Detection of Outer Rotations on 3D-Vector
Fields with Iterative Geometric Correlation

Roxana Bujack, Gerik Scheuermann, and Eckhard Hitzer

Abstract Correlation is a common technique for the detection of shifts. Its gen-
eralization to the multidimensional geometric correlation in Clifford algebras has
proven a useful tool for color image processing, because it additionally contains in-
formation about rotational misalignment.

In this paper we prove that applying the geometric correlation iteratively can de-
tect the outer rotational misalignment for arbitrary three-dimensional vector fields.
Thus, it develops a foundation applicable for image registration and pattern match-
ing. Based on the theoretical work we have developed a new algorithm and tested it
on some principle examples.

1 Introduction

In signal processing correlation is a basic technique to determine the similarity or
dissimilarity of two signals. It is widely used for image registration, pattern match-
ing, and feature extraction [1, 19]. The idea of using correlation for registration of
shifted signals is that at the very position, where the signals match, the correlation
function will take its maximum, compare [15].

For a long time the generalization of this method to multidimensional signals has
only been an amount of single channel processes. The elements of Clifford algebras
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Cl, 4, compare [4, 9], have a natural geometric interpretation, so the analysis of
multivariate signals expressed as multivector valued functions is a very reasonable
approach.

Scheuermann [17] used Clifford algebras for vector field analysis. Together with
Ebling [5, 6] they developed a pattern matching algorithm based on geometric con-
volution and correlation and accelerated it by means of a Clifford Fourier transform
and its convolution theorem.

At about the same time Sangwine et. al. [16] introduced a generalized hypercom-
plex correlation for quaternions. Together with Ell and Moxey [12, 13] they used it
to represent color images, interpreted as vector fields, geometrically. They discov-
ered that this geometric correlation not only contains the translational difference of
images given by the position of the magnitude peak, but also information about a
possible rotational misalignment of two signals and showed how to apply them to
approximately correct color space distortions.

Even though lately other approaches to work with color images were made
[7, 18, 11] we want to extend the work and ideas of Moxey, Ell and Sangwine
using hypercomplex correlation. We analyze vector fields v(x) : R” — R3 C Cl3
with values interpreted as elements of the geometric algebra C/3 ¢ and their copies
produced from outer rotations. A great advantage of the geometric algebra is that
many statements generally hold not just for vectors but for all multivectors. We will
make use of that and state the more general formulae, whenever possible.

—
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Fig. 1 From left to right: a vector field, its copy from outer rotation, inner rotation, total rotation.

The term rotational misalignment with respect to multivector fields is ambiguous.
In general three types of rotations are distinguished, compare Figure 1. Let Rp o
be an operator, that describes a mathematically positive rotation by the angle o €
[0, 7]! in the plane P, spanned by the unit bivector P. We say two multivector fields
A(x),B(x) : R™ — Cl3 ¢ differ by an outer rotation if they suffice

A(x) =Rpo(B(x)). 1)

Independent from their position x the multivector A(x) is the rotated copy of the
multivector B(x). This kind of rotation appears for example in color images, when

! As in [12] we encode the sign in the bivector P and deal with positive angles only.
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the color vector space is turned, but the picture is not moved, compare [13]. In
contrast to that for m < 3 an inner rotation is described by

A(x) =B(Rp _q(x)). 2)

Here the starting position of every vector is rotated by —a then the old vector is
reattached at the new position. It still points into the old direction. The inner rotation
is suitable to describe the rotation of a color image. The color does not change when
the picture is turned. In the case of bijective fields A(x),B(x) : R? = R3 C Cl39 a
total rotation is a combination of the previous ones defined by

A(x) = Rp a(B(Rp,-a(x)))- 3)

It can be interpreted as coordinate transform, that means as looking at the multivec-
tor field from another point of view. The positions and the multivectors are stiffly
connected during the rotation.

With respect to the definition of the correlation there are different formulae in
current literature, [6, 13]. We prefer the following one because it satisfies a geomet-
ric generalization of the Wiener-Khinchin theorem and because it coincides with
the definition of the standard cross-correlation for complex functions in the spe-
cial case of Cfy 1, [15]. For vector fields they mostly coincide anyways because of
v(x) = v(x), where the overbar denotes reversion.

Definition 1.1 The geometric cross correlation of two multivector valued functions
A(x),B(x) : R™ — Cl, 4 is a multivector valued function defined by

(A*B)(9:= [ AWB(y+x)d"y, @

where A(y) denotes the reversion Y, (— 1)%]‘(1‘_1) (A(Y) )k
k=0

To simplify the notation we will only analyze the correlation at the origin. If the vec-
tor fields also differ by an inner shift this can for example be detected by evaluating
the magnitude of the correlation [8] or phase correlation of the field magnitudes
[10]. Our methods can then be applied analogously to that translated position.

2 Motivation

In two dimensions a mathematically positive® outer rotation of a vector field R? —
R? C Cl, o by the angle o takes the shape

Rep a(V(X)) = e” %12y (x). )

2 anticlockwise
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So the product of the vector field and its copy at any position x € R yields
Reys.a(V(X))V(x) = e *12v(x)v(x) = v(x)%e %12, (6)

with v(x)? = v(x)v(x) = ||v(x)]|3 € R and the rotation can fully be restored by
rotating back with the inverse of (6) or explicitly calculating & as described in [8].
This property is inherited by the geometric correlation at the origin

(Rep,a(v) xv)(0) =/Rm Reyz.a (VX)) V(%) d"x = [[v(x)||}e~ %2, ©)

which is to be preferred because of its robustness.

In three dimensions not only the angle but also the plane of rotation P has to
be detected in order to reconstruct the whole transform. We want to analyze if the
geometric correlation at the origin contains enough information here, too. First we
look at two vectors u, v that suffice u = Rp (V). Their geometric product

uAv
)

uv =u-v+uAv=ullv|(cos(ZL(u,v))+sin(Z(u,v)) A

®)

contains an angle and a plane and therefore seems very motivating. But the rotation

Rp o we used is not necessarily the one which is described by R wiv Z(uy)- These
Av|? ’

two rotations only coincide if the vectors lie completely within tlhe‘ plane P. The
reason for that is as follows. A vector and its rotated copy do not contain enough
information to reconstruct the rotation that produced the copy. Figure 2 shows some
of the infinitely many different rotations that can result in the same copy. Regard
the set of all circles C, that contain the end points of u and v and are located on
the sphere S}y (0) with radius » = |u| = |v| centered at the origin. Every plane that
includes a circle in C is a possible plane for the rotation from v to u. The information
we get out of the geometric product belongs to the plane that fully contains both
vectors. This rotation is the one that has the smallest angle of all possible ones and
forms the largest circle on a great circle of the sphere, shown on the very left in
Figure 2.

Fig. 2 Different rotations of a vector u that lead to the same result v.
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For the product of just two vectors the information from the geometric product
is sufficient to realign them, but for a whole vector field the detected rotation from
the correlation will in general not be the correct one. Moxey et. al. already stated
in [13] that the hypercomplex correlation can effectively compute the rotation over
two images, but that the perfect mapping can only be found, if specific conditions
hold, for example if the images consist of one color only.

Fig. 3 Left: vector field (9). Right: vector field (11). Original fields are depicted in black, rotated
copies in red, corrected fields after application of the correlation rotor in blue using CLUCalc [14].

Example 1 The geometric correlation of the vector field

€, forx17x27x3€(_171)7x1 207
v(x)=1qe, forxi,x,x;e(—1,1),x <0, 9)
0, else,

and its copy rotated by R, which are shown on the left of Figure 3, suffices

n
€13,3’

1 orlopl 0
(Rey, 5 (V) 5V)(0) :/ 1 / 1(/0 ese; dx; +/1e2e2 dx1) dys dxs
——dejs+4 (10)
—\/32¢ 713,
Here the unit bivector €13 indeed describes the rotational plane we looked for, but

the angle ¥ is only half the angle of the original rotation. The result is that the

restored field and the original one do not match.
In general the correlation even detects a wrong rotational plane, consider for
example
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€] +e27 for-x1>-x27-x3 € (—171),)(1 Z 07
v(x) =< e, Sor x1,x2,x3 € (=1,1),x1 <0, (11)
0, else,

rotated by R 35 depicted on the right of Figure 3. The geometric correlation will

return the plane spanned by e, + e13 + €3 and the angle arctan(?), which are

both incorrect.

In the following section we will analyze how effective the correlation can calculate
the rotation and prove, that despite the impression, the previous example gives, the
geometric correlation contains enough information to reconstruct the misalignment.

3 Outer Rotation and the Geometric Correlation

The three-dimensional mathematically positive outer rotation (1) of a vector field
by the angle « € [0, w] along the plane P, spanned by the unit bivector P, takes the
shape

Rpa(v(x)) =¢ 2Pv(x)e2? = e Py p(x) + v p(x). (12)

So the product of the vector field and its copy at any position
Rp o (v(x))v(x) :e*‘)‘Pv”P(X)2 +(e7*P — Dvp(x)vip(x) + vip(x)? (13)

does usually not simply yield the rotation we looked for, like in the two-dimensional
case, but a rather good approximation depending on the parallel and the orthogonal
parts of the vector field with respect to the plane of rotation. In order to keep the
notation short we partly drop the argument x of the vector fields v(x) by just writing
v and assume without loss of generality

2 2 2 2
IRpa(W)IIz2 = [IVI[72 = [[vjell2 +[[voell = 1. (14)

Lemma 3.1 Let v € L>(R™ R*Y C Cl3) be a square integrable vector field and
Rp (V) its copy from an outer rotation. The rotational misalignment of Rp (V)
does not increase if we apply the outer rotation encoded in the normalized geometric

cross correlation
(Rpa(v)+v)(0)

IRpa (V)2 IVl

15)

Proof. We denote the polar form of the normalized geometric cross correlation by
¢%Q with the unit bivector Q and ¢ € [0,7]. So using (13) and the assumption (14)
we get
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e?? =(Rpa(v)* )(0)
= / Pvip(x)? + (e = Dvp(x)vie(x) +vie(x)*d"x (g6
:e_aPHVHPHLz (T =1) [vppvipdxe+[vel
with the scalar part
cos() =(e72)g = cos(a) [vjp 12 + [Ivip1% (17)
and the bivector part

sin(¢)Q = (%),

(18)
=— sin(a)P||VHP||12‘2 + (—sin(a)P+cos(a) — 1) /VHPVLP dx
with squared magnitude
1(6#@)2] P =sin(@)?|[vjpllf> + (2~ 2c0s(@)) | [ vjpvpax]. (19)
Thats why we know the explicit expressions for
<e¢Q>2
Q=— "= (20)
[1{e2Q)a]|
and
¢ =atan2(|[(e?®)2 ], (¢?®)o). 2y

The outer rotation encoded in the correlation applied to Rp (V) takes the shape
e 70 Rpa(V )e%Q —e 7Q 5Py TP, 1Q, (22)

The composition of the two rotations is a rotation itself. It shall be written as

B PR . - .
e~ 2Rve 2R with the unit bivector R and angle 8 € [0, 7], so we get the relation

AR _%P,%Q (23)

To determine whether or not it is smaller than the original one, it is sufficient to
compare B and . We will prove that B < a by proving the inequality

g = arg(egR) = arg(e?Pe %Q) <arg(efP) = Z. (24)

We evaluate (23) by inserting (20) and (18) and get
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TR — 8P, 80
:cos(%)cos(%)—&-Cos(%)sin(%)Q-i—sm(2)cos( )P—l—sm(g)sin(%)PQ
:cos(%)cos(g)+sin(%)cos(§) Izm(‘?%)ll( cos(g)sin(a)an”Png
+cos(%)(cos(a) - 1)/v”vapdx—cos(%)sm((x)P/VHvapdx

L O .o
+sm(5) s1n((x)||VHP||i2 + s1n(§)(cos(oc) - I)P/VHPVLP dx

(04
+sin(§)sin(o&)/vupvlpdx),

(25)
and applying addition theorems on the [ V| pV Lp dx-parts leads to
(cos(g)(cos(a)—l)/v v dx+sin(g)sin(a)/v v dx)ﬂ
o Lo o sin($ ) Jvpvipdx
= (cos(—=)cos(a) +sin(—=)sin(et) — cos(—
(cos( ) cos(a) +sin(5 ) sinfer) —cos(5) == g™ 06
= (cos( E_ —COS(Q)) sin(2) J vypup dx
2 2 [[{e?Q)2 ||
=0,
and on the P [ v)pv, p dx-parts to
o« o sin(ﬂ)
sm—cosa—lP/VV dx —cos smaP/vv dx) ——2—
( (2)( (a)—1) |PV_LP (2) ) |PV_LP )||<€"’Q>2|\
.« o, . o\ sin(5)P [ vypv pdx
= (sin(=)cos(a) — cos(— ) sin(@) — sin( =
(sin 5 ) cos(@) — cos(5 ) sinfer) sin( ) 2
o o, sin(%)P [vjpv pdx
sin(— — a) —sin(—
= (i @) =it = rewoy
sin(2)P [vypv pdx
din (Oc) () fQHP 1P
2 [[{e#Q)- ||
(27)
We insert (26) and (27) in (25) and get
ER _cos(@ycos(®) 1 sin( @ cos( ®
ez —cos(z)cos(2)+sm(2)cos(2)P
+ﬂ(—cos(3)sin(a)m|v 12 (28)
[1{e#Q)]] 2 i

VLT .o
+Sln(§)51n(a)||V||P||i2 —ZSIH(E)P/VllvaP dx).
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Its scalar part
B a 1 o, . .
(e7R)g :cos(z)cos(%)—kmsm( )sm(g)sm(a)HVHPHiz (29)

is generally positive, because o, ¢ € [0, 7] and the bivector part

(e#R)> =sin( % )cos( )P - mcos(a)sin(g)sin(a)HVHPHizP .
msm(a)sm P/V“pVLPdX
has the squared norm
€59 =sin( 5 cos( ) — s cos( 5 sin(§) sinfao? el
+WCOS(%)2Sm(§)2sm(a) [viells 31)
+msin(g sin( ||/VHPVLdeH

For the next inequalities we use, that all appearing parts are positive and that the tan-
gent and the quadratic function are monotonically increasing for positive arguments.
We get

B : o
g < % = arctan(”izgziz”) < arctan(csii((%)))
o lfe2al] _ sin() (32)
<67R> cos(5)
& [[{eFR)alPeos(5 Il < sin(5)* =R (el .

Now we insert the scalar part (29) and the bivector norm (31)
. a a . oy .
sin( %2 cos( )2 cos( 2 )2(¢9Q)a| 2+ sin( 22 cos( %) sin(er) e

~ ll(e#®)allcos(£)sin(%) cos(Z)2 sin(@) vyl 2

. ., a OC
—|—4sm(§)2sm(§)2 — H/V”vapdxH (33)
.o VLAV .
<sin($ PPoos(5 P eos($)? ||<e‘PQ>2\|2+sm<5>4sm<§>2sm<a>2||vup||iz
o o .
+2c05(5)cos( £ )sin( 5 ) sin(2) sin(@)][(€#)a |l [1vye 2,
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remove the identical parts, identify 2sin(§)cos(§) = sin(e), divide both sides by
sin(%)sin(c)?, and get

sin($)cos(Z)llviplli = [l €#®allcos(£) cos(5 I el 22

wsin( )] [ vipvopax|?

<sin(3)*sin(5 )||VHP||L2+COS((§)SIH( P12l Vel 3
¢ %y 9
csin($) ((cos(5)* =sin(5))IvypllEs + 1| [ vipviraxlP)
Scos<§>\|<e"’0>z\|<sin<§> +cos(3))| Vel 72

() ¢
esin(2)cos(@) pllf + 1| [ vipvipdxl) < cos(2)1(e @)l [viel 2.

In (34) we have identified cos($)* —sin(%)* = cos(ot) and sin(%)? +cos(%)? = 1.
We further use (17) to replace cos(c) by (cos(@) — ||VM)||L2)||VHI>||L2 and (18) to
replace ||(e?Q),|| by sin(¢), which leads to

esin(2) ((cos(p) — [v.el F2)lIvjel 3+ 1| [ vypvipdx|?)

9
<cos<§>sm< >|\vup||Lz
2 2 2

“sin(= ( ZCOS 2-1- HVLP||L2)||VHP||L2+||/VHPVLPdXH ) (35)
¢
(5)005( )||VHP||L2

<:>Slll (_HVHPHL2 HV”PHLZHVLPH[}+||/VHPVLPdXH ) 0.

The Cauchy Schwartz inequality (CSI) of L?(R) guarantees

| [ vip)vee(0 i <( [ 1vp(x)v.e(0] dx)?
([ 1) [v2p(0]]dx)?
=(lvip®)[l,[IvLp(®)1)72

CSI
2 2
<|vipll2llvLpll}2s

(36)

so we know, that the part in the brackets in the last line of (35) is always negative.
The sine is always positive for @ € [0, 7]. Therefore in the shape of (35) it is easy to
recognize that the inequality § < « is generally fulfilled. a
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We want to apply Lemma 3.1 repeatedly and construct a series of decreasing angles,
describing the remaining misalignment of the vector fields. The next theorem shows
that the misalignment vanishes by iteration.

Theorem 3.2 For a square integrable vector field v € L*(R™,R*Y C Cl3) let B
[0,) — [0, 1) be a function defined by B(a) = 2arg(e%Pe%Q) with

vo_ _(Rea(v)+v)(0)
R a1z M2

(37

Then the series 0y = o, 0,11 = () converges to zero for all a € [0, 7).

Proof. If a = 0 or |[vp||;2 = O the series is trivial because Rpg(v) = v almost
everywhere. From now on let & # 0 and ||v|p|[;2 # 0. Lemma 3.1 shows that the
magnitudes of the series are monotonically decreasing. Since they are bound from
below by zero the series is convergent. We denote the limit by a = lim,,_, ,. The
function () is continuous, so we can swap it and the limit

a= lim ¢,y = lim B(e,) = B(lim o) = B(a). (38)

This equality is the sharp case of the inequality (24). For o # 0 also ¢ # 0, because
from (17), ||v||1:||i2 + ||Vu>||i2 =1, and [|vp||;2 # 0 we get

0=0%1=cos(p) = cos(oc)||VHP||iz + HVLPHiz scos(a)=1<a=0 (39)

Therefore the transformative steps that lead from (24) to (35) in the proof of Lemma
3.1 are biconditional. So analogously to these steps (38) is equivalent to

.9
sin(2) ([ 1vyel B2 = [l Vel B2+ 1] [ vipvipdxP) =0 @0)
The part in the brackets is strictly negative, because of the Cauchy Schwartz in-
equality (36) and |[vp||;> # O, therefore equality can only occur for sin($) =0,
which means ¢ = 0. Like in (39) this leaves a = 0 as the only possible limit. ad

4 Algorithm and Experiments

Motivated by Theorem 3.2 we present Algorithm 1 for the iterative detection of
outer rotations of vector fields using geometric cross correlation. It has been de-
signed with attention to the efficient use of memory and to handle possible excep-
tions. In the case of @ = 7 the correlation might be real valued and can not be dis-
tinguished from the cases where no rotation is necessary. To fix this exception we
suggest an artificial disturbance after the first step of the algorithm, compare Line
7 in Algorithm 1. If it is not real the new misalignment will be smaller, because
any misalignment is smaller than 7. In all other cases Theorem 3.2 guarantees the
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convergence. Our results also apply to the geometric product of the vector fields at
any position x € R", vp(x) # 0, but we prefer the geometric correlation because of
its robustness.

Corollary 4.1 Algorithm 1 returns the correct rotational misalignment for any
three-dimensional linear vector field and its copy generated from an arbitrary outer
rotation.

Algorithm 1 Detection of outer misalignment of vector fields in 3D
Input: vector field: v(x), rotated pattern: u(x), desired accuracy: € > 0,

I: o=m,a=0,P=e,iter =0,

2: while ¢ > ¢ do

3 iter ++,

4 Cor = (u(x) % v(x))(0),
5. @ =arg(Cor),

6: Q= (Cor)y|(Cor)s|7",

7:  ifiter =1 and @ =0 then
8: o=r/4,

9: Q=ep,

10:  endif

I1: ux)= e*gQu(x)e%Q,

12: o =2arg(e?Pe?Q),

130 P=(efPelQ|(eiPeiQ)y| !,

14 a=d,

15: end while

Output: angle: a, plane: P, corrected pattern: u(x), iterations needed: iter.

We practically tested Algorithm 1 applying it to continuous, linear vector fields
R3 — Cl3 ), that vanish outside the unit square. The vector fields were determined
by nine random coefficients with magnitude not bigger than one. The plane and the
angle a € [0, 7] of the outer rotation were also chosen randomly. The results for
one million applications can be found in Table 1. The error was measured from the
square root of the sum of the squared differences of the determined and the given
coefficients. The experiments showed that high numbers of necessary iterations are
much more likely to happen for angles with high magnitude and that the average
error decreases linearily with the demanded accuracy. But most importantly we ob-
served that Algorithm 1 converged in all linear cases, just as the theory suggested.
The hypercomplex correlation method of Moxey et. al. in [13] can be interpreted as
one step of Algorithm 1, i.e., to terminate without iteration. The last row of Table 1
shows how the application of more iterations increases the accuracy.
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Table 1 Results of Algorithm 1 depending on the required accuracy

determined accuracy eps 0.1 0.01 0.001 0.0001 0.00001
average error 0.17 0.02 0.002 0.0002 0.00002
maximal error 249 1.29 0.47 0.12 0.001
average number of iterations 4.23 11.76 21.44 31.78 42.26

5 Conclusions and Outlook

The geometric cross correlation of two vector fields is scalar and bivector valued.
Moxey et. al. [13] realized that this rotor yields an approximation of the outer ro-
tational misalignment of vector fields. We analyzed that the quality of this approxi-
mation depends on the parallel and the orthogonal parts of the fields and proved in
Lemma 3.1 that the application of this rotor to the outer rotated copy of any vec-
tor field never increases the misalignment to the original field. In Theorem 3.2 we
refined this fact and showed that iterative application completely erases the mis-
alignment of the rotationally misaligned vector fields. We presented Algorithm 1,
which additionally contains exception handling, and experimentally confirmed our
theoretical findings for linear vector fields.

We currently analyze the application of this approach to total rotations in [3].
Other ideas to pursue are extensions of our results to higher dimensions or arbitrary
multivector fields. Practically it will be of major interest how the algorithm is able
to deal with vector fields, that are discrete, disturbed, differ by global translations,
or are non-linear and if it is able to minimize the squared differences if the fields
are not equal after rotation but only similar. In our future work we want to use the
algorithm for image registration of real world data, accelerate it by means of a fast
Fourier transform and a geometric convolution theorem [2], and compare it to estab-
lished methods like, invariant descriptors, phase correlation, the Kabsch algorithm,
methods using spherical harmonics, logpolar coordinates, or wavelets with standard
and geometric algebra interpretations, with respect to reliability and runtime.
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