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Abstract. Correlation is a common technique for the detection of shifts.
Its generalization to the multidimensional geometric correlation in Clif-
ford algebras has been proven a useful tool for color image processing,
because it additionally contains information about a rotational misalign-
ment. But so far the exact correction of a three-dimensional outer rota-
tion could only be achieved in certain special cases.

In this paper we prove that applying the geometric correlation
iteratively has the potential to detect the outer rotational misalignment
for arbitrary three-dimensional vector fields.

We further present the explicit iterative algorithm, analyze its ef-
ficiency detecting the rotational misalignment in the color space of a
color image. The experiments suggest a method for the acceleration of
the algorithm, which is practically tested with great success.

Keywords. geometric algebra, Clifford algebra, registration, outer rota-
tion, correlation, iteration, color image processing.

1. Introduction

In signal processing correlation is a basic technique to determine the similarity
or dissimilarity of two signals. It is widely used for image registration, pattern
matching, and feature extraction [1, 20]. The idea of using correlation for
registration of shifted signals is that at the very position, where the signals
match, the correlation function will take its maximum, compare [16].

For a long time the generalization of this method to multidimensional
signals has only been an amount of single channel processes. The elements of
Clifford algebras C`p,q, compare [5, 10], have a natural geometric interpreta-
tion, so the analysis of multivariate signals expressed as multivector valued
functions is a very reasonable approach.



2 Bujack, Scheuermann and Hitzer

Scheuermann [18] used Clifford algebras for vector field analysis. To-
gether with Ebling [6, 7] they developed a pattern matching algorithm based
on geometric convolution and correlation and accelerated it by means of a
Clifford Fourier transform and its convolution theorem.

At about the same time Sangwine et al. [17] introduced a generalized hy-
percomplex correlation for quaternions. Together with Ell and Moxey [13, 14]
they used it to represent color images, interpreted as vector fields, geometri-
cally. They discovered that this geometric correlation not only contains the
translational difference of images given by the position of the magnitude
peak, but also information about a possible rotational misalignment of two
signals and showed how to apply them to approximately correct color space
distortions.

Even though lately other approaches to work with color images were
made [8, 19, 12] we want to extend the work and ideas of Moxey, Ell and
Sangwine using hypercomplex correlation. We analyze vector fields v(x) :
Rm → R3 ⊂ C`3,0 with values interpreted as elements of the geometric alge-
bra C`3,0 and their copies produced from outer rotations. A great advantage
of the geometric algebra is that many statements generally hold not just for
vectors but for all multivectors. We will make use of that and state the more
general formulae, whenever possible.

Original vector
field: v(x)

Inner rotation:
v(R−α(x))

Outer rotation:
R(v(x))

Total rotation:
Rα(v(R−α(x)))

Figure 1. Effect of the rotation operator Rα applied to an
example vector field in different ways.

The term rotational misalignment with respect to multivector fields is
ambiguous. In general three types of rotations can be distinguished, compare
Figure 1. Let RP ,α be an operator, that describes a mathematically positive
rotation by the angle α ∈ [0, π]1 in the plane P , spanned by the unit bivector
P . We say two multivector fields A(x),B(x) : Rm → C`3,0 differ by an outer
rotation if they suffice

A(x) = RP ,α(B(x)). (1.1)

Independent from their position x the multivector A(x) is the rotated copy
of the multivector B(x). This kind of rotation appears for example in color
images, when the color vector space is turned, but the picture is not moved,

1As in [13] we encode the sign in the bivector P and deal with positive angles only.
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compare [14]. In the theory of differential geometry this kind of rotation is
referred to as a rotation in the tangential space of a manifold. The property
of the argument space to be a vector field is not necessary to define an outer
rotation. It can as well be a submanifold of a vector field. Since this paper
works with outer rotations, please note that all results also hold for this
generalization. It can, for example, detect the color space misalignment of
a colored sphere like a globe, which can be of interest for the geoscientific
domain of satellite images covering the earth.

In contrast to that for m ≤ 3 an inner rotation is described by

A(x) = B(RP ,−α(x)). (1.2)

Here the starting position of every vector is rotated by −α then the old vector
is reattached at the new position. It still points into the old direction. The
inner rotation is suitable to describe the rotation of a color image. The color
does not change when the picture is turned.

In the case of bijective fields A(x),B(x) : R3 → R3 ⊂ C`3,0 a total
rotation is a combination of the previous ones defined by

A(x) = RP ,α(B(RP ,−α(x))). (1.3)

It can be interpreted as coordinate transform, that means as looking at the
multivector field from another point of view. The positions and the multivec-
tors are stiffly connected during the rotation.

With respect to the definition of the correlation there are different for-
mulae in current literature, [7, 14]. We prefer the following one because it
satisfies a geometric generalization of the Wiener-Khinchin theorem and be-
cause it coincides with the definition of the standard cross-correlation for
complex functions in the special case of C`0,1, [16]. For vector fields they

mostly coincide anyways because of v(x) = v(x), where the overbar denotes
reversion.

Definition 1.1. The geometric cross correlation of two multivector valued
functions A(x),B(x) : Rm → C`p,q is a multivector valued function defined
by

(A ?B)(x) :=

∫
Rm

A(y)B(y + x) dmy, (1.4)

where A(y) denotes the reversion
n∑
k=0

(−1)
1
2k(k−1)〈A(y)〉k.

To simplify the notation we will only analyze the correlation at the
origin. If the vector fields also differ by an inner shift this can for exam-
ple be detected by evaluating the magnitude of the correlation [9] or phase
correlation of the field magnitudes [11]. Our methods can then be applied
analogously to that translated position.
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2. Motivation

In two dimensions a mathematically positive2 outer rotation of a vector field
R2 → R2 ⊂ C`2,0 by the angle α takes the shape

Re12,α(v(x)) = e−αe12v(x). (2.1)

So the product of the vector field and its copy at any position x ∈ Rm yields

Re12,α(v(x))v(x) = e−αe12v(x)v(x) = v(x)2e−αe12 , (2.2)

with v(x)2 = v(x)v(x) = ||v(x)||22 ∈ R and the rotation can fully be re-
stored by rotating back with the inverse of (2.2) or explicitly calculating α
as described in [9]. This property is inherited by the geometric correlation at
the origin

(Re12,α(v) ? v)(0) =

∫
Rm

Re12,α(v(x))v(x) dmx = ||v(x)||2L2e−αe12 ,

(2.3)
which is to be preferred because of its robustness.

In three dimensions not only the angle but also the plane of rotation P
has to be detected in order to reconstruct the whole transform. We want to
analyze if the geometric correlation at the origin contains enough information
here, too. First we look at two vectors u,v that suffice u = RP ,α(v). Their
geometric product

uv =u · v + u ∧ v = |u||v|
(

cos(∠(u,v)) + sin(∠(u,v))
u ∧ v

|u ∧ v|
)

(2.4)

contains an angle and a plane and therefore seems very motivating. But
the rotation RP ,α we used is not necessarily the one which is described by
R u∧v

|u∧v| ,∠(u,v). These two rotations only coincide if the vectors lie completely

within the plane P . The reason for that is as follows. A vector and its rotated
copy do not contain enough information to reconstruct the rotation that pro-
duced the copy. Figure 2 shows some of the infinitely many different rotations
that can result in the same copy. Regard the set of all circles C, that contain
the end points of u and v and are located on the sphere S|u|(0) with radius
r = |u| = |v| centered at the origin. Every plane that includes a circle in C is
a possible plane for the rotation from v to u. The information we get out of
the geometric product belongs to the plane that fully contains both vectors.
This rotation is the one that has the smallest angle of all possible ones and
forms the largest circle on a great circle of the sphere, shown on the very left
in Figure 2.

For the product of just two vectors the information from the geometric
product is sufficient to realign them, but for a whole vector field the detected
rotation from the correlation will in general not be the correct one. Moxey
et al. already stated in [14] that the hypercomplex correlation can effectively
compute the rotation over two images, but that the perfect mapping can only

2anticlockwise
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S|u|(0)

vu

P
C

Rotation with the

smallest angle

S|u|(0)

vu

P
C

Rotation with a

rather small angle

S|u|(0)

Cu

P

v

Rotation with a

rather larger angle

S|u|(0)

Cu

P

v

Rotation with the

largest angle

Figure 2. Different rotations of a vector u that lead to the
same result v.

be found, if specific conditions hold, for example if the images consist of one
color only.

Vector field from (2.5) Vector field from (2.7)

Figure 3. Visualization of the vector fields from the exam-
ple using CLUCalc [15]. Original fields are depicted in black,
rotated copies in red, corrected fields after application of the
correlation rotor in blue.

Example. The geometric correlation of the vector field

v(x) =


e1, for x1, x2, x3 ∈ (−1, 1), x1 ≥ 0,

e2, for x1, x2, x3 ∈ (−1, 1), x1 < 0,

0, else,

(2.5)
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and its copy rotated by Re13,
π
2

, which are shown on the left of Figure 3,
suffices

(Re13,
π
2

(v) ? v)(0) =

∫ 1

−1

∫ 1

−1
(

∫ 1

0

e3e1 dx1 +

∫ 0

−1
e2e2 dx1) dx3 dx2

=− 4e13 + 4

=
√

32e−
π
4 e13 .

(2.6)

Here the unit bivector e13 indeed describes the rotational plane we looked
for, but the angle π

4 is only half the angle of the original rotation. The result
is that the restored field and the original one do not match.

In general the correlation even detects a wrong rotational plane, consider
for example

v(x) =


e1 + e2, for x1, x2, x3 ∈ (−1, 1), x1 ≥ 0,

e2, for x1, x2, x3 ∈ (−1, 1), x1 < 0,

0, else,

(2.7)

rotated by Re13,
π
2

, depicted on the right of Figure 3. The geometric correlation

will return the plane spanned by e12 + e13 + e23 and the angle arctan(
√
3
2 ),

which are both incorrect.

In the following section we will analyze how effective the correlation
can calculate the rotation and prove, that despite the impression, the previ-
ous example gives, the geometric correlation contains enough information to
reconstruct the misalignment.

3. Outer Rotation and the Geometric Correlation

The three-dimensional mathematically positive outer rotation (1.1) of a vec-
tor field by the angle α ∈ [0, π] along the plane P , spanned by the unit
bivector P , takes the shape

RP,α(v(x)) =e−
α
2 P v(x)e

α
2 P = e−αP v‖P (x) + v⊥P (x). (3.1)

So the product of the vector field and its copy at any position

RP,α(v(x))v(x) =e−αP v‖P (x)2 + (e−αP − 1)v‖P (x)v⊥P (x) + v⊥P (x)2

(3.2)
does usually not simply yield the rotation we looked for, like in the two-
dimensional case, but a rather good approximation depending on the parallel
and the orthogonal parts of the vector field with respect to the plane of
rotation. In order to keep the notation short we partly drop the argument
x of the vector fields v(x) by just writing v and assume without loss of
generality

||RP,α(v)||2L2 = ||v||2L2 = ||v‖P ||2L2 + ||v⊥P ||2L2 = 1. (3.3)
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Lemma 3.1. Let v ∈ L2(Rm,R3,0 ⊂ C`3,0) be a square integrable vector field
and RP,α(v) its copy from an outer rotation. The rotational misalignment
of RP,α(v) does not increase if we apply the outer rotation encoded in the
normalized geometric cross correlation

(RP,α(v) ? v)(0)

||RP,α(v)||L2 ||v||L2

. (3.4)

Proof. We denote the polar form of the normalized geometric cross correla-
tion by eϕQ with the unit bivector Q and ϕ ∈ [0, π]. So using (3.2) and the
assumption (3.3) we get

eϕQ =(RP,α(v) ? v)(0)

=

∫
e−αP v‖P (x)2 + (e−αP − 1)v‖P (x)v⊥P (x) + v⊥P (x)2 dmx

=e−αP ||v‖P ||2L2 + (e−αP − 1)

∫
v‖P v⊥P dx + ||v⊥P ||2L2

(3.5)

with the scalar part

cos(ϕ) =〈eϕQ〉0 = cos(α)||v‖P ||2L2 + ||v⊥P ||2L2 (3.6)

and the bivector part

sin(ϕ)Q = 〈eϕQ〉2

= − sin(α)P ||v‖P ||2L2 + (− sin(α)P + cos(α)− 1)

∫
v‖P v⊥P dx

(3.7)
with squared magnitude

||〈eϕQ〉2||2 = sin(α)2||v‖P ||4L2 + (2− 2 cos(α)) ||
∫

v‖P v⊥P dx||2. (3.8)

Thats why we know the explicit expressions for

Q =
〈eϕQ〉2
||〈eϕQ〉2||

(3.9)

and

ϕ = atan2(||〈eϕQ〉2||, 〈eϕQ〉0). (3.10)

The outer rotation encoded in the correlation applied to RP,α(v) takes the
shape

e−
ϕ
2 Q RP,α(v)e

ϕ
2 Q =e−

ϕ
2 Qe−

α
2 P ve

α
2 P e

ϕ
2 Q. (3.11)

The composition of the two rotations is a rotation itself. It shall be written
as

e−
β
2 Rve

β
2 R (3.12)

with the unit bivector R and angle β ∈ [0, π], so we get the relation

e
β
2 R = e

α
2 P e

ϕ
2 Q. (3.13)
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To determine whether or not it is smaller than the original one, it is sufficient
to compare β and α. We will prove that β ≤ α by proving the inequality

β

2
= arg(e

β
2 R) = arg(e

α
2 P e

ϕ
2 Q) ≤ arg(e

α
2 P ) =

α

2
. (3.14)

We evaluate (3.13) by inserting (3.9) and (3.7) and get

e
β
2 R =e

α
2 P e

ϕ
2 Q

= cos(
α

2
) cos(

ϕ

2
) + cos(

α

2
) sin(

ϕ

2
)Q + sin(

α

2
) cos(

ϕ

2
)P

+ sin(
α

2
) sin(

ϕ

2
)PQ

= cos(
α

2
) cos(

ϕ

2
) + sin(

α

2
) cos(

ϕ

2
)P

+
sin(ϕ2 )

||〈eϕQ〉2||
(
− cos(

α

2
) sin(α)P ||v‖P ||2L2

+ cos(
α

2
)(cos(α)− 1)

∫
v‖P v⊥P dx

− cos(
α

2
) sin(α)P

∫
v‖P v⊥P dx + sin(

α

2
) sin(α)

∫
v‖P v⊥P dx

+ sin(
α

2
) sin(α)||v‖P ||2L2 + sin(

α

2
)(cos(α)− 1)P

∫
v‖P v⊥P dx

)
,

(3.15)
and applying addition theorems on the

∫
v‖P v⊥P dx-parts leads to

cos(
α

2
)(cos(α)− 1)

∫
v‖P v⊥P dx + sin(

α

2
) sin(α)

∫
v‖P v⊥P dx

=
(

cos(
α

2
) cos(α) + sin(

α

2
) sin(α)− cos(

α

2
)
) ∫

v‖P v⊥P dx

=
(

cos(
α

2
− α)− cos(

α

2
)
) ∫

v‖P v⊥P dx

= 0,

(3.16)

and on the P
∫
v‖P v⊥P dx-parts to

sin(
α

2
)(cos(α)− 1)P

∫
v‖P v⊥P dx− cos(

α

2
) sin(α)P

∫
v‖P v⊥P dx

=
(

sin(
α

2
) cos(α)− cos(

α

2
) sin(α)− sin(

α

2
)
)
P

∫
v‖P v⊥P dx

=
(

sin(
α

2
− α)− sin(

α

2
)
)
P

∫
v‖P v⊥P dx

= −2 sin(
α

2
)P

∫
v‖P v⊥P dx.

(3.17)
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We insert (3.16) and (3.17) in (3.15) and get

e
β
2 R = cos(

α

2
) cos(

ϕ

2
) + sin(

α

2
) cos(

ϕ

2
)P

+
sin(ϕ2 )

||〈eϕQ〉2||
(
− cos(

α

2
) sin(α)P ||v‖P ||2L2

+ sin(
α

2
) sin(α)||v‖P ||2L2 − 2 sin(

α

2
)P

∫
v‖P v⊥P dx

)
.

(3.18)

Its scalar part

〈e
β
2 R〉0 = cos(

α

2
) cos(

ϕ

2
) +

1

||〈eϕQ〉2||
sin(

α

2
) sin(

ϕ

2
) sin(α)||v‖P ||2L2

(3.19)
is generally positive, because α,ϕ ∈ [0, π] and the bivector part

〈e
β
2 R〉2 = sin(

α

2
) cos(

ϕ

2
)P − 1

||〈eϕQ〉2||
cos(

α

2
) sin(

ϕ

2
) sin(α)||v‖P ||2L2P

− 2

||〈eϕQ〉2||
sin(

α

2
) sin(

ϕ

2
)P

∫
v‖P v⊥P dx

(3.20)
has the squared norm

||〈e
β
2 R〉2||2 = sin(

α

2
)2 cos(

ϕ

2
)2 − 1

||〈eϕQ〉2||
cos(

ϕ

2
) sin(

ϕ

2
) sin(α)2||v‖P ||2L2

+
1

||〈eϕQ〉2||2
cos(

α

2
)2 sin(

ϕ

2
)2 sin(α)2||v‖P ||4L2

+
4

||〈eϕQ〉2||2
sin(

α

2
)2 sin(

ϕ

2
)2||
∫

v‖P v⊥P dx||2.

(3.21)
For the next inequalities we use, that all appearing parts are positive and
that the tangent and the quadratic function are monotonically increasing for
positive arguments. We get

β

2
≤ α

2
⇔ arctan(

||〈e
β
2 R〉2||

〈e β2 R〉0
) ≤ arctan(

sin(α2 )

cos(α2 )
)

⇔ ||〈e
β
2 R〉2||

〈e β2 R〉0
≤

sin(α2 )

cos(α2 )

⇔ ||〈e
β
2 R〉2||2 cos(

α

2
)2||〈eϕQ〉2||2 ≤ sin(

α

2
)2〈e

β
2 R〉20||〈eϕQ〉2||2.

(3.22)
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Now we insert the scalar part (3.19) and the bivector norm (3.21)

sin(
α

2
)2 cos(

α

2
)2 cos(

ϕ

2
)2||〈eϕQ〉2||2 + sin(

ϕ

2
)2 cos(

α

2
)4 sin(α)2||v‖P ||4L2

− ||〈eϕQ〉2|| cos(
ϕ

2
) sin(

ϕ

2
) cos(

α

2
)2 sin(α)2||v‖P ||2L2

+ 4 sin(
ϕ

2
)2 sin(

α

2
)2 cos(

α

2
)2||
∫

v‖P v⊥P dx||2

≤ sin(
α

2
)2 cos(

α

2
)2 cos(

ϕ

2
)2||〈eϕQ〉2||2 + sin(

α

2
)4 sin(

ϕ

2
)2 sin(α)2||v‖P ||4L2

+ 2 cos(
α

2
) cos(

ϕ

2
) sin(

α

2
)3 sin(

ϕ

2
) sin(α)||〈eϕQ〉2|| ||v‖P ||2L2 ,

(3.23)
remove the identical parts, identify 2 sin(α2 ) cos(α2 ) = sin(α), divide both

sides by sin(ϕ2 ) sin(α)2, and get

⇔ sin(
ϕ

2
) cos(

α

2
)4||v‖P ||4L2 − ||〈eϕQ〉2|| cos(

ϕ

2
) cos(

α

2
)2||v‖P ||2L2

+ sin(
ϕ

2
)||
∫

v‖P v⊥P dx||2

≤ sin(
α

2
)4 sin(

ϕ

2
)||v‖P ||4L2 + cos(

ϕ

2
) sin(

α

2
)2||〈eϕQ〉2|| ||v‖P ||2L2 .

⇔ sin(
ϕ

2
)
(
(cos(

α

2
)4 − sin(

α

2
)4)||v‖P ||4L2 + ||

∫
v‖P v⊥P dx||2

)
≤ cos(

ϕ

2
)||〈eϕQ〉2||(sin(

α

2
)2 + cos(

α

2
)2)||v‖P ||2L2

⇔ sin(
ϕ

2
)(cos(α)||v‖P ||4L2 + ||

∫
v‖P v⊥P dx||2)

≤ cos(
ϕ

2
)||〈eϕQ〉2|| ||v‖P ||2L2 .

(3.24)

In (3.24) we identified cos(α2 )4− sin(α2 )4 = cos(α) and sin(α2 )2 +cos(α2 )2 = 1.

We further use (3.6) to replace cos(α) by (cos(ϕ) − ||v⊥P ||2L2)||v‖P ||−2L2 and

(3.7) to replace ||〈eϕQ〉2|| by sin(ϕ), which leads to

⇔ sin(
ϕ

2
)
(
(cos(ϕ)− ||v⊥P ||2L2)||v‖P ||2L2 + ||

∫
v‖P v⊥P dx||2

)
≤ cos(

ϕ

2
) sin(ϕ)||v‖P ||2L2

⇔ sin(
ϕ

2
)
(
(2 cos(

ϕ

2
)2 − 1− ||v⊥P ||2L2)||v‖P ||2L2 + ||

∫
v‖P v⊥P dx||2

)
≤ 2 sin(

ϕ

2
) cos(

ϕ

2
)2||v‖P ||2L2

⇔ sin(
ϕ

2
)
(
− ||v‖P ||2L2 − ||v‖P ||2L2 ||v⊥P ||2L2 + ||

∫
v‖P v⊥P dx||2

)
≤ 0.

(3.25)
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The Cauchy Schwartz inequality (CSI) of L2(R) guarantees

||
∫

v‖P (x)v⊥P (x) dx||2 ≤(

∫
||v‖P (x)v⊥P (x)|| dx)2

=(

∫
||v‖P (x)|| ||v⊥P (x)|| dx)2

=〈||v‖P (x)||, ||v⊥P (x)||〉2L2

CSI
≤ ||v‖P ||2L2 ||v⊥P ||2L2 ,

(3.26)

so we know, that the part in the brackets in the last line of (3.25) is always
negative. The sine is always positive for ϕ ∈ [0, π]. Therefore in the shape of
(3.25) it is easy to recognize that the inequality β ≤ α is generally fulfilled.

�

We want to apply Lemma 3.1 repeatedly and construct a series of de-
creasing angles, describing the remaining misalignment of the vector fields.
The next theorem shows that the misalignment vanishes by iteration.

Theorem 3.2. For a square integrable vector field v ∈ L2(Rm,R3,0 ⊂ C`3,0)

let β : [0, π)→ [0, π) be a function defined by β(α) = 2 arg(e
α
2 P e

ϕ
2 Q) with

eϕQ =
(RP,α(v) ? v)(0)

||RP,α(v)||L2 ||v||L2

. (3.27)

Then the series α0 = α, αn+1 = β(αn) converges to zero for all α ∈ [0, π).

Proof. If α = 0 or ||v‖P ||L2 = 0 the series is trivial because RP,α(v) = v
almost everywhere. From now on let α 6= 0 and ||v‖P ||L2 6= 0. Lemma 3.1
shows that the magnitudes of the series are monotonically decreasing. Since
they are bound from below by zero the series is convergent. We denote the
limit by a = limn→∞ αn. The function β(α) is continuous, so we can swap it
and the limit

a = lim
n→∞

αn+1 = lim
n→∞

β(αn) = β( lim
n→∞

αn) = β(a). (3.28)

This equality is the sharp case of the inequality (3.14). For α 6= 0 also ϕ 6= 0,
because from (3.6), ||v‖P ||2L2 + ||v⊥P ||2L2 = 1, and ||v‖P ||L2 6= 0 we get

ϕ = 0⇔ 1 = cos(ϕ) = cos(α)||v‖P ||2L2 + ||v⊥P ||2L2 ⇔ cos(α) = 1⇔ α = 0

(3.29)
Therefore the transformative steps that lead from (3.14) to (3.25) in the
proof of Lemma 3.1 are biconditional. So analogously to these steps (3.28) is
equivalent to

sin(
ϕ

2
)(−||v‖P ||2L2 − ||v‖P ||2L2 ||v⊥P ||2L2 + ||

∫
v‖P v⊥P dx||2) = 0

(3.30)
The part in the brackets is strictly negative, because of the Cauchy Schwartz
inequality (3.26) and ||v‖P ||L2 6= 0, therefore equality can only occur for
sin(ϕ2 ) = 0, which means ϕ = 0. Like in (3.29) this leaves a = 0 as the only
possible limit. �
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4. Algorithm and Experiments

Motivated by Theorem 3.2 we present Algorithm 1 for the iterative detection
of outer rotations of vector fields using geometric cross correlation. It has
been designed with attention to the efficient use of memory and to handle
possible exceptions. In the case of α = π the correlation might be real valued
and can not be distinguished from the cases where no rotation is necessary. To
fix this exception we suggest an artificial disturbance after the first step of the
algorithm, compare Line 7 in Algorithm 1. If it is not real the new misalign-
ment will be smaller, because any misalignment is smaller than π. In all other
cases Theorem 3.2 guarantees the convergence. Our results also apply to the
geometric product of the vector fields at any position x ∈ Rm,v‖P (x) 6= 0,
but we prefer the geometric correlation because of its robustness.

Corollary 4.1. Algorithm 1 returns the correct rotational misalignment for
any three-dimensional linear vector field and its copy generated from an ar-
bitrary outer rotation.

Algorithm 1 Detection of outer misalignment of vector fields in 3D

Input: vector field: v(x), rotated pattern: u(x), desired accuracy: ε > 0,
1: ϕ = π, α = 0,P = e12, iter = 0,
2: while ϕ > ε do
3: iter + +,
4: Cor = (u(x) ? v(x))(0),
5: ϕ = arg(Cor),
6: Q = 〈Cor〉2|〈Cor〉2|−1,
7: if iter = 1 and ϕ = 0 then
8: ϕ = π/4,
9: Q = e12,

10: end if
11: u(x) = e−

ϕ
2 Qu(x)e

ϕ
2 Q,

12: α′ = 2 arg(e
α
2 P e

ϕ
2 Q),

13: P = 〈eα2 P e
ϕ
2 Q〉2|〈e

α
2 P e

ϕ
2 Q〉2|−1,

14: α = α′,
15: end while
Output: angle: α, plane: P , corrected pattern: u(x), iterations needed: iter.

We practically tested Algorithm 1 applying it to continuous, linear vec-
tor fields R3 → C`3,0, that vanish outside the unit square. The vector fields
were determined by nine random coefficients with magnitude not bigger than
one. The plane and the angle α ∈ [0, π] of the outer rotation were also chosen
randomly. The average results of 1000 applications can be found in Table 1.
The error was measured from the sum of the squared differences of the deter-
mined and the given coefficients. The experiments showed that high numbers
of necessary iterations are much more likely to happen for angles with high
magnitude and that the average error decreases linearly with the demanded
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accuracy. But most importantly we observed that Algorithm 1 converged in
all linear cases, just as the theory suggested. The hypercomplex correlation
method of Moxey et al. in [14] can be interpreted as one step of Algorithm
1, i.e., to terminate without iteration. The last row of Table 1 shows how the
application of more iterations increases the accuracy. All tests we performed
on a computer with two Intel Xeon E5620 processors and 32GB RAM. Even
though parallelization of the computation can easily be accomplished, the
given results refer to the linear computation.

number of iterations 0 1 10 100 1000

absolute error 3.925 0.915 0.039 10−4 10−12

error per coefficient 0.436 0.102 0.004 10−5 10−13

duration in seconds 0 0 10−6 0.0004 0.0031
Table 1. Results of Algorithm 1 applied to continuous lin-
ear vector fields depending on the number of iteration steps.

Further, we tested the algorithm in a more practical and applied way.
In contrast to the previous experiments, we worked with discrete data that
does not obey any linearity properties. In this case we can not calculate the
correlation analytically. We have to approximate it.

Representatively, we chose a picture of Leipzig University with 885 times
622 pixels. The components of the vector field are the red, green and blue
values of the image, which are each scaled to [−0.5, 0.5]. The image features
a balanced distribution of the three channels, the average is (0.14, 0.15, 0.15).
We applied a rotation in color space about the red axis by an angle of 1.7 and
let Algorithm 1 detect it. The visual results after 1, 10, 100, and 1000 steps
of iteration can be seen in Figure 4 and the computational errors in Table 2.
The absolute error is the sum of the norms of the differences

number of iterations 0 1 10 100 1000

absolute error 258136 2428 2068 309 10−7

error per pixel 0.4676 0.0044 0.0037 0.0005 10−13

duration in seconds 3.1 3.5 7.3 44 413
Table 2. Results of Algorithm 1 applied to the distorted
color image of Leipzig University depending on the number
of iteration steps.

We also tested Algorithm 1 on other images with differing sized and
color distributions and different axes and angles of rotational distortion. As
it turned out, it hardly influenced the outcome of the algorithm. The chosen
picture is a good representative of the overall properties of the algorithm.
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Original image Distorted image

Restored image after 1 step Restored image after 10 steps

Restored image after 100 steps Restored image after 1000 steps

Figure 4. Effect of Algorithm 1 applied to the distorted
color image of Leipzig University after several steps of iter-
ation.

Our experiments showed, that the algorithm always converged for any
color image and any rotational misalignment. Please note that the discrete
case is not covered by Theorem 3.2, so this result was not guaranteed. But
they also revealed the high number of necessary iterations to approximate
the original image in a way that the difference can not be told by the human
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eye. This high computational effort makes Algorithm 1 very inefficient and
of no practical relevance.

5. Acceleration

An interesting observation is the big jump into the right direction the algo-
rithm performs during its first step. That explains the approach of Moxey et
al. [14] and its success. Further the result of the first step is almost the same
for every initial misalignment, no matter in which plane the color space had
been rotated in the first place. An explanation for these phenomenons can be
given as follows. The algorithm immediately finds a plane in which increasing
rotational misalignment leads to small growing differences in the image and
continues to move along this plane. This effect can be seen in our example
image. Most of the pixels are very close to their original color after the first
step already. The remaining distortion can only be observed in the yellow
stipe of the tram and the blue windows. As a result the speed of convergence
in this plane is rather small because all the pixels that have achieved their
original color already will decrease the angle of rotation with their real valued
contribution to the correlation.

This observation gives rise to an idea to accelerate the algorithm. We
can assume the plane that is detected during the second step of the algorithm
to be very close to the correct plane of the remaining misalignment. Therefore
the correlation of only the parallel components will return almost the correct
angle as in the 2D case (2.2). Iterative Application of this idea leads to
Algorithm 2.

We implemented Algorithm 2 and tested it for some example images.
The result was astonishing. We could generally observe convergence and the
speed was about 100 times the speed of Algorithm 1. The errors and calcu-
lation times of Algorithm 2 can be found in Table 3.

number of iterations 0 1 2 3 4

absolute error 258136 2337 17.595 0.0966 0.0005

error per pixel 0.4676 0.0042 10−5 10−7 10−9

duration in seconds 3.1 4.7 6.0 7.4 8.9
Table 3. Results of Algorithm 2 applied to the distorted
color image of Leipzig University depending on the number
of iteration steps.

A visualization of the approximation using the accelerated algorithm
can be found in Figure 5. Already after the second step no difference to the
original image can be seen any more. That is why we did not print the visual
results of the following steps.
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Algorithm 2 Fast detection of outer misalignment of vector fields in 3D

Input: vector field: v(x), rotated pattern: u(x), desired accuracy: ε > 0,
1: ϕ = π, α = 0,P = e12, iter = 0,
2: while ϕ > ε do
3: iter + +,
4: Cor = (u(x) ? v(x))(0),
5: ϕ = arg(Cor),
6: Q = 〈Cor〉2|〈Cor〉2|−1,
7: if iter = 1 and ϕ = 0 then
8: ϕ = π/4,
9: Q = e12,

10: end if
11: u(x) = e−

ϕ
2 Qu(x)e

ϕ
2 Q,

12: Cor = (u(x) ? v(x))(0),
13: Q = 〈Cor〉2|〈Cor〉2|−1,
14: Cor = (u‖Q(x) ? v‖Q(x))(0),
15: ϕ = arg(Cor),

16: u(x) = e−
ϕ
2 Qu(x)e

ϕ
2 Q,

17: α′ = 2 arg(e
α
2 P e

ϕ
2 Q),

18: P = 〈eα2 P e
ϕ
2 Q〉2|〈e

α
2 P e

ϕ
2 Q〉2|−1,

19: α = α′,
20: end while
Output: angle: α, plane: P , corrected pattern: u(x), iterations needed: iter.

Please note that the convergence of Algorithm 2 has only been observed
experimentally but not yet been proved. The qualities of the plane chosen by
the algorithm deserve fundamental theoretical analysis in the future.

6. Conclusions and Outlook

The geometric cross correlation of two vector fields is scalar and bivector
valued. Moxey et al. [14] realized that this rotor yields an approximation
of the outer rotational misalignment of vector fields. We analyzed that the
quality of this approximation depends on the parallel and the orthogonal
parts of the fields and proved in Lemma 3.1 that the application of this rotor
to the outer rotated copy of any vector field never increases the misalignment
to the original field. In Theorem 3.2 we refined this fact and showed that
iterative application completely erases the misalignment of the rotationally
misaligned vector fields.

We presented Algorithm 1, which additionally contains exception han-
dling, and experimentally confirmed our theoretical findings. Our experiments
showed general convergence even in the case of discrete fields, but a low rate
of convergence. From experimental observation we deduced the idea for Al-
gorithm 2 and practically showed its superior performance.
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Original image Distorted image

Restored image after 1 step Restored image after 2 steps

Figure 5. Effect of Algorithm 2 applied to the distorted
color image of Leipzig University after one and two steps of
iteration.

All in all we consider the convergence of the iterative geometric corre-
lation as in Algorithm 1 to be of no practical relevance, but an interesting
feature of the geometric product. Its acceleration, as shown in Algorithm 2,
is worth further studies.

We currently analyze the application of this approach to total rotations
in [4]. Further we examine the properties of the plane the iterative correla-
tion suggests from the second step on. This may be the key to proving the
convergence of Algorithm 2. In our future work we want to further accelerate
the algorithm by means of a fast Fourier transform and a geometric convo-
lution theorem [3]. Another promising idea to pursue is the development of
a customized convolution Clifford [2] that is able to detect the misalignment
without iteration. Practically it might be of interest how the algorithm is
able to deal with vector fields, that are disturbed or differ by more complex
transformations and if it is able to minimize the squared differences if the
fields are not equal after rotation but only similar.
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