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Abstract

The behavior of vector fields under translation, rotation and scaling differs with
respect to the underlying application. Moment invariants that are customized to
the specific problem can be constructed by means of normalization.

In this paper, we calculate general TRS (translation, rotation, and scaling) mo-
ment invariants for two-dimensional vector fields. As an example, we show explicitly
how to customize the result for the detection of flow field patterns.
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1 Introduction

Moment invariants are one of the fundamental techniques to describe and
compare real-valued objects because they are robust and easy to use. They
are a number of values representing a function that do not change under
certain transformations. Their invariance property allows to compare objects
in one single step instead of having to compare every possible transformed
version of it.

Two-dimensional invariants with respect to translation, rotation, and scaling
(TRS) were introduced to the pattern recognition community by Hu [1]. The
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use of complex moments [2,3] simplified the construction of rotation invariants
because of the easy way to describe rotations by means of complex exponen-
tials. In the last decade, Flusser et al. [4–6] structured the theory of complex
moment invariants into a clear framework. That paved the way for a general-
ization to vector-valued data. In [7], a comprehensive treatment of their work
can be found.

Recently, Schlemmer et al. [8,9] applied their results to flow fields. They con-
structed a basis of flow field moment invariants, developed an algorithm that
calculates them efficiently, and successfully used it to detect features in real-
world data.

In contrast to the use of an independent bases [4,9], there is a different ap-
proach for the construction of moment invariants, called normalization [1,10,7].
First, the function is brought into a standard position by setting certain mo-
ments to given values. Then, all the remaining moments are used as the dis-
criminating invariants. The transformation of the first step can take various
forms even in the case where it is only the combination of translation, rotation,
and scaling.

We will show how invariants with respect to all of these forms can be con-
structed by means of normalization. As an example, we will calculate the set
of moment invariants that are customized to the problem of finding patterns
in flow fields.

For a function f : R2 → R and p, q ∈ N, the moments mp,q are defined by

mp,q =
∫
R2
xpyqf(x, y) dx dy. (1)

For the analysis of functions over the plane, we can make use of the isomor-
phism between the Euclidean and the complex plane [11–13], interpret them
as functions

f ′(x1, x2) = f(x1 + ix2) = f(z) : C→ R, (2)

and use the complex moments cp,q. For f : C→ R, they are defined by

cp,q =
∫
C
zpzqf(z) dz. (3)

Analogously, two-dimensional vector fields

v(x) = v1(x1, x2)e1 + v2(x1, x2)e2 : R2 → R2, (4)

with v1, v2 : R2 → R, can be interpreted as complex functions
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f(z) = f(x1 + ix2) = f ′(x1, x2) = v1(x1, x2) + iv2(x1, x2) : C→ C. (5)

For f : C → C, the definition of complex moments (3) can easily be general-
ized. We will work with complex functions during the calculations and keep
in mind that the results are also valid for vector fields.

In order to customize the results to practical applications, we assume the
functions to vanish outside an area A ⊆ C with characteristic function

χA(z) =

1, if z ∈ A,
0, else.

(6)

Although the functions with infinite support are easier to deal with, they will
not appear very often in real-world applications. For the sake of completeness,
the case A = C is not excluded.

2 Translation, rotation, and scaling on vector fields

Vector fields can have very different properties under affine transformations.
The specific behavior depends on the interpretation of the field. When working
with vector fields, one has to distinguish at least three cases. In this paper,
we show how moment invariants can be constructed that satisfy the different
requirements.

Original vector
field: v(x)

Inner rotation:
v(R−α(x))

Outer rotation:
Rα(v(x))

Total rotation:
Rα(v(R−α(x)))

Fig. 1. Effect of the rotation operator Rα applied to an example vector field in
different ways.

In contrast to scalar fields, the term rotational misalignment is ambiguous for
vector fields. A simple example rotated by π

2
can be found visualized in Figure

1. Let Rα be an operator, that describes a mathematically positive rotation
by the angle α. Two vector fields v,v′ : R2 → R2 differ by an inner rotation
if they suffice
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v′(x) = v(R−α(x)). (7)

It can be interpreted in the following way. The starting position of every vector
is rotated by α. Then, the old vector is reattached at the new position, but
it still points into the old direction. The inner rotation is suitable to describe
the rotation of a 2D color image 1 or a complex-valued function over a plane.
The color, or the complex value respectively, is represented as a vector and
does not change when the underlying plane is turned.

Another kind of misalignment, we want to mention, is the outer rotation

v′(x) = Rα(v(x)). (8)

Here, every vector on the vector field v′ is the rotated copy of every vector in
the vector field v. The vectors are rotated independently from their positions.
This kind of rotation appears, for example, in color images when the color
space is rotated but the alignment of the picture is not changed, compare [14].
Another example is a phase shift in a complex-valued function describing the
alternating current over a plane.

If the vector field is an isomorphic mapping v : R2 → R2, a third type is of
interest, the total rotation

v′(x) = Rα(v(R−α(x))). (9)

Here, the positions and the vectors are stiffly connected during the rotation.
It can be interpreted as a coordinate transform, such as when looking at the
vector field from another point of view. Total rotations occur in physical vector
fields, for example, in fluid mechanics and aerodynamics.

Original vector
field: v(x)

Inner scaling:
v(s−1x)

Outer scaling:
sv(x)

Total scaling:
sv(s−1x)

Fig. 2. Effect of the scaling by s ∈ R applied to an example vector field in different
ways.

1 A proper color space is three-dimensional. Still, two-dimensional color spaces
appear in some applications, for example, in the visualization of complex functions
or in two-dimensional color maps.
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A similar behavior occurs if we consider the scaling of vector fields v : R2 → R2

by the value s ∈ R. The visualization for the scaling of the example from Figure
1 by the value s = 0.75 can be found in Figure 2. We can distinguish three
cases. Inner scaling

v′(x) = v(s−1x) (10)

corresponds to the change in size of a color image, whereas the colors remain
unchanged. On the other hand, outer scaling

v′(x) = sv(x) (11)

is in accordance to the contrast of a color image. If we have isomorphic vector
fields, analogous to the total rotation, the total scaling

v′(x) = sv(s−1x) (12)

can be interpreted as a change of coordinates for flow fields.

Original vector
field: v(x)

Inner translation:
v(x− t)

Outer transla-
tion:
v(x) + t

Total translation:
v(x− t) + t

Fig. 3. Effect of the translation by t ∈ R2 applied to an example vector field in
different ways.

Analogous to the transforms above, one can also think of different kinds of
translation. The inner translation

v′(x) = v(x− t) (13)

corresponds to moving the vector field to a new position, no matter whether
the field is interpreted as a color image or as a flow field. The outer trans-
lation

v′(x) = v(x) + t (14)

can be interpreted as a shift in the color space of a color image or the appear-
ance of a background flow in a flow field. The total translation
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v′(x) = v(x− t) + t (15)

looks like a pure movement of the positions that is compensated such that the
ends of the vectors do not leave the position they point to. We can currently
not think of a useful interpretation of this transform that occurs in the real
world.

3 Moment invariants of scalar functions

In this section, we state the classical method of the normalization of moments
of real-valued functions. Even though the results are commonly known, we
show how they can be achieved in order to pave the way to the following
sections. In the classical case the transforms are always inner transforms. It
is possible to show the results without the use of the characteristic function.
They are valid for all integrable functions. But since we will definitely need
the characteristic function to normalize with respect to outer translation, we
want to introduce this structure here already to grant a smooth transfer to
the more complicated transformations. We analyze the relation of the complex
moments of a function over the area A

g(z) = f(z)χA(z) : C→ R (16)

to its inner transformed copy

g′(z) =f ′(z)χA′(z) (17)

satisfying

f ′(z) =f
(
seiαz + t

)
,

χA′(z) =χA(seiαz + t)
(18)

with the scaling factor s ∈ R+, translational difference t ∈ C, and rotation
angle α ∈ [−π, π]. The moments of g′ satisfy
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c′p,q =
∫
C
zpz̄qg′(z) dz

=
∫
C
zpz̄qf

(
seiαz + t

)
χA(seiαz + t) dz

=
∫
C
(s−1e−iα(z − t))p(s−1e−iα(z − t))qf(z)χA(z)s−2 dz

=
∫
C
s−pe−iαp(z − t)ps−qeiαq(z − t)qf(z)s−2 dz

=s−p−q−2eiα(q−p)
∫
C
(z − t)p(z − t)qf(z)χA(z) dz

=s−p−q−2eiα(q−p)
∫
C

p∑
k=0

q∑
l=0

p
k


q
l

 (−t)p−kzk(−t)q−lz̄lf(z)χA(z) dz

=s−p−q−2eiα(q−p)
( p∑
k=0

q∑
l=0

p
k


q
l

 (−t)p−k(−t)q−l
∫
A
zkz̄lf(z) dz

)

=s−p−q−2eiα(q−p)
( p∑
k=0

q∑
l=0

p
k


q
l

 (−t)p−k(−t)q−lck,l
)
.

(19)
We want to create the function gc that is the inner rotated, translated and
scaled copy of g in standard position. That means, certain moments take given
values. The choice of the preset moments is theoretically free. We only have
to take care that the preset degrees of freedom match the degrees of freedom
that represent the affine transform. We should further choose moments of small
grades because of their robustness. The low order complex moments satisfy

c′0,0 =s−2c0,0,

c′1,0 =s−3e−iα(−tc0,0 + c1,0),

c′0,1 =s−3eiα(−tc0,0 + c0,1),

c′2,0 =s−4e−2iα(t2c0,0 − 2tc1,0 + c2,0).

(20)

From the first relation, we can see that a reasonable choice for a standard with
respect to scale is

c′0,0 =1⇔ s = c
1
2
0,0, (21)

and from the second relation, we can find a standard with respect to transla-
tion from

c′1,0 =0⇔ t =
c1,0
c0,0

. (22)

Considering the equality

7



cp,q = cq,p (23)

for real-valued functions, that leaves us with

c′0,0 =1,

c′1,0 =0,

c′0,1 =c
− 3

2
0,0 e

iα(−c1,0
c0,0

c0,0 + c0,1)

=0,

c′2,0 =c−20,0e
−2iα((

c1,0
c0,0

)2c0,0 − 2
c1,0
c0,0

c1,0 + c2,0)

=e−2iα(
c2,0
c20,0
−
c21,0
c30,0

).

(24)

Since c′0,1 vanishes together with c′1,0, we can no longer use it for normalization
or discrimination. In order to normalize with respect to rotation, we choose
c2,0 and move it to the positive real axis

c′2,0 ∈ R+ ⇔ α =
1

2
arg

(c2,0
c20,0
−
c21,0
c30,0

)
. (25)

Theorem 1 For an area A, its characteristic function χA(z), the function
g(z) = f(z)χA(z) : C→ R, and its complex moments c0,0, c1,0, c2,0, we set

tc =
c1,0
c0,0

,

sc =
√
c0,0,

αc =
1

2
arg

(c2,0
c20,0
−
c21,0
c30,0

)
.

(26)

Then, the normalized function

gc(z) =f(sceiα
c

z + tc)χA(sceiα
c

z + tc) (27)

is invariant with respect to inner translation, rotation, and scaling.

PROOF. The assertion follows from straight calculation and can be found
in Appendix A.

Summarizing, the normalized complex moments ccp,q satisfy
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cc0,0 =1, cc1,0 =0, c2,0 ∈ R+ (28)

and can be calculated from the complex moments cp,q using the formula

ccp,q =s−p−q−2eiα(q−p)
( p∑
k=0

q∑
l=0

p
k


q
l

 (−t)p−k(−t)q−lck,l
)
. (29)

All in all, the inner transform had four degrees of freedom: two for the trans-
lation, one for the scaling, and one for the rotation. The first two are one
complex degree of freedom and were removed by setting c1,0 = 0. The next
one was removed by setting |c0,0| = 1. This is equivalent to setting c0,0 = 1,
because c0,0 is always real valued for real-valued functions. The last one was
removed by setting c2,0 ∈ R+. Please note that, in order to achieve translation,
rotation, and scaling invariants, these are the standard choices of moments but
choosing other moments would have lead to similar results.

4 Moment invariants of complex functions

Now, we have the case that the affine transforms can not only be applied to
the arguments but also to the values of the functions. That means that we
have far more degrees of freedom. In order to normalize with respect to outer
and inner transformations, we anlyze the relation of the moments of a function

g(z) = f(z)χA(z) : C→ C (30)

to the ones of its transformed copy

g′(z) =soe
iαo
(
f(sie

iαiz + ti) + to
)
χA(sie

iαiz + ti) (31)

with the inner and outer scaling factors si, so ∈ R+, translational differences
ti, to ∈ C, rotation angles αi, αo ∈ [−π, π], and the transformed area A′ with
the characteristic function χA′(z) = χA(sie

iαiz+ti). The moments of g′ satisfy
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c′p,q =
∫
C
zpz̄qg′(x, y) dz

=
∫
C
zpz̄qsoe

iαo
(
f(sie

iαiz + ti) + to
)
χA(sie

iαiz + ti) dz

=soe
iαo

∫
C
(s−1i e−iαi(z − ti))p(s−1i e−iαi(z − ti))q

(
f(z) + to

)
χA(z)s−2i dz

=soe
iαo

∫
C
s−pi e−iαip(z − ti)ps−qi eiαiq(z − ti)q

(
f(z) + to

)
χA(z)s−2i dz

=soe
iαos−p−q−2i eiαi(q−p)

∫
C
(z − ti)p(z − ti)q

(
f(z) + to

)
χA(z) dz

=soe
iαos−p−q−2i eiαi(q−p)∫

C

p∑
k=0

q∑
l=0

p
k


q
l

 (−ti)p−kzk(−ti)q−lz̄l
(
f(z) + to

)
χA(z) dz

=soe
iαos−p−q−2i eiαi(q−p)

( p∑
k=0

q∑
l=0

p
k


q
l

 (−ti)p−k(−ti)q−l(ck,l + to

∫
A
zkz̄l dz)

)
(32)

Now, we want to find the function gc that is the normalized version of g. To
do so, we have to choose four complex moments and use them to express the
corresponding transformation parameters si, so, ti, to, αi, αo. Again, we choose
the moments of low order for their robustness. They satisfy

c′0,0 =soe
iαos−2i

(
c0,0 + to

∫
A

dz
)
,

c′1,0 =soe
iαos−3i e−iαi

(
− ti(c0,0 + to

∫
A

dz) + c1,0 + to

∫
A
z dz

)
,

c′0,1 =soe
iαos−3i eiαi

(
− ti(c0,0 + to

∫
A

dz) + c0,1 + to

∫
A
z̄ dz

)
,

c′2,0 =soe
iαos−4i e−2iαi

(
t2i
(
c0,0 + to

∫
A

dz
)
− 2ti

(
c1,0 + to

∫
A
z dz

)
+ c2,0 + to

∫
A
z2 dz

)
,

c′0,2 =soe
iαos−4i e2iαi

(
ti
2
(
c0,0 + to

∫
A

dz
)
− 2ti

(
c0,1 + to

∫
A
z̄ dz

)
+ c0,2 + to

∫
A
z̄2 dz

)
.

(33)

It seems most convenient to start expressing to by means of c0,0. The standard
position shall be the absence of background flow. So, we set

c′0,0 = 0⇔ to = − c0,0∫
A dz

. (34)

That leaves us with
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c′0,0 =0,

c′1,0 =soe
iαos−3i e−iαi

(
c1,0 + to

∫
A
z dz

)
,

c′0,1 =soe
iαos−3i eiαi

(
c0,1 + to

∫
A
z̄ dz

)
,

c′2,0 =soe
iαos−4i e−2iαi

(
− 2ti(c1,0 + to

∫
A
z dz) + c2,0 + to

∫
A
z2 dz

)
,

c′0,2 =soe
iαos−4i e2iαi

(
− 2ti

(
c0,1 + to

∫
A
z̄ dz

)
+ c0,2 + to

∫
A
z̄2 dz

)
.

(35)

Since the first order moments do not depend on ti after setting c′0,0 = 0, we
choose c′2,0 to be set to zero and express soe

iαo by means of c1,0. We choose
the standard position with respect to outer rotation and scaling to be so that
c1,0 is rotated to the positive x-axis and scaled to unit magnitude. From

c′1,0 = 1⇔ soe
iαo =

s3i e
iαi

c1,0 −
c0,0
∫
A
z dz∫

A
dz

=
s3i e

iαi
∫
A dz

c1,0
∫
A dz − c0,0

∫
A z dz (36)

and

c′2,0 = 0⇔ ti =

c0,0
∫
A
z2 dz∫

A
dz

− c2,0

2(
c0,0
∫
A
z dz∫

A
dz
− c1,0)

=
c0,0

∫
A z

2 dz − c2,0
∫
A dz

2(c0,0
∫
A z dz − c1,0

∫
A dz)

(37)

we get
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c′0,0 =0,

c′1,0 =1,

c′0,1 =soe
iαos−3i eiαi

(
c0,1 −

c0,0
∫
A z̄ dz∫

A dz

)
=

s3i e
iαi
∫
A dz

c1,0
∫
A dz − c0,0

∫
A z dz

s−3i eiαi
(
c0,1 −

c0,0
∫
A z̄ dz∫

A dz

)
=e2iαi

c0,1
∫
A dz − c0,0

∫
A z̄ dz

c1,0
∫
A dz − c0,0

∫
A z dz

,

c′2,0 =0,

c′0,2 =soe
iαos−4i e2iαi

(
− 2ti

(
c0,1 −

c0,0
∫
A z̄ dz∫

A dz

)
+ c0,2 −

c0,0
∫
A z̄

2 dz∫
A dz

)
=

s3i e
iαi
∫
A dz

c1,0
∫
A dz − c0,0

∫
A z dz

s−4i e2iαi(
− 2ti

(
c0,1 −

c0,0
∫
A z̄ dz∫

A dz

)
+ c0,2 −

c0,0
∫
A z̄

2 dz∫
A dz

)

=s−1i e3iαi
−2ti

(
c0,1

∫
A dz − c0,0

∫
A z̄ dz

)
+ c0,2

∫
A dz − c0,0

∫
A z̄

2 dz

c1,0
∫
A dz − c0,0

∫
A z dz

.

(38)

Because c′0,1 does no longer depend on si, we scale c′0,2 to one using the right
value for si

|c′0,2| = 1⇔ si =
∣∣∣−2ti(c0,1

∫
A dz − c0,0

∫
A z̄ dz) + c0,2

∫
A dz − c0,0

∫
A z̄

2 dz

c1,0
∫
A dz − c0,0

∫
A z dz

∣∣∣
(39)

and also use its argument to find the right value for αi

c′0,2 ∈ R+

⇔ αi = −1

3
arg

(−2ti(c0,1
∫
A dz − c0,0

∫
A z̄ dz) + c0,2

∫
A dz − c0,0

∫
A z̄

2 dz

c1,0
∫
A dz − c0,0

∫
A z dz

)
.

(40)
Instead one could also think of taking c′0,1 to set αi.

Theorem 2 For an area A, its characteristic function χA(z), the function
g(z) = f(z)χA(z) : C → C, and its complex moments c0,0, c1,0, c0,1, c2,0, c0,2,
we set
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tci =
c0,0

∫
A z

2 dz − c2,0
∫
A dz

2(c0,0
∫
A z dz − c1,0

∫
A dz)

,

sci =
∣∣∣−2tci(c0,1

∫
A dz +−c0,0

∫
A z̄ dz) + c0,2

∫
A dz − c0,0

∫
A z̄

2 dz

c1,0
∫
A dz − c0,0

∫
A z dz

∣∣∣,
αci =− 1

3
arg

(−2tci(c0,1
∫
A dz − c0,0

∫
A z̄ dz) + c0,2

∫
A dz − c0,0

∫
A z̄

2 dz

c1,0
∫
A dz − c0,0

∫
A z dz

)
,

tco =− c0,0∫
A dz

,

sco =
∣∣∣ (sci)

3
∫
A dz

c1,0
∫
A dz − c0,0

∫
A z dz

∣∣∣,
αco = arg

( eiα
c
i
∫
A dz

c1,0
∫
A dz − c0,0

∫
A z dz

)
.

(41)
Then, the normalized function

gc(z) =scoe
iαco
(
f(scie

iαci z + tci) + tco
)
χA(scie

iαci z + tci) (42)

is invariant with respect to inner and outer translation, rotation, and scaling
of the form

g′(z) =soe
iαo(f(sie

iαiz + ti) + to)χA(sie
iαiz + ti), (43)

with arbitrary inner and outer scaling factors si, so ∈ R+, translational differ-
ences ti, to ∈ C, and rotation angles αi, αo ∈ [−π, π].

PROOF. The assertion follows from straight calculation and can be found
in Appendix B.

In praxis, not the function but only the moments are normalized. That way
only few additions and multiplications are needed and no resampling and in-
terpolation needs to be done. Summarizing, the normalized complex moments
ccp,q satisfy

cc0,0 =0, cc1,0 =1, cc2,0 =0, cc0,2 =1, (44)

and can be calculated from

13



ccp,q =scoe
iαco(sci)

−p−q−2eiα
c
i (q−p)

( p∑
k=0

q∑
l=0

p
k


q
l


(−tci)p−k(−tci)q−l

(
ck,l + tco

∫
A
zkz̄l dz

))
.

(45)

In this case, we had eight real degrees of freedom: two for the scaling, two for
the rotation, and four for the translation. We eliminated them by setting fix
four complex moments.

All transformations described in the introduction are special cases of Theorem
2. Depending on the specific application it may be useful not to normalize
with respect to all the transforms. In order to customize the normalization to
a specific problem, the superfluous parameters can simply be left out. For the
scaling parameters, this means setting them to one, and for all the others, it
means setting them to zero. The total transforms are generated by identifying
the outer parameters with the negative of their inner counterparts. This will
usually lead to a simplification of the remaining parameters.

As mentioned earlier, the choice of the moments that are predefined is free. If
the underlying problem has a much smaller amount of degrees of freedom that
coincide with the fixation of the second order moments, it might be useful for
the sake of robustness to recalculate the normalization parameters. But the
given setting is valid for all given kinds of transforms. We look closer at an
example of customization in the coming section.

In case that the chosen moments should vanish, a recalculation of the nor-
malization with non vanishing moments is also necessary. The details for flow
fields can be found in [15].

5 Finding flow field patterns

Now, we want to focus on pattern matching and feature extraction [16,17] of
flow fields. The problem is as follows. We have a relatively small pattern and
want to decide where it appears in a larger vector field independent from its
orientation, size, or position. As we depicted in the Figures 1, 2, and 3 this
application is a special case of the general one treated in Theorem 2. We have
to treat some parameters different than others.

In this application, the calculation of the inner translation and scaling can not
be covered the same way as in the previous section because we do not compare
the pattern to the whole field but only to parts of it. We have to choose
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smaller parts and cut off the surrounding information because otherwise it
would disturb the comparison. That is why, we decide to look in all kinds of
places and all kinds of scales in the big vector field. As a result, it is not useful
to include these parameters in the calculation. There will always be a position
where pattern and field match with respect to them. So, we leave out inner
translation and scaling, which means ti = 0, si = 1. Further, we will have to
work with circular areas A = Br(0) about the center of coordinates to avoid
values that move in or out during a rotation and could disturb the result.
Without inner translation and scaling, the circles Br(0) satisfy

χBr(0)′(z) = χBr(0)(e
iαiz) = χBr(0)(z) (46)

and

∀p 6= q :
∫
Br(0)

zpzq dz = 0. (47)

The outer translation can be interpreted as a distortion of the pattern by some
background flow. We would like to detect it despite this kind of disturbance,
so we have to normalize with respect to outer translation to. When talking
about flow fields, the outer scale represents the velocity of the flow. We want
to detect the pattern independent from its speed. So, we have to normalize
with respect to outer scaling so.

When it comes to rotation, we can not allow the field to be independently
rotated from the inside and the outside, because that would essentially change
the look of the pattern. We only want to normalize against total rotations
αco = −αci = αc, because that does only change its alignment and not its
shape, compare Figure 1.

All in all, the transforms of a function

g(z) =f(z)χBr(0)(z) : C→ C, (48)

with respect to which we want to normalize take the shape

g′(z) =soe
iα

(
f
(
e−iαz

)
+ to

)
χBr(0)(z). (49)

This is a special case of the results from the previous section. With the re-
strictions tci = 0, sci = 1, and αco = −αci = αc, the rules from (41) become
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tco =− c0,0∫
Br(0)

dz
,

sco =
∣∣∣ ∫

Br(0)
dz

c1,0
∫
Br(0)

dz − c0,0
∫
Br(0)

z dz

∣∣∣
=|c1,0|−1,

(50)

and for α, we can either use

αc = −αci =
1

3
arg

(c0,2 ∫Br(0) dz − c0,0
∫
Br(0)

z̄2 dz

c1,0
∫
Br(0)

dz − c0,0
∫
Br(0)

z dz

)
=

1

3
arg

(c0,2
c1,0

)
,

(51)

or

αc = αco = arg
( eiα

c
i
∫
Br(0)

dz

c1,0
∫
Br(0)

dz − c0,0
∫
Br(0)

z dz

)
=αci + arg(c−11,0)

=− αc − arg(c1,0)
αco=−αci= − 1

2
arg(c1,0).

(52)

We choose the second, easier option.

Corollary 3 Let c0,0, c1,0 be the complex moments of the flow field g(z) =
f(z)χBr(0)(z) : C→ C that vanishes outside the circle with radius r about the
origin of coordinates. We set

tc =− c0,0∫
Br(0)

dz
,

sc =|c1,0|−1,

αc =− 1

2
arg(c1,0),

(53)

then, the normalized function

gc(z) =sceiα
c
(
f(e−iα

c

z) + tc
)
χBr(0)(z) (54)

is invariant with respect to outer translation and scaling and total rotation.

PROOF. The explicit derivation of the normalization parameters can be
found in Appendix C.
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Summarizing, the normalized complex moments ccp,q satisfy

cc0,0 =0, cc1,0 =1 (55)

and can be calculated from the complex moments cp,q using the formula

ccp,q =sceiα
c(p−q+1)

(
cp,q + tc

∫
A
zpz̄q dz

)
. (56)

To underline our theoretical findings, we implemented the normalization and
registered an example pattern.

Fig. 4. The pattern, the saddle f(z)
described in (57).

Fig. 5. The vector field g(z) described
in (58).

We try to find a saddle on the unit circle

f(z) =

z, if z ∈ B1(0),

0, else,
(57)

compare Figure 4, in the larger vector field from Figure 5. This artificially
designed field

g(z) =(z − 2i)(z + 2− 2i)e−|z+2−2i| − i(z + 2 + 3i)e−|z+2+3i|

+ i(z − 3 + 3i)e−|z−3+3i| +
√

2e−
iπ
4 (z − 3− 3i)e−|z−3−3i|

(58)

consists of four parts: a linear saddle at −2 − 3i and one at 3 + 3i, a vortex
at 3 − 3i and a saddle source combination of higher order at −2 + 2i. Our
pattern appears in several distorted ways. We used Line Integral Convolution
(LIC) [18] for the visualization of the flow patterns in order to make the results
comparable. At equidistant positions z0 ∈ [−4 − 4i, 4 + 4i], we compare the
normalized moments of f(z) to the normalized moments
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cp,q(z0) =
∫
B1(z0)

zpzqg(z) dz (59)

of g(z) calculated over the area B1(z0). As similarity measure, we choose the
reciprocal of the Euclidean distance of the moments of up to the third order

( ∑
p+q≤3

|cp,q − cp,q(z0)|
)−1

. (60)

Fig. 6. The similarity of the flow field
g(z) (58) to the pattern f(z) (57).
Brighter colors resemble higher the
similarity.

Fig. 7. The similarity of the flow field
with higher velocity and added back-
ground flow (61) to the pattern f(z)
from (57).

The result is visualized in Figure 6. The color map resembles the similarity
of each position in the vector field with the pattern. High similarity values
(ca. 10) are depicted in white and low values (about zero) in dark gray. The
two linear saddles in the upper right and lower left corner of g(z) are clearly
detected. The pattern in the left upper corner is of higher order. Since it differs
from the pattern saddle not only in orientation, the similarity to the linear
saddle is lower. The color map is not as bright there.

The vector field g′(z) in Figure 7 is the one from Figure 6 with three times
the velocity and an added background flow

g′(z) =3g(z) + 1 + 2i. (61)

The constant background flow can be interpreted as a global movement of the
field, for example, the air between two carts of a moving train. The patterns
that could be seen for someone on the train are invisible for someone looking
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from outside because of the dominant background flow. As expected, the re-
sults are invariant to the constant background flow and the velocity. This can
be seen in Figure 7. Even though the pattern can not be recognized by the
human eye any more, the original positions of the saddles are still detected
accurately, because the moments are invariant to these kinds of changes.

In addition to the analytic example, we also tested our method on a real world
data set. We look for a drawn out vortex on the unit circle on different scales

f(z) =

0.75iz − 0.25iz, if z ∈ B1(0),

0, else,
(62)

depicted in Figure 8 in the larger flow field from Figure 9. The latter is the
velocity field of a swirling jet entering a fluid at rest.

Fig. 8. The pattern, the vortex f(z)
described in (62).

Fig. 9. The field, a swirling jet enter-
ing a fluid at rest.

In contrast to the analytic field, the vortices in the real world data set are
no perfect matches to the pattern. The pattern is a very simple linear field.
The vortices in the data set are not linear. As a result, we can not find exact
peaks in Figures 10 and 11 and the similarity is generally lower. But one can
very nicely distinguish the vortices on the left side of the field from the ones
on the right because they differ in their swirling orientation. In contrast to
the line integral convolution (LIC) the moments are sensitive with respect to
the orientation. So this behavior can be detected. It would be easily possible
to also construct invariance with respect to reflections, which would result
in an overall vortex detection. But we chose to keep the sensitivity for this
demonstration.
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Fig. 10. The similarity of the flow
field from Figure 9 to the pattern f(z)
(62). Brighter colors resemble higher
similarity.

Fig. 11. The similarity of the flow field
from Figure 9 to the pattern −f(z)
with f(z) from (62), which is the vor-
tex with opposite flow orientation.

6 Conclusions and Outlook

The requirements for invariants of vector fields or complex functions differ
from the ones of the well analyzed real-valued functions depending on their
meaning and application.

In Theorem 2, we showed how moments have to be normalized such that they
are invariant with respect to inner and outer translation, rotation and scaling.
This general result can be customized to specific problems by leaving out the
superfluous parameters. Representative for all possible applications, Corollary
3 presents the configuration for the special case of moment invariants that can
be used to find flow field patterns.

In our future work, we will concentrate on how thee-dimensional vector fields
can be normalized using moment invariants.
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[17] B. Zitová, J. Flusser, Image registration methods: a survey, Image and Vision
Computing 21 (11) (2003) 977–1000. doi:10.1016/S0262-8856(03)00137-9.

[18] B. Cabral, L. C. Leedom, Imaging vector fields using line integral convolution,
in: Proceedings of the 20th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’93, ACM, New York, NY, USA, 1993, pp.
263–270. doi:10.1145/166117.166151.

A Proof of Theorem 1

The function

g(z) =f(z)χA(z) (A.1)

has the normalized function

gc(z) =f c(z)χAc(z), (A.2)

with

f c(z) =f(sceiα
c

z + tc),

χAc(z) =χA(sceiα
c

z + tc).
(A.3)

The transformed function

g′(z) =f ′(z)χA′(z), (A.4)

with

f ′(z) =f(seiαz + t),

χA′(z) =χA(seiαz + t)
(A.5)

has the normalized function

g′c(z) =f ′c(z)χA′c(z), (A.6)

with
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f ′c(z) =f ′(s′ceiα
′c
z + t′c)

=f(seiα(s′ceiα
′c
z + t′c) + t)

=f(seiαs′ceiα
′c
z + seiαt′c + t)

=f(s′csei(α
′c+α)z + seiαt′c + t),

χA′c(z) =χA′(s′ceiα
′c
z + t′c)

=χA(s′csei(α
′c+α)z + seiαt′c + t).

(A.7)

Since the lower degree moments of g′ satisfy

c′0,0 =s−2c0,0,

c′1,0 =s−3e−iα(−tc0,0 + c1,0),

c′2,0 =s−4e−2iα(t2c0,0 − 2tc1,0 + c2,0),

(A.8)

the normalizing parameters of g′ take the shapes

t′c =
c′1,0
c′0,0

=
s−3e−iα(−tc0,0 + c1,0)

s−2c0,0

=
1

seiα
(
c1,0
c0,0
− t)

=
1

seiα
(tc − t),

s′c =
√
c′0,0

=
√
s−2c0,0

=
sc

s
,

α′c =
1

2
arg

( c′2,0
(c′0,0)

2
−

(c′1,0)
2

(c′0,0)
3

)
=

1

2
arg

(s−4e−2iα(t2c0,0 − 2tc1,0 + c2,0)

(s−2c0,0)2
− (s−3e−iα(−tc0,0 + c1,0))

2

(s−2c0,0)3

)
=

1

2
arg

(
e−2iα(

t2c0,0 − 2tc1,0 + c2,0
(c0,0)2

− (−tc0,0 + c1,0)
2

(c0,0)3
)
)

=
1

2
arg(e−2iα) +

1

2
arg

(t2c0,0 − 2tc1,0 + c2,0
(c0,0)2

−
t2c20,0 − 2tc0,0c1,0 + c21,0

(c0,0)3

)
=− α +

1

2
arg

( c2,0
(c0,0)2

−
c21,0

(c0,0)3

)
=αc − α.

(A.9)
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Insertion into (A.7) leads to

f ′c(z) =f(s′csei(α
′c+α)z + seiαt′c + t)

=f(
sc

s
sei(α

c−α+α)z + seiα
1

seiα
(tc − t) + t)

=f(sceiα
c

z + tc)

=f c(z),

χA′c(z) =χAc(z)

(A.10)

and therefore

gc(z) = g′c(z), (A.11)

which proves the theorem.

B Proof of Theorem 2

The function

g(z) =f(z)χA(z) (B.1)

has the normalized function

gc(z) =f c(z)χAc(z), (B.2)

with

f c(z) =scoe
iαco
(
f(scie

iαci z + tci) + tco
)
,

χAc(z) =χA(scie
iαci z + tci).

(B.3)

The transformed function

g′(z) =f ′(z)χA′(z), (B.4)

with

f ′(z) =soe
iαo(f(sie

iαiz + ti) + to),

χA′(z) =χA(sie
iαiz + ti)

(B.5)

has the normalized function

g′c(z) =f ′c(z)χA′c(z), (B.6)
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with

f ′c(z) =s′co e
iα′c
o

(
f ′(s′ci e

iα′c
i z + t′ci ) + t′co

)
=s′co e

iα′c
o

(
soe

iαo
(
f(sie

iαi(s′ci e
iα′c
i z + t′ci ) + ti) + to

)
+ t′co

)
=s′co e

iα′c
o soe

iαo

(
f(sie

iαis′ci e
iα′c
i z + sie

iαit′ci + ti) + to +
t′co

soeiαo

)
=s′co soe

i(α′c
o +αo)

(
f(s′ci sie

i(α′c
i +αi)z + sie

iαit′ci + ti) + to +
t′co

soeiαo

)
,

χA′c(z) =χA′(s′ci e
iα′c
i z + t′ci )

=χA(s′ci sie
i(α′c

i +αi)z + sie
iαit′ci + ti).

(B.7)
To keep calculations clear and of manageable length, we will show the invari-
ance with respect to the transforms one by one.

Outer translation: Let g′ be an outer translated copy of g

g′(z) =(f(z) + to)χA(z), (B.8)

that means so = si = 1, αo = αi = ti = 0, then the lower order moments (33)
satisfy

c′0,0 =c0,0 + to

∫
A

dz,

c′0,1 =c0,1 + to

∫
A
z dz,

c′1,0 =c1,0 + to

∫
A
z dz,

c′0,2 =c0,2 + to

∫
A
z2 dz,

c′2,0 =c2,0 + to

∫
A
z2 dz.

(B.9)

then the standardizing parameters satisfy
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t′ci =
c′0,0

∫
A z

2 dz − c′2,0
∫
A dz

2(c′0,0
∫
A z dz − c′1,0

∫
A dz)

=
(c0,0 + to

∫
A dz)

∫
A z

2 dz − (c2,0 + to
∫
A z

2 dz)
∫
A dz

2((c0,0 + to
∫
A dz)

∫
A z dz − (c1,0 + to

∫
A z dz)

∫
A dz)

=
c0,0

∫
A z

2 dz + to
∫
A dz

∫
A z

2 dz − c2,0
∫
A dz − to

∫
A z

2 dz
∫
A dz

2(c0,0
∫
A z dz + to

∫
A dz

∫
A z dz − c1,0

∫
A dz − to

∫
A z dz

∫
A dz)

=
c0,0

∫
A z

2 dz − c2,0
∫
A dz

2(c0,0
∫
A z dz − c1,0

∫
A dz)

=tci ,

(B.10)

s′ci =|
−2t′ci (c′0,1

∫
A dz − c′0,0

∫
A z̄ dz) + c′0,2

∫
A dz − c′0,0

∫
A z̄

2 dz

c′1,0
∫
A dz − c′0,0

∫
A z dz

|

=|
(
− 2tci(c0,1 + to

∫
A
z dz)

∫
A

dz + 2tci(c0,0 + to

∫
A

dz)
∫
A
z̄ dz

+ (c0,2 + to

∫
A
z2 dz)

∫
A

dz − (c0,0 + to

∫
A

dz)
∫
A
z̄2 dz

)
(

(c1,0 + to

∫
A
z dz)

∫
A

dz − (c0,0 + to

∫
A

dz)
∫
A
z dz

)−1
|

=|−2tci(c0,1
∫
A dz − c0,0

∫
A z̄ dz) + c0,2

∫
A dz − c0,0

∫
A z̄

2 dz

c1,0
∫
A dz − c0,0

∫
A z dz

|

=sci ,

(B.11)

α′ci =− 1

3
arg(
−2t′ci (c′0,1

∫
A dz − c′0,0

∫
A z̄ dz) + c′0,2

∫
A dz − c′0,0

∫
A z̄

2 dz

c′1,0
∫
A dz − c′0,0

∫
A z dz

)

=− 1

3
arg(
−2tci(c0,1

∫
A dz − c0,0

∫
A z̄ dz) + c0,2

∫
A dz − c0,0

∫
A z̄

2 dz

c1,0
∫
A dz − c0,0

∫
A z dz

)

=αci ,
(B.12)

t′co =−
c′0,0∫
A dz

=− c0,0 + to
∫
A dz∫

A dz

=− c0,0∫
A dz

− to

=tco − to,

(B.13)
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s′co =| (s′ci )3
∫
A dz

c′1,0
∫
A dz − c′0,0

∫
A z dz

|

=| (sci)
3
∫
A dz

(c1,0 + to
∫
A z dz)

∫
A dz − (c0,0 + to

∫
A dz)

∫
A z dz

|

=| (sci)
3
∫
A dz

c1,0
∫
A dz − c0,0

∫
A z dz

|

=sco,

(B.14)

α′co = arg(
eiα

′c
i
∫
A dz

c′1,0
∫
A dz − c′0,0

∫
A z dz

)

= arg(
eiα

c
i
∫
A dz

(c1,0 + to
∫
A z dz)

∫
A dz − (c0,0 + to

∫
A dz)

∫
A z dz

)

= arg(
eiα

c
i
∫
A dz

c1,0
∫
A dz − c0,0

∫
A z dz

)

=αco.

(B.15)

Insertion into (B.7) with so = si = 1, αo = αi = ti = 0 leads to

f ′c(z) =s′co soe
i(α′c

o +αo)
(
f(s′ci sie

i(α′c
i +αi)z + sie

iαit′ci + ti) + to +
t′co

soeiαo

)
=s′co e

iα′c
o

(
f(s′ci e

iα′c
i z + t′ci ) + to + t′co

)
=scoe

iαco
(
f(scie

iαci z + tci) + to + tco − to
)

=f c(z),

χA′c(z) =χAc(z)
(B.16)

and therefore

g′c(z) =gc(z), (B.17)

which shows that the normalized function is invariant to outer translation.

Inner translation: Let g′ be an inner translated copy of g

g′(z) =f(z + ti)χA(z + ti), (B.18)

that vanishes outside the area A′ with the characteristic function χA′(z) =
χA(z + ti). In this case we have so = si = 1, αo = αi = to = 0, so the lower
order moments (33) satisfy
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c′0,0 =c0,0,

c′1,0 =c1,0 − tic0,0,
c′0,1 =c0,1 − tic0,0,
c′2,0 =c2,0 − 2tic1,0 + t2i c0,0,

c′0,2 =c0,2 − 2tic0,1 + ti
2
c0,0.

(B.19)

and the standardizing parameters

t′ci =
c′0,0

∫
A′ z2 dz − c′2,0

∫
A′ dz

2(c′0,0
∫
A′ z dz − c′1,0

∫
A′ dz)

=
c0,0

∫
C z

2χA(z + ti) dz − (c2,0 − 2tic1,0 + t2i c0,0)
∫
C χA(z + ti) dz

2(c0,0
∫
C zχA(z + ti) dz − (c1,0 − tic0,0)

∫
C χA(z + ti) dz)

z=z+ti=
c0,0

∫
C(z − ti)2χA(z) dz − (c2,0 − 2tic1,0 + t2i c0,0)

∫
C χA(z) dz

2(c0,0
∫
C(z − ti)χA(z) dz − (c1,0 − tic0,0)

∫
C χA(z) dz)

=
c0,0

∫
A(z − ti)2 dz − (c2,0 − 2tic1,0 + t2i c0,0)

∫
A dz

2(c0,0
∫
A z − ti dz − (c1,0 − tic0,0)

∫
A dz)

=
(
c0,0

∫
A
z2 dz − 2tic0,0

∫
A
z dz + t2i c0,0

∫
A

dz

− c2,0
∫
A

dz + 2tic1,0

∫
A

dz − t2i c0,0
∫
A

dz
)

(
2(c0,0

∫
A
z dz − tic0,0

∫
A

dz − c1,0
∫
A

dz + tic0,0

∫
A

dz)
)−1

=
c0,0

∫
A z

2 dz − 2tic0,0
∫
A z dz − c2,0

∫
A dz + 2tic1,0

∫
A dz

2(c0,0
∫
A z dz − c1,0

∫
A dz)

=
c0,0

∫
A z

2 dz − c2,0
∫
A dz

2(c0,0
∫
A z dz − c1,0

∫
A dz)

− 2ti(c0,0
∫
A z dz − c1,0

∫
A dz)

2(c0,0
∫
A z dz − c1,0

∫
A dz)

=tci − ti,

(B.20)
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s′ci =|
−2t′ci (c′0,1

∫
A′ dz − c′0,0

∫
A′ z̄ dz) + c′0,2

∫
A′ dz − c′0,0

∫
A′ z̄2 dz

c′1,0
∫
A′ dz − c′0,0

∫
A′ z dz

|

=|
(
− 2tcic0,1

∫
A

dz + 2tci tic0,0

∫
A

dz + 2tcic0,0

∫
A
z dz − 2tci tic0,0

∫
A

dz

+ 2tic0,1

∫
A

dz − 2titic0,0

∫
A

dz − 2tic0,0

∫
A
z dz + 2titic0,0

∫
A

dz

+ c0,2

∫
A

dz − 2tic0,1

∫
A

dz + ti
2
c0,0

∫
A

dz − c0,0
∫
A
z2 dz

+ 2tic0,0

∫
A
z dz − ti2c0,0

∫
A

dz
)

(
c1,0

∫
A

dz − tic0,0
∫
A

dz − c0,0
∫
A
z dz + tic0,0

∫
A

dz
)−1
|

=|−2tci(c0,1
∫
A dz − c0,0

∫
A z dz) + c0,2

∫
A dz − c0,0

∫
A z

2 dz

c1,0
∫
A dz − c0,0

∫
A z dz

|

=sci ,
(B.21)

α′ci =− 1

3
arg(
−2t′ci (c′0,1

∫
A dz − c′0,0

∫
A z̄ dz) + c′0,2

∫
A dz − c′0,0

∫
A z̄

2 dz

c′1,0
∫
A dz − c′0,0

∫
A z dz

)

=− 1

3
arg(
−2tci(c0,1

∫
A dz − c0,0

∫
A z̄ dz) + c0,2

∫
A dz − c0,0

∫
A z̄

2 dz

c1,0
∫
A dz − c0,0

∫
A z dz

)

=αci ,
(B.22)

t′co =−
c′0,0∫
A dz

=− c0,0∫
A dz

=tco,

(B.23)

s′co =| (s′ci )3
∫
A′ dz

c′1,0
∫
A′ dz − c′0,0

∫
A′ z dz

|

=| (sci)
3
∫
A dz

(c1,0 − tic0,0)
∫
A dz − c0,0

∫
A z − ti dz

|

=| (sci)
3
∫
A dz

c1,0
∫
A dz − c0,0

∫
A z dz

|

=sco,

(B.24)
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α′co = arg(
eiα

′c
i
∫
A′ dz

c′1,0
∫
A′ dz − c′0,0

∫
A′ z dz

)

= arg(
eiα

c
i
∫
A dz

c1,0
∫
A dz − c0,0

∫
A z dz

)

=αco.

(B.25)

Insertion into (B.7) with so = si = 1, αo = αi = to = 0 leads to

f ′c(z) =s′co soe
i(α′c

o +αo)
(
f(s′ci sie

i(α′c
i +αi)z + sie

iαit′ci + ti) + to +
t′co

soeiαo

)
=s′co e

iα′c
o

(
f(s′ci e

iα′c
i z + t′ci + ti) + t′co

)
=scoe

iαco
(
f(scie

iαci z + tci − ti + ti) + tco
)

=f c(z),

χA′c(z) =χAc(z),
(B.26)

and therefore

g′c(z) =gc(z), (B.27)

which shows that the normalized function is invariant to inner translation.

Inner rotation and scaling: Let g′ be an inner rotated and scaled copy of
g

g′(z) =f(sie
iαiz)χA(sie

iαiz), (B.28)

that vanishes outside the area A′ with the characteristic function χA′(z) =
χA(sie

iαiz). In this case we have so = 1, αo = ti = to = 0, so the lower order
moments (33) satisfy

c′0,0 =s−2i c0,0,

c′1,0 =s−3i e−iαic1,0,

c′0,1 =s−3i eiαic0,1,

c′2,0 =s−4i e−2iαic2,0,

c′0,2 =s−4i e2iαic0,2.

(B.29)

and the standardizing parameters
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t′ci =
c′0,0

∫
A′ z2 dz − c′2,0

∫
A′ dz

2(c′0,0
∫
A′ z dz − c′1,0

∫
A′ dz)

=
s−2i c0,0

∫
C z

2χA(sie
iαiz) dz − s−4i e−2iαic2,0

∫
C χA(sie

iαiz) dz

2(s−2i c0,0
∫
C zχA(sieiαiz) dz − s−3i e−iαic1,0

∫
C χA(sieiαiz) dz)

z=sie
iαiz

=
s−2i c0,0

∫
C(s−1i e−iαiz)2χA(z)s−2i dz − s−4i e−2iαic2,0

∫
C χA(z)s−2i dz

2(s−2i c0,0
∫
C(s−1i e−iαiz)χA(z)s−2i dz − s−3i e−iαic1,0

∫
C χA(z)s−2i dz)

=
s−6i e−2iαic0,0

∫
A z

2 dz − s−6i e−2iαic2,0
∫
A dz

2(s−5i e−iαic0,0
∫
A z dz − s−5i e−iαic1,0

∫
A dz)

=
tci

sieiαi
,

(B.30)

s′ci =|
−2t′ci (c′0,1

∫
A′ dz − c′0,0

∫
A′ z̄ dz) + c′0,2

∫
A′ dz − c′0,0

∫
A′ z2 dz

c′1,0
∫
A′ dz − c′0,0

∫
A′ z dz

|

=|
(
− 2s−1i eiαitci(s

−3
i eiαic0,1

∫
A
s−2i dz − s−2i c0,0

∫
A

(s−1i e−iαiz)s−2i dz)

+ s−4i e2iαic0,2

∫
A
s−2i dz − s−2i c0,0

∫
A

(s−1i e−iαiz)2s−2i dz
)

(
s−3i e−iαic1,0

∫
A
s−2i dz − s−2i c0,0

∫
A
s−1i e−iαizs−2i dz

)−1
|

=|
(
− 2s−6i e2iαitci(c0,1

∫
A

dz − c0,0
∫
A
z dz)

+ s−6i e2iαic0,2

∫
A

dz − s−6i e2iαic0,0

∫
A
z2 dz

)
(
s−5i e−iαic1,0

∫
A

dz − s−5i e−iαic0,0

∫
A
z dz

)−1
|

=|
s−1i e3iαi

(
− 2tci(c0,1

∫
A dz − c0,0

∫
A z dz) + c0,2

∫
A dz − c0,0

∫
A z

2 dz
)

c1,0
∫
A dz − c0,0

∫
A z dz

|

=
sci
si
,

(B.31)
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α′ci =− 1

3
arg(
−2t′ci (c′0,1

∫
A dz − c′0,0

∫
A z̄ dz) + c′0,2

∫
A dz − c′0,0

∫
A z̄

2 dz

c′1,0
∫
A dz − c′0,0

∫
A z dz

)

=− 1

3
arg(

s−1i e3iαi
(
− 2tci(c0,1

∫
A dz − c0,0

∫
A z dz) + c0,2

∫
A dz − c0,0

∫
A z

2 dz
)

c1,0
∫
A dz − tic0,0

∫
A dz − c0,0

∫
A z dz + tic0,0

∫
A dz

)

=− 1

3
arg(e3iαi)− 1

3
arg(

−2tci(c0,1
∫
A dz − c0,0

∫
A z dz) + c0,2

∫
A dz − c0,0

∫
A z

2 dz

c1,0
∫
A dz − c0,0

∫
A z dz

)

=αci − αi,
(B.32)

t′co =−
c′0,0∫
A′ dz

=− s−2i c0,0∫
A s
−2
i dz

=tco,

(B.33)

s′co =| (s′ci )3
∫
A′ dz

c′1,0
∫
A′ dz − c′0,0

∫
A′ z dz

|

=| (sci)
3s−3i

∫
A s
−2
i dz

s−3i e−iαic1,0
∫
A s
−2
i dz − s−2i c0,0

∫
A s
−1
i e−iαizs−2i dz

|

=| (sci)
3s−5i

∫
A dz

s−5i e−iαi(c1,0
∫
A dz − c0,0

∫
A z dz)

|

=| (sci)
3
∫
A dz

c1,0
∫
A dz − c0,0

∫
A z dz

|

=sco,

(B.34)

α′co = arg(
eiα

′c
i
∫
A′ dz

c′1,0
∫
A′ dz − c′0,0

∫
A′ z dz

)

= arg(
eiα

c
i e−iαi

∫
A s
−2
i dz

s−3i e−iαic1,0
∫
A s
−2
i dz − s−2i c0,0

∫
A s
−1
i e−iαizs−2i dz

)

= arg(
eiα

c
i
∫
A dz

c1,0
∫
A dz − c0,0

∫
A z dz

)

=αco.

(B.35)

Insertion into (B.7) with so = 1, αo = ti = to = 0 leads to
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f ′c(z) =s′co soe
i(α′c

o +αo)
(
f(s′ci sie

i(α′c
i +αi)z + sie

iαit′ci + ti) + to +
t′co

soeiαo

)
=s′co e

iα′c
o

(
f(s′ci sie

i(α′c
i +αi)z + sie

iαit′ci ) + t′co
)

=s′co e
iα′c
o

(
f(
sci
si
sie

i(αci−αi+αi)z + sie
iαi

tci
sieiαi

) + tco
)

=s′co e
iα′c
o

(
f(scie

iαci z + tci) + tco
)

=f c(z),

χA′c(z) =χAc(z),
(B.36)

and therefore

g′c(z) =gc(z), (B.37)

which shows that the normalized function is invariant to inner rotation and
scaling.

Outer rotation and scaling: Let g′ be an outer rotated and scaled copy of
g, that means si = 1, αi = ti = to = 0, so the lower order moments (33) satisfy

g′(z) =soe
iαof(z)χA(z), (B.38)

then the lower order moments satisfy

c′0,0 =soe
iαoc0,0,

c′1,0 =soe
iαoc1,0,

c′0,1 =soe
iαoc0,1,

c′2,0 =soe
iαoc2,0,

c′0,2 =soe
iαoc0,2.

(B.39)

and the standardizing parameters

t′ci =
c′0,0

∫
A z

2 dz − c′2,0
∫
A dz

2(c′0,0
∫
A z dz − c′1,0

∫
A dz)

=
soe

iαoc0,0
∫
A z

2 dz − soeiαoc2,0
∫
A dz

2(soeiαoc0,0
∫
A z dz − soeiαoc1,0

∫
A dz)

=
c0,0

∫
A z

2 dz − c2,0
∫
A dz

2(c0,0
∫
A z dz − c1,0

∫
A dz)

=tci ,

(B.40)
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s′ci =|
−2t′ci (c′0,1

∫
A dz − c′0,0

∫
A z̄ dz) + c′0,2

∫
A dz − c′0,0

∫
A z

2 dz

c′1,0
∫
A dz − c′0,0

∫
A z dz

|

=|
(
− 2tci(soe

iαoc0,1

∫
A

dz − soeiαoc0,0
∫
A
z̄ dz)

+ soe
iαoc0,2

∫
A

dz − soeiαoc0,0
∫
A
z2 dz

)
(
soe

iαoc1,0

∫
A

dz − soeiαoc0,0
∫
A
z dz

)−1
|

=|−2tci(c0,1
∫
A dz − c0,0

∫
A z dz) + c0,2

∫
A dz − c0,0

∫
A z

2 dz

c1,0
∫
A dz − c0,0

∫
A z dz

|

=sci ,

(B.41)

α′ci =− 1

3
arg(
−2t′ci (c′0,1

∫
A dz − c′0,0

∫
A z̄ dz) + c′0,2

∫
A dz − c′0,0

∫
A z̄

2 dz

c′1,0
∫
A dz − c′0,0

∫
A z dz

)

=− 1

3
arg(
−2tci(c0,1

∫
A dz − c0,0

∫
A z dz) + c0,2

∫
A dz − c0,0

∫
A z

2 dz

c1,0
∫
A dz − tic0,0

∫
A dz − c0,0

∫
A z dz + tic0,0

∫
A dz

)

=− 1

3
arg(
−2tci(c0,1

∫
A dz − c0,0

∫
A z dz) + c0,2

∫
A dz − c0,0

∫
A z

2 dz

c1,0
∫
A dz − c0,0

∫
A z dz

)

=αci ,
(B.42)

t′co =−
c′0,0∫
A dz

=− soe
iαoc0,0∫
A dz

=soe
iαotco,

(B.43)

s′co =| (s′ci )3
∫
A dz

c′1,0
∫
A dz − c′0,0

∫
A z dz

|

=| (sci)
3
∫
A dz

soeiαoc1,0
∫
A dz − soeiαoc0,0

∫
A z dz

|

=| (sci)
3
∫
A dz

soeiαo(c1,0
∫
A dz − c0,0

∫
A z dz)

|

=
sco
so
,

(B.44)
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α′co = arg(
eiα

′c
i
∫
A dz

c′1,0
∫
A dz − c′0,0

∫
A z dz

)

= arg(
eiα

c
i
∫
A dz

soeiαo(c1,0
∫
A dz − c0,0

∫
A z dz)

)

= arg(
eiα

c
i
∫
A dz

c1,0
∫
A dz − c0,0

∫
A z dz

)− arg(eiαo)

=αco − αo.

(B.45)

Insertion into (B.7) with si = 1, αi = ti = to = 0 leads to

f ′c(z) =s′co soe
i(α′c

o +αo)
(
f(s′ci sie

i(α′c
i +αi)z + sie

iαit′ci + ti) + to +
t′co

soeiαo

)
=s′co soe

i(α′c
o +αo)

(
f(s′ci e

iα′c
i z + t′ci ) +

t′co
soeiαo

)
=
sco
so
soe

i(αco−αo+αo)
(
f(scie

iαci z + tci) +
soe

iαotco
soeiαo

)
=scoe

iαco
(
f(scie

iαci z + tci) + tco
)

=f c(z),

χA′c(z) =χAc(z)
(B.46)

and therefore

g′c(z) =gc(z), (B.47)

which shows that the normalized function is invariant to outer rotation and
scaling.

Putting the four parts together shows, that the normalized function is in-
variant to inner and outer translation, rotation, and scaling, which proves
Theorem 2.

C Proof of Corollary 3

The function

g(z) =f(z)χBr(0)(z) (C.1)

has the normalized function
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gc(z) =f c(z)χBr(0)(z), (C.2)

with

f c(z) =sceiα
c

(f(e−iα
c

z) + tc). (C.3)

The transformed function

g′(z) =f ′(z)χBr(0)(z), (C.4)

with

f ′(z) =seiα(f(e−iαz) + t) (C.5)

has the normalized function

g′c(z) =f ′c(z)χBr(0)(z), (C.6)

with

f ′c(z) =s′ceiα
′c(
f ′(e−iα

′c
z) + t′c

)
=s′ceiα

′c
(
seiα

(
f(e−iαe−iα

′c
z) + t

)
+ t′c

)
=s′csei(α

′c+α)
(
f(e−i(α+α

′c)z) + t+
t′c

seiα

)
.

(C.7)

The lower order moments of g′ satisfy by (33)

c′0,0 =seiα(c0,0 + t
∫
Br(0)

dz),

c′1,0 =se2iαc1,0

(C.8)

and the normalizing parameters of (50) and (52)
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t′c =−
c′0,0∫

Br(0)
dz

=−
seiα(c0,0 + t

∫
Br(0)

dz)∫
Br(0)

dz

=seiα(− c0,0∫
Br(0)

dz
− t)

=seiα(tc − t),
s′c =|c′1,0|−1

=|se2iαc1,0|−1

=s−1|c1,0|−1

=
sc

s
,

α′c =− 1

2
arg(c′1,0)

=− 1

2
arg(se2iαc1,0)

=− 1

2
arg(e2iα)− 1

2
arg(c1,0)

=αc − α.

(C.9)

Insertion into (C.7) leads to

f ′c(z) =s′csei(α
′c+α)

(
f(e−i(α+α

′c)z) + t+
t′c

seiα

)
=
sc

s
sei(α

c−α+α)
(
f(e−i(α+α

c−α)z) + t+
seiα(tc − t)

seiα

)
=sceiα

c

(f(e−iα
c

z) + tc)

=f c(z),

χBr(0)′c(z) =χBr(0)c(z)

(C.10)

and therefore

g′c(z) =gc(z), (C.11)

which shows that the normalized function is invariant to outer translation and
scaling and total rotation and therefore proves Corollary 3.
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