
Detection of Total Rotations on 2D-Vector Fields with
Geometric Correlation

Roxana Bujack*, Gerik Scheuermann* and Eckhard Hitzer†

*Universität Leipzig, Institut für Informatik, Johannisgasse 26, 04103 Leipzig, Germany
†University of Fukui, Department of Applied Physics, 3-9-1 Bunkyo, Fukui 910-8507, Japan

Abstract. Correlation is a common technique for the detection of shifts. Its generalization to the multidimensional geometric
correlation in Clifford algebras additionally contains information with respect to rotational misalignment. It has been proven
a useful tool for the registration of vector fields that differ by an outer rotation.

In this paper we proof that applying the geometric correlation iteratively has the potential to detect the total rotational
misalignment for linear two-dimensional vector fields. We further analyze its effect on general analytic vector fields and show
how the rotation can be calculated from their power series expansions.
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1. INTRODUCTION

In signal processing correlation is one of the elementary
techniques to measure the similarity of two input signals.
It can be imagined like sliding one signal across the other
and multiplying both at every shifted location. The point
of registration is the very position, where the normal-
ized cross correlation function takes its maximum, be-
cause intuitively explained there the integral is built over
squared and therefore purely positive values. For a de-
tailed proof compare [11]. Correlation is very robust and
can be calculated fast using the fast Fourier transform.
Therefore it is widely used for signal analysis, image
registration, pattern recognition, and feature extraction
[1, 13].

For quite some time the generalization of this method
to multivariate data has only been parallel processing of
the single channel technique. Multivectors, the elements
of geometric or Clifford algebras C`p,q [4, 7] have a nat-
ural geometric interpretation. So the analysis of multidi-
mensional signals expressed as multivector valued func-
tions is a very reasonable approach.

Scheuermann made use of Clifford algebras for vector
field analysis in [12]. Together with Ebling [5, 6] they ap-
plied geometric convolution and correlation to develop a
pattern matching algorithm. They were able to acceler-
ate it by means of a Clifford Fourier transform and the
respective convolution theorem.

At about the same time Moxey, Ell, and Sangwine
[9, 10] used the geometric properties of quaternions to
represent color images, interpreted as vector fields. They
introduced a generalized hypercomplex correlation for
quaternion valued functions. Moxey et. al. state in [10],
that the hypercomplex correlation of translated and outer
rotated images will have its maximum peak at the posi-

tion of the shift and that the correlation at this point also
contains information about the outer rotation. From this
they were able to approximately correct rotational distor-
tions in color space.

In [2] we extended their work and ideas analyzing
vector fields with values in the Clifford algebra C`3,0 and
their copies produced from outer rotations. We proved
that iterative application of the rotation encoded in the
cross correlation at the point of registration completely
eliminates the outer misalignment of the vector fields.

In this paper we go one step further and analyze if iter-
ation can not only lead to the detection of outer rotations
but also to the detection of total rotations of vector fields.

The term rotational misalignment with respect to mul-
tivector fields is ambiguous. We distinguish three cases,
visualized for a simple example in Figure 1. Let Rα be
an operator, that describes a mathematically positive ro-
tation by the angle α .

Two multivector fields A(x),B(x) : Rm→C`p,q differ
by an inner rotation if they suffice

A(x) = B(R−α(x)). (1.1)

It can be interpreted like the starting position of every
vector is rotated by α . Then the old vector is reattached at
the new position, but it still points into the old direction.
The inner rotation is suitable to describe the rotation of
a color image. The color is represented as a vector and
does not change when the picture is turned.

Another kind of misalignment we want to mention is
the outer rotation

A(x) = Rα(B(x)). (1.2)

Here every vector on the vector field A is the rotated
copy of every vector in the vector field B. The vectors



FIGURE 1. From left to right: a vector field, its copy from inner rotation, outer rotation, total rotation.

are rotated independently from their positions. This kind
of rotation appears for example in color images, when
the color space is turned but the picture is not moved,
compare [10].

The third and in this paper most relevant kind is the
total rotation

A(x) = Rα(B(R−α(x))). (1.3)

The positions and the multivectors are stiffly connected
during this kind of rotation. If domain and codomain are
of equal dimension it can be interpreted as a coordinate
transform, as looking at the multivector field from an-
other point of view. A total rotation is the most intuitive
of the misalignments, it occurs in physical vector fields
like for example fluid mechanics, and aerodynamics.

With respect to the definition of the correlation there
are different formulae in current literature, [6, 10]. We
prefer the following one because it satisfies a geomet-
ric generalization of the Wiener-Khinchin theorem and
because it coincides with the definition of the standard
cross-correlation in the special case of complex func-
tions.

Definition 1.1. The geometric cross correlation of two
multivector valued functions A(x),B(x) : Rm→C`p,q is
a multivector valued function defined by

(A?B)(x) :=
∫
Rm

A(y)B(y+x)dmy, (1.4)

where A(y) =
n
∑

k=0
(−1)

1
2 k(k−1)〈A(y)〉k is the reversion.

Remark 1.2. To simplify notation we will make some
conventions. Without loss of generality we assume the
integrable vector fields to be normalized with respect to
the L2-norm. That way the normalized cross correlation
coincides with its unnormalized counterpart. We will
also only analyze the correlation at the origin. Since our
vector fields are not shifted, the origin of coordinates is
the place of the translational registration. If the vector
fields should also differ by an inner shift, our methods
can be applied analogously to this location.

2. MOTIVATION

The fundamental idea for this paper stems from the cor-
relation of a two-dimensional vector field and its copy
from outer rotation

(Rα(v)?v)(0) =
∫
R2

Rα(v(x))v(x)d2x

=
∫
R2

e−αe12 v(x)v(x)d2x

= ||v(x)||2L2e−αe12 .

(2.1)

Since ||v(x)||2L2 ∈R the alignment can be restored by ro-
tating back Rα(v) by the angle encoded in the argument.

We want to develop this idea further to analyze total
rotations. In C`2,0 they take the shape

u(x) = Rα(v(R−α(x))) = e−αe12 v(eαe12 x), (2.2)

so it is not possible to predict the rotation that is encoded
in the geometric correlation without knowing the shape
of v.

Vector fields that depend only on the magnitude of x
are invariant with respect to inner rotations. It is easy to
see that in this case the correlation takes the same shape
as in (2.1) and that the misalignment can be corrected
applying a rotation by the angle in the argument, too.
But in general the vector fields and the rotor can not be
separated from the integral of the correlation

(u?v)(0) =
∫
Rm

Rα(v(x))v(x)dmx

= e−αe12

∫
Rm

v(eαe12 x)v(x)dmx.
(2.3)

We dealt with a similar problem in [2] when we treated
the three-dimensional outer rotation. For this case we
could prove that the encoded rotation is at least a fair
approximation to the one sought after and that iterative
application leads to the detection of the misalignment
sought after.

Trying to adapt this idea to total rotations we discov-
ered that this result does not apply to all two-dimensional
vector fields, compare the following counterexample.



FIGURE 2. Left: vector field from the counter example.
Right: mathematically positively rotated copy by π

4 . At each
position the same rotor, depicted as black arrow, contributes to
the correlation.

Example. Let v : B1(0)→ R2 be the vector field from
Figure 2 vanishing outside the unit circle take the shape

v(r,ϕ) =e1e2ϕe12 (2.4)

expressed in polar coordinates. Then its rotated copy
suffices

u(r,ϕ) =e1e(2ϕ−α)e12 (2.5)

inside the unit circle and the correlation of the two is

(u(x)?v(x))(0) =
∫

B1(0)
e1e(2ϕ−α)e12 e1e2ϕe12 r dr dϕ

=
∫

B1(0)
e1e1e−(2ϕ−α)e12 e2ϕe12r dr dϕ

=
∫

B1(0)
eαe12r dr dϕ

=πeαe12 .
(2.6)

If we want to correct the misalignment by rotating back
with its inverse like in (2.1) we would rotate in the
completely wrong direction and double the misalignment
with each step, because no matter how the rotational
misalignment was, we always detect its negative. So
imagine starting the iterative algorithm from [2] with
α = 2π

3 . It would become periodic 2π

3 , 4π

3 , 8π

3 = 2π

3 , ...
and not converge at all.

But the idea applies to all linear fields. We will show
in the next sections, that iteratively rotating back with
the inverse of the normalized geometric correlation will
detect the correct misalignment of any two-dimensional
linear vector field and its copy from total rotation.

3. LINEAR FIELDS AND ITERATIVE
CORRELATION

Assume a linear vector field in two dimensions

v(x) = (a11x1 +a12x2)e1 +(a21x1 +a22x2)e2 (3.1)

with real coefficients. Before analyzing the general linear
case, let us look the examples in Figure 3, the saddles

a(x) =x1e1− x2e2,

b(x) =x2e1 + x1e2,
(3.2)

the source
c(x) =x1e1 + x2e2, (3.3)

and the vortex

d(x) =− x2e1 + x1e2. (3.4)

Remark 3.1. Instead of using the coefficients the vector
fields from Figure 3 can analogously be expressed by
basic transformations

c(x) =x,
a(x) =e1xe1,

d(x) =xe12,

b(x) =e1xe2.

(3.5)

The first three of them are the identity, a reflection at
the e1-axis and a rotation about π

2 . The last one b(x) =
e1xe2 = e1xe1e12 as a reflection at the e1-axis followed
by a rotation about π

2 . From this description we immedi-
ately get

a(x)⊥ b(x),
c(x)⊥ d(x),

(3.6)

and

a(x)2 = b(x)2 = c(x)2 = d(x)2 = x2. (3.7)

Lemma 3.2. Any linear vector field can be expressed
as a linear combination of the four examples from the
preceding section. That means for

a(x) =e1xe1,

b(x) =e1xe2,

c(x) =x,
d(x) =xe12.

(3.8)

there are a,b,c,d ∈ R, such that

v(x) = aa(x)+bb(x)+ cc(x)+dd(x). (3.9)

Proof. Direct calculation.

Lemma 3.3. Let the part in Lemma 3.2 of the two-
dimensional linear vector field v(x) consisting of the two
saddles be denoted by

v1(x) = aa(x)+bb(x) = e1x(ae1 +be2) (3.10)

and the part consisting of the vortex and the source by

v2(x) = cc(x)+dd(x) = xe1(ce1 +de2). (3.11)



FIGURE 3. From left to right: saddles a(x), b(x), source c(x), and vortex d(x) visualized with hedgehogs and LIC [3].

Then their totally rotated copies take the shapes

Rα(v1(R−α(x))) =e−2αe12 v1(x),
Rα(v2(R−α(x))) =v2(x).

(3.12)

Proof. Application of the total rotation leads to

Rα(v1(R−α(x))) = e−αe12 e1eαe12 x(ae1 +be2)

= e−2αe12 v1(x),
Rα(v2(R−α(x))) = e−αe12 eαe12 xe1(ce1 +de2)

= v2(x).

(3.13)

Lemma 3.4. Let v1(x) = e1x(ae1 + be2),v2(x) =
xe1(ce1 + de2) be the fields from Lemma 3.3. The prod-
uct of any two-dimensional linear vector field v(x) and
its totally rotated copy u(x) = Rα(v(R−α(x))) takes the
shape

u(x)v(x) =e−2αe12 v1(x)2 + e−2αe12v1(x)v2(x)

+v2(x)v1(x)+v2(x)2 (3.14)

with

v1(x)2 =(a2 +b2)(x2
1 + x2

2),

v1(x)v2(x) =(a−be12)(c−de12)(x2
1− x2

2 +2x1x2e12),

v2(x)v1(x) =(a+be12)(c+de12)(x2
1− x2

2−2x1x2e12),

v2(x)2 =(c2 +d2)(x2
1 + x2

2).
(3.15)

Proof. We know from Lemmata 3.2 and 3.3 that the vec-
tor field can be split into v(x) = v1(x)+ v2(x). Because
of the linearity of the rotation and Lemma 3.3 we get

Rα(v(R−α(x))) =e−2αe12 v1(x)+v2(x) (3.16)

and therefore the product suffices (3.14). The assertions
about the exact shape of the summands follow from
straight calculation.

The argument ϕ of the geometric product (3.14) is not
generally a good approximation to−α . But we will show
that it is always in [0,−2α] if we take the integral of the
product over an area A symmetric with respect to both
coordinate axes, like a square or a circle. This integral is
equivalent to the correlation at the origin, if we assume
the vector fields to vanish outside this area.

Theorem 3.5. Let the two-dimensional vector field v(x)
be linear within and zero outside of an area A symmet-
ric with respect to both coordinate axes. The correla-
tion at the origin with its totally rotated copy u(x) =
Rα(v(R−α(x))) satisfies

(u?v)(0) = e−2αe12 ||v1(x)||2L2(A)+ ||v2(x)||2L2(A)
(3.17)

with v1(x) = (a− be12)(−e2xe2),v2(x) = (c + de12)x
from Lemma 3.3.

Proof. We already know from Lemma 3.4 that the prod-
uct of the vector field and its rotated copy takes the form
(3.14). Taking into account (3.15) and the fact, that the
integral over the symmetric domain A over x2

1−x2
2 is zero

as well as the integral over x1x2, we get∫
A

v1(x)v2(x)d2x =0,∫
A

v2(x)v1(x)d2 = 0.
(3.18)

That is why the integral over the product reduces to∫
A

u(x)v(x)d2x =
∫

A
e−2αe12 v1(x)2 +v2(x)v1(x)

+ e−2αe12 v1(x)v2(x)+v2(x)2 d2x

=e−2αe12 ||v1(x)||2L2(A)+ ||v2(x)||2L2(A).

(3.19)

Remark 3.6. Please note that an integral over an unsym-
metric area does in general not lead to a result without
the mixed terms v1(x)v2(x).



Lemma 3.7. Let the two-dimensional vector field v(x)
be linear within and zero outside of an area A symmetric
with respect to both coordinate axes. The angle ϕ which
is the argument of the correlation at the origin with its
totally rotated copy u(x) = Rα(v(R−α(x))) satisfies

0≥ ϕ ≥−2α, for α ≥ 0,
0≤ ϕ ≤−2α, else.

(3.20)

The proof of Lemma 3.7 is very technical. Figure 4
provides a more fundamental insight of its assertion by
exploiting the homomorphism of the rotors in C`2,0 and
the complex numbers.

||v1||2

||v2||2

α

−2α
ϕ

e−2αe12 ||v1||2 e−2αe12 ||v1||2 + ||v2||2
〈·〉2

〈·〉0

e12

1

FIGURE 4. Lemma 3.7 visualized like the complex plane.
Vertical axis: bivector part, horizontal axis: scalarpart.

Proof. The argument satisfies

ϕ =arg(
∫
[−l,l]2

Rα(v(R−α(x)))v(x)d2x)

=arg(e−2αe12 ||v1(x)||2 + ||v2(x)||2)
=atan2(−sin(2α)||v1(x)||2,

cos(2α)||v1(x)||2 + ||v2(x)||2)

(3.21)

For ||v1(x)||2 = 0 and ||v2(x)||2 = 0 the statement is
trivially true, because then ϕ = 0 or ϕ = −2α . So let
||v1(x)||2, ||v2(x)||2 > 0. Now we have to make a case
differentiation.

1. The assumptions cos(2α)||v1(x)||2 + ||v2(x)||2 > 0
and −sin(2α)||v1(x)||2 > 0 lead to

ϕ =arctan
−sin(2α)||v1(x)||2

cos(2α)||v1(x)||2 + ||v2(x)||2
(3.22)

so ϕ is positive. If we leave out ||v2(x)||2 the
denominator gets smaller. If the denominator
cos(2α)||v1(x)||2 > 0 remains positive the positive
fraction gets larger and we have

ϕ ≤arctan
−sin(2α)||v1(x)||2
cos(2α)||v1(x)||2

=−2α, (3.23)

with positive −2α and therefore negative α .
If the denominator cos(2α)||v1(x)||2 ≤ 0 be-
comes negative we have −2α ∈ [π

2 ,π], because of
−sin(2α)||v1(x)||2 > 0, so ϕ ∈ (−π

2 ,
π

2 )≤−2α .
2. The assumptions cos(2α)||v1(x)||2 + ||v2(x)||2 > 0

and −sin(2α)||v1(x)||2 < 0 lead to

ϕ =arctan
−sin(2α)||v1(x)||2

cos(2α)||v1(x)||2 + ||v2(x)||2
(3.24)

so ϕ is negative. If we leave out ||v2(x)||2 the
denominator gets smaller. If the denominator
cos(2α)||v1(x)||2 > 0 remains positive the negative
fraction gets smaller and we have

ϕ ≥arctan
−sin(2α)||v1(x)||2
cos(2α)||v1(x)||2

=−2α, (3.25)

with negative −2α and therefore positive α . If
the denominator cos(2α)||v1(x)||2 ≤ 0 becomes
negative we have −2α ∈ [−π,−π

2 ], because of
−sin(2α)||v1(x)||2 < 0, so ϕ ∈ (−π

2 ,
π

2 )≥−2α .
3. The assumptions cos(2α)||v1(x)||2 + ||v2(x)||2 < 0

and −sin(2α)||v1(x)||2 > 0 lead to

ϕ =arctan
−sin(2α)||v1(x)||2

cos(2α)||v1(x)||2 + ||v2(x)||2
+π

(3.26)
so ϕ is positive. If we leave out ||v2(x)||2 the mag-
nitude of the denominator gets larger so the magni-
tude of the fraction gets smaller. Since the fraction
is negative and the arctangent is monotonic increas-
ing a lower magnitude increases the whole right side
and we have

ϕ ≤arctan
−sin(2α)

cos(2α)
+π =−2α. (3.27)

Because the numerator is positive and the denomi-
nator is negative this equals −2α , which is positive
and therefore α is negative.

4. The assumptions cos(2α)||v1(x)||2 + ||v2(x)||2 < 0
and −sin(2α)||v1(x)||2 < 0 lead to

ϕ =arctan
−sin(2α)||v1(x)||2

cos(2α)||v1(x)||2 + ||v2(x)||2
−π

(3.28)



so ϕ is negative. If we leave out ||v2(x)||2 the mag-
nitude of the denominator gets larger so the magni-
tude of the fraction decreases. It is positive so the
fraction gets smaller, so does the arctangent and the
whole right side and we have

ϕ ≥arctan
−sin(2α)

cos(2α)
−π =−2α. (3.29)

Because the numerator and the denominator are
negative this equals −2α , which is negative and
therefore α is positive.

Since we covered all possible configurations, we see that
α and ϕ always have different signs. The right estimation
for positive α is a result of the even cases and for negative
α of the odd ones.

Theorem 3.8. Let the two-dimensional vector field v(x)
be linear within and zero outside of an area A symmetric
with respect to both coordinate axes and ϕ : (−π

2 ,
π

2 )→
(−π

2 ,
π

2 ) be the function defined by the rule

ϕ(α) = arg((Rα(v(R−α))?v)(0). (3.30)

Then the series α̃0 = 0, α̃n+1 = α̃n − ϕ(α − α̃n) con-
verges to α for all α ∈ (−π

2 ,
π

2 ), if ||v1(x)||2 6= 0 6=
||v2(x)||2.

Proof. To prove the theorem we show that the series
αn = α − α̃n of the remaining misalignment converges
to zero. It suffices

α0 =α− α̃0 = α,

αn+1 =α− α̃n+1 = α− α̃n +ϕ(α− α̃n) = αn +ϕ(αn).
(3.31)

Lemma 3.7 shows that the series αn decreases with re-
spect to its magnitude, because for αn ∈ (−π

2 ,0) we have
0≤ ϕ(αn)≤−2αn and therefore

αn = αn +0≤ αn +ϕ(αn) = αn+1,

αn+1 = αn +ϕ(αn)≤ αn−2αn =−αn
(3.32)

and for αn ∈ (0, π

2 ) we have 0 ≥ ϕ(αn) ≥ −2αn and
therefore

αn = αn +0≥ αn +ϕ(αn) = αn+1,

αn+1 = αn +ϕ(αn)≥ αn−2αn =−αn.
(3.33)

Since the series of magnitudes is monotonically decreas-
ing and bounded from below by zero it is convergent.

Let the limit of the sequence of magnitudes be a =
limn→∞ |αn| then using the definition of the series and
applying the limit leads to

lim
n→∞

(|αn+1|) = lim
n→∞

(|αn +ϕ(αn)|). (3.34)

The modulus function and ϕ(αn) are continuous in αn ∈
(−π

2 ,
π

2 ). That allows us to swap the limit and the func-
tions and write

a =| lim
n→∞

(αn)+ lim
n→∞

(ϕ(αn))|
=|a+ϕ(a)|.

(3.35)

We apply a case differentiation to the previous equation.

1. For a+ϕ(a)≥ 0 it is equivalent to

a =a+ϕ(a)⇔ ϕ(a) = 0. (3.36)

Since

ϕ(α) =atan2(−sin(2α)||v1(x)||2,
cos(2α)||v1(x)||2 + ||v2(x)||2)

(3.37)

the claim ϕ(a) = 0 is true for cos(2a)||v1(x)||2 +
||v2(x)||2 > 0,−sin(2a)||v1(x)||2 = 0 which is ful-
filled either for ||v1(x)||2 = 0 and arbitrary a or for
||v1(x)||2 > 0 and a = 0.

2. a+ϕ(a)< 0 leads to

a =−a−ϕ(a)⇔ ϕ(a) =−2a, (3.38)

which is only fulfilled for ||v2(x)||2 = 0 and arbi-
trary a.

Combination of the two cases leads to the proposition
a = 0 if ||v1(x)||2 6= 0 6= ||v2(x)||2. Since the sequence
of the magnitudes converges to zero the sequence itself
converges to zero as well.

From Theorem 3.8 we can construct Algorithm 1,
which also converges for ||v1(x)||2 = 0, ||v2(x)||2 = 0,
and any rotational misalignment α . The claim
||v1(x)||2 = 0 means v1(x) = 0 almost everywhere. For a
linear vector field this is equivalent to v1(x) = 0, analo-
gously ||v2(x)||2 = 0⇔ v2(x) = 0. In the case v1(x) = 0
Lemma 3.3 shows that ∀α ∈ (−π

2 ,
π

2 ) : ϕ(α) = 0. An it-
erative algorithm would stop after one step and return the
correct result, because these vector fields are rotational
invariant anyway. In the case v2(x) = 0 Lemma 3.3
shows that ∀α ∈ (−π

2 ,
π

2 ) : ϕ(α) =−2α . The algorithm
would alternate between −2α and zero. That means
if the algorithm takes the value zero in the α variable
after its first iteration the underlying vector field must be
a saddle v(x) = v1(x) and the correct misalignment is
half the calculated ϕ . This exception is handled in Line
11 in Algorithm 1. Because of the symmetry of linear
vector fields the misalignment can always be described
by an angle α ∈ [−π

2 ,
π

2 ]. In the case of α = ±π

2 the
correlation will be real valued, compare Theorem 3.5.
This case can only appear in the first step of the algo-
rithm. It would return the angle zero like in the case



where in deed no rotation is necessary. Therefore we
need to include another exception handling. We suggest
to apply a total rotation by π

4 to the pattern, if the first
step returns α = 0, compare Line 7 in Algorithm 1. The
disadvantage of this treatment is that it might disturb the
alignment in the nice case, when vector field and pattern
incidentally match at the beginning, but will guarantee
the convergence. The last exception to be treated appears
when both α ∈ {−π

2 ,0,
π

2 } and v(x) = v1(x). In this case
α gets the value π

4 from the first exception handling and
will alternate between ±π

4 for the rest of the algorithm.
We fixed this problem in Line 14 in Algorithm 1.

Algorithm 1 Detection of total misalignment of vector
fields
Input: vector field: v(x), rotated pattern: u(x), desired

accuracy: ε > 0,
1: ϕ = π,α = 0, iter = 0,exception = f alse,
2: while ϕ > ε do
3: iter++,
4: Cor = (u(x)?v(x))(0),
5: ϕ = arg(Cor),
6: α = α−ϕ ,
7: if iter = 1 and α = 0 then
8: α =−π/4,ϕ = π/4,
9: exception = true,

10: end if
11: if iter = 2 and not exception and α = 0 then
12: α =−ϕ/2,ϕ = ϕ/2,
13: end if
14: if iter = 2 and exception and ϕ =−π/2 then
15: α =−π/2,ϕ = π/4
16: end if
17: u(x) = e−ϕe12 u(eϕe12 x),
18: end while
Output: misalignment: α , corrected pattern: u(x), iter-

ations needed: iter.

We practically tested Algorithm 1 applying it to con-
tinuous, linear vector fields R2→C`2,0, that vanish out-
side the unit square. The experiments showed that Al-
gorithm 1 converges in all cases, just as the theory sug-
gested.
Remark 3.9. Theorem 3.8 is only theoretically interest-
ing. The calculation of the misalignment of linear fields
u(x) = Rα(v(R−α(x))) is far easier. Because of Lemma
3.3 they suffice

R π
2
(v1(R− π

2
(x))) =−v1(x),

R π
2
(v2(R− π

2
(x))) = v2(x),

(3.39)

which leads to

v1(x) =
1
2
(
v(x)−R π

2
(v(R− π

2
(x)))

)
,

v2(x) =
1
2
(
v(x)+R π

2
(v(R− π

2
(x)))

)
.

(3.40)

Once we know the shape of v1,u1 the angle α can be
detected easily using Lemma 3.3 from

α =− 1
2

arg((u1 ?v1)(0)). (3.41)

4. GEOMETRIC VECTOR FIELD BASIS

In order to treat the total rotation of more general vector
fields, we consider an idea of Liu and Ribeiro [8]. They
made use of the isomorphism of 2D vector fields and
complex functions and the expansion of holomorphic
functions into a power series

v(x)∼ f (z) =
∞

∑
k=0

fkzk (4.1)

with Taylor coefficients fk,∈ C

fk =
f (k)(0)

k!
. (4.2)

Because of the orthogonality of zk the coefficients fk can
alternatively be calculated from correlation

fk =
( f (z)? zk)(0)
(zk ? zk)(0)

. (4.3)

Under total rotation g(x) = Rα( f (R−α(x))) they behave
very nicely satisfying

gk = eαe12(1−k) fk. (4.4)

A great disadvantage of the previous description of the
vector fields as holomorphic functions is that the set of
holomorphic functions is very limited. Even simple vec-
tor fields like the saddle a(x) = x1e1−x2e2 are not holo-
morphic. To solve this problem Scheuermann, [12] sug-
gests to express the vector fields by means of two not in-
dependent complex variables z,z. With this construction
far more fields, namely all analytic fields in x1,x2

v(x1,x2) =
∞

∑
k,l=0

vk,lxk
1xl

2. (4.5)

with vk,l = vk,l1e1 +vk,l2e2 ∈C`2,0,vk,l1,vk,l2 ∈R can be
expressed.

We adapt this idea but make use of the richness of
Clifford algebras. They allow us the expansion of any 2D
analytic field with respect to a geometric basis e1x,xe1
using

x1 = x · e1 =
1
2
(xe1 + e1x),

x2 = x · e2 =
1
2
(xe2 + e2x) =

e12

2
(xe1− e1x).

(4.6)



Theorem 4.1. Every 2D analytic field in x1,x2

v(x) =
∞

∑
k′,l′=0

v′k′,l′x
k′
1 xl′

2 (4.7)

can be expanded into a power series of e1x,xe1

v(x) =
∞

∑
k,l=0

(e1x)k(xe1)
lvkl . (4.8)

and the coefficients are related by

vk,l =
k

∑
m=0

l

∑
n=0

(
1
2
)k+l

(
l−n+m

m

)(
k−m+n

n

)
(−1)k−mek−m+n

12 v′l−n+m,k−m+n.

(4.9)

Proof. We will make use of the commutation properties

(xe1)(e1x) =(e1x)(xe1),

e12(xe1) =(xe1)e12,

e12(e1x) =(e1x)e12,

vk,l(xe1) =(e1x)vk,l ,

vk,l(e1x) =(xe1)vk,l ,

(4.10)

that can be easily checked, further for changing the limits
of addition

∀k < m :
(

k
m

)
= 0,

∀l < n :
(

l
n

)
= 0,

(4.11)

and finally(
l−n+m

m

)
6= 0⇔ l−n+m≥ m⇔ l ≥ n≥ 0,(

k−m+n
n

)
6= 0⇔ k−m+n≥ n⇔ k ≥ m≥ 0.

(4.12)
Then we get

v(x) =
∞

∑
k′,l′=0

xk′
1 xl′

2 v′k′,l′

(4.6)
=

∞

∑
k′,l′=0

(
1
2
(xe1 + e1x))k′(

e12

2
(xe1− e1x))l′v′k′,l′

(4.10)
=

∞

∑
k′,l′ ′=0

(
1
2
)k′+l′ ′

k′

∑
m=0

(
k′

m

)
(xe1)

k′−m(e1x)m

l′

∑
n=0

(
l′

n

)
(xe1)

n(−e1x)l′−nel′
12v′k′,l′

(4.13)

=
∞

∑
k′,l′=0

k′

∑
m=0

l′

∑
n=0

(
1
2
)k′+l′

(
k′

m

)(
l′

n

)
(xe1)

k′−m+n(e1x)m+l′−n(−1)l′−nel′
12v′k′,l′

(4.11)
=

∞

∑
m=0

∞

∑
n=0

∞

∑
k′=0

∞

∑
l′=0

(
1
2
)k′+l′

(
k′

m

)(
l′

n

)
(−1)l′−nel′

12

(xe1)
k′−m+n(e1x)m+l′−nv′k′,l′

k=m+l′−n,
l=k′−m+n

=
∞

∑
m,n=0

∞

∑
k=m−n

∞

∑
l=n−m

(
1
2
)k+l

(
l−n+m

m

)(
k−m+n

n

)
(−1)k−mek−m+n

12 (xe1)
l(e1x)kv′l−n+m,k−m+n

(4.12)
=

∞

∑
k=0

∞

∑
l=0

∞

∑
m,n=0

(
1
2
)k+l

(
l−n+m

m

)(
k−m+n

n

)
(−1)k−mek−m+n

12 (xe1)
l(e1x)kv′l−n+m,k−m+n

=
∞

∑
k,l=0

(e1x)k(xe1)
lvk,l

(4.14)
with

vk,l =
∞

∑
m,n=0

(
1
2
)k+l

(
l−n+m

m

)(
k−m+n

n

)
(−1)k−mek−m+n

12 v′l−n+m,k−m+n

(4.12)
=

k

∑
m=0

l

∑
n=0

(
1
2
)k+l

(
l−n+m

m

)(
k−m+n

n

)
(−1)k−mek−m+n

12 v′l−n+m,k−m+n.

(4.15)

Theorem 4.2. Let u(x) = Rα(v(R−1
α (x))) be the totally

rotated copy of the analytic 2D vector field v and uk,l 6=
0 6= vk,l their coefficients with respect to the expansion in
Theorem 4.1, then their rotational misalignment α can
be calculated ∀l− k 6= 1 from

α =
arg(uk,lvk,l)

l− k−1
. (4.16)

Proof. Under total rotation

u(x) =Rα(v(R−1
α (x)))

=e−αe12
∞

∑
k,l=0

(e1eαe12 x)k(eαe12 xe1)
lvkl

=e−αe12
∞

∑
k,l=0

(e1xe−αe12)k(eαe12 xe1)
lvkl

4.10
=

∞

∑
k,l=0

(e1x)k(e−αe12)k(eαe12)l(xe1)
lvkl

4.10
=

∞

∑
k,l=0

(e1x)k(xe1)
leαe12(l−k−1)vkl

(4.17)



the coefficients interact by

uk,l = eαe12(l−k−1)vk,l (4.18)

so ∀l− k 6= 1 the misalignment can be calculated from

α =
arg(uk,lvk,l)

l− k−1
. (4.19)

5. CORRELATION WITH THE
GEOMETRIC BASIS

In contrast to the complex monomias in z the geometric
basis functions (e1x)k(xe1)

l are not orthogonal. So the
coefficients do in general not coincide with the correla-
tion of a vector field with the basis functions

(v(x)? (e1x)k(xe1)
l)(0)

((e1x)k(xe1)l ? (e1x)k(xe1)l)(0)

gen.
6= vk,l . (5.1)

Still we can work with the correlation in the same way.

Theorem 5.1. Let v(x) be an analytic vector field,
u(x) = Rα(v(R−1

α (x))) its totally rotated copy and for
k, l ∈ N, l− k 6= 1 let ṽk,l := (v(x)? (e1x)k(xe1)

l)(0) and
ũk,l := (u(x)?(e1x)k(xe1)

l)(0) differ from zero. Then the
misalignment α can be calculated from

α =
arg(ũk,l ṽk,l)

l− k−1
. (5.2)

Proof. We look at

ṽk,l =(v(x)? (e1x)k(xe1)
l)(0)

=
∫
R2

∞

∑
k′,l′=0

(e1x)k′(xe1)l′vk′,l′(e1x)k(xe1)
l dx

=
∫
R2

∞

∑
k′,l′=0

(e1x)k′(xe1)
l′vk′,l′(e1x)k(xe1)

l dx

=
∫
R2

∞

∑
k′,l′=0

vk′,l′(xe1)
k′(e1x)l′(e1x)k(xe1)

l dx

=
∞

∑
k′,l′=0

vk′,l′

∫
R2
(e1x)k+l′(xe1)

l+k′ dx

(5.3)

and use the polar representation

e1x =|x|e∠(e1,x)e12 = reϕe12 ,

xe1 =|x|e∠(x,e1)e12 = re−ϕe12 ,
(5.4)

to show∫
R2
(e1x)k+l′(xe1)

l+k′ dx

=
∫

∞

0

∫ 2π

0
(reϕe12)k+l′(re−ϕe12)l+k′r dϕ dr

=
∫

∞

0
rk+k′+l+l′+1 dr

∫ 2π

0
eiϕ((k+l′)−(l+k′)) dϕ

=2π

∫
∞

0
rk+l′+l+k′+1 dr δk+l′−l−k′

(5.5)

To be correct a limit to infinity and a normalization
would have to be added, but to keep things short we
will assume that the remaining integrals are bounded.
Application to (5.3) leads to

ṽk,l =
∞

∑
k′,l′=0

vk′,l′2π

∫
∞

0
rk+l′+l+k′+1 dr δk+l′−l−k′

=
∞

∑
l′=0

2π

∫
∞

0
r2(k+l′)r dr vk−l+l′,l′

=
∞

∑
l′=0
||xk+l′ ||2L2vk−l+l′,l′

j=l′−l
=

∞

∑
j=−l
||xk+l′ ||2L2vk+ j,l+ j.

(5.6)

Taking into account uk,l = eαe12(k−l−1)vk,l we get

ũk,l =
∞

∑
j=−l
||xk+l+ j||2L2ul+ j,k+ j

=
∞

∑
j=−l
||xk+l+ j||2L2eαe12((l+ j)−(k+ j)−1)vl+ j,k+ j

=eαe12(l−k−1)
∞

∑
j=−l
||xk+l+ j||2L2vl+ j,k+ j

=eαe12(l−k−1)ṽk,l ,
(5.7)

what leads to the assertion.

Remark 5.2. An orthogonal basis would be more effi-
cient. But since we plan on using only very few of the
monomials, the redundancy can be neglected.
Example. The saddle a(x) from the linear examples has
the geometric representation

a(x) = e1xe1, (5.8)

that means all new geometric coefficients ak,l vanish
except for

a1,0 = e1. (5.9)

The coefficients in the new geometric representation of
its rotated copy u(x) = Rα(a(R−1

α (x))) suffice

uk,l = eαe12(l−k−1)ak,l , (5.10)



therefore

uk,l =

{
eαe12(0−1−1)e1, if k = 1, l = 0
0, else

(5.11)

and we can calculate the misalignment from

α =
arg(u1,0a1,0)

−2
, (5.12)

compare Theorem 4.2 The correlation of the saddle with
e1x yields

ã1,0 =(a(x)? e1x)(0)

=
∫
R2

e1xe1e1x dx

=e1

∫
R2

x2 dx

=e1||x||2L2

(5.13)

and since its rotated copy has the shape

u(x) =Rα(a(R−1
α (x)))

=e−αe12e1eαe12 xe1

=e−2αe12 e1xe1

(5.14)

so the correlation coefficient ũ1,0 suffices

ũ1,0 =(u(x)? e1x)(0)

=
∫
R2

e−2αe12 e1xe1e1x dx

=e−2αe12 e1||x||2L2

(5.15)

and we can also calculate the misalignment from

α =
arg(ũ1,0ã1,0)

−2
, (5.16)

compare Theorem 5.1, what coincides with Remark 3.9.

6. CONCLUSIONS AND OUTLOOK

The geometric cross correlation of two vector fields is
scalar and bivector valued. In Theorem 3.8 we learned
that iterative application of the encoded rotation com-
pletely erases the misalignment of the rotationally mis-
aligned vector fields, if ||v1(x)|| 6= 0 6= ||v2(x)||. These
exceptions could also be treated in Algorithm 1. We im-
plemented it and experimentally confirmed the theoretic
results.

For the treatment of a more general class of vector
fields we suggested the expansion with respect to the ge-
ometric basis. We showed, that the rotational misalign-
ment can be detected from geometric correlation with
the functions of the geometric basis for any analytic two-
dimensional vector field.

Currently we analyze the application of this approach
to total rotations of three-dimensional vector fields and
look for orthogonal bases, that also have pleasant prop-
erties with respect to total rotation.
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