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1 Introduction

In automata theory, Büchi’s and Elgot’s fundamental theorems [6, 24, 7] es-
tablished the coincidence of regular and ω-regular languages with languages
definable in monadic second-order logic. At the same time, Schützenberger [56]
investigated finite automata with weights and characterized their behaviours
as rational formal power series. Both of these results have inspired a wealth of
extensions and further research, cf. [59, 55, 40, 4] for surveys and monographs
as well as the chapters [54, 25] of this handbook, and also led to recent practi-
cal applications, e.g. in verification of finite-state programs (model checking,
[45, 3, 41]), in digital image compression [11, 31, 34, 33] and in speech-to-text
processing [48, 50, 8], cf. also the present chapters [1, 49, 36].

It is the goal of this chapter to introduce a logic with weights taken from
an arbirary semiring and to present conditions under which the behaviours
of weighted finite automata are precisely the series definable in our weighted
monadic second-order logic. We will deal with both finite and infinite words. In
comparison to the essential predecessors [13, 14, 19], our logic will be defined
in a purely syntactical way, and the results apply to arbitrary (also non-
commutative) semirings.

Our motivation for this weighted logic is as follows. First, weighted au-
tomata and their behaviour can be viewed as a quantitative extension of clas-
sical automata. The latter decide whether a given word is accepted or not,
whereas weighted automata also compute e.g. the ressources, time or cost
used or the probability of its success when executing the word. We would like
to have an extension of Büchi’s and Elgot’s theorems to this setting. Second,
classical logic for automata describes whether a certain property (e.g. “there
exist three consecutive a’s”) holds for a given word or not. One could be in-
terested in knowing how often this property holds, i.e. again in extending the
previous qualitative statement to a quantitative one.
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Next we describe the syntax of our weighted logics. Its definition incor-
porates weights taken as elements from a given abstract semiring S, just as
done for weighted automata in order to model a variety of applications and
situations. Also, our syntax should extend classical (unweighted) MSO logics.
The semantics of a weighted logic formula ϕ should be a formal power series
over an extended alphabet and with values in S. It is possible to assign a
natural semantics to atomic formulas, to disjunction and conjunction, and to
existential and universal quantifications, but a problem arises with negation.
It would be natural to define the semantics of ¬ϕ elementwise. But if S is not a
Boolean algebra, S does not have a natural complement operation. Therefore
we restrict negation to atomic formulas whose semantics will take as values
only 0 and 1 in S; then the negation of atomic formulas also has a natural
semantics. In comparison to classical MSO-logic, this is not an essential re-
striction, since the negation of a classical MSO-formula is equivalent (in the
sense of defining the same language) to one in which negation is applied only
to atomic formulas. This requires us to include universal quantifications into
our syntax (which we do). In this sense, our weighted MSO-logics then con-
tains the classical MSO-logics which we obtain by letting S =

�
, the 2-element

Boolean algebra.
We define the semantics of sentences ϕ of our weighted MSO-logic by

structural induction over ϕ. Thus, as usually, we also define the semantics
of a formula ϕ with free variables, here as a formal power series over an ex-
tended alphabet. But even for the semiring of natural numbers or the tropical
semiring it turns out that neither universal first-order nor universal second-
order quantification of formulas preserve recognizability, i.e. representability
of their semantics as behaviour of a weighted automaton, and for other (non-
commutative) semirings, conjunction does not preserve recognizability. There-
fore we have to restrict conjunction and universal quantifications. We show
that each formula in our logic which does not contain weights from the semir-
ing (except 0 or 1) has a syntactic representation which is “unambiguous”
and so its associated series takes on only 0 or 1 as values. We permit universal
second-order quantification only for such syntactically unambiguous formu-
las, and universal first-order quantification for formulas in the disjunctive-
conjunctive closure of arbitrary constants from the semiring and syntactically
unambiguous formulas. With an additional restriction of conjunction, we ob-
tain our class of syntacically restricted weighted MSO-formulas. Moreover, if
we allow existential set quantifications only to occur at the beginning of a
fomula, we arrive at syntactically restricted existential MSO-logic.

Now we give a summary of our results. First we show for any semiring
S that the behaviours of weighted automata with values in S are precisely
the series definable by sentences of our syntactically restricted MSO-logic, or,
equivalently, of our syntactically restricted restricted existential MSO-logic.

Second, if the semiring S is additively locally finite, we can apply uni-
versal first-order quantification even to the existential-disjunctive-conjunctive
closure of the set of formulas decribed above and still obtain that the semantics
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of such sentences are representable by weighted automata. Third, if the semir-
ing S is (additively and multiplicatively) locally finite, it suffices to just re-
strict universal second-order quantification and we still obtain sentences with
representable semantics. Locally finite resp. additively locally finite semirings
were investigated in [12, 18], they form large classes of semirings. Fourthly,
we also deal with infinite words. As is well-known and customary [10, 23, 25],
here one has to impose certain completeness properties of the semiring, i.e.
infinite sums and products exist and interact nicely, in order to ensure that
the behaviour of weighted automata (and the semantics of weighted formulas)
can be defined. Under such suitable completeness assumptions on the semir-
ing, we again obtain that our syntactically restricted MSO-logic (syntactically
defined in the same way, but now with semantics on infinite words) is expres-
sively equivalent to a model of weighted Muller automata, and if the semiring
is, furthermore, idempotent (like the max-plus- and min-plus-semirings), the
same applies to our extension of syntactically restricted MSO-logic described
above. We note that we obtain Büchi’s and Elgot’s theorems for languages of
finite and infinite words as particular consequences. Moreover, is the semiring
S is given in some effective way, then the constructions in our proofs yield
effective conversions of sentences of our weighted logic to weighted automata,
and viceversa. If, in addition, S is a field or locally finite, for the case of finite
words we also obtain decision procedures.

2 MSO-logic and weighted automata

In this section, we summarize for the convenience of the reader our notation
used for classical MSO-logic and basic background of weighted automata act-
ing on finite words. We assume that the reader is familiar with the basics of
monadic second-order logic and Büchi’s theorem for languages of finite words,
cf. [59, 35]. Let Σ be an alphabet. The syntax of formulas of MSO(Σ), the
monadic second-order logic over Σ, is given by

ϕ ::= Pa(x) | x ≤ y | x ∈ X | ϕ ∨ ψ | ¬ϕ | ∃x.ϕ | ∃X.ϕ

where a ranges over Σ, x, y are first-order variables and X is a set variable.
We let Free(ϕ) be the set of all free variables of ϕ.

We let Σ∗ be the free monoid of all finite words w = w(1) . . . w(n) (n ≥ 0).
If w ∈ Σ∗ has length n, we put dom(w) = {1, . . . , n}. The word w ∈ Σ∗ is
usually represented by the structure (dom(w),≤, (Ra)a∈Σ) where Ra = {i ∈
dom(w) | w(i) = a} for a ∈ Σ.

Let V be a finite set of first-order and second-order variables. A (V , w)-
assignment σ is a function mapping first-order variables in V to elements of
dom(w) and second-order variables in V to subsets of dom(w). If x is a first-
order variable and i ∈ dom(w) then σ[x → i] is the (V ∪ {x}, w)-assignment
which assigns x to i and acts like σ on all other variables. Similarly, σ[X → I]
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is defined for I ⊆ dom(w). The definition that (w, σ) satisfies ϕ, denoted
(w, σ) |= ϕ, is as usual assuming that the domain of σ contains Free(ϕ). Note
that (w, σ) |= ϕ only depends on the restriction σ|Free(ϕ) of σ to Free(ϕ).

As usual, a pair (w, σ) where σ is a (V , w)-assignment will be encoded
using an extended alphabet ΣV = Σ × {0, 1}V . More precisely, we will write
a word over ΣV as a pair (w, σ) where w is the projection over Σ and σ is
the projection over {0, 1}V . Now, σ represents a valid assignment over V if
for each first-order variable x ∈ V , the x-row of σ contains exactly one 1. In
this case, we identify σ with the (V , w)-assignment such that for each first-
order variable x ∈ V , σ(x) is the position of the 1 on the x-row, and for each
second-order variable X ∈ V , σ(X) is the set of positions carrying a 1 on the
X-row. Clearly, the language

NV = {(w, σ) ∈ Σ∗
V | σ is a valid (V , w)-assignment}

is recognizable. We simply write Σϕ = ΣFree(ϕ) and Nϕ = NFree(ϕ). By Büchi’s
theorem, if Free(ϕ) ⊆ V then the language

LV(ϕ) = {(w, σ) ∈ NV | (w, σ) |= ϕ}

defined by ϕ over ΣV is recognizable. Again, we simply write L(ϕ) for
LFree(ϕ)(ϕ). Conversely, each recognizable language L in Σ∗ is definable by
an MSO-sentence ϕ, so L = L(ϕ).

Next, we turn to basic definitions and properties of semirings, formal power
series and weighted automata. For background, we refer the reader to [4, 40,
55].

A semiring is a structure (S,+, ·, 0, 1) where (S,+, 0) is a commutative
monoid, (S, ·, 1) is a monoid, multiplication distributes over addition, and
0 · x = x · 0 = 0 for each x ∈ S. If the multiplication is commutative, we
say that S is commutative. If the addition is idempotent, then the semiring is
called idempotent. Important examples include

• the natural numbers (�,+, ·, 0, 1) with the usual addition and multiplica-
tion,

• the Boolean semiring
�

= ({0, 1},∨,∧, 0, 1),
• the tropical semiring Trop = (�∪{∞},min,+,∞, 0) (also known as min-

plus semiring), with min and + extended to �∪{∞} in the natural way,
• the arctical semiring Arc = (�∪{−∞},max,+,−∞, 0),
• the semiring ([0, 1],max, ·, 0, 1) which can be used to compute probabilities,
• the semiring of languages (P(Σ∗),∪,∩, ∅, Σ∗).

Given two subsets A, B of a semiring S, we say that A and B commute
element-wise, if a · b = b · a for all a ∈ A and b ∈ B. We let SA denote the
subsemiring of S generated by A. Clearly, due to the distributivity law the
elements of SA can be obtained by taking finite sums of finite products of
elements of A. It follows that if A,B ⊆ S and A and B commute element-
wise, then SA and SB also commute element-wise. If S is a semiring and
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n ∈ �, then Sn×n comprises all (n × n)-matrices over S. With usual matrix
multiplication (Sn×n, ·) is a monoid.

A formal power series over a set Z is a mapping r : Z → S. In this
paper, we will use for Z either the set Σ∗ of finite words, or in Sections 7
and 8 the set Σω of infinite words. It is usual to write (r, w) for r(w). The set
Supp(r) := {w ∈ Z | (r, w) 6= 0} is called the support of r. The set of all formal
power series over S and Z is denoted by S〈〈Z〉〉. Now let r, r1, r2 ∈ S〈〈Z〉〉 and
s ∈ S. The sum r1 + r2 and the Hadamard product r1 � r2 and the scalar
products s · r and r · s are each defined pointwise for w ∈ Z:

(r1 + r2, w) := (r1, w) + (r2, w)

(r1 � r2, w) := (r1, w) · (r2, w)

(s · r, w) := s · (r, w)

(r · s, w) := (r, w) · s

Then (S〈〈Z〉〉,+,�, 0, 1) where 0 and 1 denote the constant series with values
0 resp. 1, is again a semiring.

For L ⊆ Z, we define the characteristic series �L : Z → S by (�L, w) = 1
if w ∈ L, and (�L, w) = 0 otherwise. If S =

�
, the correspondence L 7→ �L

gives a useful and natural semiring isomorphism from (P(Z),∪,∩, ∅,Z) onto
(
�
〈〈Z〉〉),+,�, 0, 1).
Now we turn to weighted automata over finite words. We fix a semiring S

and an alphabet Σ. A weighted finite automaton over S and Σ is a quadruple
A = (Q, λ, µ, γ) where Q is a finite set of states, µ : Σ → SQ×Q is the tran-
sition weight function and λ, γ : Q→ S are weight functions for entering and
leaving a state, respectively. Here µ(a) is a (Q×Q)-matrix whose (p, q)-entry

µ(a)p,q ∈ S indicates the weight (cost) of the transition p
a
−→ q. We also write

wt(p, a, q) = µ(a)p,q. Then µ extends uniquely to a monoid homomorphism
(also denoted by µ) from Σ∗ into (SQ×Q, ·).

The weight of a path P : q0
a1−→ q1 −→ . . . −→ qn−1

an−→ qn in A is
the product weight(P ) := λ(q0) · µ(a1)q0,q1 · · ·µ(an)qn−1,qn

· γ(qn). This path
has label a1 . . . an. The weight of a word w = a1 . . . an ∈ Σ

∗ in A, denoted
(|| A ||, w), is the sum of weight(P ) over all paths P with label w. One can
check that

(|| A ||, w) =
∑

i,j

λ(i) · µ(w)ij · γ(j) = λ · µ(w) · γ

with usual matrix multiplication, considering λ as a row vector and γ as a
column vector. If w = ε, we have (|| A ||, ε) = λ · γ. The formal power series
|| A || : Σ∗ → S is called the behavior of A. A formal power series r ∈ S〈〈Σ∗〉〉
is called recognizable, if there exists a weighted finite automaton A such that
r = || A ||. We let Rec(S,Σ∗) be the collection of all recognizable formal power
series over S and Σ.

Lemma 2.1 ([23, 54]).
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(a) For any recognizable language L ⊆ Σ∗, the series �L is recognizable.
(b) Let r, r1, r2 ∈ S〈〈Σ

∗〉〉 be recognizable, and let s ∈ S. Then r1 + r2, s · r
and r · s are recognizable.

(c) Let S1, S2 ⊆ S be two subsemirings such that S1 and S2 commute element-
wise. Let r1 ∈ Rec(S1, Σ

∗) and r2 ∈ Rec(S2, Σ
∗). Then r1 � r2 ∈

Rec(S,Σ∗).

As an immediate consequence of Lemma 2.1(c), for any recognizable series
r ∈ S〈〈Σ∗〉〉 and recognizable language L ⊆ Σ∗, the series r � �L is again
recognizable

Now let h : Σ∗ → Γ ∗ be a homomorphism. For r ∈ S〈〈Γ ∗〉〉 let h−1(r) = r◦
h ∈ S〈〈Σ∗〉〉. That is, (h−1(r), w) = (r, h(w)) for all w ∈ Σ∗. We call h length-
preserving, if |w| = |h(w)| for each w ∈ Σ∗. We say that h is non-erasing, if
h(a) 6= ε for each a ∈ Σ, or, equivalently, |w| ≤ |h(w)| for each w ∈ Σ∗. In this
case, for r ∈ S〈〈Σ∗〉〉, define h(r) : Γ ∗ → S by (h(r), v) :=

∑
w∈h−1(v)(r, w)

(v ∈ Γ ∗), noting that the sum is finite.

Lemma 2.2 ([23]). Let h : Σ∗ → Γ ∗ be a homomorphism.

(a) h−1 : S〈〈Γ ∗〉〉 → S〈〈Σ∗〉〉 preserves recognizability.
(b) Let h be non-erasing. Then h : S〈〈Σ∗〉〉 → S〈〈Γ ∗〉〉 preserves recognizability.

We say r : Σ∗ → S is a recognizable step function, if r =
∑n
i=1 si · �Li

for
some n ∈ �, si ∈ S and recognizable languages Li ⊆ Σ∗ (i = 1, . . . , n). Then
clearly r is a recognizable series by Lemma 2.1(a),(b). The following closure
result is easy to see.

Lemma 2.3. (a) (cf. [12]) The class of all recognizable step functions over Σ
and S is closed under sum, scalar products and Hadamard products.

(b) Let h : Σ∗ → Γ ∗ be a homomorphism. Then h−1 : S〈〈Γ ∗〉〉 → S〈〈Σ∗〉〉
preserves recognizable step functions.

Proof. (b) Let r =
∑n
i=1 si ·�Li

be a recognizable step function with recogniz-
able languages Li ⊆ Γ ∗. Then each language h−1(Li) ⊆ Σ∗ is also recogniz-
able, hence h−1(r) =

∑n
i=1 si · (�Li

◦ h) =
∑n
i=1 si ·�h−1(Li) is a recognizable

step function. ut

3 Weighted logics

In this section, we introduce our weighted logic and study its first properties.
We fix a semiring S and an alphabet Σ. For each a ∈ Σ, Pa denotes a unary
predicate symbol.

Definition 3.1. The syntax of formulas of the weighted MSO-logic is given
by
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ϕ ::= s | Pa(x) | ¬Pa(x) | x ≤ y | ¬(x ≤ y) | x ∈ X | ¬(x ∈ X)

| ϕ ∨ ψ | ϕ ∧ ψ | ∃x.ϕ | ∃X.ϕ | ∀x.ϕ | ∀X.ϕ

where s ∈ S and a ∈ Σ. We denote by MSO(S,Σ) the collection of all such
weighted MSO-formulas ϕ.

As noted in the introduction, we do not permit negation of general formulas
due to difficulties defining then their semantics: The semantics of a weighted
logic formula ϕ should be a formal power series over an extended alphabet
and with values in S. It would be natural to define the semantics of ¬ϕ
element-wise. In fact, this is possible if S is a bounded distributive lattice
with complement function, like, e.g. any Boolean algebra or the semiring S =
([0, 1],max,min, 0, 1) with complement function x 7→ 1−x (x ∈ [0, 1]), cf. [16,
53]. But in general, arbitrary semirings as well as many important specific
semirings do not have a natural complement function.

Therefore we restrict negation to atomic formulas whose semantics will
take as values only 0 and 1 in S; thus the negation of atomic formulas also
has a natural semantics. In comparison to classical (unweighted) MSO-logic,
this is not an essential restriction, since the negation of a classical MSO-
formula is equivalent (in the sense of defining the same language) to one in
which negation is applied only to atomic formulas. In this sense, our weighted
MSO-logic contains the classical MSO-logic which we obtain by letting S =

�
.

Note that in this case, the constant s in the logic is either 0 (false) or 1 (true).
Now we turn to the definition of the semantics of formulas ϕ ∈ MSO(S,Σ).

As usual, a variable is said to be free in ϕ if there is an occurrence of it in
ϕ not in the scope of a quantifier. A pair (w, σ) where w ∈ Σ∗ and σ is a
(V , w)-assignment is represented by a word over the extended alphabet ΣV as
explained in Section 2. We will define the V-semantics [[ϕ]]V of ϕ as a formal
power series [[ϕ]]V : Σ∗

V → S. This will enable us to investigate when [[ϕ]]V is
a recognizable series. Also, by letting S =

�
, the Boolean semiring, we can

immediately compare our semantics with the classical one assigning languages
to formulas.

Definition 3.2. Let ϕ ∈ MSO(S,Σ) and V be a finite set of variables con-
taining Free(ϕ). The V-semantics of ϕ is a formal power series [[ϕ]]V ∈
S〈〈Σ∗

V〉〉. Let (w, σ) ∈ Σ∗
V . If σ is not a valid (V , w)-assignment, then we put

[[ϕ]]V(w, σ) = 0. Otherwise, we define [[ϕ]]V(w, σ) ∈ S inductively as follows:

[[s]]V(w, σ) = s

[[Pa(x)]]V(w, σ) =

{
1 if w(σ(x)) = a

0 otherwise

[[x ≤ y]]V(w, σ) =

{
1 if σ(x) ≤ σ(y)

0 otherwise

[[x ∈ X]]V(w, σ) =

{
1 if σ(x) ∈ σ(X)

0 otherwise



8 Manfred Droste and Paul Gastin

[[¬ϕ]]V(w, σ) =

{
1 if [[ϕ]]V(w, σ) = 0

0 if [[ϕ]]V(w, σ) = 1

if ϕ is of the form Pa(x),
(x ≤ y) or (x ∈ X).

[[ϕ ∨ ψ]]V(w, σ) = [[ϕ]]V(w, σ) + [[ψ]]V(w, σ)

[[ϕ ∧ ψ]]V(w, σ) = [[ϕ]]V(w, σ) · [[ψ]]V(w, σ)

[[∃x.ϕ]]V(w, σ) =
∑

i∈dom(w)

[[ϕ]]V∪{x}(w, σ[x→ i])

[[∃X.ϕ]]V(w, σ) =
∑

I⊆dom(w)

[[ϕ]]V∪{X}(w, σ[X → I])

[[∀x.ϕ]]V(w, σ) =
∏

i∈dom(w)

[[ϕ]]V∪{x}(w, σ[x→ i])

[[∀X.ϕ]]V(w, σ) =
∏

I⊆dom(w)

[[ϕ]]V∪{X}(w, σ[X → I])

where we fix some order on the power set of {1, . . . , |w|} so that the last product
is defined. We simply write [[ϕ]] for [[ϕ]]Free(ϕ).

Note that if ϕ is a sentence, i.e. has no free variables, then [[ϕ]] ∈ S〈〈Σ∗〉〉.
We give several examples of possible interpretations for weighted formulas:

I. Let S be an arbitrary Boolean algebra (B,∨,∧, , 0, 1). In this case, sums
correspond to suprema, and products to infima. Here we can define the
semantics of ¬ϕ for an arbitrary formula ϕ by [[¬ϕ]](w, σ) := [[ϕ]](w, σ),
the complement of [[ϕ]](w, σ) in B. Then clearly [[ϕ∧ψ]] = [[¬(¬ϕ∨¬ψ)]],
[[∀x.ϕ]] = [[¬(∃x.¬ϕ)]] and [[∀X.ϕ]] = [[¬(∃X.¬ϕ)]]. This may be inter-
preted as a multi-valued logic. In particular, if S =

�
, the 2-valued

Boolean algebra, our semantics coincides with the usual semantics of
unweighted MSO-formulas, identifying characteristic series with their
supports. For the more general case where S is a bounded distributive
lattice with complement function, we refer the reader to [53].

II. Let S = (�,+, ·, 0, 1) and assume ϕ does not contain constants k ∈�. We
may interpret [[ϕ]](w, σ) as the number of proofs or arguments we have
that (w, σ) satisfies formula ϕ. Here, the notion of “proof” should not be
considered in an exact proof-theoretic, but in an intuitive sense. Indeed,
for atomic formulas the number of proofs should be 0 or 1, depending
on whether ϕ holds for (w, σ) or not. Now if e.g. [[ϕ]](w, σ) = m and
[[ψ]](w, σ) = n, the number of proofs that (w, σ) satisfies ϕ∨ψ should be
m+ n (since any proof suffices), and for ϕ ∧ ψ it should be m · n (since
we may pair the proofs of ϕ and ψ arbitrarily). Similarly, the semantics
of the existential and universal quantifiers can be interpreted.

III. The formula ∃x.Pa(x) counts how often a occurs in the word. Here how
often depends on the semiring: e.g. natural numbers, Boolean semiring,
integers modulo 2, . . .

IV. Consider the probability semiring S = ([0, 1],max, ·, 0, 1) and the alpha-
bet Σ = {a1, . . . , an}. Assume that each letter ai has a reliability pi.
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Then, the series assigning to a word its reliability can be given by the
first-order formula ∀x.

∨
1≤i≤n(Pai

(x) ∧ pi).
V. Let S = ([0, 1],max,⊗, 0, 1) where x⊗y = max(0, x+y−1), the semiring

occurring in the MV-algebra used to define the semantics of  Lukasiewicz
multi-valued logic [29]. For this semiring, a restriction of  Lukasiewicz
logic coincides with our weighted MSO-logic [58].

Observe that if ϕ ∈ MSO(S,Σ), we have defined a semantics [[ϕ]]V for each
finite set of variables V containing Free(ϕ). Now we show that these semantics’
are consistent with each other.

Proposition 3.3. Let ϕ ∈ MSO(S,Σ) and V a finite set of variables contain-
ing Free(ϕ). Then

[[ϕ]]V(w, σ) = [[ϕ]](w, σ|Free(ϕ))

for each (w, σ) ∈ Σ∗
V such that σ is a valid (V , w)-assignment. In particu-

lar, [[ϕ]] is recognizable iff [[ϕ]]V is recognizable, and [[ϕ]] is a recognizable step
function iff [[ϕ]]V is a recognizable step function.

Proof. The first claim can be shown by induction on the structure of ϕ.
For the final claim, consider the projection π : ΣV → Σϕ. For (w, σ) ∈ Σ∗

V ,
we have π(w, σ) = (w, σ|Free(ϕ)). If [[ϕ]] is recognizable then [[ϕ]]V = π−1([[ϕ]])�
�NV

is recognizable by Lemmas 2.1 and 2.2. This also shows that if [[ϕ]] is a
recognizable step function, then so is [[ϕ]]V by Lemma 2.3.

Conversely, let F comprise the empty word and all (w, σ) ∈ Σ+
V such that

σ assigns to each variable x (resp. X) in V \Free(ϕ) position 1, i.e., σ(x) = 1
(resp. σ(X) = {1}). Then F is recognizable, and for each (w, σ′) ∈ Σ∗

ϕ there
is a unique element (w, σ) ∈ F such that π(w, σ) = (w, σ′). Thus [[ϕ]] =
π([[ϕ]]V � �F ), as is easy to check. Hence, if [[ϕ]]V is recognizable then so is
[[ϕ]] by Lemmas 2.1 and 2.2. Finally, note that [[ϕ]] assumes the same non-zero
values as [[ϕ]]V , and if s ∈ S, then [[ϕ]]−1(s) = π([[ϕ]]−1

V (s)). Hence, if [[ϕ]]V is a
recognizable step function, so is [[ϕ]]. ut

Now let Z ⊆ MSO(S,Σ). A series r : Σ∗ → S is called Z-definable, if there
is a sentence ϕ ∈ Z such that r = [[ϕ]]. The main goal of this paper is the
comparison of Z-definable with recognizable series, for suitable fragments Z
of MSO(S,Σ). Crucial for this will be closure properties of recognizable series
under the constructs of our weighted logic. However, it is well-known that
Rec(S,Σ∗) is in general not closed under the Hadamard product and hence
not under conjunction.

Example 3.4. Let Σ = {a, b}, S = (P(Σ∗),∪, ·, ∅, {ε}), and consider the for-
mula ϕ = ∀x.

(
(Pa(x) ∧ {a}) ∨ (Pb(x) ∧ {b})

)
. Then ([[ϕ]], w) = {w} for each

w ∈ Σ∗. Clearly, [[ϕ]] is recognizable. However, ([[ϕ∧ϕ]], w) = {w}·{w} = {w2}
for each w ∈ Σ∗, and pumping arguments show that [[ϕ∧ϕ]] is not recognizable
(cf. [22]).
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Next we show that Rec(S,Σ∗) is in general not closed under universal
quantification.

Example 3.5 (cf. [14]). Let S = (�,+, ·, 0, 1). Then [[∀x.2]](w) = 2|w| and

[[∀y∀x.2]](w) = (2|w|)|w| = 2|w|2 . Clearly, the series [[∀x.2]] is recognizable
by the weighted automaton (Q, λ, µ, γ) with Q = {1}, λ1 = γ1 = 1 and
µ1,1(a) = 2 for all a ∈ Σ. However, [[∀y∀x.2]] is not recognizable. Suppose
there was an automaton A′ = (Q′, λ′, µ′, γ′) with behavior [[∀y∀x.2]]. Let M =
max{|λ′p|, |γ

′
p|, |µ

′(a)p,q| | p, q ∈ Q
′, a ∈ Σ}. Then, for any w ∈ Σ∗ and for each

path P labeled by w we have weight(P ) ≤M |w|+2 and since there are |Q||w|+1

paths labeled w we obtain (|| A′ ||, w) ≤ |Q′||w|+1·M |w|+2, a contradiction with

(|| A′ ||, w) = 2|w|2 .
A similar argument applies also for the tropical and the arctical semirings.

Observe that in all these cases, [[∀x.2]] has infinite image.

Example 3.6 (cf. [18]). Let S = (�,+, ·, 0, 1). Then ([[∃x.1]], w) = |w| and
[[∀y.∃x.1]], w) = |w||w| for each w ∈ Σ∗. Hence [[∃x.1]] is recognizable, but
[[∀y.∃x.1]] is not, by the argument of the previous example. In contrast, if S
is the tropical or arctical semiring (and 1 still the natural number 1), then
[[∃x.1]] takes on only two values, and [[∀y.∃x.1]] is recognizable.

Example 3.7. Let S = (�,+, ·, 0, 1). Then [[∀X.2]](w) = 22|w|

for any w ∈
Σ∗, and as above [[∀X.2]] is not recognizable due to its growth. Again, this
counterexample also works for the tropical and the arctical semirings.

The examples show that unrestricted conjunction and universal quantifi-
cation are in general too strong to preserve recognizability. Therefore we will
consider fragments of MSO(S,Σ). Their syntactic definition needs a little
preparation on unambiguous formulas.

4 Unambiguous Formulas

In all of this section let S be a semiring and Σ an alphabet. Here we will
define our concepts of unambiguous and of syntactically unambiguous MSO-
formulas. For these formulas, the Boolean semantics will coincide with the
weighted semantics. The unambiguous formulas may be viewed as the logical
counterpart of unambiguous rational expressions (and may therefore have in-
dependent interest). We let MSO−(S,Σ) consist of all formulas of MSO(S,Σ)
which do not contain constants s ∈ S \ {0, 1}.

Definition 4.1. The class of unambiguous formulas in MSO−(S,Σ) is de-
fined inductively as follows:

1. All atomic formulas in MSO−(S,Σ) are unambiguous.
2. If ϕ, ψ are unambiguous, then ϕ∧ψ, ∀x.ϕ and ∀X.ϕ are also unambiguous.
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3. If ϕ, ψ are unambiguous and Supp([[ϕ]]) ∩ Supp([[ψ]]) = ∅, then ϕ ∨ ψ is
unambiguous.

4. Let ϕ be unambiguous and V = Free(ϕ). If for any (w, σ) ∈ Σ∗
V there is at

most one element i ∈ dom(w) such that [[ϕ]]V∪{x}(w, σ[x → i]) 6= 0, then
∃x.ϕ is unambiguous.

5. Let ϕ be unambiguous and V = Free(ϕ). If for any (w, σ) ∈ Σ∗
V there is at

most one subset I ⊆ dom(w) such that [[ϕ]]V∪{X}(w, σ[X → I]) 6= 0, then
∃X.ϕ is unambiguous.

Note that, as for unambiguous rational expressions, this is not a purely
syntactic definition since some restrictions are on the semantics of formulas.
This is not so important since we will show that any MSO formula can be
effectively transformed into an unambiguous one which is equivalent for the
Boolean semantics.

Proposition 4.2. Let ϕ ∈ MSO(S,Σ) be unambiguous. We may also regard
ϕ as a classical MSO-formula defining the language L(ϕ) ⊆ Σ∗

ϕ. Then, [[ϕ]] =
�L(ϕ) is a recognizable step function.

Proof. Let (w, σ) ∈ Σ∗
ϕ. If (w, σ) /∈ Nϕ then [[ϕ]](w, σ) = 0 and (w, σ) /∈ L(ϕ).

Assume now that (w, σ) ∈ Nϕ. We show by structural induction on ϕ that
[[ϕ]](w, σ) equals 1 if (w, σ) |= ϕ and equals 0 otherwise. This is clear for the
atomic formulas and their negations. It is also trivial by induction for conjunc-
tion and universal quantifications. Using the unambiguity of the formulas, we
also get the result by induction for disjunction and existential quantifications.
Therefore, [[ϕ]] = �L(ϕ) and since L(ϕ) is a recognizable language in Σ∗

ϕ we
obtain that [[ϕ]] is a recognizable step function. ut

Next we wish to give a purely syntactic definition of a class of unambiguous
formulas and then show that any classical MSO-formula can be effectively
transformed into an equivalent one which is syntactically unambiguous. We
will proceed by structural induction on the given formula. Here (in contrast
to [14]) we will include the case of formulas containing set quantifiers. When
dealing with formulas of the form ∃X.ϕ and ∀X.ϕ, we employ a linear order
on the underlying structure (which is the power set of dom(w) where w ∈ Σ∗).
For this, we recall that we identify (in assignments) subsets of dom(w) with
their characteristic functions, and the set {0, 1}dom(w) carries the lexicographic
order as a natural linear order. Let y < x = ¬(x ≤ y).

Definition 4.3. For any ϕ, ψ ∈ MSO−(S,Σ), we define inductively formulas

ϕ+, ϕ−, ϕ
+
−→ ψ and ϕ

+
←→ ψ in MSO−(S,Σ) by the following rules:

1. If ϕ is atomic, put ϕ+ = ϕ and ϕ− = ¬ϕ with the convention ¬¬ψ = ψ,
and ¬0 = 1, ¬1 = 0.

2. (ϕ ∨ ψ)+ = ϕ+ ∨ (ϕ− ∧ ψ+) and (ϕ ∨ ψ)− = ϕ− ∧ ψ−

3. (ϕ ∧ ψ)− = ϕ− ∨ (ϕ+ ∧ ψ−) and (ϕ ∧ ψ)+ = ϕ+ ∧ ψ+

4. (∃x.ϕ)+ = ∃x.(ϕ+(x) ∧ ∀y.(y < x ∧ ϕ(y))−) and (∃x.ϕ)− = ∀x.ϕ−
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5. (∀x.ϕ)− = ∃x.(ϕ−(x) ∧ ∀y.(x ≤ y ∨ ϕ(y))+) and (∀x.ϕ)+ = ∀x.ϕ+

6. ϕ
+
−→ ψ = ϕ− ∨ (ϕ+ ∧ ψ+) and ϕ

+
←→ ψ = (ϕ+ ∧ ψ+) ∨ (ϕ− ∧ ψ−)

7. For set variables X,Y , we define the following macros3

(X = Y ) = ∀z.(z ∈ X
+
←→ z ∈ Y )

(X < Y ) = ∃y.((y ∈ Y ) ∧ ¬(y ∈ X) ∧ ∀z.(z < y
+
−→ (z ∈ X

+
←→ z ∈ Y )))

(X ≤ Y ) = (X = Y ) ∨ (X < Y )

8. (∃X.ϕ)+ = ∃X.(ϕ+(X)∧∀Y.((Y < X)∧ϕ(Y ))−) and (∃X.ϕ)− = ∀X.ϕ−

9. (∀X.ϕ)− = ∃X.(ϕ−(X)∧∀Y.((X ≤ Y )∨ϕ(Y ))+) and (∀X.ϕ)+ = ∀X.ϕ+.

We call each formula of the form ϕ+, ϕ− for ϕ ∈ MSO−(S,Σ) an (un-
weighted) syntactically unambiguous formula.

By induction it is easy to show:

Lemma 4.4. Let ϕ ∈ MSO−(S,Σ). Then,

• L(ϕ+) = L(ϕ) and L(ϕ−) = L(¬ϕ),
• [[ϕ+]] = �L(ϕ) and [[ϕ−]] = �L(¬ϕ),
• ϕ+ and ϕ− are unambiguous.

The following result is a slight improvement of [14, Proposition 5.4].

Proposition 4.5. For each classical MSO-sentence ϕ, we can effectively con-
struct an unweighted syntactically unambiguous MSO(S,Σ)-sentence ϕ′ defin-
ing the same language, i.e. [[ϕ′]] = �L(ϕ).

Proof. Using also conjunctions and universal quantifications, transform ϕ into
an equivalent MSO-sentence ψ in which negation is only applied to atomic
formulas. Then put ϕ′ = ψ+. ut

We define aUMSO(S,Σ), the collection of almost unambiguous formu-
las in MSO(S,Σ), to be the smallest subset of MSO(S,Σ) containing all
constants s (s ∈ S) and all syntactically unambiguous formulas ϕ+, ϕ−

(ϕ ∈ MSO−(S,Σ)) which is closed under disjunction and conjunction.
We call two formulas ϕ, ψ ∈ MSO(S,Σ) equivalent, denoted ϕ ≡ ψ, if

[[ϕ]] = [[ψ]]. Now we claim that each almost unambiguous formula ψ is equiva-
lent to a formula ψ′ of the form ψ′ =

∨n
j=1(sj ∧ ψ

+
j ) for some n ∈ �, sj ∈ S

and ψj ∈ MSO−(S,Σ) (i = 1, . . . n). Indeed this follows from the following
equivalences for any ϕ, ξ, ζ ∈ MSO(S,Σ), π, ρ ∈MSO−(S,Σ) and s, t ∈ S:

3 The authors are thankful to Christian Mathissen for this formula X < Y which
simplifies an earlier more complicated formula of the authors.
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ϕ ∧ (ξ ∨ ζ) ≡ (ϕ ∧ ξ) ∨ (ϕ ∧ ζ)

π− ≡ (π−)+

π+ ∧ s ≡ s ∧ π+

π+ ∧ ρ+ ≡ (π ∧ ρ)+

π+ ≡ 1 ∧ π+

s ∧ t ≡ st .

Moreover, by forming suitable conjunctions of the formulas ψ+
j , ψ−

j in ψ′

above, we can obtain that the languages Lψ′(ψj) (j = 1, . . . , n) are pairwise
disjoint; then ψ′ could be viewed as a “weighted unambiguous” formula similar
to Definition 4.1 (we will not need this notion, but it also motivates the notion
“almost unambiguous” for ψ).

As a consequence of this description (or Lemma 2.3) and Lemma 4.4, for
each ψ ∈ aUMSO(S,Σ), [[ψ]] is a recognizable step function.

For an arbitrary formula ϕ ∈ MSO(S,Σ), let val(ϕ) denote the set con-
taining all values of S occurring in ϕ.

Next, we define our (weighted) syntactically restricted MSO(S,Σ)-formulas:4

Definition 4.6. A formula ϕ ∈ MSO(S,Σ) is called syntactically restricted,
if it satisfies the following conditions

(1) Whenever ϕ contains a conjunction ψ ∧ ψ′ as subformula but not in the
scope of a universal first order quantifier, then val(ψ) and val(ψ′) commute
element-wise.

(2) Whenever ϕ contains ∀X.ψ as a subformula, then ψ is an unweighted
syntactically unambiguous formula.

(3) Whenever ϕ contains ∀x.ψ as a subformula, then ψ is almost unambigu-
ous.

We let sRMSO(S,Σ) denote the set of all syntactically restricted formulas of
MSO(S,Σ).

Here condition (1) requires us to be able to check for x, y ∈ S whether
x · y = y · x. We assume this basic ability to be given in syntax checks of for-
mulas from MSO(S,Σ). Note that for ψ, ψ′ ∈ MSO(S,Σ), val(ψ) and val(ψ′)
trivially commute element-wise, if S is commutative (which was the general
assumption of [14]) or if ψ or ψ′ is in MSO−(S,Σ), thus in particular, if ψ
or ψ′ is unambiguous. Hence for each MSO(S,Σ)-formula ϕ it can be easily
checked effectively whether ϕ is syntactically restricted or not.

A formula ϕ ∈ MSO(S,Σ) is existential, if it is of the form ϕ =
∃X1. . . . ∃Xn.ψ where ψ does not contain any set quantifier. The set of all
syntactically restricted and existential formulas of MSO(S,Σ) is denoted
sREMSO(S,Σ).

Our first main result, which will be proved in Section 5 is:

4 The authors would like to thank Dietrich Kuske for joint discussions which led to
the development of this crucial concept.
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Theorem 4.7. Let S be any semiring and Σ an alphabet. Let r : Σ∗ → S be
a series. The following are equivalent:

(1) r is recognizable.
(2) r is definable by some syntactically restricted sentence of MSO(S,Σ).
(3) r is definable by some syntactically restricted existential sentence of MSO(S,Σ).

We note that our proofs will be effective. That is, given a syntactically
restricted sentence ϕ of MSO(S,Σ), we can construct a weighted automaton
A with || A || = [[ϕ]] (provided the operations of S are given effectively). For the
converse, given A, we will explicitly describe a sentence ϕ ∈ sREMSO(S,Σ)
with [[ϕ]] = || A ||.

Slightly extending [14], we call an MSO(S,Σ)-formula ϕ restricted, if

(1) Whenever ϕ contains a conjunction ψ ∧ ψ′ as subformula but not in the
scope of a universal first order quantifier, then val(ψ) and val(ψ′) commute
element-wise.

(2) Whenever ϕ contains ∀X.ψ as a subformula, then ψ is an unambiguous
formula.

(3) Whenever ϕ contains ∀x.ψ as a subformula, then [[ψ]] is a recognizable
step function.

Note that in particular conditions (2) and (3) are not purely syntactic, but
use the semantics of formulas. In [14] it was shown that if S is a field or locally
finite semiring (cf. Section 6), then it can be effectively checked whether an
arbitrary MSO(S,Σ)-sentence ϕ is restricted or not. For the general case, this
remained open.

Since, as noted before, the semantics of almost unambiguous formulas are
recognizable step functions, we have:

Proposition 4.8. Each syntactically restricted formula ϕ ∈ MSO(S,Σ) is
restricted.

5 Definable series are recognizable

In all of this section, let S be a semiring and Σ an alphabet. We wish to prove
Theorem 4.7. For this, we first wish to show that whenever ϕ ∈ MSO(S,Σ) is
restricted, then [[ϕ]] is recognizable. We proceed by induction over the structure
of restricted MSO-formulas.

Lemma 5.1. Let ϕ ∈ MSO(S,Σ) be atomic. Then [[ϕ]] is a recognizable step
function.

Proof. If ϕ = s with s ∈ S, we have [[ϕ]] = s·�Σ∗ . If ϕ is one of the other atomic
formulas or their negations, [[ϕ]] = �L(ϕ) is immediate from the definition. ut
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Lemma 5.2. Let ϕ, ψ ∈ MSO(S,Σ) such that [[ϕ]] and [[ψ]] are recognizable.
Then [[ϕ∨ψ]], [[∃x.ϕ]] and [[∃X.ϕ]] are recognizable. Moreover, if [[ϕ]] and [[ψ]] are
recognizable step functions, then [[ϕ ∨ ψ]] is also a recognizable step function.

Proof. For the disjunction, let V = Free(ϕ) ∪ Free(ψ). By definition, we have
[[ϕ ∨ ψ]] = [[ϕ]]V + [[ψ]]V . Hence the result follows from Proposition 3.3 and
Lemma 2.1 resp. 2.3.

For the existential quantifiers, let X be the variable x or X. Let V =
Free(∃X .ϕ) and note that X /∈ V and Free(ϕ) ⊆ V ∪ {X}. Consider the
projection π : Σ∗

V∪{X} → Σ∗
V which erases the X -row. One can show that

[[∃X .ϕ]] = π([[ϕ]]V ∪{X}). Then Proposition 3.3 and Lemma 2.2(b) show that
[[∃X .ϕ]] is recognizable. ut

Next we deal with conjunction. For any formula ϕ ∈ MSO(S,Σ), we let
Sϕ = Sval(ϕ), the subsemiring of S generated by all constants occurring in ϕ.

Lemma 5.3. Let ϕ, ψ ∈ MSO(S,Σ).

(a) Assume that val(ϕ) and val(ψ) commute element-wise, and that [[ϕ]] ∈
Rec(Sϕ, Σ

∗
ϕ) and [[ψ]] ∈ Rec(Sψ, Σ

∗
ψ). Then [[ϕ ∧ ψ]] is recognizable.

(b) If [[ϕ]] and [[ψ]] are recognizable step functions, so is [[ϕ ∧ ψ]].

Proof. Let V = Free(ϕ)∪Free(ψ). By definition, we have [[ϕ∧ψ]] = [[ϕ]]V�[[ψ]]V .
(a) By Proposition 3.3, we get [[ϕ]]V ∈ Rec(Sϕ, Σ

∗
V) and [[ψ]]V ∈ Rec(Sψ, Σ

∗
V).

As noted in Section 2, Sϕ and Sψ commute element-wise. Hence the result
follows from Lemma 2.1(c).

(b) We apply Proposition 3.3 and Lemma 2.3. ut

The most interesting case here arises from universal quantification. In [14],
a corresponding result was proved under the assumption that S is commuta-
tive. The reason that this assumption can be avoided is due to the following.
For a word (over an extended alphabet), the semantics of ∀x.ϕ is evaluated
along the sequence of positions, just as the weight of a path in a weighted
automaton is computed following the sequence of transitions. This will be
crucial in the proof.

Lemma 5.4. Let ψ ∈ MSO(S,Σ) such that [[ψ]] is a recognizable step func-
tion. Then [[∀x.ψ]] is recognizable.

Proof. Let W = Free(ψ) ∪ {x} and V = Free(∀x.ψ) = W \ {x}. By Proposi-
tion 3.3 (in case x /∈ Free(ψ)), [[ψ]]W is a recognizable step function. We may
write [[ψ]]W =

∑n
j=1 sj · �Lj

with n ∈ �, sj ∈ S and recognizable languages
L1, . . . , Ln ⊆ Σ∗

W such that (L1, . . . , Ln) is a partition of NW . Recall that if
(w, σ) ∈ (ΣW)∗ \NW then [[ψ]](w, σ) = 0.

Let Σ̃ = Σ × {1, . . . , n}. A word in (Σ̃V)∗ will be written (w, ν, σ) where
(w, σ) ∈ Σ∗

V and ν ∈ {1, . . . , n}|w| is interpreted as a mapping from dom(w)

to {1, . . . , n}. Let L̃ be the set of (w, ν, σ) ∈ (Σ̃V)∗ such that (w, σ) ∈ NV and
for all i ∈ dom(w) and j ∈ {1, . . . , n} we have
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ν(i) = j implies (w, σ[x→ i]) ∈ Lj .

Observe that for each (w, σ) ∈ NV there is a unique ν such that (w, ν, σ) ∈ L̃
since (L1, . . . , Ln) is a partition of NW .

We claim that L̃ is recognizable. In [14, proof of Lemma 4.4], we con-

structed directly an automaton recognizing L̃. Here we give an unpublished
argument (also developed for [13, 14]) using Büchi’s theorem.

First, let ξ ∈ MSO(Σ) be an arbitrary MSO formula. Define ξ̃ by re-
placing in ξ any occurrence of Pa(y) by

∨
1≤k≤n P(a,k)(y). Then, assuming

that Free(ξ) ⊆ U , it is easy to check by structural induction on ξ that for

all (w, ν, σ) ∈ (Σ̃U )∗ with (w, σ) ∈ NU we have (w, ν, σ) |= ξ̃ if and only if
(w, σ) |= ξ.

By Büchi’s theorem, there is an MSO formula ψj with Free(ψj) ⊆ W such
that for all (w, τ ) ∈ NW we have (w, τ ) ∈ Lj if and only if (w, τ ) |= ψj . Now,
we define

ζ = ∀x.

(
∧

1≤j≤n

∨

a∈Σ

P(a,j)(x) −→ ψ̃j

)
.

Let (w, ν, σ) ∈ (Σ̃V)∗ with (w, σ) ∈ NV . We have (w, ν, σ) |= ζ if and only if
for all i ∈ dom(w) and j ∈ {1, . . . , n} we have

ν(i) = j implies (w, ν, σ[x 7→ i]) |= ψ̃j

and this last statement is equivalent with (w, σ[x 7→ i]) |= ψj which in turn
is equivalent with (w, σ[x 7→ i]) ∈ Lj . Therefore, the formula ζ defines the

language L̃ and our claim is proved.
Now we proceed similar as in [14] with slight changes as in [18] since here

S might not be commutative. There is a deterministic automaton Ã over the
alphabet Σ̃V , recognizing L̃. Now we obtain a weighted automaton A with
the same state set by adding weights to the transitions of Ã as follows: If
(p, (a, j, s), q) is a transition in Ã with (a, j, s) ∈ Σ̃V , we let this transition in
A have weight sj , i.e. µA(a, j, s)p,q = sj . All triples which are not transitions

in Ã get weight 0. Also, the initial state of Ã gets initial weight 1 in A, all
non-initial states of Ã get initial weight 0, and similarly for the final states
and final weights.

Since Ã is deterministic, for each (w, ν, σ) ∈ L̃ there is a unique path

Pw = (ti)1≤i≤|w| in Ã and we have in A

(|| A ||, (w, ν, σ)) = weight(Pw) =
∏

i∈dom(w)

wt(ti)

whereas (||A||, (w, ν, σ)) = 0 for each (w, ν, σ) ∈ Σ̃∗
V \ L̃. For each i ∈ dom(w)

note that if ν(i) = j, then wt(ti) = sj by construction of A, and since

(w, ν, σ) ∈ L̃ we get (w, σ[x→ i]) ∈ Lj and [[ψ]]W(w, σ[x→ i]) = sj .
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We consider now the strict alphabetic homomorphism h : Σ̃∗
V → Σ∗

V de-

fined by h(a, k, s) = (a, s) for each (a, k, s) ∈ Σ̃V . Then for any (w, σ) ∈ NV
and the unique ν such that (w, ν, σ) ∈ L̃, we have

(h(|| A ||), (w, σ)) = (|| A ||, (w, ν, σ)) =
∏

i∈dom(w)

wt(ti)

=
∏

i∈dom(w)

[[ψ]]W(w, σ[x→ i]) = [[∀x.ψ]](w, σ).

Therefore [[∀x.ϕ]] = h(|| A ||) which is recognizable by Proposition 2.2. ut

Lemma 5.5. Let ψ ∈ MSO(S,Σ) be unambiguous. Then [[∀X.ψ]] is a recog-
nizable step function.

Proof. Since ψ is unambiguous, so is ∀X.ψ and by Proposition 4.2 we deduce
that [[∀X.ψ]] is a recognizable step function.

The following result generalizes [14, Theorem 4.5] to non-commutative
semirings.

Theorem 5.6. Let S be any semiring, Σ an alphabet and ϕ ∈ MSO(S,Σ) be
restricted. Then [[ϕ]] ∈ Rec(S,Σ∗

ϕ).

Proof. Note that if ϕ ∈ MSO(S,Σ), then trivially ϕ ∈ MSO(Sϕ, Σ). By
induction over the structure of ϕ we show that [[ϕ]] ∈ Rec(Sϕ, Σ

∗
ϕ). But this

is immediate by Lemmas 5.1– 5.5. ut

Next we aim at showing that, conversely, recognizable series are definable.
First, for s ∈ S, we define

((x ∈ X)
+
−→ s) = ¬(x ∈ X) ∨ ((x ∈ X) ∧ s).

This formula is almost unambiguous, and for any word w and valid assignment
σ we have

[[((x ∈ X → s)]](w, σ) =

{
s if σ(x) ∈ σ(X)

1 otherwise
.

We introduce a few other abbreviations which are all unambiguous for-
mulae. We let min(y) := ∀x.y ≤ x, and max(z) := ∀x.x ≤ z, and
(y = x + 1) := (x ≤ y) ∧ ¬(y ≤ x) ∧ ∀z.(z ≤ x ∨ y ≤ z). If X1, . . . , Xm

are set variables, put

partition(X1, . . . , Xm) := ∀x.
∨

i=1,...,m


(x ∈ Xi) ∧

∧

j 6=i

¬(x ∈ Xj)


 .

Now we show:
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Theorem 5.7. Let S be any semiring, Σ be an alphabet and r ∈ Rec(S,Σ∗).
Then r is sREMSO-definable.

Proof. Let A = (Q, λ, µ, γ) be a weighted automaton such that r = || A ||.
For each triple (p, a, q) ∈ Q × Σ × Q choose a set variable Xp,a,q, and let
V = {Xp,a,q | p, q ∈ Q, a ∈ Σ}. We choose an enumeration X = (X1, . . . , Xm)
of V with m = |Q|2 · |Σ|. Define the syntactically restricted formula

ψ(X) := partition(X) ∧
∧

p,a,q

∀x. x ∈ Xp,a,q
+
−→ Pa(x)

∧ ∀x∀y. (y = x+ 1)
+
−→

∨

p,q,r∈Q,a,b∈Σ

x ∈ Xp,a,q ∧ y ∈ Xq,b,r .

Let w = a1 . . . an ∈ Σ
+. If ρ = (q0

a1−→ q1 . . . qn−1
an−−→ qn) is a path in A over

w, we define the (V , w)-assignment σρ by σρ(Xp,a,q) = {i | (qi−1, ai, qi) =
(p, a, q)}. Clearly, we have [[ψ]](w, σρ) = 1. Conversely, let σ be a (V , w)-
assignment such that [[ψ]](w, σ) = 1. For any i ∈ dom(w), there are uniquely
determined pi, qi ∈ Q such that i ∈ σ(Xpi,ai,qi

) and if i < n then qi = pi+1.

Hence, with q0 = p1 we obtain a unique path ρ = (q0
a1−→ q1 . . . qn−1

an−−→ qn)
for w such that σρ = σ. This gives a bijection between the set of paths in
A over w and the set of (V , w)-assignments σ satisfying ψ, i.e., such that
[[ψ]](w, σ) = 1.

Consider now the formula

ϕ(X) := ψ(X) ∧ ∃y.
(

min(y) ∧
∨

p,a,q

(y ∈ Xp,a,q) ∧ λp
)

∧ ∀x.
∧

p,a,q

(x ∈ Xp,a,q)
+
−→ µ(a)p,q

∧ ∃z.
(

max(z) ∧
∨

p,a,q

(z ∈ Xp,a,q) ∧ γq
)
.

Let ρ = (q0
a1−→ q1 . . . qn−1

an−−→ qn) be a path in A over w and let σρ be the
associated (V , w)-assignment. We obtain

[[ϕ]](w, σρ) = λq0 · µ(a1)q0,q1 · · ·µ(an)qn−1,qn
· γqn

= weight(ρ) .

Let ξ = ∃X1 · · · ∃Xm.ϕ(X1, . . . , Xm). Using the bijection above, we get for
w ∈ Σ+

[[ξ]](w) =
∑

σ (V, w)-assignment

[[ϕ]](w, σ) =
∑

ρ path in A for w

[[ϕ]](w, σρ)

=
∑

ρ path in A for w

weight(ρ) = (|| A ||, w).

Note that [[ξ]](ε) = 0 due to the subformula starting with ∃y in ϕ. Hence,
it remains to deal with w = ε. Let ζ = r(ε) ∧ ∀x.¬(x ≤ x). For w ∈ Σ+
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we have [[∀x.¬(x ≤ x)]](w) = 0. Now, [[∀x.¬(x ≤ x)]](ε) = 1 since an empty
product is 1 by convention, hence we get [[ζ]](ε) = r(ε). Finally, r = [[ζ ∨ ξ]]
and ζ ∨ ξ ∈ MSO(S,Σ) is existential.

In general, ϕ is not syntactically restricted due to the constants which
may not commute. But it is known (cf.[23]) that we may choose A so that
λ(q), γ(q) ∈ {0, 1} for all q ∈ Q. In this case, ϕ is syntactically restricted and
ζ ∨ ξ ∈ sREMSO(S,Σ). ut

Now Theorem 4.7 is immediate by Proposition 4.8 and Theorems 5.6
and 5.7.

Next we consider the effectiveness of our proof of Theorem 4.7 implication
(2) → (1). Note that our proof of Theorem 5.6 in general was not effective,
since in Lemma 5.4 we may not know the form of the step function [[ψ]].
However:

Proposition 5.8. Let S be an effectively given semiring and Σ an alphabet.
Given ϕ ∈ sRMSO(S,Σ), we can effectively compute a weighted automaton
A for [[ϕ]].

Proof. We follow the argument for Theorem 5.6 and proceed by induction on
the structure of ϕ. Now, when dealing with a subformula ∀x.ψ of ϕ, then we
know the form of ψ =

∨n
j=1(sj ∧ ψ

+
j ) with sj ∈ S and ψj ∈ MSO−(S,Σ) for

1 ≤ j ≤ n, and we can use these constituents within the proof of Lemma 5.4.
All other lemmas employed are also constructive, meaning that if weighted

automata are given for the arguments, then weighted automata can be effec-
tively computed for the results. ut

From this and decidability results for weighted automata, we immediately
obtain decidability results for sRMSO-sentences. For instance, if S is an effec-
tively given field (like�, the rational numbers), for any two sRMSO-sentences
ϕ, ψ, we can decide whether [[ϕ]] = [[ψ]]: By Proposition 5.8, construct weighted
automata Aϕ, Aψ for ϕ resp. ψ and then decide whether || Aϕ || = || Aψ ||
(cf. [4, 40]).

For the implication (1) → (3) of Theorem 4.7, given a weighted au-
tomaton A, we can “write down” a sREMSO-sentence ϕ with [[ϕ]] = || A ||.
Using this, from the theory of formal power series (cf. [55, 40, 4]) we im-
mediately obtain also undecidability results for the semantics of weighted
MSO-sentences. For instance, it is undecidable whether a given sREMSO-
sentence ϕ over �, the field of rational numbers, and an alphabet Σ, satisfies
Supp([[ϕ]]) = Σ∗. Also, by a result of Krob [37], the equality of given recog-
nizable series over the tropical semiring is undecidable. Hence, the equality of
two given sREMSO(Trop, Σ)-sentences is also undecidable.
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6 Locally finite semirings

Here we will describe two larger classes of syntactically defined sentences
which, for more particular semirings, are expressively equivalent to weighted
automata.

First let us describe the semirings we will encounter. A monoid M is called
locally finite, if each finitely generated submonoid of M is finite. Clearly, a
commutative monoid M is locally finite iff each cyclic submonoid 〈a〉 of M is
finite. Let us call a semiring S additively locally finite if its additive monoid
(S,+) is locally finite. This holds iff the cyclic submonoid 〈1〉 of (M,+, 0) is
finite. Examples for additively locally finite semirings include:

• all idempotent semirings S (i.e. x + x = x for each x ∈ S), in particu-
lar the arctic and the tropical semirings, the semiring (2Σ

∗

,∪, ·, ∅, {ε}) of
languages of Σ, and the semiring ([0, 1],max, ·, 0, 1) useful for describing
probabilistic settings;

• all fields of characteristic p, for any prime p;
• all products S1× . . .×Sn (with operations defined pointwise) of additively

locally finite semirings Si (1 ≤ i ≤ n);
• the semiring of polynomials (S[X],+, ·, 0, 1) over a variable X and an

additively locally finite semiring S;
• all locally finite semirings (see below).

Furthermore, a semiring (S,+, ·, 0, 1) is locally finite [12], if each finitely
generated subsemiring is finite. Clearly, equivalent to this is that both monoids
(S,+, 0) and (S, ·, 1) are locally finite (cf. [15]). Examples of such semirings
include:

• semirings S for which both addition and multiplication are idempotent and
commutative; in particular, any bounded distributive lattice (L,∨,∧, 0, 1).
Consequently, the chain ([0, 1],max,min, 0, 1) and any Boolean algebra are
locally finite;

• the  Lukasiewicz semiring ([0, 1],max,⊗, 0, 1) (cf. [15]);
• all matrix semirings Sn×n of n× n-matrices over a locally finite semiring

S for any n ≥ 2, these semirings are non-commutative;
• the algebraic closures of the finite fields �/p�(p prime) are (infinite)

locally finite fields.

Next we turn to the formulas we will consider here. We define wUMSO(S,Σ),
the collection of weakly unambiguous formulas in MSO(S,Σ), to be the small-
est subset of MSO(S,Σ) containing all constants s (s ∈ S) and all syntacti-
cally unambiguous formulas ϕ+, ϕ− (ϕ ∈MSO−(S,Σ)) which is closed under
disjunction, conjunction and existential quantifications (both first and second
order); in other words, the existential closure of aUMSO(S,Σ).

Definition 6.1. A formula ϕ ∈ MSO(S,Σ) is called syntactically weakly
restricted, if it satisfies the following conditions:
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(1) Whenever ϕ contains a conjunction ψ ∧ ψ′ as subformula but not in the
scope of a universal first order quantifier, then val(ψ) and val(ψ′) commute
element-wise.

(2) Whenever ϕ contains ∀X.ψ as a subformula, then ψ is an unweighted
syntactically unambiguous formula.

(3) Whenever ϕ contains ∀x.ψ as a subformula, then ψ is weakly unambigu-
ous.

We let swRMSO(S,Σ) denote the set of all syntactically weakly restricted
formulas of MSO(S,Σ).

Our first goal will be to show that all syntactically weakly restricted for-
mulas of MSO(S,Σ) have a recognizable semantics, provided S is additively
locally finite.

Theorem 6.2. Let S be any additively locally finite semiring, Σ be an alpha-
bet, and ϕ ∈ swRMSO(S,Σ). Then [[ϕ]] ∈ Rec(S,Σ∗

ϕ).

As in Section 5, we will proceed by induction on the structure of ϕ. As
preparation, first we aim to show that non-deleting homomorphisms preserve
recognizable step functions provided S is additively locally finite.

Lemma 6.3 ([4], Cor. III.2.4,2.5). Let r : Σ∗ →�be a recognizable series
over the semiring �. Then, for any a, b ∈�the languages r−1(a) and r−1(a+
b�) are recognizable.

Proposition 6.4. Let S be additively locally finite. Let Σ,Γ be two alphabets
and h : Σ∗ → Γ ∗ be a non-erasing homomorphism.

(a) Let L ⊆ Σ∗ be a recognizable language. Then h(�L) : Γ ∗ → S is a recog-
nizable step function.

(b) h : S〈〈Σ∗〉〉 → S〈〈Γ ∗〉〉 preserves recognizable step functions.

Proof. (a) We shall use the same technique as in the proof of [14, Lemma 8.7].
For any s ∈ S and n ≥ 0 we define 0 ⊗ s = 0 (of S) and (n + 1) ⊗ s =
s + n ⊗ s. Thus, n ⊗ s = s + . . . + s with n times s. For any u ∈ Γ ∗, let
m(u) = |h−1(u) ∩ L|. Then (h(�L), u) = m(u) ⊗ 1. The additive monoid 〈1〉
generated by {1} is finite. We choose a minimal element a ∈ �such that
a⊗ 1 = (a+ x)⊗ 1 for some x > 0 and we let b be the smallest such x. Then
〈1〉 = {0, 1, . . . , (a+b−1)⊗1}. Now for each u ∈ Γ ∗ we have m(u)⊗1 = d(u)⊗1
for some uniquely determined d(u) ∈�with 0 ≤ d(u) ≤ a+ b− 1. Note that
if 0 ≤ d < a, then m(u) ⊗ 1 = d ⊗ 1 iff m(u) = d, and if a ≤ d < a + b,
then m(u) ⊗ 1 = d ⊗ 1 iff m(u) ∈ d + b�. For each 0 ≤ d < a + b let

Md = {u ∈ Γ ∗ | d(u) = d}. Then h(�L) =
∑a+b−1

d=0 d ·�Md
.

Also, let �′L ∈ �〈〈Σ∗〉〉 be the characteristic series of L over the semiring
�. Then by Lemma 2.2 the series r = h(�′L) : Γ ∗ → �is recognizable, and
(r, u) =

∑
w∈h−1(u)(�

′
L, w) = m(u) for each u ∈ Γ ∗. Hence Md = {u ∈ Γ ∗ |

m(u) = d} = r−1(d) if 0 ≤ d < a, and Md = {u ∈ Γ ∗ | m(u) ∈ d + b�} =
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r−1(d+ b�) if a ≤ d < a+ b. In any case, Md is recognizable by Lemma 6.3.
Thus h(�L) is a recognizable step function.

(b) Let r =
∑n
j=1 sj · �Lj

be a recognizable step function in S〈〈Σ∗〉〉.
Since h : S〈〈Σ∗〉〉 → S〈〈Γ ∗〉〉 is a semiring homomorphism, we have h(r) =∑n
j=1 sj · h(�Lj

). Now, apply (a) and Lemma 2.3(a). ut

Next we consider existential quantifications.

Lemma 6.5. Let S be additively locally finite and ϕ ∈ MSO(S,Σ) such that
[[ϕ]] is a recognizable step function. Then [[∃x.ϕ]] and [[∃X.ϕ]] are also recog-
nizable step functions.

Proof. Let V = Free(ϕ) and let X be x or X. Following the proof of
Lemma 5.2, we can write [[∃X .ϕ]] as the image under a length-preserving
projection of [[ϕ]]V∪{X} which is a recognizable step function by assumption
and Proposition 3.3. Now apply Proposition 6.4(b). ut

Now we can show:

Proof of Theorem 6.2. We proceed by induction over the structure of ϕ, aiming
to show for each subformula % of ϕ that [[%]] ∈ Rec(Sϕ, Σ

∗
ϕ). First we claim

that if % is weakly unambiguous, then [[%]] : Σ∗
% → S% is a recognizable step

function. For constants and for syntactically unambiguous formulas this is
clear by Lemma 4.4. For disjunctions and conjunctions of such formulas we
apply Proposition 3.3 and Lemma 2.3(a), and for existential quantifications
Lemma 6.5 to obtain our claim. Next we can proceed using Lemmas 5.2– 5.5.
ut

Next we consider the case where the semiring S is locally finite. First we
note:

Proposition 6.6 ([12]). Let S be locally finite. Then every recognizable series
r ∈ S〈〈Σ∗〉〉 is a recognizable step function.

We call a formula ϕ ∈ MSO(S,Σ) weakly existential, if whenever ϕ con-
tains ∀X.ψ as a subformula, then ψ is syntactically unambiguous. Now we
show:

Theorem 6.7. Let S be any locally finite semiring, Σ an alphabet, and ϕ ∈
MSO(S,Σ) weakly existential. Then [[ϕ]] is recognizable.

Proof. We claim that for each subformula ψ of ϕ, [[ψ]] is a recognizable step
function. Due to Proposition 6.6, we only have to show that [[ψ]] is recognizable.
Proceeding by induction, this follows from Lemmas 5.1– 5.5. ut
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7 Weighted Automata on Infinite Words

In this section, we will consider weighted automata A acting on infinite words.
As in the case of weighted automata on finite words, we will define the weight
of an infinite path in A as the product of its – infinitely many – transitions,
and the weight of a word w as the sum of all the weights of successful paths
realizing w; in general, there might be infinitely (even uncountably) many
such paths realizing w. Hence we need to be able to form infinite sums and
products in the underlying semiring S. Such complete semirings have already
been considered in Conway [10] and Eilenberg [23], see also [30]. For weighted
automata on infinite words and characterizations of their behaviors by rational
series the reader should of course consult [25].

Assume that the semiring S is equipped with infinitary sum operations∑
I : SI → S, for any index set I, such that for all I and all families (si | i ∈ I)

of elements of S the following hold:
∑

i∈∅

si = 0,
∑

i∈{j}

si = sj ,
∑

i∈{j,k}

si = sj + sk for j 6= k,

∑

j∈J

(∑

i∈Ij

si

)
=
∑

i∈I

si, if
⋃
j∈J Ij = I and Ij ∩ Ij′ = ∅ for j 6= j′,

∑

i∈I

(c · si) = c ·
(∑

i∈I

si

)
,
∑

i∈I

(si · c) =
(∑

i∈I

si

)
· c.

Then S together with the operations
∑
I is called complete [23, 38].

A complete semiring is said to be totally complete [26] if it is endowed with
a countably infinite product operation satisfying for all sequences (si | i ≥ 0)
of elements of S the following conditions:

∏

i≥0

1 = 1, s0 ·
∏

i≥0

si+1 =
∏

i≥0

si,
∏

i≥0

si =
∏

i≥0

sni
· · · sni+1−1

∏

j≥0

∑

i∈Ij

si =
∑

(ij)j≥0∈
Q

j≥0
Ij

∏

j≥0

sij ,

where in the third equation 0 = n0 < n1 < n2 < . . . is a strictly increasing
sequence and in the last equation I0, I1, . . . are arbitrary index sets.

Now we say that a totally complete semiring S is conditionally completely
commutative (ccc), if whenever (si)i≥0 and (s′i)i≥0 are two sequences of ele-
ments of S such that si · s

′
j = s′j · si for all 0 ≤ j < i, then


∏

i≥0

si


 ·


∏

i≥0

s′i


 =

∏

i≥0

(si · s
′
i). (1)

In [19] the authors considered totally complete semirings S satisfying (1) for
all sequences (si | i ≥ 0) and (s′i | i ≥ 0) in S. Such semirings are necessarily
commutative.
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Next we wish to show that there is an abundance of conditionally complete
commutative semirings which are not commutative. For this, we recall the
notions of ordered and continuous semirings (cf. [15]).

A semiring (S,+, ·, 0, 1) with a partial order ≤ is called ordered, if the
partial order is preserved by addition and also by multiplication with elements
s ≥ 0. Now let S be an ordered semiring such that s ≥ 0 for each s ∈ S. Then
S is called continuous, if each directed subset D of S has a supremum (least
upper bound) ∨D in S, and addition and multiplication preserve supremum
of directed subsets, i.e. x+∨D = ∨(x+D), x · ∨D = ∨(x ·D) and (∨D) ·x =
∨(D · x) for each directed subset D ⊆ S and each x ∈ S; here x + D =
{x + d | d ∈ D}, x ·D = {x · d | d ∈ D} and analogously for D · x. We may
(and will) equip a continuous semiring with infinitary sum operations given
by
∑
i∈I si = ∨{

∑
i∈F si | F ⊆ I finite} for any family (si | i ∈ I) of elements

of S; as is well-known, then S is complete. We refer the reader to [15] for many
examples of (both commutative and non-commutative) continuous semirings.
For instance, if S is continuous, the matrix semirings Sn×n and the power
series semiring S〈〈Σ∗〉〉 (with addition and Cauchy product) are continuous
and clearly non-commutative if n ≥ 2 resp. |Σ| ≥ 2. Now we show:

Proposition 7.1. Let S be a continuous semiring and S′ = {s ∈ S | s ≥
1} ∪ {0}. We define an infinite product operation on S′ by letting

∏

i≥0

si =

{∨
n≥0

∏n
i=0 si if si 6= 0 for all i ≥ 1

0 otherwise

for each sequence (si | i ≥ 0) in S′. Then S′ is a continuous ccc semiring.

Proof. Clearly S′ is a continuous semiring. We claim that S′ is totally com-
plete. For this, it suffices to check the infinitary distributivity law. Let Ij
(j ≥ 0) be index sets and si ∈ S

′ for i ∈ Ij . We may assume Ij 6= ∅ for each
j ≥ 0, and that si 6= 0, thus si ≥ 1, for each i ∈ Ij (j ≥ 0).

By definitions of the infinite sum and product, we have

A :=
∏

j≥0

∑

i∈Ij

si =
∨

n≥0

n∏

j=0

∨

Fj⊆Ij

Fjfinite

∑

i∈Fj

si

By continuity of multiplication and by distributivity, we obtain

A =
∨

n≥0

∨

Fj⊆Ij

Fjfinite
0≤j≤n

n∏

j=0

∑

i∈Fj

si =
∨

n≥0

∨

Fj⊆Ij

Fjfinite
0≤j≤n

∑

(i0,...,in)∈F0×···×Fn

n∏

j=0

sij

We have to show that this quantity equals
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B :=
∑

(ij)j≥0∈
Q

j≥0
Ij

∏

j≥0

sij =
∨

Ffinite
F⊆

Q

j≥0
Ij

∑

(ij)j≥0∈F

∨

n≥0

n∏

j=0

sij

By continuity of addition and using a diagonalisation argument we obtain

B =
∨

Ffinite
F⊆

Q

j≥0
Ij

∨

n≥0

∑

(ij)j≥0∈F

n∏

j=0

sij

We first show A ≤ B. Fix n ≥ 0 and for 0 ≤ j ≤ n let Fj ⊆ Ij finite. For all
k > n choose ik ∈ Ik and let F = F0 × · · · × Fn ×

∏
j>n{ik} which is a finite

subset of
∏
j≥0 Ij . We have

∑

(i0,...,in)∈F0×···×Fn

n∏

j=0

sij =
∑

(ij)j≥0∈F

n∏

j=0

sij

and we deduce that A ≤ B. Conversely, we show B ≤ A. Fix a finite subset
F ⊆

∏
j≥0 Ij and some n ≥ 0. Consider m ≥ n such that |F ′| = |F | where

F ′ = {(i0, . . . , im) | (ij)j≥0 ∈ F}. For 0 ≤ j ≤ m, let Fj be the j-th projection
of F ′ so that F ′ ⊆ F0 × · · · ×Fm ⊆ I0 × · · · × Im. Then, using si ≥ 1 for each
i ∈ Ij and j ≥ 0 we obtain

∑

(ij)j≥0∈F

n∏

j=0

sij =
∑

(i0,...,im)∈F ′

n∏

j=0

sij ≤
∑

(i0,...,im)∈F ′

m∏

j=0

sij

≤
∑

(i0,...,im)∈F0×···×Fm

m∏

j=0

sij

and we have shown B ≤ A.
It remains to show that S′ is ccc. Let (si)i≥0 and (s′i)i≥0 be two sequences

in S′ such that si · s
′
j = s′j · si for all 0 ≤ j < i. Then by continuity of the

product, diagonalization, and our commutativity assumption we obtain

(
∏

i≥0

si

)
·

(
∏

i≥0

s′i

)
=
∨

m≥0

∨

n≥0

(
m∏

i=0

si

)
·

(
n∏

j=0

s′j

)
=
∨

n≥0

(
n∏

i=0

si

)
·

(
n∏

j=0

s′j

)

=
∨

n≥0

n∏

i=0

(si · s
′
i) =

∏

i≥0

(si · s
′
i)

as required. ut

Let S be a totally complete semiring. We call a subsemiring S′ ⊆ S a to-
tally complete subsemiring of S if S′ is closed in S under taking arbitrary sums
and countably-infinite products. If A ⊆ S, the totally complete subsemiring



26 Manfred Droste and Paul Gastin

generated by A is the smallest totally complete subsemiring of S containing
A. Due to the infinitary distributivity law, it can be obtained by taking arbi-
trary sums of the closure Acl of A ∪ {0, 1} under countably-infinite products.
To construct Acl, in general it does not suffice to take all countably-infinite
products of elements of A ∪ {0, 1}, since this set might not be closed under
countably-infinite products; the process of taking countably-infinite products
has to be iterated transfinitely (ω1 steps suffice).

Lemma 7.2. Let S be a ccc semiring and A,B ⊆ S such that A and B
commute element-wise. Let Stc

A and Stc
B be the totally complete subsemirings

of S generated by A resp. B. Then Stc
A and Stc

B commute element-wise.

Proof. Choose any s ∈ Stc
B . First we show:

(1) If (ai)i≥1 is a sequence in S such that all ai (i ≥ 1) commute with s, then∏
i≥1 ai commutes with s.

Indeed, put a0 = s0 = si = 1 for i ≥ 2 and s1 = s. Since S is ccc, we
obtain:


∏

i≥1

ai


 · s =


∏

i≥0

ai


 ·


∏

i≥0

si


 =

∏

i≥0

(ai · si) =
∏

i≥0

(si · ai)

=


∏

i≥0

si


 ·


∏

i≥0

ai


 = s ·

∏

i≥1

ai.

(2) If (ai)i∈I is a family in S such that all ai (i ∈ I) commute with s, then∑
I ai commutes with s. Clearly, this holds in any complete semiring.

Now assume s ∈ B. Let Acl be the closure of A ∪ {0, 1} under countably
infinite products. By the description of Acl given above, by rule (1) and trans-
finite induction we obtain that each element of Acl commutes with s. Now
Stc
A consists of all sums of elements from Acl. Hence rule (2) implies that each

element of Stc
A commutes with s.

So Stc
A and B commute element-wise. By a dual argument applied to Stc

B ,
we obtain that Stc

A and Stc
B commute element-wise. ut

We also note:

Lemma 7.3. Let S be a totally complete and idempotent semiring. Then
ΣI1 = 1 for each set I of size at most continuum.

Proof. By distributivity, we have 1 =
∏
i≥0(1 + 1) =

∑
f∈2ω 1. Now let ≤ be

the natural partial order on the idempotent semiring S; i.e., for x, y ∈ S we
have x ≤ y iff x+ z = y for some z ∈ S. It follows that 1 ≤ ΣI1 ≤ Σ2ω 1 = 1
for each non-empty subset I ⊆ 2ω, hence 1 =

∑
I 1 which implies the result.

ut
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For the rest of this section, let S be a totally complete semiring. Now we
present two weighted automaton models acting on infinite words. We denote
by Σω the set of infinite words over Σ. A formal power series over infinite
words is a mapping r : Σω → S. We denote by S〈〈Σω〉〉 the set of formal power
series over S and Σω.

Definition 7.4.

(a) A weighted Muller automaton (WMA for short) over S and Σ is a quadru-
ple A = (Q, λ, µ,F) where Q is a finite set of states, µ : Σ → SQ×Q is the
transition weight function, λ : Q → S is the weight function for entering
a state, and F ⊆ P(Q) is the family of final state sets.

(b) A WMA A is a weighted Büchi automaton (WBA for short) if there is a
set F ⊆ Q such that F = {S ⊆ Q | S ∩ F 6= ∅}.

As for weighted finite automata, the value µ(a)p,q ∈ S indicates the weight

of the transition p
a
→ q. We also write wt(p, a, q) = µ(a)p,q.

The weight of an infinite path P : q0
a0−→ q1

a1−→ q2 → · · · in A is the
product weight(P ) := λ(q0) ·

∏
i≥0 wt(qi, ai, qi+1). This path has label a0a1 . . .

and it is successful, if {q ∈ Q | q = qi for infinitely many i} ∈ F . The weight
of a word w = a0a1 . . . ∈ Σ

ω in A, denoted (|| A ||, w), is the sum of weight(P )
over all successful paths P with label w. The formal power series || A || : Σω →
S is called the ω-behavior of A.

A series r : Σω → S is called Muller recognizable (resp. Büchi recognizable
or ω-recognizable) if there is a WMA (resp. WBA) A such that S = ‖A‖. The
class of all Muller recognizable (resp. ω-recognizable series) over S and Σ is
denoted by M-Rec(S,Σω) (resp. ω-Rec(S,Σω)).

The following result was proved in [19].

Theorem 7.5. M-Rec(S,Σω) = ω-Rec(S,Σω).

In the sequel, we wish to provide a logical characterization of the class
of ω-recognizable series in our weighted MSO logics interpreted over infinite
words. For this goal we shall need closure properties of ω-recognizable series
which we recall in the following.

Lemma 7.6.

(a) For any ω-recognizable language L ⊆ Σω, the series �L is ω-recognizable.
(b) Let r, r1, r2 ∈ S〈〈Σ

ω〉〉 be ω-recognizable, and let s ∈ S. Then r1 + r2, s · r
and r · s are ω-recognizable.

Next we show:

Lemma 7.7. Let S be a ccc semiring. Let S1, S2 ⊆ S be two totally com-
plete subsemirings such that S1 and S2 commute element-wise. Let r1 ∈
ω-Rec(S1, Σ

ω) and r2 ∈ ω-Rec(S2, Σ
ω). Then r1 � r2 ∈ ω-Rec(S,Σω).
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Proof. We show that a classical construction of a weighted Muller automaton
for r1 � r2 (cf. [19]) works under the present assumptions on S.

Let A1 = (Q1, λ1, µ1,F1) and A2 = (Q2, λ2, µ2,F2) be two WMA. We
construct the WMA A = (Q, λ, µ,F) in the following way. Its state set is Q =
Q1 ×Q2, and the initial distribution is given by λ(q, q′) = λ1(q)λ2(q′) for all
(q, q′) ∈ Q. Its weight transition mapping is specified by µ((q, q′), a, (p, p′)) =
µ1(q, a, p)µ2(q′, a, p′) for all (q, q′), (p, p′) ∈ Q, a ∈ A. Finally, the family F is
constructed as follows: F = {F | π1(F ) ∈ F1, π2(F ) ∈ F2} where πi : Q→ Qi,
is the projection of Q on Qi (i = 1, 2). Now let w = a0a1 . . . ∈ Σω, and

let Pi = (qi0
a0→ qi1

a1→ qi2 → . . .) be a path for w in Ai (i = 1, 2). Then

P = ((q10 , q
2
0)

a0→ (q11 , q
2
1)

a1→ (q12 , q
2
2) → . . .) is a path for w in A. Clearly, P is

successful in A iff both P1 and P2 are successful in A1 resp. A2. Moreover,
since S is ccc and S1 and S2 commute element-wise, we obtain

weight(P ) = λ1(q10)λ2(q20)
∏

i≥0

(µ1(q1i , ai, q
1
i+1) · µ2(q2i , ai, q

2
i+1))

=

(
λ1(q10)

∏

i≥0

µ1(q1i , ai, q
1
i+1)

)
·

(
λ2(q20)

∏

i≥0

µ2(q2i , ai, q
2
i+1)

)

= weight(P1) · weight(P2).

From this it easily follows that (|| A ||, w) = (|| A1 ||, w) · (|| A2 ||, w). Hence
|| A || = || A1 || � ||A2 || = r1 � r2. ut

Now let h : Σ∗ → Γ ∗ be a length-preserving homomorphism. Then h can
be extended to a mapping h : Σω → Γω by letting h(w) = h(w(0))h(w(1)) . . ..

For r ∈ S〈〈Γω〉〉 let h−1(r) = r ◦ h ∈ S〈〈Σω〉〉. For r ∈ S〈〈Σω〉〉, define
h(r) : Γω → S by (h(r), v) :=

∑
w∈h−1(v)(r, w) for v ∈ Γω.

Lemma 7.8 ([19]). Let h : Σ∗ → Γ ∗ be a length-preserving homomorphism.
Then h−1 : S〈〈Γω〉〉 → S〈〈Σω〉〉 and h : S〈〈Σω〉〉 → S〈〈Γω〉〉 preserve ω-
recognizability.

We say that r ∈ S〈〈Σω〉〉 is an ω-recognizable step function, if r =
∑n

i=1 si ·
�Li

for some n ∈ �, si ∈ S and ω-recognizable languages Li ⊆ Σω (i =
1, . . . , n). Then clearly r is a recognizable series by Lemma 7.6. The following
closure result is easy to see.

Lemma 7.9. (a) The class of all ω-recognizable step functions over Σ and S
is closed under sum, scalar products and Hadamard products.

(b) Let h : Σ∗ → Γ ∗ be a length-preserving homomorphism. Then h−1 :
S〈〈Γω〉〉 → S〈〈Σω〉〉 preserves ω-recognizable step functions.

(c) Let h : Σω → Γω be a length-preserving homomorphism and assume that
S is idempotent. Then h : S〈〈Σω〉〉 → S〈〈Γω〉〉 preserves ω-recognizable step
functions.
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Proof. (a) Straightforward.
(b) We follow the proof of Lemma 2.3(b) and note that the class of ω-

recognizable languages is closed under inverses of length-preserving homo-
morphisms (cf. [51]).

(c) For any language L ⊆ Σω, we have h(�L) = �h(L) by Lemma 7.3. Now
follow the argument for Proposition 6.4(b). ut

8 Weighted Logics on Infinite Words

In this section, we wish to develop weighted logics for infinite words which
are expressively equivalent to weighted Büchi automata. In particular, we will
derive analogues of Theorems 4.7 and 6.2 for infinite words.

MSO-logic over infinite words is defined as in Section 2. The only difference
is that the domain of an infinite word is now �. Again, the language

Nω
V = {(w, σ) ∈ Σω

V | σ is a valid (V , w)-assignment}

is recognizable and by Büchi’s theorem, if Free(ϕ) ⊆ V , the language

LωV(ϕ) = {(w, σ) ∈ Nω
V | (w, σ) |= ϕ}

defined by ϕ over ΣV is recognizable. We simply write Lω(ϕ) for LωFree(ϕ)(ϕ).
In all of this section, let S be a totally complete semiring and Σ an al-

phabet. Given weighted MSO-formulas as in Definition 3.1, we first have to
define their semantics for infinite words.

Definition 8.1. Let ϕ ∈ MSO(S,Σ) and V be a finite set of variables contain-
ing Free(ϕ). The ω-V-semantics of ϕ is a formal power series [[ϕ]]ωV ∈ S〈〈Σ

ω
V 〉〉.

For short, in this section we write [[ϕ]]V for [[ϕ]]ωV . Let (w, σ) ∈ Σω
V . If σ is not

a valid (V , w)-assignment, then we put [[ϕ]]V(w, σ) = 0. Otherwise, we define
[[ϕ]]V(w, σ) ∈ S inductively just as in Definition 3.2.

To define the semantics of ∀X.ϕ we assume that in S products over index
sets of size continuum exist. Then we put

[[∀X.ϕ]]V(w, σ) =
∏

I⊆dom(w)

[[ϕ]]V∪{X}(w, σ[X → I]).

We simply write [[ϕ]] for [[ϕ]]Free(ϕ).

We note that the additional assumption here on products in S can be lifted
again in a moment, since we will only consider formulas ϕ ∈ MSO(S,Σ) in
which universal set quantification is only applied to syntactically unambiguous
formulas, and we define uncountable products of the elements 0, 1 in the
obvious way.

Indeed, from now on we will consider syntactically unambiguous, almost
unambiguous, syntactically restricted and weakly unambiguous formulas in
MSO(S,Σ), precisely as defined before. Our two main results will be the
following.
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Theorem 8.2. Let S be a totally complete semiring which is ccc, let Σ be an
alphabet, and let r : Σω → S be a series. The following are equivalent:

(1) r is ω-recognizable.
(2) r is definable by some syntactically restricted sentence of MSO(S,Σ).
(3) r is definable by some syntactically restricted existential sentence of MSO(S,Σ).

Theorem 8.3. Let S be a totally complete semiring which is ccc and idem-
potent, and let Σ be an alphabet. Let ϕ ∈ swRMSO(S,Σ). Then [[ϕ]] ∈
ω-Rec(S,Σω

ϕ).

For the proof of these results, we proceed almost exactly as before. For
the convenience of the reader, we just indicate the main steps below where we
assume that S is a totally complete semiring which is ccc.

As in the finitary case, the definition of the ω-semantics of a weighted
MSO-formula ϕ ∈ MSO(S,Σ) depends on the set V . In the following, we
show that [[ϕ]]V in fact depends only on Free(ϕ).

Proposition 8.4. Let ϕ ∈ MSO(S,Σ) and V a finite set of variables contain-
ing Free(ϕ). Then

[[ϕ]]V(w, σ) = [[ϕ]](w, σ|Free(ϕ))

for each (w, σ) ∈ Σω
V such that σ is a valid (V , w)-assignment. In particular,

[[ϕ]] is ω-recognizable iff [[ϕ]]V is ω-recognizable, and [[ϕ]] is an ω-recognizable
step function iff [[ϕ]]V is an ω-recognizable step function.

Proof. We can follow the proof of Proposition 3.3 taking into account Lem-
mas 7.6(a), 7.7, 7.8 and 7.9(a). ut

We define the notion of unambiguous formulas (but now with respect to
infinite words) as in Definition 4.1. Then we have:

Proposition 8.5. Let ϕ ∈ MSO(S,Σ) be unambiguous. We may also regard
ϕ as a classical MSO-formula defining the language Lω(ϕ) ⊆ Σω

ϕ . Then, [[ϕ]] =
�Lω(ϕ) is an ω-recognizable step function.

Now we obtain:

Lemma 8.6. Let ϕ ∈ MSO−(S,Σ). Then:

• Lω(ϕ+) = Lω(ϕ) and Lω(ϕ−) = Lω(¬ϕ),
• [[ϕ+]] = �Lω(ϕ) and [[ϕ−]] = �Lω(¬ϕ),
• ϕ+ and ϕ− are unambiguous.

As a by-product, we have:

Proposition 8.7. For each classical MSO-sentence ϕ, we can effectively con-
struct an unweighted syntactically unambiguous MSO(S,Σ)-sentence ϕ′ defin-
ing the same language, i.e. [[ϕ′]] = �Lω(ϕ).
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The definition of ω-restricted formulas is precisely as for restricted formu-
las, just replacing recognizable step functions by ω-recognizable step functions.

Now we proceed as in Section 5:

Lemma 8.8. Let ϕ ∈ MSO(S,Σ) be atomic. Then [[ϕ]] is an ω-recognizable
step function.

Lemma 8.9. Let ϕ, ψ ∈ MSO(S,Σ) such that [[ϕ]] and [[ψ]] are ω-recognizable.
Then [[ϕ∨ψ]], [[∃x.ϕ]] and [[∃X.ϕ]] are ω-recognizable. Moreover, if [[ϕ]] and [[ψ]]
are ω-recognizable step functions, then [[ϕ ∨ ψ]] is also an ω-recognizable step
function.

Proof. Analogously to Lemma 5.2, now using Proposition 8.4 and Lem-
mas 7.6, 7.8 and 7.9. ut

Next we deal with conjunction. If ϕ ∈ MSO(S,Σ), we let Stc
ϕ be the totally

complete subsemiring of S generated by val(ϕ).

Lemma 8.10. Let ϕ, ψ ∈ MSO(S,Σ).

(a) Assume that val(ϕ) and val(ψ) commute element-wise, and that [[ϕ]] ∈
ω-Rec(Stc

ϕ , Σ
ω
ϕ) and [[ψ]] ∈ ω-Rec(Stc

ψ , Σ
ω
ψ). Then [[ϕ∧ψ]] is ω-recognizable.

(b) If [[ϕ]] and [[ψ]] are ω-recognizable step functions, so is [[ϕ ∧ ψ]].

Proof. (a) As shown in Lemma 7.2, Stc
ϕ and Stc

ψ commute element-wise. Now
apply Proposition 8.4 and Lemma 7.7.

(b) We apply Proposition 8.4 and Lemma 7.9(a). ut

Next we turn to universal quantification.

Lemma 8.11. Let ψ ∈ MSO(S,Σ) such that [[ψ]] is an ω-recognizable step
function. Then [[∀x.ψ]] is ω-recognizable.

Proof. We proceed as for Lemma 5.4, utilizing that the class of ω-recognizable
languages is closed under Boolean operations. Then the corresponding ω-
recognizable language L̃ can be accepted by a deterministic Muller automaton
Ã. We can transform Ã into a weighted Muller automaton A by keeping its
state set and the set of final states and defining initial weights and weights
of transitions as before. Proceeding as before, we obtain [[∀x.ϕ]] = h(|| A ||)
which is ω-recognizable by Lemma 7.8. ut

Now we can give the

Proof of Theorem 8.2. (3)→(2): Trivial.
(2)→(1): Combine Proposition 8.5 and Lemmas 8.8– 8.11.
(1)→(3): (Here we only need that S is totally complete.) Let A =

(Q, λ, µ, F ) be a weighted Büchi automaton with r = || A ||. By possibly
adding a new initial state, we may assume that λ(q) ∈ {0, 1} for each q ∈ Q.
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We define the formula ψ(X) as in the proof of Theorem 5.7. Consider now
the formula

ϕ(X) := ψ(X) ∧ ∃y.
(

min(y) ∧
∨

p,a,q

(y ∈ Xp,a,q) ∧ λp
)

∧ ∀x.
∧

p,a,q

(x ∈ Xp,a,q)
+
−→ µ(a)p,q

∧


 ∨

(p,a,q)∈F×Σ×Q

∀x. ∃y.( x < y ∧ (y ∈ Xp,a,q))




+

Intuitively, the the last conjunct ensures that the considered paths are accept-
ing. The proof is now similar to the finitary case (Theorem 5.7). ut

Next we turn to the proof of Theorem 8.3. We will need

Lemma 8.12. Let S be idempotent and ϕ ∈ MSO(S,Σ) such that [[ϕ]] is an
ω-recognizable step function. Then [[∃x.ϕ]] and [[∃X.ϕ]] are also ω-recognizable
step functions.

Proof. We follow the proof of Lemma 6.5, applying Proposition 8.4 and
Lemma 7.9(c). ut

Now we can show:

Proof of Theorem 8.3. Following the proof of Theorem 6.2, we proceed by
induction on the structure of ϕ. Here we apply Lemmas 8.6, 7.9(a), 8.8– 8.12
and Proposition 8.4 and 8.5. ut

Finally, we note that all constructions for the proofs of Theorems 8.2
and 8.3 are again effective (if S is given effecticely).

9 Conclusions and Open Problems

In this chapter, we have presented a weighted logic which is expressively equiv-
alent to weighted automata, both if interpreted over finite and infinite words,
respectively. In the case of finite words, together with Schützenberger’s the-
orem [56, 54] we thus obtain for arbitrary semirings an equivalence between
weighted automata, rational expressions for formal power series, and our log-
ical formalism by syntactically restricted MSO-logic. In the case of infinite
words, we needed completeness assumptions on the semiring. Further equiva-
lences were obtained in case the semiring is additively locally finite or locally
finite or (for infinite words) idempotent.

In [14], we also investigated weighted first-order logic and could show an
equivalence result to a concept of aperiodic series, thus also extending the
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classical equivalence result between aperiodic and first-order definable lan-
guages into a weighted setting. This needed the semiring to be bi-aperiodic
and commutative (in which case it is also locally finite, but not conversely).
We refer the reader to [14] for these results.

Weighted automata with discounting have been investigated in [17]. Dis-
counting is a well-known concept in mathematical economics as well as sys-
tems theory in which later events get less value than earlier ones, cf. e.g. [2].
In [17], the possible behaviors of such weighted automata with discounting
were characterized by rational resp. ω-rational expressions, also see [39] for
further results on this. In [18] they were further characterized by a discounted
restricted weighted logic. Somewhat surprizingly, the discounting only had to
be reflected in the semantics of the universal first-order quantifier.

In [20], also cf. [28], an equivalence result for weighted automata over
ranked trees and a weighted tree logic was obtained for all commutative semir-
ings. In up-coming work [21], our present approach will be applied to unranked
trees, a syntactically defined weighted logic and arbitrary semirings.

Our approach has also been extended to pictures [44], traces [47], dis-
tributed processes [5], also cf. [27] in this handbook, and very recently to
texts, sp-biposets and nested words, see [42, 43]. In each case, crucial dif-
ferences occur when dealing with the universal first-order quantifier. In [52],
weighted automata and weighted logics for infinite trees were investigated.
In [16], weighted logics with values in bounded distributive lattices were con-
sidered, cf. also [53].

These results show the robustness of our approach. One could also try to
define weighted temporal logics and study not only expressiveness but also
decidability and complexity of natural problems such as quantitative model
checking.

Open Problems:

1. Given any signature S of predicate calculus and a semiring S, we might
define the syntax of a weighted logic as in Definition 3.1, employing the
new atomic formulas and their negations. The semantics can then be de-
fined similarly as in Definition 3.2 for arbitrary finite S-structures, and
for arbitrary S-structures assuming S is totally complete. Which results
of model theory [9, 32] can be developed for such a general weighted logic?

2. Find a model of weighted automata which is expressively equivalent to
the full logic MSO(S,Σ).

3. Find a weighted temporal logic which is expressively equivalent to suitable
fragments of MSO(S,Σ).

4. Find applications.
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