (and even1L is recogniz-786

able) for any languageL over any finite alphabetΣ.787

Proof. Let Γ = {a, b} andΓ$ = Γ ∪ {$}. Furthermore, letΓ$ = {γ | γ ∈ Γ$} be a788

disjoint copy ofΓ$. The elements of the semiringS are the subsets ofΓ$
∗
Γ$

∗ and the789
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addition ofS is the union of these sets (with neutral element∅). To define multiplication,790

let L,M ∈ S. ThenL ⊙M consists of all wordsuv ∈ Γ$
∗
Γ$

∗ such that there exists a791

wordw ∈ Γ$
∗ with uw ∈ L andwrevv ∈ M . Alternatively, multiplication ofL andM792

can be described as follows: concatenate any word fromL with any word fromM , delete793

any factors of the formcc for c ∈ Γ$, and place the result intoL ⊙M if and only if it794

belongs toΓ$
∗
Γ$

∗. For instance, we have795

{ab$} · {$a, $ba, a} = {ab$$a, ab$$ba, ab$a} and
{ab$} ⊙ {$a, $ba, a} = {aba, aa}

since the above procedure, when applied toab$ anda, results inab$a /∈ Γ$
∗
Γ$

∗ . Then796

it is easily verified that(S,∪,⊙, ∅, {ε}) is a semiring.797

Now let L ⊆ Γ∗. Define the linear presentationP = (λ, µ, γ) of dimension1 as
follows:

λ1 = {$} ⊙ Lrev

µ(a)11 = {a} for a ∈ Γ

γ1 = {$}

Forv ∈ Γ∗, one then obtains798

(||P ||, v) = {$} ⊙ Lrev ⊙ {v̄} ⊙ {$} =

{

{ε} if v ∈ L

∅ otherwise.

This proves that the characteristic series ofL is recognizable for anyL ⊆ Γ∗. To obtain799

this fact for any languageL ⊆ Σ∗, leth : Σ∗ → Γ∗ be an injective homomorphism. Then800

1L = 1h(L) ◦h

which is recognizable by Lemma 6.2(1).801

An open problem is to characterize those (non-commutative)semiringsS for which802

the support of everycharacteristicand recognizable series is regular.803

10 Further results804

Above, we could only touch on a few selected topics from the rich area of weighted805

automata. In this section, we wish to give pointers to many other research results and806

directions. For details as well as further topics, we refer the reader to the books [38,807

84, 66, 11, 82] and to the recent handbook [30] with extensivesurveys including open808

problems.809

Recognizability Some authors use linear presentations to define recognizable series [11].810

The transition relation of weighted automata given in this chapter can alternatively be811

considered as aQ × Q-matrix whose entries are functions fromΣ to S. A more general812
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approach is presented in [83, 82] where the entries are functions fromΣ∗ to S. Here, the813

free monoidΣ∗ can even be replaced by an arbitrary monoid with a length function.814

The surveys [40, 42, 43] contain an axiomatic treatment of iteration and weighted815

automata using the concept of Conway semirings (i.e., semirings equipped with a suitable816

∗-operation).817

The abovementioned books contain many further properties of recognizable series818

including minimization, Fatou-properties, growth behavior, relationship to coding, and819

decidability and undecidability results.820

The coincidence of aperiodic, starfree, and first-order definable languages [86, 73]821

has counterparts in the weighted setting [26, 27] for suitable semirings. An open prob-822

lem would be to investigate the relationship between dot-depth and quantifier-alternation823

(as in [90] for languages). Recently, the expressive power of weighted pebble automata824

and nested weighted automata was show to equal that of a weighted transitive closure825

logic [13].826

Recall that the distributivity of semirings permitted us toemploy representations and827

algebraic proofs for many results. Using automata-theoretic constructions, one can obtain828

Kleene and B̈uchi type characterizations of recognizable series for strong bimonoids [35].829

These strong bimonoids can be viewed as semirings without distributivity assumption,830

also cf. [32].831

Weighted pushdown automata A huge amount of research has dealt with weighted832

versions of pushdown automata and of context-free grammars. The books [84, 66] and833

the chapters [64, 78] survey the theory and also infer purelylanguage-theoretic decid-834

ability results on unambiguous context-free languages. The list of equivalent formalisms835

(weighted pushdown automata, weighted context-free grammars, systems of algebraic836

equations) has recently been extended by a weighted logic [72].837

Quantitative automata Motivated by practical questions on the behavior of technical838

systems, new kinds of behaviors of weighted automata have been investigated [20, 21].839

E.g., the run weight of a path could be the average of the weights of the transitions.840

Various decidability and undecidability results, closureproperties, and properties of the841

expressive powers of these models have been established [20, 21, 32].842

Discrete structures Weighted tree automata and transducers have been investigated,843

e.g., for program analysis and transformation [87] and for description logics [7]. Their844

investigation, e.g. [10, 15, 16, 65, 36], was also guided by results on weighted word845

automata and on tree transducers, for an extensive survey see [47].846

Distributed behaviors can be modelled by Mazurkiewicz traces. The well-established847

theory of recognizable languages of traces [25] has a weighted counterpart including a848

weighted distributed automata model [45].849

Automata models for other discrete structures like pictures [48], nested words [5],850

texts [37, 54], and timed words [4] have been studied extensively. Corresponding weighted851

automata models and their expressive power have been investigated in [44, 72, 71, 33, 79].852

Weighted automata on infinite words were investigated for image processing [24] and853

used as devices to compute real functions [23]. A discounting parameter was employed854
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in [31, 34] in order to calculate the run weight of an infinite path. This led to Kleene-855

Scḧutzenberger and logical descriptions of the resulting behaviors. Alternatively, semi-856

rings with infinitary sum and product operations allow us to define the behavior analo-857

gously to the finitary case and to obtain corresponding results [41, 28]. Also the quan-858

titative automata from above have been investigated for infinite words employing, e.g.,859

accumulation points of averages to define the run weight of infinite paths [20, 21, 32].860

Weighted Muller automata onω-trees were studied in [7, 80, 70].861

Applications Since the early 90s, weighted automata have been used for compressed862

representations of images and movies which led to various algorithms for image transfor-863

mation and processing, cf. [56, 1] for surveys.864

Practical tools for multi-valued model checking have been developed based on weighted865

automata over De Morgan algebras, cf. [22, 17, 67]. De Morganalgebras are particular866

bounded distributive lattices and therefore locally finitesemirings. Weighted automata867

have also been crucially used to automatically prove termination of rewrite systems, cf.868

[93] for an overview.869

In network optimization problems, the max-plus-semiring(R∪{−∞},max,+,−∞, 0)870

is often employed, see the corresponding chapter in this Handbook.871

For quantitative evaluations, reachability questions, and scheduling optimization in872

real-time systems, timed automata with cost functions forma vigorous current research873

field [8, 6, 14].874

In natural language processing, an interesting strand of applications is developing875

where weighted tree automata play a central role, cf. [62, 69] for surveys. Toolkits for876

handling weighted automata models are described in [61, 2].A survey on algorithms for877

weighted automata with references to many further applications is given in [74].878

We close with three examples where weighted automata were employed to solve long-879

standing open questions in language theory. First, the equivalence of deterministic multi-880

tape automata was shown to be decidable in [52], cf. also [83]. Second, the equality881

of an unambiguous context-free language and a regular language can be decided using882

weighted pushdown automata [88], cf. also [76]. Third, the decidability and complexity883

of determining the star-height of a regular language were determined using a variant of884

weighted automata [53, 58].885
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[40] Z. Ésik. Fixed point theories. In Droste et al. [30], chapter 2.968
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[68] D. Kuske. Scḧutzenberger’s theorem on formal power series follows from Kleene’s theorem.1025

Theoretical Computer Science, 401:243–248, 2008.1026

[69] A. Maletti. Survey: Weighted extended top-down tree transducers —part II: Application in1027

machine translation.Fundam. Inform., 112(2-3):239-261, 2011.1028

[70] E. Mandrali and G. Rahonis. Recognizable tree series with discounting. Acta Cybernetica,1029

19:411–439, 2009.1030

[71] C. Mathissen. Definable transductions and weighted logics for texts.Theoretical Computer1031

Science, 411(3):631–659, 2010.1032

[72] C. Mathissen. Weighted logics for nested words and algebraic formal power series.Logical1033

Methods in Computer Science, 6(1:5):1–34, 2010.1034

[73] R. McNaughton and S. A. Papert.Counter-Free Automata. M.I.T. research monograph no.1035

65. The MIT Press, 1971.1036

[74] M. Mohri. Weighted automata algorithms. In Droste et al. [30], chapter 6.1037

[75] M. Nivat. Transductions des langages de Chomsky.Ann. de l’Inst. Fourier, 18:339–456, 1968.1038

[76] A. Panholzer. Gr̈obner bases and the definining polynomial of a context-free grammar gener-1039

ating function.Journal of Automata, Languages and Combinatorics, 10(1):79–97, 2005.1040

[77] A. Paz.Introduction to Probabilistic Automata. Academic Press, 1971.1041

[78] I. Petre and A. Salomaa. Algebraic systems and pushdown automata. In Droste et al. [30],1042

chapter 7.1043

[79] K. Quaas. MSO logics for weighted timed automata.Formal Methods in System Design,1044

38(3):193–222, 2011.1045

[80] G. Rahonis. Weighted Muller tree automata and weighted logics.Journal of Automata, Lan-1046

guages and Combinatorics, 12(4):455–483, 2007.1047

[81] A. Restivo and C. Reutenauer. On cancellation properties of languages which are supports of1048

rational power series.J. Comput. Syst. Sci., 29(2):153–159, 1984.1049

[82] J. Sakarovitch.Elements of Automata Theory. Cambridge University Press, 2009.1050

[83] J. Sakarovitch. Rational and recognisable power series. In Droste et al. [30], chapter 4.1051

[84] A. Salomaa and M. Soittola.Automata-Theoretic Aspects of Formal Power Series. Texts and1052

Monographs in Computer Science. Springer, 1978.1053
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