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1 The Method in a Nutshell

Moment
projection onto basis

Moment Invariant
independent from certain trfo.

Normalization
trfo. into standard position

2 Moments

Moments are the projections onto a function space basis. We
use the monomial basis.

Definition 1. For n 2 N and a three-dimensional vector field v :
R3 ! R3

with compact support, the n-th order vector moment
tensor Mi0i1...in is defined as

Mi0i1...in =
Z

R3
xi1...xinvi0(x)d3x.

b11 = (1,0,0)T b111 = (x,0,0)T b112 = (y,0,0)T b113 = (z,0,0)T

Figure 1: The first basis vector fields of the monomial basis.

Theorem 1. The vector moment tensor of order n is a con-

travariant tensor of rank n+1 and weight 1.

3 Normalization

We put the pattern into a pre-defined standard position.
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Figure 2: Scalar normalization.

The transformations for flow field pattern recognition with re-
spect to which we normalize, take the shape

v0(x) =sRv(R�1x)+ t,

with velocity s 2R, background flow t 2R3, and rotation R 2 SO3.

Original field Orientation Background flow Velocity

Figure 3: Flow field normalization

4 Moment Invariants
Instead of comparing flow fields,
we compare their normalized mo-
ments. The moments that were not
used in the normalization process
form a complete and independent
set of invariants.

m1,0,0

m0,0,0

The similarity of a position x and a scale s in a flow field to a pat-
tern independent of background flow, velocity and orientation is
given by the reciprocal of the Euclidean distance in the moment
feature space

S(x,s) = (Â
p,q,r

|mpattern
p,q,r �mf ield

p,q,r |2)�1.

Algorithm 1 Flow field pattern recognition
Input: flow field, pattern, maximal moment order

1: calculate the moments of the pattern
2: normalize the moments of the pattern
3: for all positions x and all scales s do
4: calculate the moments of the field at point x with size s
5: normalize them
6: 4D similarity field: S(x,s) = (Âp,q,r |mpattern

p,q,r �mf ield
p,q,r (x,s)|2)�1

7: 3D density field: draw sphere around x with radius s and
value S(x,s)

8: end for
Output: density field.

Moment invariants are powerful and flexible flow field descrip-
tors.

5 Results

We constructed a dataset with dif-
ferent flow patterns with varying
positions, sizes, velocities, back-
ground flows, and orientations
to give a nice overview on the be-
havior of the moment invariants. It
is described in detail in the following
table and illustrated in Figure 4.

ID Position Basic pattern
(0,0,0) a very weak source

(A) (2,-2,2) a sink
(B) (1,0,2) an oval vortex with

core line along the
z-axis, drawn out
along the x-axis

(C) (2,2,-2) a bipole in the x-y-
plane

(D) (2,-2,-2) a vortex added to a
quadrupole in the x-
y-plane

(E) (-2,-2,-2) a saddle
(F) (-2,2,-2) a short vortex with

core line along the
axis (0,�1,1)T

(G) (-2,0,2) a long vortex with
small diameter and
its core line along
the y-axis

Figure 4: The transfer function of
the volume rendering.

Figure 5: Illustration of the flow structures in the data set. The color
bar represents the velocity.

Figure 6: The query
pattern: a vortex.

Maximal order 2 Maximal order 3

Figure 7: More complicated structures, like
the quadrupole (D), need higher order mo-
ments to be detected.

Figure 8: The output of the algorithm: The similarity of the moments is encoded in
the density and the size of the match is encoded in the radius of the spheres. The
resulting scalar field is visualized using volume rendering. Additionally, the probability
of a point to be a seedpoint of a streamline is the similarity of the moments.


