
On full groups of measure preserving and ergodic
transformations with uncountable cofinalities∗

Manfred Droste, W. Charles Holland, Georg Ulbrich

Abstract

The group of all measure preserving permutations of the unit interval and the full
group of an ergodic transformation of the unit interval are shown to have uncountable
cofinality and the Bergman property. Here, a group G is said to have the Bergman
property, if for any generating subset E of G, already some bounded power of E∪E−1∪
{1} covers G. This property arose in a recent interesting paper of Bergman where it
was derived for the infinite symmetric groups. We give a general sufficient criterion
for groups G to have the Bergman property. We show that the criterion applies to a
range of other groups, including sufficiently transitive groups of measure preserving,
non-singular, or ergodic transformations of the reals; it also applies to large groups of
homeomorphisms of the rationals, the irrationals, or the Cantor set.

1 Introduction

Groups of measurable or ergodic transformations of the reals and their algebraic properties
have been investigated intensively. Fathi [Fat78] showed that the group of measure-preserving
transformations of the unit interval is simple, and Eigen [Eig81] derived this in the group of
non-singular transformations of the reals for the full subgroups of any ergodic transformation.
Already Anderson [And58] proved that certain homeomorphism groups of Hausdorff spaces
like Cantor’s space, or the rationals, are simple.

It is the goal of this paper to investigate these groups and sufficiently large subgroups
with respect to their cofinality and the Bergman property. An infinite group G is said to have
uncountable cofinality, if it cannot be expressed as the union of a countable ascending chain
of proper subgroups. Serre [Ser80] considered groups of uncountable cofinality in his study
of groups acting on trees. Sabbagh [Sab75] showed that any ω1-existentially closed group
has uncountable cofinality, and Macpherson and Neumann [MN90] derived this for the full
symmetric group Sym(Ω) of all permutations of an infinite set Ω; for further various results
see [Gou92], [HHLS93], [Tho96], [Tho97], [DG02]. In a recent interesting paper, Bergman
[Ber06] showed that the infinite symmetric groups Sym(Ω) satisfy a property which we call
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the Bergman property of a group G: for any generating subset E of G with E = E−1 and
1 ∈ E there is a natural number k such that G = Ek. Soon after [Ber06], the Bergman
property was established also for the homeomorphism groups of Cantor’s set, the rationals
and the irrationals [DG05], the order-automorphism group of the reals [DH05], the general
linear groups of infinite-dimensional vector spaces [Tol06], and several other classes of groups,
see [Mil04], [Ros05], [dC06], [KR07].

Here, we will investigate the groups of measure-preserving transformations of the reals
and of the unit interval, groups of non-singular transformations and full groups of ergodic
transformations. We will show that all these groups have both uncountable cofinality and
the Bergman property. In order to achieve a uniform approach, we first prove a general
result which gives a new sufficient condition for permutation groups G of an infinite set Ω
to have uncountable cofinality and to satisfy the Bergman property. In fact, as shown in
[DH05], a group G satisfies both of these two properties if and only if G has uncountable
strong cofinality, i.e., G cannot be expressed as the union of a countable ascending chain of
proper subsets Hi of G such that for each i ∈ ω we have Hi = H−1

i and HiHi ⊆ Hj for some
j ≥ i. A sufficient criterion for permutation groups G to have uncountable strong cofinality
was given in [DG05], but it relies on information about the normal subgroup structure of
the group G which is often intricate to obtain. The present criterion avoids this and thus
is simpler to use. We show that this criterion applies, besides to the groups mentioned
before, to a range of groups of measure-preserving transformations or homeomorphisms of
the reals or its subsets (including the groups investigated in [DG05]); thus all these groups
have uncountable cofinality and the Bergman property.

2 Strong cofinality and the Bergman property

Let G be a group that is not finitely generated. A subset H ⊆ G is symmetric if H = H−1.
A chain of subsets of G is exhaustive if it has union G. The cofinality of G is the smallest
cardinal κ such that there is an exhaustive ascending chain (Hi)i∈κ of proper subgroups of G.
Similarly, the strong cofinality of G is the smallest cardinal κ such that there is an exhaustive
ascending chain (Hi)i∈κ of proper and symmetric subsets of G such that for each i ∈ κ there
is some j ∈ κ with HiHi ⊆ Hj. Finally, G has the Bergman property if for each symmetric
generating set E ⊆ G with 1 ∈ E there is some k ≥ 1 with G = Ek. As has been shown in
[DH05], the strong cofinality of G is uncountable if and only if G has the Bergman property
and uncountable cofinality.

Let Ω be a set and G a group of permutations of Ω. If g ∈ G, let supp g = {x ∈ Ω | xg 6=
x}, the support of g. For Σ ⊆ Ω we denote by G(Σ) the group of all elements of G having
support inside Σ, i.e., G(Σ) = {g ∈ G | supp g ⊆ Σ}. By idΣ we denote the identity map on
Σ. Now let K ⊆ 2Ω be a non-empty collection of subsets of Ω. Let Γ ⊆ Ω and I a countable
index set. A collection (Γi)i∈I ⊆ K of pairwise disjoint subsets of Γ is a K-subpartition of Γ.
We say that (Γi)i∈I satisfies local patching if for each sequence (gi)i∈I ⊆ G with Γigi = Γi we
have that ∪i∈Igi�Γi

∪ idΩ\∪̇i∈I Γi
∈ G. Next consider the following conditions on G and K.

(A) There is a K-subpartition of Ω that permits local patching.
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(B) For each ∆ ∈ K there are some N ≥ 1, some Σ ∈ K with Σ ⊆ ∆ and some g ∈ G(∆)
such that each element of G(Σ) is a product of at most N conjugates of g or g−1 with
conjugating elements from G(∆).

(C) For each Σ ∈ K there are some M ≥ 1 and some finite set F ⊆ G such that G =(
G(Σ) ∪ F

)M
.

In this section we will show:

Theorem 2.1. If G and K satisfy the conditions (A)-(C), then G has uncountable strong
cofinality.

Droste and Göbel [DG05] define similar conditions on G and K. We want to point out
that (B) is a much weaker version of their concept of bounded conjugacy. Essentially, we
are satisfied by finding some g ∈ G(∆) such that each element of G(Σ) is a product of a
bounded number of conjugates of g±1, whereas bounded conjugacy requires the same to hold
for all g ∈ G(∆) that have “large” support (cf. [DG05]). On the other hand, condition (C)
is quite strong. However, later on, the groups we are interested in turn out to admit easy
proofs of (C).

Assume that (G,K) satisfies (A)-(C). We establish the proof of Theorem 2.1 through a
series of auxiliary results. For this we assume we are given an arbitrary countable exhaustive
ascending chain (Hi)i∈ω of symmetric subsets of G such that for all i ∈ ω we have HiHi ⊆ Hj

for some j ∈ ω. Generally, for H ⊆ G we say that H is captured (by the chain) if H ⊆ Hi

for some i ∈ ω, and a set Σ ⊆ Ω is full for H if for every g ∈ G(Σ) there is some h ∈ H
agreeing with g on Σ.

Lemma 2.2. There are i ∈ ω and ∆ ∈ K such that ∆ is full for Hi.

Proof. By (A) there is a K-subpartition (Γi)i∈ω of Ω that permits local patching. Now
suppose that no Γi is full for Hi. Then for each i ∈ ω choose gi ∈ G(Γi) which is not
induced on Γi by any element of Hi. The map g = ∪i∈ωgi�Γi

∪ idΩ\∪̇i∈I Γi
lies in G. Since

the chain (Hi)i∈ω is exhaustive, there is some n ∈ ω with g ∈ Hn, but then g�Γn = gn�Γn
, a

contradiction. Hence ∆ = Γi is full for Hi for some i ∈ ω.

Lemma 2.3. There is some Σ ∈ K such that G(Σ) is captured by the chain (Hi)i∈ω.

Proof. Let i ∈ ω and ∆ ∈ K as provided by Lemma 2.2. We apply (B) and obtain some
N ≥ 1, some Σ ∈ K with Σ ⊆ ∆ and some g ∈ G(∆) with the properties mentioned there.
There is some j1 ∈ ω with g ∈ Hj1 . Choose j large enough such that (HiHj1Hi)

n ⊆ Hj

for all n = 1, . . . , N . Now let p ∈ G(Σ) be arbitrary. With (B) we find some 1 ≤ n ≤ N
and q1, . . . , qn ∈ G(∆) such that p = (g±1)q1 · · · (g±1)qn . Since ∆ is full for Hi there are
hk ∈ Hi such that hk�∆ = qk�∆ for all k = 1, . . . , n. Because of p�∆c = g�∆c = id∆c we have
p = (g±1)h1 · · · (g±1)hn ∈ Hj and we conclude G(Σ) ⊆ Hj.
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Proof of Theorem 2.1. With Lemma 2.3 we find some Σ ∈ K such that G(Σ) is captured by
the chain (Hi)i∈ω. Now let M and F be given as in (C). Since F is finite, G(Σ) ∪ F and

later
(
G(Σ) ∪ F

)M
are captured, too. Hence G equals some chain member. We conclude

that G has uncountable strong cofinality.

We want to close this section with sufficient conditions for (B) and (C). A K-subpartition
(∆i)i∈Z of Ω permits shifted patching if each sequence (gi)i∈Z ∈ G with ∆igi = ∆i+1 satisfies
∪i∈Zgi�∆i

∪ idΩ\∪̇i∈Z ∆i
∈ G. Let v⊆ K×K be a binary relation. Intuitively, the sets in K will

be “large” subsets of Ω having also a large complement, and, for Σ,Γ ∈ K, Σ v Γ means
that Σ ⊆ Γ and Γ \ Σ is also large. Consider the following conditions on G and (K,v).

(1) For each ∆ ∈ K there is a K-subpartition (∆i)i∈Z of ∆ that permits shifted patching
and all the ∆i lie in the same G-orbit.

(2) ∆ v Γ =⇒ ∆ ⊆ Γ

(3) Σ,Γ,∆ ∈ K with Σ v Γ ⊆ ∆ =⇒ Σ v ∆

(4) Σ ∈ K =⇒ there is ∆ ∈ K with ∆ v Σ

(5) Ω = Σ ∪ Σ′ and Γ,Σ,Σ′ ∈ K =⇒ Γ ∩ Σ ∈ K or Γ ∩ Σ′ ∈ K

(6) ∆ v Σ and f ∈ G =⇒ ∆f v Σf

(7) ∆,∆′,Γ ∈ K with ∆,∆′ v Γ =⇒ there is some g ∈ G(Γ) with ∆g = ∆′

(8) ∆ ∈ K and g ∈ G fixes ∆ setwise =⇒ g�∆ ∪ idΩ\∆ ∈ G

(9) Σ ∈ K =⇒ there are Σ′ ∈ K, g ∈ G with Ω = Σ ∪ Σ′, Σ \ Σ′ v Σ, Σ′ \ Σ v Σ′,
Σ ∩ Σ′ v Σ, Σ ∩ Σ′ v Σ′ and Σg = Σ′

In order to illustrate conditions (1)-(9), we consider the following example. Let Ω be an
infinite set and G = Sym(Ω). We say that Σ ⊆ Ω is a moiety of Ω if |Σ| = |Ω \Σ|. Then let
K be the set of all moieties of Ω, and for Σ,Γ ∈ K we put Σ v Γ if Σ ⊆ Γ and Γ\Σ ∈ K. The
requirement of condition (1) that each ∆ ∈ K has a K-subpartition (instead of a partition
in K) is due to the structure of the Cantor set and its homeomorphism group (see Section
4, Theorem 4.1). There, K will comprise all non-empty proper clopen subsets. Since the
Cantor set is compact, it is not possible to partition a set from K into infinitely many other
sets from K.

For later use we observe that conditions (4) and (6) imply that whenever Σ ∈ K and
f ∈ G then Σf ∈ K, since v⊆ K× K. Now we show:

Lemma 2.4. Assume (1). Then condition (A) follows, and condition (B) holds with N = 2.
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Proof. Let ∆ ∈ K. With (1) we find a subpartition (∆i)i∈Z of ∆ that permits shifted patching
and such that all ∆i lie in the same G-orbit. Hence, we find gi ∈ G mapping ∆i onto ∆i+1

for all i ∈ Z. By shifted patching we obtain that g = ∪i∈Zgi�∆i
∪ idΩ\∪̇i∈Z ∆i

∈ G(∆). First we
show that (∆i)i∈Z satisfies local patching. Let (fi)i∈Z ⊆ G with ∆ifi = ∆i for each i ∈ Z. By
shifted patching, h = ∪i∈Z(figi)�∆i

∪idΩ\∪̇i∈Z ∆i
∈ G and so ∪i∈Zfi�∆i

∪idΩ\∪̇i∈Z ∆i
= hg−1 ∈ G.

To check condition (B), let f be an arbitrary element ofG(∆0) and note that supp g−ifgi ⊆
∆0g

i = ∆i. By local patching we have k = ∪i≥0(g
−ifgi)�∆i

∪ idΩ\∪̇i≥0 ∆i
∈ G(∆) and we claim

that f = kg−1k−1g. Note that k and k−1 are the identity on ∆i for all i < 0. For x ∈ ∪i<0∆i

we have
xkg−1k−1g = xg−1k−1g = xg−1g = x = xf.

For x ∈ ∆0 we have xk = xf ∈ ∆0 and observe that xkg−1 ∈ ∆−1. But k−1 is the identity
on ∆−1, hence xkg−1k−1g = xkg−1g = xk = xf . Finally, let x ∈ ∆i for i > 0. We have

xkg−1k−1g = x(g−ifgi)g−1(g−i+1f−1gi−1)g = x = xf.

Since f, g, k ∈ G(∆), our claim and hence the result, with Σ = ∆0, follow.

Lemma 2.5. Assume (2)-(9). Then, for each Σ ∈ K, G =
(
G(Σ) ∪ {g, g−1}

)5
for some

g ∈ G. In particular, condition (C) holds.

Proof. Given an arbitrary Σ ∈ K, let Σ′ ∈ K and g ∈ G as in (9). Since Σg = Σ′ we have
that G(Σ′) = G(Σ)g. Hence, it suffices to show G = G(Σ) ·G(Σ′) ·G(Σ). For this we adapt
a classical idea given in [DNT86]. Let f ∈ G and Γ = Σ ∩ Σ′. As noted before, we have
Γf ∈ K and by (5) we may assume that Γf ∩ Σ ∈ K. Now use (4) to find some ∆′ ∈ K with
∆′ v Γf ∩ Σ and let ∆ = ∆′f−1. By (6), we have ∆ v (Γf ∩ Σ)f−1 ⊆ Γ ⊆ Σ. With (3) we
conclude ∆ v Σ and, from ∆′ v Γf∩Σ, also ∆′ v Σ. By (7) we find some h ∈ G(Σ) mapping
∆′ = ∆f onto ∆. Hence h′ = (fh)�∆ ∪ idΩ\∆ ∈ G(∆) by (8). With (2) and ∆ v Σ we have

G(∆) ⊆ G(Σ). Now, with h′′ = h(h′)−1 ∈ G(Σ), we have that xfh′′ = x for all x ∈ ∆.
Let Σ1 = Σ \ Σ′ and observe Σ1 v Σ by (9). With ∆ v Σ and (7) we find some k ∈ G(Σ)
with Σ1 = ∆k. Now every element of Σ1 is fixed by k−1fh′′k, thus k−1fh′′k ∈ G(Σ′). Hence
f ∈ k ·G(Σ′) · (h′′k)−1 ⊆ G(Σ) ·G(Σ′) ·G(Σ), as needed.

Theorem 2.6. Let G and K satisfy conditions (1)-(9). Then G has uncountable strong
cofinality.

Proof. With Lemmas 2.4 and 2.5 we obtain conditions (A), (B) and (C). Now apply Theorem
2.1.

3 Measure preserving transformations of [0, 1]

Let Ω be the unit interval [0, 1] or the real line R, equipped with the σ-algebra L of all
Lebesgue-measurable sets. We denote the Lebesgue measure by λ. All sets under consid-
eration will be measurable. A transformation f : Ω → Ω is measurable if Σ ∈ L implies
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Σf−1 ∈ L. Let f be a bijective measurable transformation. Then f is bi-measurable if its
inverse is measurable, too. Subsequently, all transformations occuring here will be assumed
to be bi-measurable. We say that f is measure preserving if λ(Σ) = λ(Σf) for all Σ ∈ L,
and f is non-singular if λ(Σ) = 0 ⇐⇒ λ(Σf) = 0 for all Σ ∈ L. A set Σ ⊆ Ω is in-
variant under f if Σf = Σ. Finally, f is ergodic if each measurable invariant set Σ satisfies
λ(Σ) = 0 or λ(Ω \ Σ) = 0. When considering measure preserving, non-singular or ergodic
transformations, as usual we identify sets and functions that differ by a null set only.

Let S be the group of all bi-measurable transformations of Ω and G a subgroup of S. We
say thatG is equitransitive if any two sets Σ,∆ ∈ L with λ(Σ) = λ(∆) and λ(Ω\Σ) = λ(Ω\∆)
lie in the same orbit of G. Furthermore, G is full if for any countable index set I, any two
partitions Ω = ∪̇i∈I Σi = ∪̇i∈I Γi into sets Σi,Γi ∈ L and any sequence (gi)i∈I ⊆ G with
Σigi = Γi we have that ∪i∈Igi�Σi

∈ G. Clearly, S, the group of all measure preserving
transformations, and the group of all non-singular bi-measurable transformations are each
full. Since the intersection of any collection of full groups is full, it follows that there is a
smallest full group containing G which will be denoted [G]. Clearly, if G consists of measure
preserving resp. non-singular transformations only, then so does [G]. The full group of a
transformation f ∈ S is the smallest full group containing f .

For the remainder of this section we are interested in the following scenario:

(*) Ω is the unit interval, G consists of measure preserving transformations,
and G is full and equitransitive.

At least two special cases of these groups have been studied before. A prominent example
is the group of all measure preserving transformations of the unit interval, which is well-
known to be equitransitive. Fathi [Fat78] showed that this group is perfect and simple.
Eigen [Eig81] considered the full group of an ergodic measure preserving transformation of
the unit interval and obtained similar results as Fathi. The full group of an ergodic measure
preserving transformation is equitransitive (cf. [Hal56]).

Now assume (*) and let n ≥ 1. A transformation f ∈ G is n-point periodic if almost
every x ∈ Ω has an orbit of length n under the action of f . We say that f has finite orbits
if almost every x ∈ Ω is contained in a finite orbit of f .

Lemma 3.1. Each element of G with finite orbits is a commutator in G.

Proof. First, let f ∈ G be n-point periodic, where n ≥ 1. With our assumptions on the
group G we can use exactly the same proof as Eigen in [Eig81, Lemma 1] to show that f is
a commutator in G. If f is a transformation with finite orbits, then let

Σn = {x ∈ Ω | x has an orbit of f of length n}.

Clearly, each Σn is invariant under f and f�Σn is an n-point periodic transformation of Σn,
hence f�Σn ∪ idΩ\Σn = gnhng

−1
n h−1

n , a commutator of elements gn, hn ∈ G with support inside
Σn. Thus we can patch the gn resp. hn together along (Σn)n≥0 to obtain g resp. h ∈ G and
then f is a commutator of g and h.
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Theorem 3.2. Let G be a full and equitransitive group of measure preserving transformations
of the unit interval.

(a) Each element of G is a product of 5 commutators; in particular, G is perfect.

(b) G is simple and each element of G is a product of 10 involutions.

(c) Let g ∈ G with λ(supp g) = 1. Then every element of G is a product of at most 24
conjugates of g or g−1.

Proof. Each element of G with finite orbits is a commutator by Lemma 3.1. This fact and
the assumptions on G suffice to establish the results (a)-(c) precisely as in Fathi [Fat78] for
the group of all measure preserving transformations of the unit interval.

Lemma 3.3. Let Σ,Γ ∈ L with λ(Σ) = λ(Γ). Then there is an involution g ∈ G(Σ ∪ Γ)
exchanging both of them.

Proof. Note that Σ \ Γ and Γ \ Σ have the same measure and are disjoint. Since G is
equitransitive, there is some h ∈ G with (Σ \ Γ)h = Γ \ Σ. Now let g = h�Σ\Γ ∪ h−1

�Γ\Σ ∪
idΩ\((Σ\Γ) ∪̇(Γ\Σ)).

Now let K be the collection of all measurable subsets of [0, 1] of positive measure.

Corollary 3.4. Condition (B) holds.

Proof. Let Σ ∈ K and let I ⊆ Ω be an interval with λ(Σ) = λ(I). Let ψ be a measure
preserving transformation that maps Σ onto I, and let ϕ be the affine bijection that maps
I onto [0, 1]. For f ∈ G(Σ) let f ′ denote the transformation ϕ−1ψ−1fψϕ. It is easy to see
that G′ = {f ′ | f ∈ G(Σ)} is a full and equitransitive group on [0, 1] consisting of measure
preserving transformations. Furthermore, there is some g′ ∈ G′ with λ(supp g′) = 1 (for
example, split Σ into two sets of equal measure and let g be an involution exchanging them,
then g′ is the desired element). Hence, with Theorem 3.2(c), it follows that each element of
G′ is a product of at most 24 conjugates of g′ or g′−1. Since the above map f 7→ f ′ provides
a group isomorphism between G(Σ) and G′, we conclude that each element of G(Σ) is a
product of at most 24 conjugates of g or g−1 with exponents in G(Σ).

Lemma 3.5. Let Σ ∈ L and let Σ = Σ1 ∪̇Σ2 ∪̇Σ3 be a partition in L with λ(Σ1) = λ(Σ2).

Then G(Σ) =
(
G(Σ1 ∪̇Σ2) ∪G(Σ2 ∪̇Σ3)

)4
.

Proof. Choose any f ∈ G(Σ). For i, j ∈ {1, 2, 3} let Σi,j = Σi ∩ Σjf
−1, thus Σi,j is the set

of all elements of Σi mapped to Σj under f . These nine sets form a partition of Σ and we
observe

Σ3 = Σ1,3f ∪̇Σ2,3f ∪̇Σ3,3f = Σ3,1 ∪̇Σ3,2 ∪̇Σ3,3.

Since f preserves the measure, we obtain λ(Σ1,3) + λ(Σ2,3) = λ(Σ3,1) + λ(Σ3,2). Hence we
find some λ-measurable Γ ⊆ Σ3,1 ∪̇Σ3,2 with λ(Σ2,3) = λ(Γ) and by Lemma 3.3 there is some
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f1 ∈ G(Σ2,3 ∪̇Γ) ⊆ G(Σ2 ∪Σ3) exchanging Σ2,3 and Γ. Since Σ1 and Σ2 have equal measure,
we can find f2 ∈ G(Σ1 ∪̇Σ2) exchanging both of them. We obtain

Σ3f
−1f1f2 = (Σ1,3 ∪̇Σ2,3 ∪̇Σ3,3)f1f2 = (Σ1,3 ∪̇Γ ∪̇Σ3,3)f2 ⊆ Σ2 ∪̇Σ3.

By Lemma 3.3 there is some f3 ∈ G(Σ2 ∪̇Σ3) with Σ3f
−1f1f2f3 = Σ3. Let h = f−1f1f2f3.

We just showed that h leaves Σ3 and hence also Σ1 ∪̇Σ2 setwise invariant. Let f4 = h�Σ1 ∪̇Σ2
∪

idΩ\(Σ1 ∪̇Σ2) and f5 = h�Σ3 ∪ idΩ\Σ3 . Then f4, f5 ∈ G by fullness and h = f4f5. Finally, the
statement follows from f = f1f2(f3f

−1
5 )f−1

4 and f1, f3, f5 ∈ G(Σ2 ∪̇Σ3), f2, f4 ∈ G(Σ1 ∪̇Σ2).

Corollary 3.6. Condition (C) holds.

Proof. Let Σ ∈ K be a set of positive measure. It contains some subset Γ0 of measure
m = (2/3)n for some n ≥ 1. We split Γ0 = Σ1 ∪̇Σ2 into two subsets of equal measure
1
2
m. Since m ≤ 2

3
we have 1 − m ≥ 1

2
m. Hence the complement of Γ0 contains a set

Σ3 of measure 1
2
m. Since Σ1 ∪̇Σ2 has the same measure as Σ2 ∪̇Σ3 there is an involution

f ∈ G(Σ1 ∪̇Σ2 ∪̇Σ3) mapping Σ1 ∪̇Σ2 onto Σ2 ∪̇Σ3. Hence G(Σ2 ∪̇Σ3) = f−1G(Σ1 ∪̇Σ2)f ⊆
(G(Γ0) ∪ {f, f−1})3

. Now let Γ1 = Σ1 ∪̇Σ2 ∪̇Σ3 = Γ0 ∪̇Σ3. With Lemma 3.5 we have

G(Γ1) =
(
G(Γ0) ∪ G(Σ2 ∪̇Σ3)

)4
=

(
G(Γ0) ∪ {f, f−1}

)8
. Note that the measure of Γ1,

compared with the measure of Γ0, increased by a factor 3
2
, hence λ(Γ1) = (2/3)n−1. We repeat

this construction inductively obtaining Γ1,Γ2, . . . ,Γn, then λ(Γn) = 1 and so G = G(Γn). By

construction we have G(Γi+1) =
(
G(Γi) ∪ {fi, f

−1
i }

)8
for i = 0, . . . , n − 1 and some fi ∈ G.

Hence G = G(Γn) = (G(Γ0) ∪ F )8n
for some finite set F ⊆ G. Since G(Γ0) ⊆ G(Σ), the

result follows.

Theorem 3.7. Let Ω be the unit interval and let G be a group of measure preserving trans-
formations of Ω that is full and equitransitive. Then G has uncountable strong cofinality.

Proof. As noted before, let K be the collection of all subsets of Ω of positive measure.
Condition (A) for G and K is immediate, condition (B) follows from Corollary 3.4 and
condition (C) is provided by Corollary 3.6. Theorem 2.1 implies the result.

By the remarks above, as an immediate consequence we obtain:

Corollary 3.8. Let Ω be the unit interval, and let G be either the group of all measure
preserving transformations of Ω, or the full group of an ergodic measure preserving transfor-
mation of Ω. Then G has uncountable strong cofinality.

4 Further applications

In this section, we wish to apply Theorem 2.6 to various permutation groups.

Theorem 4.1. Assume one of the following.

(i) [Ber06] Let Ω be an infinite set and G = Sym(Ω).
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(ii) [DG05] Let Ω = R and let G be the group of all Borel-automorphisms of R.

(iii) [DG05] Let Ω be the topological space of the rationals Q, the irrationals R \Q or the
Cantor set and let G be the group of all homeomorphisms of Ω.

(iv) Let Ω = R and let G be a full and equitransitive group of measure preserving trans-
formations of R, identified modulo null sets.

(v) Let Ω = R and let G be a full group consisting of non-singular transformations,
identified modulo null sets. Furthermore, assume that G is transitive on the collection
of all measurable subsets Σ of R for which both Σ and R \ Σ have positive measure.

Then G has uncountable strong cofinality.

Proof. The statement for (i) is the classical result of Bergman [Ber06], and (ii) and (iii) have
been shown in [DG05]. We note that (iv) and (v) can be derived from Proposition 8.3 in
Miller [Mil04]. However, these proofs of (ii)-(v) relied on the normal subgroup structure of
G. Here, we give an alternative simpler proof, using Theorem 2.6 for all these cases. Let K

comprise all subsets Σ ⊆ Ω satisfying, respectively,

(i) |Σ| = |Ω \ Σ| = |Ω|,

(ii) Σ and Ω \ Σ are uncountable Borel sets,

(iii) Σ and Ω \ Σ are non-empty and clopen.

(iv) Σ is measurable and λ(Σ) = λ(Ω \ Σ) = ∞,

(v) Σ is measurable and λ(Σ), λ(Ω \ Σ) > 0.

Now, for Σ,Γ ⊆ Ω, let Σ v Γ if Σ ⊆ Γ and Σ,Γ \ Σ ∈ K and in this case we say that Σ
is a moiety of Γ. First we remark that in each case the sets of K lie in a single G-orbit.
Indeed, this is clear for (i). Any two uncountable Borel sets are of cardinality continuum
and isomorphic via a Borel-automorphism by a result of Kuratowski [Kur66]. For case (iii),
any two sets in K are homeomorphic. Clearly, G is transitive on K for the cases (iv) and (v).
Next we want to verify conditions (1)-(9). In each of the cases, except the Cantor set, it is
elementary that each moiety can be split into countably many moieties. If Ω is the Cantor
set, in order to ensure condition (1), we choose a K-subpartition consisting of sets whose
diameters converge to 0; then patching along this K-subpartition results in a map that is
continuous. From these observations condition (1) follows. Conditions (2)-(6) and (8) can be
verified elementary. For condition (7) let ∆,∆′,Γ ∈ K with ∆,∆′ v Γ. Since K is a G-orbit,
we can find h, h′ ∈ G with ∆h = ∆′ and (Γ\∆)h′ = Γ\∆′. Then put g = h�∆∪h′�Γ\∆∪idΩ\Γ.
Condition (9) can be seen as follows. Let Σ ∈ K be a moiety of Ω and split Σ = Σ1 ∪̇Σ2

in K, which is possible in all cases. Since K is closed under complement, Σ3 = Ω \ Σ is
also a moiety. Then Σ′ = Σ2 ∪̇Σ3 satisfies all requirements. Now Theorem 2.6 implies the
result.
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As special cases of Theorem 4.1(iv) and (v) we obtain:

Corollary 4.2. Let Ω = R. Assume that G is

• the full group of a measure preserving ergodic transformation, or

• the full group of an ergodic transformation that preserves no measure equivalent to the
Lebesgue measure.

Then G has uncountable strong cofinality.

Proof. From [HIK74], Lemma 6 resp. the Corollary preceeding it, it follows that G satisfies
the prerequisites of Theorem 4.1(v) resp. (iv).

Next we wish to show that Theorem 2.6 can be also applied to a range of further permu-
tation groups on the reals.

Example 4.3. We give a construction that yields a group H with uncountable strong cofi-
nality. In view of Theorem 4.1, this group is a proper subgroup of G in the cases (ii) and
(iii).

Let Ω be R or R \Q. Let I ⊆ 2Ω be the collection of all half-open intervals with rational
endpoints, i.e., I = {[a, b) | a, b ∈ Q}. We call an element of Sym(Ω) a translation if it is
of the form x 7→ x + r for some rational r. Furthermore, we call g ∈ Sym(Ω) a piecewise
translation if g = ∪i∈Igi�Σi

, where I is a countable index set, (Σi)i∈I is a partition of Ω with
Σi ∈ I and gi ∈ Sym(Ω) is a translation for all i ∈ I. Let H denote the set of all piecewise
translations. It is straightforward to check that H is a subgroup of Sym(Ω).

Next, let K be the collection of all sets Σ ⊆ Ω such that both Σ and Ω \ Σ have infinite
measure and can be expressed as a countable partition in I. (If Ω = R \Q, these sets Σ ∈ K

are precisely the non-empty proper clopen subsets of R\Q.) Clearly, K is invariant under the
action of H. We claim that H is transitive on K and give a sketch of the proof. We say that
two sequences (Σi)i∈ω, (Γi)i∈ω ⊆ I are similar if λ(Σi) = λ(Γi) for all i ∈ ω. We show that
any two Σ,Γ ∈ K have similar partitions, that means, Σ and Γ have partitions in I consisting
of similar sequences. By definition of K we find some partitions Σ = ∪̇i∈ω Σi and Γ = ∪̇i∈ω Γi

in I. First, find the smallest n ≥ 0 such that λ(Σ0) ≤
∑n

j=0 λ(Γj). Then choose x ∈ Q such

that λ(Σ0) =
∑n−1

j=0 λ(Γj) + λ(Γn ∩ (−∞, x)). Now we can split Σ0 = Σ′
0 ∪̇Σ′

1 ∪̇ . . . ∪̇Σ′
n in I

such that λ(Σ′
j) = λ(Γj) for j = 0, . . . , n− 1 and λ(Σ′

n) = λ(Γn ∩ (−∞, x)). In the sequence
(Σi)i∈ω replace Σ0 by Σ′

0, . . . ,Σ
′
n and in (Γi)i∈ω replace Γn by Γn ∩ (−∞, x),Γn ∩ [x,∞).

These two new sequences have the property that the first n+1 members have pairwise equal
measure. Now proceed similar with the respective tails of these new sequences starting with
the (n + 2)nd members. This way we inductively construct two similar partitions of Σ and
Γ.

Now let Σ,Γ ∈ K. We choose similar partitions Σ = ∪̇i∈ω Σi and Γ = ∪̇i∈ω Γi and also
similar partitions Ω \ Σ = ∪̇i∈ω Σ′

i and Ω \ Γ = ∪̇i∈ω Γ′i. For all i ∈ ω we find translations
hi resp. h′i with Σihi = Γi resp. Σ′

ih
′
i = Γ′i. Then (∪i∈ωhi�Σi

) ∪ (∪i∈ωh
′
i�Σ′

i
) is a piecewise

translation that maps Σ onto Γ.
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Finally, as in the proof of Theorem 4.1, let Σ v Γ if Σ ⊆ Γ and Σ,Γ \Σ ∈ K. We verified
that K is a H-orbit and with this it is easy to check conditions (1)-(9). Now Theorem 2.6
implies that H has uncountable strong cofinality. With respect to the cases (ii) and (iii) of
Theorem 4.1, H is a proper subgroup of G, since H does not contain the transformation
x 7→ −x.

Essentially, the same construction yields several other examples for the cases (ii) and
(iii). Instead of patching translations, exclusively, one might patch affine transformations
with non-zero rational slope, for example, to obtain further groups with uncountable strong
cofinality.
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