Automorphism groups of totally
ordered sets: a retrospective survey.

V. V. BrLubov, M. DROSTE AND A. M. W. GLASS
July 23, 2009

To Charles on his 75" birthday with our gratitude for his research, help
and friendship.

Abstract
In 1963, W. Charles Holland proved that every lattice-ordered
group can be embedded in the lattice-ordered group of all order-
preserving permutations of a totally ordered set. In this article
we examine the context and proof of this result and survey some
of the many consequences of the ideas involved in this important
theorem.

1 Genesis

In 1957, P. M. Cohn noted that Cayley’s (right regular) Representation
Theorem applies immediately to right-ordered groups [12]. That is, let G
be a group with a total order that is preserved by multiplication on the
right. Embed G in the group A(G) := Aut(G, <) of all order-preserving
permutations of the set (G, <) via the right regular representation; i.e.,
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flg9) = fg (f,9 € G). Now A(G) can be right totally ordered as
follows: let < be any well-ordering of the set G and define a < b iff
apa < apb, where g is the least element of G (under <) of the support
of ba=!. If we choose < so that its least element is the identity of G, then
the right regular embedding preserves the group operation and the total
order: g1 < go in G iff g19 < go¥) in A(G).

What can one do if the order on G is not total, even if multiplication
on the left also preserves the partial order? The easiest situation would
be to consider lattice-ordered groups. (We will use the abbreviation /(-
groups for these throughout.) That is, G is a group and a lattice with

a(fVgb=afbVagb and a(fAg)b=afbNagb (a,b,f,g€Qq).

So if we write f < g for f V g = g (or, equivalently, f A g = f), then we
have afb < agb whenever f < g. If the lattice order on an ¢-group G is
total (f < gorg< fforall f,g € G), then we say that G is an o-group.
The structure theory of abelian o-groups was explored at the beginning
of the last century. It is rich and reasonably well understood. The
study of the structure of abelian /-groups was begun in the 1930s from
a functional analysis viewpoint, and more abstractly in the 1950s and
1960s by Paul F. Conrad and his students. Conrad began to study the
structure of non-abelian /-groups around 1960 but results were limited.
So a Cayley-type theorem could be very helpful. But there is a very big
problem. Consider the very easy abelian /-group G := Z @ Z, where

(my,n1) V (Mg, ny) := (max{ms, ma}, max{ny, na}).

If we consider the group of order-preserving permutations of this lattice,
then the “switch in coordinates” (m,n) — (n,m) belongs to A(G) but
composed with itself yields the identity. So A(G) has an element of
order 2 which cannot happen in any ¢-group ([31], Lemma 1.11.1). Is
there any way to get round this obstacle? This was the problem facing
Holland in 1962/63 when he was at the University of Tiibingen with
Helmut Wielandt.

In contrast to the lattice case, if (2, <) is any totally ordered set,
then A(Q) := Aut(2, <) is an ¢-group under the pointwise ordering

a(fVg) = max{af, ag}, a(fAg) = min{af, ag} (e f,geq).



Using this, Holland elegantly solved the problem. As was already well
known, if G is an ¢-group and g € G with g # 1, there is a convex sublat-
tice subgroup V, of G which is maximal with respect to not containing
g (use Zorn’s Lemma). It is called a walue of ¢ (it first appeared in the
totally ordered abelian case in valuation theory). Holland used the fact
that €2, the set of right cosets of V,; in G, inherits a natural total order
(Vof < Vyhiff vf < h for some v € V). Now G acts on (2, preserving
order. This provides a group homomorphism of G into A(€2,) that also
preserves the lattice operations. It is faithful (and so does what we want)
iff the only convex normal sublattice subgroup of G contained in V is the
identity. If this is not the case, we need to modify the construction. Hol-
land first took the full Cartesian product C' :=[[{A(€,) | g € G\ {1}}.
It inherits a lattice structure in the natural way (coordinatewise) and the
natural map provides an f-embedding of G into C (if f # 1, then the
f-coordinate of the image of f moves V; and so is not the identity). But
one can do better [39]. Let < be any total order of G \ {1} and totally
order  :={Q, | g € G\ {1}} by: let o € Qf and 3 € Q; then o < 3
iff either f < g or f = g and a < 3 in V;. Furthermore, the natural
embedding ¢ : G — A(2) given by

(Vih)(gp) := Vi(hg)  (f,h,g € G)

is an (-embedding (i.e., the group and lattice operations are preserved).
Thus Holland established

Theorem A (Holland [39]) Fvery lattice-ordered group can be £-embedded
in A(Q) for some totally ordered set (2, <).

The proof of the pudding lies in its uses, some of which will be related
in the next section. But an immediate one to whet the appetite was
provided in the original paper. B. H. Neumann had asked: Can every
orderable group be embedded in a divisible orderable group?'. Assuming
the Generalised Continuum Hypothesis (G.C.H), Holland proved in [39]
that every f-group can be f-embedded in a divisible ¢-group. We will
sketch a proof of this in the next section avoiding G.C.H.

L' A negative answer was finally provided this century by Vasily V. Bludov
[6].



2 Some applications

2.1 Divisibility

Let (€2, <) be a totally ordered set and F' := F(Q2) be the free abelian
group on the set 2. The total ordering on €2 lifts to a total ordering
on F' in the natural way: if a,,, = max{e; | i = 1,...,n} in Q, then
Yrymia; > 0in Fift m,, € Z,. With this ordering, F' is an abelian
o-group. The group ring Q[F] is an integral domain. By extending the
ordering from F' to Q[F] in the natural way (3 ;cpqrf > 0iff g5, > 0,
where fo = max{f € F' | q; # 0}), Q[F] becomes an abelian o-group.
If A is the field of quotients of Q[F], then the order on Q[F] extends to
a total order on A. It can be shown that A(£2) can be f-embedded in
A(A) (see [67]). Thus E. C. Weinberg proved that every ¢-group can be
(-embedded in an infinite 0-2 transitive {-permutation group A(A) (i.e.,
if oy < 1 and ay < [, then there is g € A(A) such that a;9 = s
and (19 = [) as, clearly, the group of order-preserving linear maps
of any ordered field is 0-2 transitive. It is easy to see that infinite o-2
transitive {-permutation groups are o-n transitive for all n € Z,. Hence
if fe A:= A(A) and m € Z,, then f and f™ are conjugate in A. Let
g € Abesuch that g7'fg = f™. Then (gfg~")™ = f. So A is a divisible
(-group and the consequence mentioned at the end of the previous section
follows. Putting m = 2 we see that f = [f,g] := f~'¢g~'fg. Thus every
element of A is a commutator and so A is perfect (i.e., it equals its
derived subgroup) if A = A(A) is 0-2 transitive. We will examine this
phenomenon in a later Subsection.

For any given totally ordered set (2, <), we have constructed an or-
dered field A containing 2 such that A(Q2) f-embeds into A(A). We can
also find an ordered set (A, <) such that Q C A\A (where A denotes the
Dedekind completion of A), A(A) is 0-2 transitive, and A(2) ¢-embeds
into A(A). For this, identify Q with Q x {1} C Q x {1, 2}, ordered lexico-
graphically from the left. Then we insert copies of a suitable dense order
into the ‘gaps’ between (a, 1) and (a, 2) in 2 x {1, 2} for each o € 2, and
enlarge this chain to A to make A(A) o-2 transitive, cf. [21, 14]. Holland’s
method [39] shows that A(£2) ¢-embeds into A(A). This construction of
A can be performed so that the inclusion id : Q x {1,2} — Q preserves
all existing suprema and infima. This will be useful later on.



2.2 Normal subroups of A(Q)

In his 1963 paper, Holland also found all the convex normal sublattice
subgroups of A(R), where R is the real line with the usual ordering.
Besides {1} and A(R), these are

B(R) := {g € AR) | (3ev, # € R)(supp(g) < (a, 5))},

L(®) = {g € A(R) | (35 € B)(supp(g) < B)}, and

R(R) := {g € A(R) | (Ba € R)(supp(g) > )},

where, in general, supp(g) := {a@ € Q | ag # a}. The proof is quite
simple and pictorial. Given any g € B(R) with g > 1 (i.e., 7g > 7 for
all 7 € R and 799 > 79 for some 7y € R), for any f € B(R) with f > 1,
one can find h € B(R) such that 7ph < supp(f) < 7ogh, where 7y is an
element of supp(g). Then for any o € supp(f), we have oh < 0 < of <
T0ogh < oh™tgh. Hence 1 < f < h™'gh. More generally, if a € B(R)\ {1},
either aV1 > 1or a™*V1 > 1. Thus any convex normal subgroup of B(R)
other than {1} must contain all strictly positive elements of B(R). But in
any (-group, a = (aV1)(a~*V1)~!. Hence B(R) is (-simple (i.e., it has no
non-trivial normal convex sublattice subgroups). (The same argument
holds with R replaced by any totally ordered set (€2, <) with A(Q2) o0-2
transitive.) If 1 < g € L(R) \ B(R), then for each f € L(R) with f > 1,
one can similarly find hy, hy € L(R) such that 1 < f < hy'gh; V hy'ghs.
This suffices to show that the only non-trivial normal convex sublattice
subgroup of L(R) is B(R). Mutatis mutandis R(R); and the result for
A(R) follows since each element of A(R) greater or equal to 1 can be
written in the form f; V fo where f; € L(R) and f, € R(R). Actually,
B(9) is a simple group if A(2) is 0-2 transitive, as was shown earlier by
Graham Higman [37]?. However, if we replace R by (£, <) where A(Q) is
0-2 transitive, the normal subgroup picture can be far more complicated.

2 So, by Weinberg’s result, every ¢-group can be f-embedded in an /-group
that is simple as a group.



First, if ) contains a countable subset without an upper or lower
bound in © (e.g., Z in R or in Q), then B(Q2), L(Q2), and R(2) constitute
all proper non-trivial normal subgroups of A(Q2). But if each countable
subset of € has an upper or lower bound in 2, then A(€2) contains chains
of normal subgroups isomorphic to wy, the first uncountable ordinal, or
to (R, <), and A(Q2) has at least 22" maximal proper normal subgroups.
Many further properties of the normal subgroup lattice are given in [3,
13]. In spite of their apparent complexity, a set-theoretic construction
of all normal subgroup lattices of 0-2 transitive groups A({2) was given
in [21]. This rests on the construction method of orders A described at
the end of Subsection 2.1.

We note that the situation also changes if (€2, <) is only assumed to be
semilinearly (instead of totally) ordered. Let us call a partially ordered
set (T, <) a tree, if any two elements have a common lower bound but
no two incomparable elements have a common upper bound, and it con-
tains an infinite chain and at least two incomparable elements. Such trees
and their automorphism groups occurred, e.g., in a classification theo-
rem of certain Jordan groups [2]. There are 2% pairwise non-isomorphic
countable trees (T, <) with A(T) o-2 transitive [19]. Using Holland’s
method [39] for describing conjugacy of elements, it was shown in [1§]
that if 7" is countable, then A(T) contains a smallest non-trivial and
a largest proper normal subgroup, but there is an antichain of normal
subgroups of size 22" hetween them.

2.3 o-Primitive /-permutation groups.

If G is an f-group f-isomorphic to a sublattice subgroup of A(Q2), we
say that (G, Q) is an ¢-permutation group. If (G,Q) is an 0-2 transitive
(-permutation group, then it is o-primitive: the only G-congruences on
Q) with all equivalence classes convex are the obvious two:

ofB it a=p, and ol foralla,p e .

Primitive permutation groups are the building blocks in the study of
general permutation groups, so the next development had to be the clas-
sification of all o-primitive automorphism groups A(£2). In 1965, Holland
showed that these are either o-2 transitive or ({2, <) is isomorphic to a



subgroup of R and the action of A(2) is just the right regular repre-
sentation [40]; so A(f2) is just an archimedean (abelian) o-group in the
latter case. In [61], Ohkuma demonstrated that there are 22™° of these
subgroups H of R with A(H) = H, the maximum possible number.

What about the more general situation when G is a sublattice sub-
group of A(Q2) for some totally ordered set (2, <) ? Can one obtain
something akin to the O’Nan-Scott Theorem or the results of Adeleke
and P. M. Neumann (2| and others?

Consider
G:={ge AR) | Va eR)((a+1)g=ag+1)}.

It is easy to see that (G,R) is transitive and o-primitive. It is not o-2
transitive as there is no element of G mapping 0 to 0 and 1 to 2. Also,
since any order-preserving permutation of [0, 1] extends to an element of
G, we see that G is 0-2 transitive on (0, 1) — and so on (a, a+ 1) for any
a € R — and not totally ordered. Note that the element z : a — o + 1
is in the centre of G and G is the centraliser of z in A(R). We call z the
period of G. More generally, let (G,€2) be an ¢-permutation group and
(Q, <) be the Dedekind completion of (2, <). Suppose that z € A(Q)
has the property that for any a, 3 € €) there are m,n € Z with m <n
such that az™ < 3 < az™ and G = Cyq)(2), the centraliser of z in A(£2).
Then we say that (G, Q) is periodic with period z.

In his 1967 Ph.D. Thesis under Holland, S. H. McCleary proved:
Theorem B (The Trichotomy Theorem [54]) Let (G, ) be a transitive,
o-primitive £-permutation group. Then either

(i) (G,Q) is 0-2 transitive,

(ii) (€2, <) is isomorphic to a subgroup of R and (G,) is the right
reqular representation (G = Q as o-groups), or

(iii) (G, Q) is periodic with period z for some z € A(Q). In this case,
for any o € Q, G is 0-2 transitive on (a, az) NS

In 1976, McCleary [55] obtained a similar result without the transi-
tivity assumption.

Having classified the o-primitive (transitive) ¢-permutation groups,
the next task was to determine how these o-primitive “components” could
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be sewn together. Even in the standard permutation group setting, this
was not easy to achieve. In 1969, Holland constructed a generalised
Wreath product of permuation groups [41] and, with McCleary, obtained
a similar result for ¢-permutation groups [45]. This was used by J. A.
Read [64] in the special case that the ¢-group has a plenary set of values
normal in their covers. Indeed, (G,€) is a normal-valued ¢-group if and
only if (G,€2) has non-overlapping intervals of support (if f,g € G and
a, B € €1, then the convexifications of the interval of support of o under
f and 8 under g are either disjoint or one contains the other). In this
case, (G,€) can be f-embedded in a subdirect product of {-permutation
groups each of which has the form Wr {(R,R) | v € I'} for some totally
ordered set T', the action (R,R) being the right regular one (see [31]
Chapter 11, [45], [64] and [32] Chapter 4 for precise definitions). This is
very closely related to the work of Navas and Rivas [60] who prove that
a right-ordered group G is Conrad right-ordered if and only if it has a
permutation representation which is non-overlapping (“non-crossing” in
their terminology).

2.4 Varieties, Free /(-Groups, and Free Products of
(-Groups

Holland next applied the Trichotomy Theorem to the study of varieties
of l-groups. In 1976 he showed that

Theorem C Let (G,Q) be an o-primitive (-permutation group that is
either 0-2 transitive or periodic. Then the variety of (-groups defined by
G s the variety of all £-groups.

Hence, by Read’s result and the Trichotomy Theorem, the class of all
normal-valued ¢-groups (which S. Wolfenstein proved is a variety [69])
is the largest proper variety of ¢-groups. In fact, it is generated by the
class of all ¢-soluble ¢-groups — see [34] where the structure of the lattice
semigroup of varieties of /-groups was fully investigated using the Holland
representation (Theorem A).

Permutation ideas can also be used to prove that any free /-group on
a finite (> 2) or countably infinite set of generators is -isomorphic to an
0-2 transitive sublattice subgroup of A(Q) (see [26], [56], and [49]).



The proof can be extended to the free product (in the class of ¢-
groups) of any finite set of non-trivial countable ¢-groups [27]. The ideas
of [43] were also used to show that any free ¢-group has soluble word
problem [46], thus starting the study of decision problems in ¢-groups.
We sketch an outline of the proof which again involves the ideas of [39].

Let F be a free ¢-group on a finite number of generators. We may
regard (F,Q) as an f-permutation group. Let w be a group word; say
w = xy25 w2, Draw two diagrams, one with 0z; > 0, the other with
0xy < 0. Now x4 is a different generator from x; so, in the first diagram,
we can put 03:1:651 > 0xy or Ozy > 09013351 > 0 or 0:619551 < 0, thus
extending the first diagram in three possible ways. Similarly, we get
three possible diagrams in the second case, making a total of six. Let’s
consider, for example, the diagram 0z; > Oxjz5 '~ 0. Now x; is order-
preserving, so we must have Ozq25 'z > 02, and, by the same argument,
that Oxy25'2? > 022 > Ox; > 0. Similarly, we need to consider all the
other diagrams. Since x1, x5 are free generators, we may assume that they
fix none of the finite set of “migratory points”. Since we have a diagram
in which Ow # 0, we obtain that w # 1. If w 1= V;e; Ajes wi; where
I, J are finite index sets and each w; ; is a group word, by examining all
the finitely many possible diagrams for this w, we see that w # 1 in F if
Ow # 0 in at least one of these diagrams, and w = 1 in F' if Ow = 0 in
all of these possible diagrams. This solves the word problem for F'.

These ideas can also be used to prove that the solubility of the word
problem is preserved by free products (in the class of ¢-groups) and in
the proof of Theorem J below; see [30].

2.5 Amalgamation in Groups and /-Groups

To prove the undecidability of various problems in group theory, one
uses the free product with amalgamated subgroup. That is, given groups
G, and Gy with isomorphic subgroups H; and Hs (say by ¢), one can
form a group L generated by G and G5 with embeddings v; : G; — L
(i = 1,2) so that g1¢y = gotbo iff there is hy € Hy such that ¢ = hy
and g = hip (g; € Gy; 1 = 1,2); see, e.g., [51]. In his 1970 Ph.D. thesis
under Holland, K. R. Pierce used permutation groups to show that there
are (-groups G1 and Gy with ¢-isomorphic ¢-subgroups H; and Hs (say
by ¢) such that there is no f-group L generated by G; and Gy with

9



(-embeddings ¢; : G; — L (i = 1,2) so that hyt)y = hypt, in L for
all hy € H;. In contrast, in the same paper [63] Pierce showed that if
H, and H, are f-isomorphic archimedean o-groups, then there is always
such an f-group L. This latter proof involved establishing that any /-
group G can be f-embedded in an f-group G# in which any two strictly
positive (i.e., > 1) elements are conjugate — since g > 1 iff f~lgf > 1,
the conjugacy class of a strictly positive element is a subset of the set of
all strictly positive elements. To achieve this, he needed to show that if
f,g > 1in G, then there is an ¢-group H := H(f, g) in which f and g are
conjugate. This required a tricky transfinite induction using the orbital
Wreath product at half the stages. In G#, all strictly negative elements
are conjugate since they are the inverses of the strictly positive elements.
This left open whether one could find such a G# in which, additionally,
all elements incomparable to the identity could also be made conjugate.
This was recently achieved in [7] using an elaboration of Pierce’s original
construction.

The main obstacle to a free product of right-orderable groups with
amalgamated subgroup being right orderable is that a conjugate of the
right order on one factor may be incompatible with any right order on the
other factor. This is essentially the only obstruction, so one can amalga-
mate o-groups in the class of right-orderable groups [8]; cf. [66]. To see
this one crucially uses ultraproducts of right orders (see [9]). Using “nor-
mal” families of right orders on the factors and constructing groups of
order-preserving permutations of totally ordered sets (sic), one can pro-
vide precise necessary and sufficient conditions for a free product of right-
orderable groups with amalgamated subgroup to be right-orderable (mu-
tatis mutandis with right-ordered in place of right-orderable) [9]. These
ideas extend the non-permutation ideas in [4].

Let G act on 2 and g € GG. The fixed point set of g, the set of positive
intervals of support of g and the set of negative intervals of support of
g form a partition of 2. Hence for any ultrafilter ¢/ on 2, exactly one
of these three sets belongs to Y. Using this and permutation methods
mentioned above, one obtains

Theorem D [10] Let G; be a lattice-ordered group with ¢-subgroup H,

(1t = 1,2). If ¢ : Hi = Hy is an {-isomorphism, then the (group) free
product of Gy and Gy (with Hy and Hs amalgamated by @) is right-
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orderable. Hence the amalgamation can be achieved in a lattice-orderable
group, the embeddings being only group embeddings.

Caution: In general, the lattice-ordering on the overgroup need not be
compatible with the original lattice orderings as Pierce’s counterexample
shows. This obstacle can still prevail when H; is a prime /-ideal of G|
(¢ = 1,2), though in this case the group free product of G; and G is
lattice-orderable (see [10]). Indeed, there are examples (op. cit.) of
H, a prime (-ideal of G; and H,; an f-ideal of (G5 where there are no
amalgamating /-embeddings of G; and G into any amalgam L that
is lattice-orderable whatever lattice orderings are placed on G, Gy and
L. This indicates that although there is a very close tie between right-
orderable groups and lattice-orderable groups, there are some startling
differences.

2.6 Decision Problems in Right-Orderable Groups
and /-Groups

As shown in [9], these necessary and sufficient conditions (for a free prod-
uct of right-orderable groups with amalgamated subgroup to be right
orderable) provide the following results where the presentation is as a

group.

Theorem E [9] There is a finitely presented right-orderable group with
insoluble (group) word problem.

Theorem F ([9], cf. [38]) A finitely generated right-orderable group can
be embedded in a finitely presented right-orderable group iff it can be de-
fined by a recursively enumerable set of defining relations (in the language

of groups).

Theorem G ([9], cf. [11]) A finitely generated right-orderable group has
soluble word problem iff it can be embedded in a simple group which can
be embedded in a finitely presented right-orderable group.

Analagous results hold with right-ordered instead of right-orderable
(op. cit.).

The ideas in [39] can also be used to provide conditions which imply
that two finite sets of strictly positive elements in A(R) (of the same size)
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can be made conjugate by the same conjugator. From this one can obtain
the insolubility of the word problem for /-groups, where an ¢-group is said
to be finitely presented if it is finitely generated (as an ¢-group) and is
definable by a finite set of relations (in the language of ¢-groups) between
the generators.

Theorem H [33] There is a finitely presented lattice-ordered group with
insoluble (group) word problem.

The proof involves forming both a finitely presented ¢-group G(X)
and an (-homomorphic image in A(R). Then if X is a recursively enu-
merable set of natural numbers that is not recursive, there is a set of
group words {w,, | n € N} such that from the finite presentation one can
obtain w, =1 in G(X) if n € X and, on the other hand, if n ¢ X, then
in the f~-homomorphic image of G(X) in A(R) we have w, # 1. Hence
w, = 1in G(X) iff n € X and G(X) has insoluble group word problem.

The ideas above can be used to prove analogues of the same famous
theorems from group theory.

Theorem I ([28], cf. [38]) A finitely generated £-group can be £-embedded
in a finitely presented (-group iff it can be defined by a recursively enu-
merable set of defining relations (in the language of (-groups).

Theorem J ([29], cf. [11]) A finitely generated (-group has soluble word
problem iff it can be {-embedded in a simple €-group which can be {-
embedded in a finitely presented (-group.

2.7 First-Order Properties of Automorphism Groups

R. N. McKenzie showed that if © is any set and Sym(€2) satisfies the
same first-order sentences in the language of groups as Sym(N), then Q
is countably infinite [58]. M. Giraudet began the study of the first-order
theories of A(Q) for totally ordered sets (€2, <) and showed that the lat-
tice structure could be recovered from the group sentences satisfied and
vice versa if A(Q) is 0-2 transitive [48]. Gurevich and Holland showed
that if A(Q2) is transitive and satisfies the same first-order sentences as
A(R) in the language of ¢-groups, then there is an order-preserving bi-
jection between (2, <) and (R, <) (see [36]). The ideas are pictorial and
similar to those begun in [39]. For further results, see [31], Chapter 2.
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2.8 Commutators and the Bergman Property

Having every element a commutator is a very interesting property (see
[62], [5] and especially [50] where it is shown that every element of any
finite simple group is a commutator). Also, recall that each o-2 transitive
group A(Q) is divisible. These two results can be unified and extended
as follows. Given a group G, a word w = w(xy,...,z,) € F of the free
group is called universal in G, if for each g € G there are ¢y, ...,9, € G
such that g = w(gy, ..., gn). As noted in Subsection 2.1, the commutator
word [z1, o] and all powers 2™ are universal in each 0-2 transitive group
A(Q). Adeleke and Holland [1] showed that in fact each non-trivial word
w # 1 is universal in each o-2 transitive group A(€).

We say that a group G satisfies the Bergman property if whenever J
is a set of generators of G, there is a positive integer n = n(J) such that
each element of G is a product of at most n members of J U J~!. Re-
cently, Bergman [5] proved the remarkable result that the full symmetric
group Sym(€2) of all permutations of any infinite set {2 has the Bergman
property. The methods used were similar to those of Macpherson and
Neumann [52] who showed that Sym(Q2) has uncountable cofinality; i.e.,
cannot be written as the union of a countable tower of proper subgroups;
see the survey [65] for further results.

In our context, Gourion [35] showed that A(Q) has uncountable co-
finality. Using a uniform argument, it was shown in [16] that any o-2
transitive group A(2) has the Bergman property and uncountable co-
finality. As a consequence of the results in [18, 16], any o-2 transitive
automorphism group A(T) of a countable tree (T, <) has the Bergman
property and uncountable cofinality [23]. In [20], these properties were
also derived for further infinite permutation groups, including groups of
measure-preserving or ergodic transformations of R.

2.9 Lattice-ordered groups with a unit

Let G be an f-group and u € G be strictly positive. We say that u
is a strong order unit (or unit, for short) if for each g € G, there is
n = n(g) € Zy such that u™" < g < u". For example, if G is periodic
with period z and z € GG, then z is a unit of G. And if G is a torsion-free
nilpotent group, then G can be made into an o-group with unit w iff

u € G\ (G).
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D. Mundici has exhibited an explicit categorical equivalence between
multi-valued algebras (associated with multi-valued logics) and abelian
(-groups with a unit [59], and Dvurecenskij extended the result to the
non-commutative case [24]. This interplay allows one to study varieties
of not-necessarily-abelian multi-valued algebras by studying equational
classes of /-groups with unit. That is, in the language of /-groups with an
added constant symbol u. Throughout this subsection, we will assume
that u is a unit. Since this cannot be expressed first order, we merely
get equational classes in this language, not varieties. Nonetheless, the
techniques of [39] are available and open up this new area of research.

Equational classes of ¢-groups with unit were introduced in [25]. If
(G, Q) is an (-permutation group and u is a unit of G, then there is an
o-primitive component of G' on which u acts non-trivially. This is called
the top o-primitive component of G. It is an f~-homomorphic image of
a sublattice subgroup of G and has the image of u as a unit. The key
result is that if w is an ¢-group word in u and the generators of G, then
w = 1 in the top component iff w’ < u for every product of conjugates
w’ of w. Hence if V is an equational class of ¢-groups with unit u, then
the collection of all /-groups with unit « whose top components lie in V
is an equational class of f-groups with unit u; it is called a top equational
class. M. R. Darnel has shown that each top equational class includes all
normal-valued ¢-groups with unit (personal communication). Whereas
any non-abelian /-group with a faithful primitive representation gener-
ates the variety of all ¢-groups (Theorem C), this is no longer true for
periodic o-primitive /-permutation groups with a unit; indeed, the equa-
tional class generated by any periodic o-primitive ¢-permutation group
with a unit is never the equational class of all /-groups with unit. Further-
more, there are 2% distinct top equational classes generated by periodic
o-primitive ¢-permutation groups (see [44]). This has many interesting
ramifications.

Even the normal subgroup picture is more diverse in this setting.
Recall that A(R) has only three proper normal subgroups, B(R), L(R)
and R(R). Let u be translation by 1 (so v : a — «a + 1) and let G be
the convex sublattice subgroup of A(R) generated by u; so G has unit
uand G :={g € AR) | (In € Z,)(Va € R)(Jag — 09| < n)}. There
are some surprises. Recall that an ideal of P(Z) is a non-empty subset
of P(z) closed under taking unions and subsets. We call an ideal IC of
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P(z) normal, if for any K € K and n € N the set K<"> = {m € Z |
(3k € K)(|m—k| < n)} also belongs to K. By [17], the normal subgroup
lattice of G is isomorphic to the lattice of all normal ideals of P(Z). As
a consequence, GG has chains of normal subgroups isomorphic to (R, <)
and antichains of normal subgroups of size 22 °.

2.10 Outer automorphism groups

As is well-known, each automorphism of A(Q) or of A(R) arises via con-
jugation by a group element or an anti-isomorphism of (R, <). Hence the
outer automorphism group Out(A(f2)) = Aut(A(Q))/Inn(A(2)) = z/2zZ
for = @ and Q = R. Holland [42] and Weinberg [68] constructed
ordered sets (€2, <) with 0-2 transitive A(2) for which Out(A(2)) is triv-
ial. Solving a problem which had been open for some time, Holland [42]
constructed such an order (€2, <) with Out(A(2)) = V4, the Klein four-
group. More recently, it was shown in [53] that any group G arises as
outer automorphism group G = Out(H) of some group H. The ques-
tion arises which groups arise as Out(A(2)) for some o0-2 transitive group

A(Q).

Theorem K [22] Let G be any group. Then there exists a totally ordered
set (Q, <) such that A(Q) is 0-2 transitive and G = Out(A(2)).

The proof proceeds by encoding G via stationary subsets within some
ordered set, and then constructing €2 ‘around it’, preserving existing
suprema and infima as indicated at the end of Subsection 2.1.

Schreier’s conjecture asserts that the outer automorphism group of
each finite simple group is soluble (which is true, by the classification of
finite simple groups). Without the word ‘finite’, this changes drastically.

Theorem L [15] Let G be any group. Then G = Out(H) for some
simple group H. Moreover, H may be chosen as the automorphism group
H = Aul(C, R) for some ternary relational structure (C, R).

This group-theoretic result appears as a consequence of the preceding
(-permutation group methods as follows. By Theorem K, we have G =
Out(A(Q2)) for some totally ordered set (2, <) with A(2) o-2 transitive.
As observed in Subsection 2.2, A(€2) is not simple. We may construct
(2, <) so that it contains a countable subset with no upper or lower
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bound in Q. Then there are a € 2 and z € A(Q) such that {az"|n € Z}
is unbounded above and below in €; thus (Caq)(2),?) is periodic with
period z. We put C' = [o, az), and let R comprise all triples (3,~,d) € C3
such that B <y <dory<d < PBord < <~; hence R is a ‘circular
ordering’ of C. Then Out(A(Q2)) is isomorphic to the group of those
permutations of the A(Q)-orbits in © which are induced by elements of
A(Q), and this correspondence transfers to Out(Aut(C, R)) by a recent
analysis in [57]. Hence, G = Out(A(f2)) = Out(Aut(C, R)). Moreover,
Aut(C, R) = Cyq)(2)/ < z >, which is simple by [47].

3 Conclusion

By examining both Theorem A and its proof, we have attempted to pro-
vide the necessary background to appreciate the many important con-
sequences that were subsequently obtained. By choosing applications in
diverse areas, we hope to have adequately illustrated the importance of
Holland’s original theorem.
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