
True autonomy from self-organized adaptivity

Ralf Der René Liebscher
Universität Leipzig

Institut für Informatik
POB 920

D-04009 Leipzig
{der|liebschr}@informatik.uni-leipzig.de

Abstract

The paper is a step towards a systematic ap-
proach to the self-organization of behavior. We
consider autonomous robots controlled by artifi-
cial neural networks trained by supervised learn-
ing. The learning signals however are generated
by the agent itself on the basis of objectives which
are entirely internal to the agent. This paradigm
is realized by equipping the agent with an adap-
tive model of its own behavior and using the mis-
fit between model and true behavior as the learn-
ing signal. In this way the robot learns to be-
have in a predictable way. At this level, the ap-
proach requires the presence of a drive for action
without which the the trivial ”do nothing” be-
havior prevails. However we show that a simple
change – the inversion of time in the modelling
process – eliminates the trivial solutions and in a
general sense introduces the driving force of any
self-organization process namely the noise driven
emergence of instable modes. The approach is
closely related to the principle of homeokinesis
which is the dynamical pendant of homeostasis
as introduced by Cannon (1939) and later Ashby
(1954).

1 Introduction

Adaptivity is one of the main incentives for an artificial
being striving for autonomy. Commonly adaptivity is
seen as a tool for improving the performance of an agent
in the completion of its tasks. A prominent example for
adaptivity in the broad sense is reinforcement learning
which is a biologically inspired learning paradigm. It is
a valuable tool in order to adapt an agent for a specific
task without having to give it a concrete learning signal.
Nevertheless in a specific domain one must input a lot
of domain specific knowledge and moreover the kind of
reinforcement one gives introduces a semantics from out-
side. Adaptation is guided by the designer in a more or
less indirect way. In the last consequence reinforcement
learning may be seen as a different way of programming

Figure 1: A typical environment where the Khepera robot

learned to ”live” in a purely self-organized way.

the robot to do specific tasks. Although biologically in-
spired it is not clear whether these adaptation paradigms
can create machines which are as inspired as biological
beings.

We will advocate a more rigorous understanding of au-
tonomy which is based on the belief that true autonomy
must involve the phenomenon of emergence. Before giv-
ing some ideas how this could be realized in the robotic
domain let us first illustrate the goal in a concrete case.
Consider a robot with a parameterized controller, a neu-
ral network, say, with synaptic weights initially in the
tabula rasa condition. So there is no reaction of the
robot to its sensor values and activities if present at all
are only stochastic ones. The robot is to be in an envi-
ronment with static and possibly also dynamic objects,
cf. Fig 5 below. The task now is to find an objective
which is entirely internal to the robot which drives the
parameters so that the robot will start to move and while
moving to develop its perception of the world and object
related behavior. In particular in the case of moving ob-
jects like a ball the robot should learn to discriminate
the ball from other objects and treat it different (play
with it) since the ball reacts different to its activities.
And of course (since this is a dream) we expect this to
happen independently of the sensors the robot has and
whether it moves with wheels or legs or ...

One possibility for the self-organized adaptation is
that one uses a supervised learning algorithm for the



controller where however the agent is its own supervisor
in the sense that he generates its own learning signals.
This is the way we will follow in the present paper. This
requires that the agent has an internal objective which
generates the ”internal drive” for the adaptation. The
purpose of the present paper is to look for some possi-
ble candidates for such objectives and to investigate the
behaviors which they produce.

We begin with the notion of (i) dynamical complexity.
One may require that the trajectories (in sensor space)
one observes are of a certain moderate complexity. This
means that the robot neither stalls nor moves chaotically.
The problem is how to define dynamical complexity in a
domain invariant way. Another paradigm is (ii) that of
the predictability of behavior which means to behave in
such a way that the future values of the sensor readings
stay predictable. We will demonstrate in the present
paper how this engenders a smooth controlled behavior
of the agent. Related to this is (iii) the sustainability of
control. The aim would be to behave in such a way that
after the current period of the ”sense-think-act” cycle
the agent is again in a state where control is possible in
the same safe way.

Common to all these principles is the fact that they
always have the ”do nothing” behavior as a trivial so-
lution. So, these principles work well only if the agent
is given a drive for activity or curiosity or the like. We
have presented this route to emerging behavior in earlier
papers and will sketch the approach in the Sec. 2 below
for the sake of completeness. The focus of the present
paper mainly is on the emergence of drives. We will show
in Sect. 3 that a simple change – the inversion of time in
the modelling process – eliminates the trivial solutions
and in a general sense introduces the driving force of any
self-organization process namely the noise driven emer-
gence of instable modes. We consider this the vital step
towards emerging behavior. The appropriate measure is
(iv) the stability of the time loop over one or more time
steps. Preliminary results on the combination of the ap-
proaches are found in Sect. 4 which reports results with
a Pioneer robot including the camera.

These ideas are rooted in the general frame-
work of homeokinesis, cf. (Der et al., 1999) which
is the dynamical pendant of homeostasis as intro-
duced by Cannon (Cannon, 1939) and later Ashby
(R.Ashby, 1954) and in the embodied intelligence
approach (Pfeiffer and Scheier, 1999) as discussed in
(Der, 2001).

2 Staying predictable

Let us now present some results under the predictabil-
ity paradigm as formulated above. Our robot has an
adaptive controller with output

yt = K (xt; c) (1)

where xt ∈ Rn are the sensor values observed at time t
and c is the parameter vector. The adaptive model is to
predict the true sensor values xt+1 at t+ 1 as

xPt+1 = xt +M (xt, yt;m) (2)

with prediction error

E =
∥∥xt+1 − xPt+1

∥∥2
= ‖∆xt −M (xt)‖2 (3)

where M (xt) is shorthand for M (xt, yt;m). We obtain
the learning rules for the self-organized learning

∆m = −η ∂

∂m
E ∆c = −ε ∂

∂c
E (4)

Predictor and controller are to be learned concomitantly
where model learning is much slower than the learning
of the controller. In practical applications we may even
use a model learned off line so that there is no inter-
ference between model and controller learning. In the
experiments described below the model was the trivial
one, i.e. the M = 0 so that there was no model learning
at all.

We may interpret the above approach also in the
terms of the dynamical complexity gap between inter-
nal (model) and external world. The idea above is to
use the width of the complexity gap as learning signal
for the adaptation of both the model and the controller.
So the aim is to adapt behavior such that the complexity
gap between true and model behavior is minimized.

By way of example, let us consider a robot moving
with a fixed forward velocity, the controller output y be-
ing just the target turn speed of the robot in physical
space. In the most simple setting we implement the con-
troller by a single artificial neuron as 1

y = tanh

(
n∑
i=1

cixi

)
(5)

where xi is the current output of sensor i. In the case of
the Khepera robot x = (x1, ..., x8) might represent the
values of the eight infrared sensors. The system is up-
dated in regular times t = 0, 1, 2,... so that over the time
the robot sees the trajectory xt, t = 0, 1, . . . in sensor
space the trajectory depending both on the environment
and the starting position of the robot.

In the present paper we consider the most simple case
M = 0, i.e. the model assumption is that the sensor
values are constant over time. In order to update c ac-
cording to eq. (4) we need the gradient of E with re-
spect to the parameters of the controller. This gradient
information is gained by a simple trick. We add a small

1We assume that the controller does not refer to earlier sensor
values as a PD controller would do. However the latter case can
easily be integrated into the present concept.



perturbation h (t) to the postsynaptic potential z of the
controller neuron, i.e. put

y = tanh
(∑

cixi + h (t)
)

(6)

and consider that the linear response of E to the pertur-
bation is essentially h (t) ∂E/∂z. From this we get the
following learning rule

∆ci = −ε xi h (t)E (7)

where E =
∑
j (∆xj)

2 and ∆x = xt+1 − xt. Equations
(6) and (7) constitute the complete algorithm for the
present robot controller and can easily be translated to
the case of a neural network as controller.

-1.5

-1

-0.5

0

0.5

1

0 200 400 600 800 1000 1200 1400 1600 1800

’P’ u:1
’P’ u:2
’P’ u:3
’P’ u:4
’P’ u:5
’P’ u:6

Figure 2: Wall following behavior. The robot sees the wall

to its left. Plotted are the values of the controller parameters

c1 through c6. One step is about 2 cm. After the very short

initial learning period the robot followed the inner wall of

a circle of about 80 cm. After about 200 steps the robot

was transmitted to the outer wall of a circle of about 60

cm. The robot rapidly adapts to the new situation and stays

stable in the new behavior for about 400 steps. Initiated

by an external perturbation starting by step 600 there is a

transition into a more stable (closer) wall following modus.

The latter behavior is completely stable.

We have implemented the above algorithm on chip of
a Khepera miniature robot. Starting from the tabula
rasa initial condition the robot in a few minutes learned
a number of different behaviors. Behaviors are contin-
gent since there is no specified target behavior. Which
behavior is going to emerge depends on the environmen-
tal conditions. For instance if the trainer keeps a ball
in front of the robot for a while then the robot rapidly
learns to stabilize the ball between its front sensors. This
is obviously an appropriate behavior since in the ideal
case this leaves the sensor values invariant.

In the same way one can train (or retrain) the robot
to follow a wall by starting it repeatedly under a conve-
nient angle to the wall so that it feels the benefit (which
means minimum change in sensor values) from keeping

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 10 20 30 40 50 60

’P’ u:1
’P’ u:2
’P’ u:3
’P’ u:4
’P’ u:5
’P’ u:6

Figure 3: Ball balancing behavior. The robot moving with

a constant velocity is presented a table tennis ball which is

stabilized for some time by hand in front of it. After about

40 cm the robot is able of balancing the ball as long as its

speed is sufficient to keep up with the it. The plot displays

the parameters c2 through c5 of the controller. Convergence

to a stable ball balancig behavior is reached after about 40

steps.

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 200 400 600 800 1000 1200 1400 1600

’P’ u:1
’P’ u:2
’P’ u:3
’P’ u:4
’P’ u:5
’P’ u:6

Figure 4: The right hand side front sensor was damaged nev-

ertheless the robot learns a stable ball balancing behavior.

itself parallel to the wall . In the same way one may con-
dition the robot to obstacle avoidance, optimal naviga-
tion through narrow corridors, and different modi of wall
following. In many situations we observed that the con-
troller converged towards the best working conditions,
i.e. the behavior where control is most safely realized.
The latter effect results from a nontrivial combination of
nonlinearity and noise effects.

In the experiments the learning rate is chosen rather
large, ε = 0.7 in the case of the Khepera. The choice of
the oscillation frequency and amplitude is a little critical
since one must guarantee that the distance covered in
one period is sufficiently small so that the oscillation
frequeny is to be high. This however is in conflict with
the delay times caused by the inertia of the robot and
other hardware effects.



3 Emerging drives from minimizing the
time-loop error

Under the above paradigm nontrivial behaviors are
emerging only if the robot is given a drive for activity
(the constant forward velocity above). Of course these
drives should emerge as well. Interestingly this hap-
pens already from a minor change of the above paradigm
which formally consists in changing the direction of time
in the prediction step.

3.1 The time loop

Let us call x̂t the vector of sensor values as reconstructed
from the true sensor values xt+1 observed one step later
in time. We write the model backward in time as

x̂t = xt+1 +M(−) (xt+1)

which can be trained in the usual way. The difference

u = xt − x̂t

is obtained from going from xt to xt+1, i.e. one step
forward in time through the full world whereas the step
from xt+1 to the reconstructed state x̂t is backward in
time. We call the sequence xt → xt+1 → x̂t the time
loop and correspondingly

F = ‖u‖2 (8)

the time loop error which depends on both c and m so
that after having obtained u gradient descent yields the
update for both c and m.

The time loop error is driven by two opposite forces.
On the one hand the error is small if the current behavior
is well repesented by the model. This favors behaviors
corresponding to more or less predictable sensor values
(smooth trajectories in sensor space) like keeping a ball
under control as discussed above. In particular it favors
the trivial behaviors. On the other hand we can write
the full dynamics always as

xt+1 = xt +M (xt) + ξt

where ξt is the part of the dynamics not covered by the
model. Now

x̂t = xt+1 +M(−) (xt +M (xt) + ξt)

so that M(−) (xt +M (xt)) = xt which shows that the
influence of the perturbation ξ is obtained by propagat-
ing it backward in time through the model. Time rever-
sal inverts stable into instable behavior and vice versa.
Therefore the modeling error is minimized if the behav-
ior of the robot is instable in the forward in time direc-
tion. Consequently the trivial behaviors corresponding
to stabilizing the robot are going to be destabilized by

this mechanism. This creates new instable modes in the
system which may loosely be associated with emerging
drives for activity. However these modes can not grow
unrestrictedly. Instead by the first mechanism they are
so to say canalized in order to stay predictable.

3.2 Illustrating the time-loop error

In a nutshell the whole story is clear from the following
oversimplified model. Consider the linear system with
dynamics

xt+1 = K (xt) + ξ (9)

using K (x) = cx. The model is

xPt+1 = cx (10)

forward in time and

x̂t = c−1xt+1 (11)

backward in time so that the time loop error is

F = (x̂t − xt)2 = ξ2c−2 (12)

with learning rule

∆c = εξ2c−3 (13)

so that c is monotonously increasing by the learning.
Obviously for 0 < c < 1 the state x is stabilized at x = 0.
If x is the velocity of the robot the latter will stay at rest.
However the concomitant learning dynamics increases c
and once c > 1 x starts diverging so that asymptotically
either x → ∞ or x → −∞. Starting with x = 0 it
depends entirely on the noise which branch is chosen.
This is what a spontaneous symmetry breaking is like.

3.3 The basic sensor-motor loop

In order to exemplify the nonlinear case we consider a
sensor-motor loop consisting of a neuron which is to con-
trol the forward velocity x of a robot. The neuron out-
put y = K (xt) prescribes the new target velocity x. Its
input in the next time step is the true forward veloc-
ity xt+1 as read back from the wheel counters. Choos-
ing K (xt) = tanh (cx+H) the dynamics of this sensor-
motor loop is given by

xt+1 = tanh (cxt +H) + ξt (14)

where H may be interpreted as a bias and ξt is the noise
due to the difference of the target and the true velocity of
the wheels caused by slip and friction effects and so on.
Without noise the dynamics formulated by eq. (14) for
any set of parameters always converges to a fixed point
where x does not change any more (the robot moves with
constant velocity), the fixed point equation reading

x = tanh (cx+H) (15a)



With H = 0 there is a stable solution x = 0 for 0 <
c < 1 while for c > 1 there are two stable fixed points at
x = ±q where q runs from 0 to 1 for increasing values
of c > 1. The position of the FPs and hence of the
speed of the robot is further modified by the value of
H. With c � 1 we obtain a strong hysteresis effect
since the influence of H is felt only after it is moved far
enough to the other side. This is a pecularity of the
present controller paradigm and is found to have a lot of
interesting consequences in practice.

Assuming the average ξ = 0 we find in a low noise
approximation the time loop error as

F = u2 =
(
xt+1 − y
c (1− y2)

)2

so that the learning rules are

∆c = ε (x)
(
c− 2c2xy

)
(16)

∆H = −ε (x) c2y

ε (x) = ε0
(xt+1 − y)2

c4 (1− y2)2

where y = tanh (cxt +H) is the output of the neuron
after seeing input xt and ε (x) may be seen as an effective
learning rate. For practical applications it is convenient
to use a regularization which means to use

(
A− y2

)
with

A > 1 in the denominator. In the experiments we mostly
used ε (x) = ε0 (xt+1 − y)2 with no qualitative change in
the learning behavior.

The behavior of the complete dynamics given by eqs.
14 and 16 is roughly sketched as follows. We consider
first the case where c and H are small so that the tanh
may be linearized so that in leading order and in the
average over the noise

∆c = ε1c
−3

and ∆H = 0. Using c (0) > 0 we obtain a monotonous
increase in c which is ∼

√
t for large t. Once c > 1

is reached this means that the state dynamics changes
from a stabilizing behavior at x = 0 to x exploding ex-
ponentially. In this way an unstable mode is created
- the robot starts moving. The direction of motion is
determined by the noise so that we have a noise driven
spontaneous symmetry breaking. For larger values of x
this mode is caught by the nonlinearities but the addi-
tional degree of freedom introduced by the H dynamics
drives the system into an irregular limit cycle.

3.4 Experiments

We have used the learning procedure of eq. 16 to control
the forward velocity of both our Khepera and the Pio-
neer robot instead of giving it the fixed velocity as in Sec.

2. A robot controlled by the learning procedure of eq.
16 will move forward for some time and then reverse its
velocity and so on, the distances covered by this erratic
motion depending on the strength of the noise and the
learning rate in a systematic way. The most interesting
property of this controller paradigm however is observed
if the robot collides with some obstacle. In this case
the noise (difference between true and target velocity)
is largely increased which leads to a very rapid relearn-
ing of the parameters c and in particular H such that
the velocity of the robot is reversed almost immediately.
In this way our learning dynamics may be said to gen-
erate an explorative behavior of the robot with a sen-
sitive reaction to perturbations from the environment.
Due to the sensitive reaction of the neuron to ”slip and
friction noise” our robot survives in nearly arbitrary en-
vironments without getting stuck in corners or at other
obstacles. Moreover, learning is found to be extremely
fast and permanently alert while under stationary envi-
ronmental conditions it is convergent and reproducible.

The observed properties may be considered in a more
general sense as finding a dynamical relation to empty
space. In empty space the only information is from in-
ternal sensors (not present in the Khepera robot) and
the wheel sensors feeling the motion of the robot. Now
assume the unlearned controller generates a stochastic
motion. The information the robot will gather is that
the world is invariant w.r.t. translations, rotations, and
time reversal. In this sense we might say the space is not
empty but full of symmetries. An environment related
behavior in empty space is defined by (dynamical) rela-
tions to these symmetries. The two possible relations are
either (i) to obey the symmetries which in the present
case means to stay in the state v = 0 or (ii) to break
the symmetries which is what the robot learns to do un-
der the above learning dynamics. The robot arrives at
executing dynamical patterns (search patterns) in space.

4 Including vision

The ultimate goal of our approach is the realization of
the scenario of emerging robot behavior described in Sec.
1. We are currently doing experiments with a Pioneer
robot including the camera into the SM loop. Our vector
of sensors values x now is written as

x = (vl, vr, s1, . . . sK)

where vl, vr are the velocities of the wheels measured by
the wheel sensors and s = (s1, . . . sK) is the vector of the
pixel values of the camera where si ∈ R3 in the case of
a color camera. There is a lot of additional problems of
a more technical nature which are mainly based on the
longer delay times in the SM loop due the time regimes
of the underlying Saphira system and the video grabber.
Another point is the complex input space of the video
image.



Figure 5: Typical situation of the Pioneer robot in visual

contact with a ball. The controller initially is in the tabula

rasa condition. Over a time of several minutes the robot

gradually begins to move, to develop a sensorial contact and

later on to react sensitive to the movements of the ball. In

this initial phase the ball is suspended. After some time the

robot is also able to follow the freely moving ball.

4.1 Preprocessing steps

So in order to simplify matters a little we do some pre-
processing of the images. One is the the classification
of each pixel if it has the color of the ball or not. This
binary image is then scaled down to a 32x32 gray-valued
image (si ∈ R) which is fed directly into neuron 2. The
other preprocessing step is the calculation of a velocity
vector of the ball in this down-scaled image. We use here
the relative changes of pixels in two consecutive images.
We consider the change in pixel value as a kind of charge
and calculate the dipole moment of this charge distri-
bution. This dipole moment can be considered as the
velocity vector g ∈ R2 of the ball in the image plane of
the camera where g1(g2) is the vertical (horizontal) com-
ponent of this velocity. One advantage of this method,
against simply using the movement of the center of grav-
ity, is that if the ball leaves the field of view the moment
becomes immediately zero even if there are still parts of
the ball visible.

4.2 The controller

The controller consists of two neurons, neuron 1 con-
trolling the forward velocity in the SM loop closed over
the wheel sensors of the robot as described above. Ad-
ditionally to the input v into this neuron we add the
component g1 of g which contains the information about
the difference between the velocity of the ball and that
of the robot in the direction of the forward velocity of
the robot. Neuron 2 controls the turn velocity of the
robot and sees the vector s of raw pixel values.

4.3 Learning

Our model assumption is that the velocity g2 does not
change over a time τ . Hence the prediction error is given
by

Eτ (t) = (g2 (t+ τ)− g2 (t))2 (17)

Depending on g2 (t) and τ the error is getting large if
the ball will leave in the time τ the image plane of the
camera. In order to get the gradient of this error as a
function of the turn velocity we might again modulate
the output of the neuron by some periodic oscillation.
This has proven not very feasible in the present case
since the motions of the ball are too fast as compared
to the period of the oscillations so that the conditions
for the applicability the learning rule eq. 7 are not well
fulfilled.

We therefore use a different trick for the evaluation of
the gradient. We observe that g2 is (essentially) propor-
tional to the turn velocity y of the robot, i.e. we put
g2 = µw and learn µ as

∆µ = −η (µw − g2)w

with the ball at rest. In this way any trial movement of
the ball can be translated into a virtual motion of the
robot. In a coordinate system which is rotating with the
robot the ball will appear as moving more or less ran-
domly. The idea then is to use these fluctuations of the
ball velocity and translate them into virtual perturba-
tions of the turn velocity. This virtual modulation of w
at time t is obtained as

s (t) = g2 − µw (18)

and the gradient of Eτ is

∂

∂w
Eτ '

∫ t

t−T
s (t)Eτ (t)

with T chosen empirically.
Putting the pieces together we have the following set-

ting. The controller consists of the two neurons

y1 = tanh (c11vin +H)
(19)

y2 = tanh

(
K∑
i=1

c2isi

)
where vin = (αg1 + v) and v = (vl + vr) /2 as seen by
the wheel sensors. The output y1 (y2) is the new target
value for the forward (turn) velocity. The learning rule
is

∆c11 = ε1ξ
2
(
c11 − 2y1c

2
11vin

)
∆H = −ε1ξ

2c211y1 (20)

∆c2i = ε2 (g2 − µw)Eτ (t)
(
1− y2

2

)
si



where ξ = (v − y1)
(
c211

(
2.0− y2

1

))−1 the 2.0 was in-
troduced for numerical reasons and the update is sent
through a squashing function since vin can jump over
orders of magnitudes.

4.4 Results

We have used the above learning rules for experiments
with the Pioneer robot. The first result is that the con-
trol of the forward velocity, cf. eq. 20 works in the same
way as with the Khepera robot. In fact the Pioneer
executes an explorative behavior changing its velocity
in a more or less regular pattern. In particular when
encountering an obstacle the ensuing slip in the wheel
velocities leads to a reversal of the velocity in a way that
an uninformed observer would say that the robot feels
the obstacles by the reaction of its wheels. We are not
aware of comparable work in the literature.

We did a few experiments with the aim of camera
guided ball control. However the results are not so good
as with the Khepera. The problem is to obtain the gra-
dient of the error introdued in eq. 17. With the Khepera
this was done based on the response method by modulat-
ing the turn velocity. This is not feasible in the Pioneer
case because of the larger delay times in realizing such
oscillations as compared to the typical velocities of the
ball. We presented the trick above of finding a virtual os-
cillation but this is a rather crude approach which works
only if the statisitcs of the ball movements is appropriate
which is to be guaranteed by the trainer but difficult to
realize. However it is to be noted that this is a techni-
cality of getting the gradient of the error and not a flaw
of the general approach. One route of improvement is to
learn the error as a function of the controller parameters
and then to find the gradient by numerical derivation.

5 Conclusions

The main purpose of the paper was to show that gen-
eral domain-invariant principles as formulated in the in-
troduction can be used to derive detailed learning rules
and that an autonomous robot using these rules devel-
ops domain related behaviors in a self-organized way.
We understand self-organization in the strict sense as
it is used in physics and was formulated in the theory
of synergetic in a rather systematic way (Haken, 1987).
The main point in these theories is that of modes be-
coming unstable leading to noise induced spontaneous
symmetry breaking with the emergence of new patterns
in space and time. We have seen in the present paper
that the time loop error used as a learning signal pro-
vides a self-amplification mechanism which leads to the
creation of new behavior modes.

The present paper has demonstrated the effects of
some of the driving mechanisms to the self-organized
adaptation and hence to the emergence of behavior. The

aim of future work is to put the pieces together in one
common picture which hopefully will show the realiza-
tion of the ”dream” formulated in the introduction of
a robot which begins to develop activities and to take
interest in the world since it has to concert its emerging
activities with keeping the sensor values predictable.

We hope that the present results also do have some
practical applications. On the one hand the self-
organized learning algorithms may help as a domain-
invariant generator for basic behaviors in the frame of
behavior based robotics (Arkin, 1998) and of evolution-
ary robotics (Nolfi and Floreano, 2000). On the other
hand they may help as auxiliary learning signals in re-
inforcement learning scenarios since our learning algo-
rithms are generating domain specific learning signals in
physical domains.

A last remark concerns the contingency of the behav-
iors generated by our bootstrap definitions. It is a fur-
ther interesting outcome of our investigations that this
contingency can be guided into desired directions by di-
rect interaction with the robot providing it with the feed-
back so that one of the potential behaviors is amplified.



6 Acknowledgment

The work is supported by a grant by the Deutsche
Forschungsgemeinschaft in the SPP -1125 (RoboCup).

References

Arkin, R. C. (1998). Behavior Based Robotics. MIT
Press.

Cannon, W. B. (1939). The wisdom of the body. Norton,
New York.

Der, R. (2001). Self-organized acquisition of situated
behavior. Theory Biosci., 120:179 – 187.

Der, R., Steinmetz, U., and Pasemann, F. (1999).
Homeokinesis - a new principle to back up evolu-
tion with learning. In Computational Intelligence
for Modelling, Control, and Automation, volume 55
of Concurrent Systems Engineering Series, pages 43
– 47. IOS Press.

Haken, H. (1987). Advanced Synergetics. Springer,
Berlin.

Nolfi, S. and Floreano, D. (2000). Evolutionary
Robotics. MIT.

Pfeiffer, R. and Scheier, C. (1999). Understanding In-
telligence. MIT Press.

R.Ashby, W. (1954). Design for a Brain. Chapman and
Hill Ltd., London.


	1 Introduction
	2 Staying predictable
	3 Emerging drives from minimizing the time-loop error 
	3.1 The time loop 
	3.2 Illustrating the time-loop error
	3.3 The basic sensor-motor loop 
	3.4 Experiments

	4 Including vision 
	4.1 Preprocessing steps 
	4.2 The controller 
	4.3 Learning
	4.4 Results 

	5 Conclusions
	6 Acknowledgment

