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Abstract

Ashby’s homeostat performs a random search in the
parameter space of a linear system until a stable behav-
ior is retrieved following e.g. structural perturbations.
We consider a continuous adaptive version of the home-
ostat where the parameters are determined by a gradient
dynamics with respect to a given goal state. In this way
much shorter transients are achieved by a parameter dy-
namics that runs on the same time scale as the state
evolution. The model allows for analytical solution and
forms in so far an interesting toy model for nonlinear
adaptive systems with implications for control mecha-
nisms in natural or artificial embedded agents.

1. Introduction

Ashby’s homeostat (Ashby 1948, 1952) was invented and
actually built half a century ago. It was intended as a
working illustration of the principle of homeostasis, a
term coined by Cannon (1932) in the 1920s. Presently,
we are witnessing a revived interest in the concept
of homeostasis in various fields ranging from synaptic
plasticity (e.g. Turrigiano, 1998) to the control of au-
tonomous robots (Di Paolo, 2000).

Originally homeostasis was conceived as an approach
to complex control mechanisms in living beings. Blood
pressure, e.g., depends on many local variables which are
in turn affected by many hormonal, nervous and chemi-
cal processes, but it is stabilized globally without a cen-
tral control unit. Ashby studied properties that underly
such mechanisms in living beings from a theoretical point
of view and tried to transfer this principle to the design
of control architectures in machines. He found it nat-
ural in this context to consider dynamical systems in-
volving switching processes, intermittency, memory and
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dynamic relations with the environment. In particular
the notion of ultrastability appeared to him of central
importance for a theory of the mechanisms underlying
life.

Ashby claimed that in complex dynamical systems the
notion of linear stability is not sufficient. Such systems
should be able to cope with large deviations from a target
state or even to produce them in order to achieve struc-
tural reorganization in their course. Ultrastability refers
to systems which in addition to their states also possess
dynamical parameters which are supposed to modulate
the system dynamics such that eventually a target state
is approached even in the presence of structural defor-
mations.

In the cybernetical era the notion of homeostasis has
served as a kind of metaphorical explanation of various
phenomena ranging from physiological control to social
relations. Relevant work has been performed by Ze-
manek (1958) and his student Hauenschild (1956), who
constructed a replica of Ashby’s homeostat, including
some display devices such as a face with movable parts
driven by the output of the homeostat and a glass screen
where two spots of light were controlled each by two units
of the homeostat. According to Wilkins (1968) they con-
sidered also coupling to an external environment, but
perhaps this refers only to these output devices.

In the early 1960s Haroules and Haire (1960) con-
structed a homeostat with 16 units (cf. also Williams,
1961) called Jenny, it is however not clear whether any
results have been obtained. Finally, Wilkins (1968) has
started an even larger project on homeostats, which un-
fortunately could not be continued. Only recently (Di
Paolo, 2000, 2002, Balaam, 2001, Ducker, 2001) the idea
of homeostasis experienced a revived interest. Schwefel
(1994) has noted that the function of Ashby’s original



homeostat bears some similarity with evolutionary algo-
rithms.

The present contribution tries to relate more directly
to the early works for several reasons, while leaving aside
the peculiarities of the hardware implementation of the
homeostat. We will see that the main idea of the home-
ostat can be formulated in terms of continuous adaptive
dynamical systems and treated analytically, where ex-
plicit solutions can be obtained at least in a number of
special cases. Practical applications of the homeostatic
principle to robot control (Der et. al., 1999, 2002) are
beyond the scope of the present paper, but have given a
starting point for the present work. Further, the learn-
ing homeostat may turn out to provide a standard model
with implications for various problems in the theory of
adaptive behavior, autonomous robotics, neural learning
dynamics, and nonlinear control. We will first present a
formal account of homeostatic dynamical systems. Later
we will introduce an adaptive dynamics which adjusts
the parameters of the system, provide some analytical
considerations and numerical results. Finally, we will
discuss presently relevant implications of homeostatic
dynamics.

2. Ashby’s homeostat

Ashby has built a machine consisting of four rotatable
magnets whose deviations from their target orientation
gave rise to currents in a number of coils that in turn
influenced the orientation of the magnets. The strengths
of the interactions among the magnets are subject to
switching processes realized by pseudo-random resistor
values produced by multi-selectors. The dynamics of the
system can be described mathematically (Ashby, 1948,
1952, cf. also the detailed presentation in Hauenschild,
1956) by a seemingly linear system in n = 4 dimensions.

n
B =Y aya; (1)
j=1

The self-couplings a;; are adjusted by hand to negative
values initially, such that the system has a bias towards
stability. The coeflicients a;; for ¢ # j are subject to a
switching dynamics and are automatically chosen from a
set, of 9 possible values, which are fractions of 0.48, 0.73,
0.89 and 1.0 of some maximal value, the corresponding
negative values or zero. Switching occurs if a variable z;
reaches a threshold |z;| > § = 7 with the target being
at the origin. For each of the four vectors (as1, as1, a41),
(a12, azz, as2), (ai3, a3, as2), and (ai4, a4, ass) there

are 25 combinations of values stored out of the 93 = 729
possible ones such that the system (1) includes up to
25% = 390625 different dynamical behaviors.

The system state x is allowed to evolve for some time.
The system will either approach some attractor inside
the critical surface or eventually reach a critical surface.
If |z;] > § a new set of random variables a;; for all
off-diagonal couplings towards unit i is drawn such that
the system is changed each time a potential instability
is encountered. Since in the hardware implementation
the critical surface is simply given by a mechanical con-
straint, the state is assumed not to evolve further once
the critical surface is reached even if the newly chosen
couplings do not reintroduce stability into the system.
The switching process stops if the coefficients of (1) are
such that all eigenvalues have negative real parts.

In the stable region of the combined parameter and
state space, the system tolerates small noise. But by
an external impact that is sufficiently strong, e.g. the
loss of a physical connection between node i and j or
the reverse of the sign of an a;;, the system returns via
a large deviation in state space to a possibly different
parameter setting with the desired dynamical properties.
For random couplings, negativity of all eigenvalues is
realized only with probability 27", i.e. homeostats with
large n will converge only after very long transients.

Further, oscillatory behavior or slow dynamics may
occur inside the critical region such that the time be-
tween switching events may be long. If the eigenvalues
are of small negative real part the system will be prone
to noise. The fact that the system dynamics stops when
z; reaches the critical surfaces implies a separation of
time scales which is not clear for the envisaged applica-
tions of homeostasis. When the critical surface is speci-
fied by soft thresholds, state may be controlled to avoid
the boundaries and to stay near the target state by the
exploitation of gradients of the threshold functions.

3. The learning homeostat

While in Ashby’s approach stabilizing weights are found
by random search, we suggest an incremental weight up-
date, because it is reminiscent to the modification of
synaptic efficacies in neural networks and will turn out
to show a directed convergence.

The parameters a;; in (1) are to be selected such that
the system is stable at the fixed point = 0. We will now
discuss a learning scheme for the parameters a;; which
in a sense realizes Ashby’s original ideas in a supposedly



straightforward way. We consider the more general case
that the system is to be stabilized at an arbitrarily given
target state Z. Because z* = 0 is the only fixed point of
(1), an adaptable inhomogeneity is required which can
shift the fixed point towards Z.

T; = Za,-j:zsj + b; (2)
Jj=1

The aim is realized if the matrix A = (a;;) is invertible

and has eigenvalues with negative real parts, such that

the inhomogeneity b = (b;) can be obtained by b = A~17.

In order to derive an adaptation rule for the parameter

matrix A we introduce the target state & which is to be

approached by the system state z. Hence, the goal is to
minimize

1 112
E=le—l. 3)
Note that only future states z(t + 7), 7 > 0, can be in-

fluenced by present parameter changes. More precisely,
we have

B =l +7)— & (4)

instead of (3), where (¢t + 7) can be approximated for
small 7 by z(t + 7) = z(t) + 72(¢t). Specifically for the
system (2) we have

z(t+7) = x(t) + 7 (At)z(t) + b(t)) .

The objective function (4) becomes

E = Lz +7(Az +b) — 7|

X (@i =30+ (i - ) (3, aya; — b:) +0()

Q

and suitable parameter changes may be determined by
gradient descent

Aa;; = —66‘25 = —e7 (z; — ;) @ 5)
Abl = —635 = —E€T (.’L‘z — .’Z’z)

In matrix form this reads

AA —eT(x — &)
Ab = _;(i_%m (6)

T

We assume that the parameter update is effective after
a time delay 7 such that A (¢t +7) = A(t) + AA with
0 <7 < 7. For 7 = 0, 7/ = const, we consider
At +1) — A¥) T T

= —g— —
- - (z—2)z

and obtain from the analogous relation for b and (2) the
dynamical system (with e rescaled by 7/71)

Az +b
—(z—3)zT (7
e(r—%)

L
4
b

The same learning dynamics is obtained when aiming
directly at a decrease of the distance from the target
state Z. This task can be expressed as the minimization
of the function

1d 1 d
E o= gle=all =53 5 @i-a)

A differential error function, namely,

1, .9
E=—|i
e

gives rise to the dynamical system

& = Az +b
A = —e(Az +b)z” (8)
b = —e(Az+Db)

Here stationary states are given by Az + b = 0, such
that * = —A~1b. Since no explicit information on the
target state x* is present in the adaptation rules there is
a multitude of solutions.

4. Analysis of simple homeostats

We will first consider a homeostat with a one dimensional
state space and with b = 0. The system (7) reduces to

T = ax
a = —ex? 9)
which describes the dynamics in the two dimensional
(z,a)-space with target o = 0. The dynamics of (9) can
be easily understood qualitatively. If a(0) < 0, the state
2 will quickly run into the fixed point z* = 0, while a (¥)
tends to become more negative. a is strictly decreasing
also for a(0) > 0, but now the magnitude of z grows as
long as a is above zero. At a = 0 the state z reaches
its maximal deviation from o such that a will further
decrease below zero, such that now x returns towards
zo. Eventually a saturates, and z further converges ex-
ponentially to zero with a nearly fixed rate, cf. Fig. 1.



The final value of a can be identified by exploiting
the existence of a first integral of (9). By calculating the
d

derivative % F'(x, a) it is easily checked that the quantity

F(z,a) = ex® + a* = const (10)

is conserved by the dynamics (9). This means that due
to z(00) = 0 the value a(o0) is given by

a(00) = —y/a? (0) + ez2 (0),

where the sign is determined by the above qualitative
consideration. Thus, for a(0) > 0 and ez? (0) < a(0)
the parameter a simply perform a sign switch, i.e. the
parameter dynamics turns out to perform a directed,
smooth analog of Ashby’s original switching mechanism.

The conservation law (10) can be used for an explicite
solution of (9), because it allows to eliminate one dimen-
sion. Introducing polar coordinates

= \/igr sin ¢ (1)
T COS ¢

a

we have r? = const instead of (10). Inserting (11) into
(9) we find a closed equation for ¢

¢ =rsing (12)

which can be solved exactly as

#(t) = +2arccos (:l: (1 + exp (2rt) tan? (@) ) %>

where the various signs reflect symmetry properties of
(12). ¢* = 0 is an unstable fixed point of (12) such that
for ¢(0) > 0 (¢(0) < 0) the dynamics converges towards
¢ =7 (p=—m) ie. tox =0and a = —r. A special
solution of (9) is shown in Figure 1.

In case of a non-zero bias b we consider

T = ar+b
a = —ex? (13)
b = —cex

If  is close to zero, its evolution will be essentially deter-
mined by b and assume the same sign as b, which results
eventually in a decay of b towards zero. If  and b have
the same sign, the dynamics is similar to the case with-
out a bias. Analogously to (10), for (13) it can be shown
that

% (Ex2 +a® + b2) =0, (14)

2+ X(t) 1

1 a(t) 1

Figure 1: Time course of state z and parameter a for the
one dimensional homeostat. Initial values are a(0) = 1 and
2(0) = 0.2 and the learning rate is € = 0.1. The excursion of
z is reversed as soon as a changes sign. When z finally tends
to zero, a settles near —a(0) = —1.

In order to find an explicite solution, equation (13) can
be transformed into spheric coordinates

VEr = rcosgsin
a = rsingsind
b = rcosf

such that r is invariant with respect to the dynamics and
we are left with the reduced system

¢
6 =

—rcos ¢ sin @ + /e sin ¢ cot 0
—+\/€cos ¢

(15)

The second equation has fixed points at ¢ = 7 + km,
such that the first equation implies & = 7 + I7. The lin-
earization of (15) yields eigenvalues & (£r — V72 — 4e¢)
and 3 (+r 4+ v/r? — 4¢) with negative real part if k + [
is an odd number. The eigenvalues are real if 4e < r2,
i.e. for large € the solution is fluctuating before it settles

to a stable fixed point.

5. Multidimensional homeostat

5.1 Homogenous case
Consider now the multidimensional case of (9)

T = Az

A = —exaT (16)



a(t)

Figure 2: Time course of state z and parameters a and b
for the one dimensional homeostat with bias. Initial values
are £(0) = 1, a(0) = 1 b(0) = —1, and € = 0.1. For this
set of initial conditions the excursion of x undergoes now a
sign change which is due to the initially large negative bias.
As soon as b and x have the same sign the bias is no longer
interfering the stabilizing dynamics and the further evolution
is similar as shown in Figure 1, but with a smaller terminal
value of a.

where x € R", A € R™"*"™. n = 4 corresponds to Ashby’s
homeostat. The expression

F(z, A) = exa® + AAT (17)

is a first integral of (16), i.e. the dynamics of the full
system is restricted to the set

{(z,A)|F(A,z) =V = const}

with V being a semidefinite symmetric matrix.

For a symmetric parameter matrix the convergence of
the state dynamics can be shown easily, thus we will not
assume that A is symmetric. We consider the dynamics
of 72 = 2Tz which obeys

rP=ile+ 27 =27 (AT + A) T

for (16). The norm of z is thus governed only by the
symmetric part of A. 72 tends to zero if B = AT 4+ A has
only strictly negative eigenvalues. Let b; an eigenvector
of B and f; the corresponding eigenvalue and assume
that A has a full set of n eigenvectors. Then, taking the
time derivative of the eigenvalue equation we obtain

Bib; + Bib; = Bb; + Bb;

or, using B = —2ex2” and multiplying by b7 from the
left,

where the last term vanishes, because b/ is an eigenvec-
tor of BT = B. Thus, we have

,Bi = 92 ||$Tbi||2 / ||bz||2 <0, (18)

i.e. all eigenvalues \; with z7b; # 0 are strictly decreas-
ing. Because we can assume generic initial conditions,
ie. 7 (0)b; (0) > n > 0, and that zb; even grows for
positive 3; all eigenvalues will eventually become nega-
tive.

Assume A(0) and A(oo) being symmetric with real
entries and of full rank. If ||z(0)|| < 1 and z(c0) = 0,
then both A(0) and A(oc) are generalized roots of V' and
we can write approximately

A(o0) = QA(0)

where Q~! = Q7 is an orthogonal matrix. We further
have that

A(00) = AT (00) = QA(0) = A(0)Q".
Thus
Q = A0)QTA(0)™
which implies that @ and QT have the same eigenvalues,
i.e. A = A, thus the eigenvalues are real and, because @ is
orthogonal, they are +1. In this way we have obtained

an analogon of the sign-switch property from the one
dimensional case.

5.2 Global analysis
Eq. (17) implies that

exzl + AAT =V

with V = VT. By diagonalizing V via V = TDT7,
where T is an orthogonal matrix and D is a diagonal
one with non-negative entries, we define

y=+eTz, G=TATT". (19)
Using (19) the system (16) transforms into

.
& = Lo (20)

where the first integral (17) becomes now

D =yy" +GG" = F(G,y) = const. (21



which can be written as

cCT =D (22)

o ( 0 0 ) € RO-DX ()
y G

where

_ (0 0 (n+1)x(n+1)
p=(88)en
The matrix C in Eq. (22) can by termed a generalized
root of D. It can be proven that the set

Mp = {(G,y) e R™" xR": F(G,y) =D} (23)

is an @—dimensional compact submanifold of
R™*™ x R™, if the matrix D has full rank, which is the
case for almost every initial condition.

This allow to characterize the manifold of fixed points
of (16). (21) allows to eliminate the y equation in (20)
and to consider the reduced dynamics

G =GG" - D. (24)

The set of fixed points of (24) is determined by GGT =
D, hence any stationary G can be written as G = VDO,
where OT = O~! is an arbitrary orthogonal matrix. We
can express the set of solutions by v/ DO(n) where O(n)
denotes the set of orthogonal matrices. Because every
solution G has full rank, at the fixed point of the joint
dynamics we have y = 0. Consequently, the fixed-point
manifold vDO(n) x {0} C Mp is of the same dimension
as O(n), i.e. w Recalling that D is fixed by the
initial values, we arrive at the reduced form

y=+vD

The manifold which combines the dynamics of the
full set of variables of (16) can also be characterized
using (21). Since det D # 0, the set Mp (23) is dif-
feomorphous with My, where I is the n X n unit ma-
trix. The corresponding diffeomorphism is given by
G = VDG y — /Dy. Instead of (21) we can restrict
ourself thus to the special case

ywl +GGT =1
For any y we define an orthogonal n x n matrix R, with

det R, = 1 and a positive semi-definite diagonal matrix
D,,|, such that

R,GG'R] = R,(I-yy")R,

1- |ZU|2 0 ) 2
= = D
( 0 Tn—nyx(n-1) v

Further, we define an orthogonal n x n matrix V;, with
det V,, = —1 which satisfies
-1 0

V, =R RT.
Y y( 0 I(n—l)x(n—l)) v

Then, each matrix in the set Uy = M; N {(G,y) :
detG > 0,|y| < 1} can be represented by the form
(RyD,, | RIT,y) and each one from U, = My N {(G,y) :
detG < 0,|y| < 1} by (R,Dy, RIV,T,y), resp., where
T is orthogonal with det7 = 1. Both U; and U, are
diffeomorphous to SO(n) x E™, where SO(n) is the set
(group) of orthogonal matrices with positive determinant
and E™ is the open unit sphere M; = U; UUs

: T : T
lim RyD|y|Ry T = |31/1|I—I>11 RyD|y|VyRy

ly|—1

0 0 T
-7 TIT = g (T
y( 0 Ltn-1)x(n-1) > v T =9y)

9(T1,y) = 9(Ts,y), Th,To € SO(n) & T =T

The two parts of the set of solutions can be joined by
identifying the margins of E™ (E.g. for n = 2 the margins
are one dimensional circles surrounding two dimensional
disks, which are glued together yielding an object which
is topologically equivalent to a sphere). The joint set
of solutions M is thus homeomorphous to SO(n) x S™,
with S™ being the n dimensional sphere. Formally this
process is denoted as

(SO(n) X En) Uid
- SO(n) x 8"

(SO(n) x E™)

SO(n)xsn—1

Since Mp is homeomorphous to My if det D # 0, we
have also that the set Mp is homeomorphous to SO(n) x
S™. Remember that D is given by the initial conditions
of (16).

By construction it is clear that with respect to the
above homeomorphism the fixed-point manifold is

SO(n) x {"north pole”} USO(n) x {"south pole”},

although here the somewhat artificial nature of this rep-
resentation becomes obvious: the state vector x always
converges to the same fixed point = 0, but the param-
eter matrix develops in two qualitatively different ways.
In order to prove the stability of a fixed point of (16) we
need to know the tangents of the manifold Mp in that
fixed point. Expansion of the equation GGT +yy” = D
around the fixed point (v/DT,0) yields

SGVDT +TTVDSGT = 0.



&G is thus tangential with respect to the fixed point man-
ifold v/DO(n) or is zero, while §y remains arbitrary. The
eigenvalues in the direction of the tangents of the fixed-
point manifold are all zero. Perturbations with dG = 0
behave within a linear approximation as

by = VDTdy,

such that the stability of a fixed point is determined by
the eigenvalues of v/DT.

Consider for example n = 2 and D = diag(a?,3?). An
two-dimensional orthogonal matrix X has the form

cos¢ sing
—sin¢g cos¢

if det X = 1. In this case the eigenvalues

5 (costo)(@ + ) + VVeos(@P(a + )% — 4ap)

are obtained. If det X = —1, i.e. for matrices of the form

cos¢ sing
sing —cos¢

we find analogously

> (cos(@)(a — B) = V/cos(@)(a — B + 4ap)

5.3 Multidimensional with bias

Here the simple homeostat with a bias term (7) is formu-
lated for an n dimensional state space, i.e. we consider
the system

&= Az +b.

The parameters A and b are modified such that = ap-
proaches the target state &, which is expressed as the
gradient dynamics (6)

i = r

h =

—(z—2)z
—e(x — )

which as derived from (4). We find a conservation law

d

OZE

(e(x — 7)(z — )T + AAT +bbT).

as a multidimensional analog of (14). The considera-
tions on dynamics and stability are basically similar as
in the homogeneous case, but more involved due to the
additional dynamical bias vector as will be seen in the
following section.

5.4 “Concomitant” learning

In the dynamical systems like (7) or (8) the parameter
and the state dynamics are coupled via the learning rate
€. If e is not infinitely small, parameter and state dynam-
ics severely influence each other. In particular there is no
seperation into a learning and performance phase so that
we call this scenario concomitant learning. Tis interac-
tion is particularly strong if the bias is included. This is
seen most promoinently when comparing the dynamics
Z = Az + b with the similar dynamics & = A (z + b),
the difference being only the different definitions of the
bias. Using the error function E = ||z (t) + 7 (t) — &||*
the combined system dynamics is

& = Az +D)
A = —er(z—-3)(z+b)7T
b = —eAT(z — &)

There is again a conservation law

% (e(x—3)(z — )T + AAT) =0

For a one dimensional state space the above system can
be formulated in spheric coordinates (cf. (15)) which
leads to the reduced dynamics

24/ cos 0 (\/E cos f+4cos ¢ sin 0) (& cos p—r cos(2¢) sin §)

¢ = cos(2¢)+cos(26)
6- _ 2y/esin ¢>(\/Ecos f+cos ¢ sin 9)(:5 sin 0+r cos(26) cos ¢)
- cos(2¢)+cos(26)

(25)
MATHEMATICA produces a rather complex solution of
(25) for the case Z = 0. The system (25) has many
fixed points. Of particular interest are the ones given by
Ve cos + cos psinf = 0, which form a one dimensional
manifold of fixed points in (¢,6)-space. The stability
properties along the manifold vary due to sign switches
of the other terms. Further fixed points of (25) are at
(for # = 0), ¢ = £%, 0 = £5 with all combinations of
signs and zero eigenvalues of the Jacobian. The station-
ary states will thus be on the appropriate parts of the

Ve cos @ + cos psin § = 0 manifold.

6. Dynamics with noise

We consider both the case of the states being subject to
Gaussian white noise

& Az + o€
A = —ex2T

(26)



as well as also the parameters are affected by noise

T

A

Ax + o€

—exzT + p¢ (27)

Il

both £ and ¢ being of zero mean and unit variance. It
is obvious that for state noise (26) the general behav-
ior of the homeostat is not much affected, expect in the
sense that the eigenvalues of A diverge to —oo (with a
rate proportional to /%) because A is continuously re-
ceiving negative contributions by the noisy fluctuations
of z. From the numerical studies we observe also that
the off-diagonal elements of A decay to zero if the noise is
uncorrelated among different dimensions. Therefore the
negative contributions to A directly change the eigenval-
ues.

For the noise affecting both states and variables the
off-diagonal elements of A do not vanish, but rather per-
form a random walk with increasing amplitude. The real
parts of the eigenvalues of A may thus return to the zero,
but are pushed back as soon as a some deviation of x has
been caused by the momentary instability, cf. Figure 3.

In particular if ¢ < € the state dynamics will stay very
close to the fixed point of the deterministic dynamics,
such that A performs essentially an unbiased random
walk which is, however, reflected from the z-axis if an
eigenvalue of A reaches zero from below. The dynamics
of = looks spiky, i.e. every time when the system becomes
unstable z performs a substantial deviation from zero
which, however, quickly is reset by the response of the
A dynamics, cf. Figure 4.

For weak parameter noise temporary instabilities are
not excluded, and for larger noise they continue to occur,
although at a lower rate.

7. Discussion

Parameter changes in Ashby’s homeostat are performed
by switching, i.e. whenever a state variable reaches a cer-
tain threshold, a subset of the parameters is replaced by
a random configuration. Disregarding the specific archi-
tecture of the homeostat we may consider the parameter
changes in the homeostat to occur on a much faster time
scale than the state dynamics. In this way it is not pos-
sible to guide the parameters into suitable directions.
Adaptive systems, on the other hand, are mostly based
on the opposite assumption, that parameter changes are
much slower than the state dynamics. If the states are
in a simple attractor, the information available from the
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Figure 3: Dynamics with state noise in a two-unit homeo-
stat. ¢ = p = 0.1 . The top image presents one coordinate of
the state, the bottom one the two eigenvalues of the param-
eter matrix.

states is limited and will not be extendable to other re-
gions of the state space. The consequence is usually
an increase of stability at the cost of an insensitivity
to changes. This is in other words an instance of the
stability-plasticity dilemma. Therefore, the state dy-
namics has to be controlled in some way in order to
enable learning. If, on the other hand, the state dy-
namics is unstable, a slow parameter adaptation may be
unable to prevent the system from divergence. Although
there are ways to cope with such problems, such as re-
setting, shuffling or weighting the states as inputs to the
learning algorithm, on-line learning in living systems or
in machines as envisioned by Ashby requires parameter
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Figure 4: Dynamics with parameter noise in a two-unit
homeostat. o = 0.1 and p = 1.0.. The top image presents one
coordinate of the state, the bottom one the two eigenvalues
of the parameter matrix.

dynamics on a time scale which is comparable with that
of the state dynamics. In this way states and parameters
are dynamically equivalent and form a joint dynamical
system with inseparable time scales, although generally
different dynamical behaviors. Because then all vari-
ables are subject to intrinsic control, the agent can be
improved only by structural modifications, such as per-
formed by genetic algorithms.

If under certain conditions the parameter dynamics is
converged, the corresponding behavior is governed by the
state dynamics, i.e. on small scales ultrastability implies
stability. If the external conditions change or some inter-
nal failure occurs, then the stability of the state dynam-

ics may be lost and the parameter dynamics is required
to reinstall stability of the target region. For larger ex-
cursions from the locally stable state, ultrastability re-
quires thus the existence of possibly complex returning
trajectories. Globally stable systems such as stable lin-
ear systems are in this sense not ultrastable, because
ultrastability does not refer just to the dynamical vari-
ables (states) of the system, but also to the parameters,
which can no longer be considered as fixed. The joint dy-
namics of parameters and states will thus be nonlinear
and give rise to all kinds of nonlinear phenomena such
as bifurcations, self-organization etc.

Although ultrastable system can cope with large scale
changes, more complex systems than the one considered
here should possess capabilities beyond thus, such as ac-
tive learning and memory, e.g. in order to be able to
predict long excursion or to initiate them in order to ap-
proach other goal states without an essential reorganiza-
tion of the system properties. One step in this direction
relates to active destabilization or, ideally, criticaliza-
tion of the state dynamics. In such adaptation schemes
the parameter dynamics tends to create center manifolds
of the state dynamics (instead of stable fixed points of
limit cycles) which allows for low-risk explorative behav-
ior near the center and fast stabilization in the presence
of unexpected external perturbations.

Hauenschild (1956) claims that the long transients in
large homeostats can be avoided if the connectivity ma-
trix is a block matrix, i.e. the described function sep-
arates into subfunctions which are controlled by low-
dimensional servo-systems. More interesting is the pos-
sibility of considering blocks of different dynamical be-
haviors to subspaces of the state space. This allow to
model systems with partial feedback arising in incom-
plete observable problems or in models that include an
autonomous external or internal dynamics. Similarly,
different learning rates or objective function may be ap-
plied to different blocks of the connectivity matrix, such
as to achieve optimal exploration in certain directions
while stabilizing other ones.

Ashby’s homeostat is an attempt to mimic natural sys-
tems which are both resistive and reactive to the exter-
nal world and are able to survive even structural dis-
ruptions. Prominent to Ashby’s ideas is the switching
of system parameters subject to some internal criteria
(like the state reaching the boundary). In the present
paper we introduce instead a parameter dynamics which
rests on gradient descending an objective function. We
have shown that in simple cases the adaptive system cre-
ated in the way shares prominent features with Ashby’s



homeostat. In particular we observe a parameter switch-
ing dynamics as an emergent feature of the system to
maintain stability.

To conclude, we have considered a particularly simple
example of a nonlinear system which allows for analyt-
ical considerations some of which have been presented
here. Applications of the present formal model will pose
further questions such as the behavior in the presence of
colored or correlated noise, the effect of time delays, the
capabilities for tracking control and explorative dynam-
ics.
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