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Abstract. As it will turn out in this paper, the recent hype about most of the Clifford Fourier transforms is not thoroughly
worth the pain. Almost every one that has a real application is separable and these transforms can be decomposed into a
sum of real valued transforms with constant multivecor factors. This fact makes their interpretation, their analysis, and their
implementation almost trivial.
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INTRODUCTION

In recent literature, three different approaches to hypercomplex Fourier transforms have been considered. As in [1],
we can identify them as follows:

• A: Eigenfunction approach
• B: Generalized roots of -1 approach
• C: Characters of spin group approach

Approach A is studied in many papers like [2, 3, 4], approach B comprehensively in [5]. The third approach is followed
in [6, 7]. In this paper, we will only work with transforms from Definition 1, which was introduced in [5]. Because even
though, the concept of approach C differs very much from approach B, the resulting transforms can all be expressed
as special cases of this definition.

Definition 1 (Geometric Fourier transform). The general geometric Fourier transform (GFT) FF1,F2(A) of a
multivector field A : Rm = Rp′,q′ →C`p,q, p′+q′ = m ∈ N, p+q = n ∈ N is defined by the calculation rule

FF1,F2(A)(u) :=
∫
Rm ∏

f∈F1

e− f (x,u)A(x) ∏
f∈F2

e− f (x,u) dmx, (1)

with two ordered finite sets F1 = { f1(x,u), ..., fµ(x,u)}, F2 = { fµ+1(x,u), ..., fν(x,u)} of mappings fl(x,u) : Rm×
Rm→I p,q,∀l = 1, ...,ν and x,u ∈ Rm.

Example 2. Definition 1 covers all known transforms from approach B and approach C, for example, the Clifford
Fourier transform introduced by Jancewicz [8] and expanded by Ebling and Scheuermann [9] and Hitzer and Mawardi
[10] or the one established by Sommen in [11] and re-established by Bülow [12]. Further we have the quaternionic
Fourier transform by Ell [13] and later by Bülow [12], the spacetime Fourier transform and the two-sided transform by
Hitzer [14, 15], the Clifford Fourier transform for color images by Batard et al. [6], the Cylindrical Fourier transform
by Brackx et al. [16], the transforms by Felsberg [17] or Ell and Sangwine [18, 19].

In the following section, we will introduce a powerful tool for the analysis of the geometric Fourier transforms:
the trigonometric transform. Then, we will first use it to reveal the true nature of the major subclass of separable
GFTs, which covers almost every applied Clifford Fourier transform. In the last section of the paper, we will enjoy the
advantages of this insight and show how it leads to a convolution theorem that is superior to the one in [20] because it
requires less restrictions.



THE TRIGONOMETRIC TRANSFORM

In contrast to the hypercomplex definition in [20], we want to define real valued general trigonometric transforms, that
only consist of scalar appearances of sines and cosines. Therefore we use the following notation.

Notation 3. For a multivector A ∈ Ip,q = {B ∈C`p,q,B2 ∈ R−} ⊂C`p,q that squares to a negative real number and
j ∈ {0,1}, we define

eA
j :=

{
cos(||A||), if j = 0,
sin(||A||), if j = 1

(2)

with the norm ||A||=
√
−A2 ∈ R.

Lemma 4. The exponential of a multivector A ∈Ip,q ⊂C`p,q that squares to a negative real number satisfies

eA = ∑
j∈{0,1}

(
A
||A||

) jeA
j . (3)

Definition 5 (Trigonometric transform). Let A :Rm→C`p,q be a multivector field, x,u∈Rm vectors, F1,F2 two ordered
finite sets of µ , respectively ν−µ , mappings Rm×Rm→Ip,q ⊂C`p,q, and j ∈ {0,1}µ ,k ∈ {0,1}(ν−µ) multi-indices.
The Trigonometric Transform (TT) FF j

1 ,F
k
2

is defined by

FF j
1 ,F

k
2
(A)(u) :=

∫
Rm

µ

∏
l=1

e− fl(x,u)
jl

A(x)
ν

∏
l=µ+1

e− fl(x,u)
kl

dmx (4)

with e− f (x,u)
j from Notation 3.

Remark 6. The e− f (x,u)
jl

∈R are in the center of the geometric algebra, therefore there is no use with regards to content
to distinguish the order of their appearances. It will be helpful though to stress their relation to the GFT.

Example 7. The standard cosine transform is a special case of this definition with F1 = /0,F2 = {2πixu},k∈{0,1}1 = 0

Fc(A)(u) =
∫
R

A(x)cos(xu)dx = F /0,(2πixu)0(A)(u). (5)

THE TRUE NATURE OF SEPARABLE GFT

The definition of separability has already been introduced in [5].

Definition 8. We call a mapping f : Rm×Rm→C`p,q x-separable or separable with respect to its first argument, if it
suffices

f = || f (x,u)||i(u), (6)

where i : Rm → C`p,q is a function that does not depend on x. Analogously we call it separable or separable with
respect to both arguments, if it suffices

f = || f (x,u)||i, (7)

with constant i ∈C`p,q.

Analogously, a geometric Fourier transform that consists of separable mappings F1,F2 is called separable. Sepa-
rability is a central quality for multiplication, shift and convolution properties of GFT. Almost every transform from
approach B and C is separable. If there exist any non separable transforms that are invertible, is an issue of current
research. Therefore, the importance of this class of GFTs is obvious because the applications of a transform that puts
a function into a space from which it may never return are rather sparse.

Example 9. From all the examples of special cases of Definition 1 in the introduction, only some cases of the two-
sided transform [15] and the cylindrical transform [16] for dimensions higher than two are not separable.



In this section, we want to take a closer look at this vast class of GFTs. By expressing them by means of the
trigonometric transforms, we will be able to reveal their true nature: they are combinations of simple real-valued
transforms.

Theorem 10 (GFT decomposition into TT). Any geometric Fourier transform FF1,F2 with x-separable mappings
∀l = 1, ...,ν : fl(x,u) = || fl(x,u)||il(u) of a multivector field A(x) = ∑r ar(x)er is the sum of real valued trigonometric
transforms FF j

1 ,F
k
2
(ar)(u) ∈ R with multivector factors

FF1,F2(A)(u) = ∑
r

∑
j∈{0,1}µ ,

k∈{0,1}(ν−µ)

µ

∏
l=1

(−il(u)) jl FF j
1 ,F

k
2
(ar)(u)er

ν

∏
l=µ+1

(−il(u))kl .
(8)

Corollary 11. A geometric Fourier transform FF1,F2 with separable mappings ∀l = 1, ...,ν : fl(x,u)= il || fl(x,u)||, i2l ∈
R− of a multivector field A(x) = ∑r ar(x)er is the sum of real valued trigonometric transforms FF j

1 ,F
k
2
(ar)(u) ∈R with

constant multivector factors

FF1,F2(A)(u) = ∑
r

∑
j∈{0,1}µ ,

k∈{0,1}(ν−µ)

µ

∏
l=1

(−il) jl FF j
1 ,F

k
2
(ar)(u)er

ν

∏
l=µ+1

(−il)kl .
(9)

That means, if we interpret a multivector valued signal as many signals, saved in 2n channels, the separable
geometric Fourier transforms can be interpreted as real valued transforms, that work one after another on each of
the channels, get added in a certain way and written into certain channels depending on the multivector factor. As a
result they can be interpreted, analyzed, and implemented with the same tools as the classical real-valued transforms.

CONVOLUTION THEOREM FOR NOT COORTHOGONAL EXPONENTS

So far in this paper, the description of the GFTs by means of the TT has mainly lead to the negative meaning of
demystification. We showed, that most of GFTs do not differ very much from the real valued trigonometric transforms.
That is why, one may regard them as not very interesting. Now, it is time to use the positive side of the demystification
and exploit the simplicity to derive new properties, that could not be found without it.

In [20], we presented a convolution theorem for general geometric Fourier transforms with F1,F2 being coorthogo-
nal, separable and linear with respect to the first argument. Coorthogonality can be interpreted as mutual commutation
or anticommutation among the functions.

Example 12. Every example of special cases of Definition 1 from the introduction is coorthogonal.

Although coorthogonality is fulfilled by almost every popular geometric Fourier transform, we want to deduce a
convolution theorem that holds for functions that are separable and linear with respect to the first argument but have
arbitrary commutation properties. This formulation of the theorem is especially useful for the treatment of steerable
Fourier transforms over the manifolds of square roots of minus one as in [21], which are generally not coorthogonal.

Definition 13. Let A(x),B(x) : Rm→C`p,q be two multivector fields. Their convolution (A∗B)(x) is defined as

(A∗B)(x) :=
∫
Rm

A(y)B(x− y)dmy. (10)

Theorem 14 (convolution). Let A,B,C : Rm → C`p,q be multivector fields with A(x) = (C ∗ B)(x) and F1,F2 be
separable and linear with respect to the first argument, then the geometric Fourier transform of A satisfies the
convolution property

FF1,F2(A)(u) = ∑
j, j′∈{0,1}µ

k,k′∈{0,1}(ν−µ)

µ

∏
l=1

(−il(u)) jl+ j′l FF j
1 ,F

k
2
(C)(u)F

F j′
1 ,Fk′

2
(B)(u)

ν

∏
l=µ+1

(−il(u))kl+k′l .
(11)

Corollary 15 (convolution). Let A,B,C : Rm → C`p,q be multivector fields with A(x) = (C ∗B)(x) and F1,F2 each
consist of functions in the center of C`p,q, then the the GFT satisfy the simple product formula

FF1,F2(A)(u) =FF1,F2(C)(u)FF1,F2(B)(u). (12)



CONCLUSIONS

In this paper, we show how any separable GFT can be decomposed into real-valued transforms with constant muli-
tivector factors. This has two big consequences. On one hand, it takes away most of their mystery and some of their
fascination. But on the other hand, we provide a powerful tool for their comprehension and their analysis, which for
example leads to a superior convolution theorem.

REFERENCES

1. Roxana Bujack, Hendrik De Bie, Nele De Schepper, and Gerik Scheuermann. Convolution products for hypercomplex fourier
transforms. Journal of Mathematical Imaging and Vision, pages 1–19, 2013.

2. Fred Brackx, Nele de Schepper, and Frank Sommen. The Clifford-Fourier Transform. Journal of Fourier Analysis and
Applications, Vol. 11, No. 6, 2005.

3. Fred Brackx, Nele De Schepper, and Frank Sommen. The Clifford-Fourier integral Kernel in even eimensional Euclidean
space. Journal of Mathematical Analysis and Applications, 365(2):718–728, 2010.

4. Hendrik De Bie, Nele de Schepper, and Frank Sommen. The Class of Clifford-Fourier Transforms. Accepted for publication
in Journal of Fourier Analysis and Applications, pages 1198–1231, 2010.

5. Roxana Bujack, Gerik Scheuermann, and Eckhard Hitzer. A General Geometric Fourier Transform. In Eckhard Hitzer and
Stephen J. Sangwine, editors, Quaternion and Clifford Fourier Transforms and Wavelets, Trends in Mathematics 27, pages
155–176. Springer Basel, 2013.

6. Thomas Batard, Michel Berthier, and Christophe Saint-Jean. Clifford Fourier Transform for Color Image Processing. In
E. Bayro-Corrochano and G. Scheuermann, editors, Geometric Algebra Computing: In Engineering and Computer Science,
pages 135–162. Springer, London, UK, 2010.

7. Thomas Batard and Michel Berthier. Clifford-fourier transform and spinor representation of images. In Eckhard Hitzer and
Stephen J. Sangwine, editors, Quaternion and Clifford Fourier Transforms and Wavelets, Trends in Mathematics 27, pages
177–195. Springer Basel, 2013.

8. Bernard Jancewicz. Trivector fourier transformation and electromagnetic field. Journal of Mathematical Physics,
31(8):1847–1852, 1990.

9. Julia Ebling. Visualization and Analysis of Flow Fields using Clifford Convolution. PhD thesis, University of Leipzig,
Germany, 2006.

10. Eckhard Hitzer and Bahri Mawardi. Clifford Fourier Transform on Multivector Fields and Uncertainty Principles for
Dimensions n = 2 (mod 4) and n = 3 (mod 4). Advances in Applied Clifford Algebras, 18(3):715–736, 2008.

11. Frank Sommen. Hypercomplex Fourier and Laplace Transforms I. Illinois Journal of Mathematics, 26(2):332–352, 1982.
12. Thomas Bülow. Hypercomplex Spectral Signal Representations for Image Processing and Analysis. Inst. f. Informatik u.

Prakt. Math. der Christian-Albrechts-Universität zu Kiel, 1999.
13. Todd A. Ell. Quaternion-Fourier Transforms for Analysis of Two-Dimensional Linear Time-Invariant Partial Differential

Systems. In Proceedings of the 32nd IEEE Conference on Decision and Control, volume 2, pages 1830–1841, San Antonio,
TX , USA, 1993.

14. Eckhard Hitzer. Quaternion fourier transform on quaternion fields and generalizations. Advances in Applied Clifford Algebras,
17(3):497–517, 2007.

15. Eckhard Hitzer. Two-sided Clifford Fourier transform with two square roots of -1 in Cl(). In Michel Berthier, Laurent Fuchs,
and Christophe Saint-Jean, editors, electronic proceedings of AGACSE 2012. La Rochelle, France, 2012.

16. Fred Brackx, Nele De Schepper, and Frank Sommen. The Cylindrical Fourier Transform. In E. Bayro-Corrochano and
G. Scheuermann, editors, Geometric Algebra Computing: In Engineering and Computer Science, pages 107–119. Springer,
London, UK, 2010.

17. Michael Felsberg. Low-Level Image Processing with the Structure Multivector. PhD thesis, University of Kiel, Germany,
2002.

18. Todd A. Ell and Steven J. Sangwine. The Discrete Fourier Transforms of a Colour Image. Blackledge, J. M. and Turner, M.
J., Image Processing II: Mathematical Methods, Algorithms and Applications, 430-441, 2000.

19. T.A. Ell and S.J. Sangwine. Hypercomplex fourier transforms of color images. Image Processing, IEEE Transactions on,
16(1):22–35, jan. 2007.

20. Roxana Bujack, Gerik Scheuermann, and Eckhard Hitzer. A General Geometric Fourier Transform Convolution Theorem.
Advances in Applied Clifford Algebras, 23(1):15–38, 2013.

21. Eckhard Hitzer, Jacques Helmstetter, and Rafal Ablamowicz. Square Roots of -1 in Real Clifford Algebras. In Eckhard
Hitzer and Stephen J. Sangwine, editors, Quaternion and Clifford Fourier Transforms and Wavelets, Trends in Mathematics
27, pages 123–153. Springer Basel, 2013.


