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ABSTRACT

We generalize the framework of moments and introduce a definition
of invariants for three-dimensional vector fields. To do so, we use
the method of moment normalization that has been shown to be
useful in the two dimensions. Using invariant moments, we show
how to search for patterns in these fields independent from their
position, orientation and scale. From the first order vector moment
tensor, we construct a complete and independent set of descriptors.
We test the invariants in queries on synthetic and real world flow
fields.

Index Terms: I.4.7 [Image Processing and Computer Vision]:
Feature Measurement —Moments; I.5.2 [Pattern Recognition]:
Design Methodology —Classifier design and evaluation.

1 INTRODUCTION

Searching for predefined patterns in three dimensional data sets dis-
regarding their position, size and principle direction is a hard task,
since one has to test every possible translation, scale and rotation of
the pattern. In the setting of scalar fields, it has become popular to
use invariant moments to solve this task. Here, moments are used as
a descriptor for the field and the pattern. They can be interpreted as
the projection of the data to a certain basis. Based on this concept,
moment invariants do not do not change under the aforementioned
transformations and therefore they enable a computational afford-
able comparison of patterns and fields. Since moments have been
used for a long time, many different categories of moment invari-
ants have been developed and analyzed [10].

However, the concept is not only applicable to scalar but also to
vector data. For two-dimensional vector fields, it has already been
demonstrated that moment invariants can be successfully used to
search for patterns. Thereby, two different approaches to achieve
invariance have been proposed. On the one hand, a set of invari-
ants can be explicitly calculated from the moments [18]. On the
other hand, there is the method of normalization [7], which means
the pattern is described with respect to an inherent reference size
and position [2]. Flusser et al. state that both methods are equiva-
lent [10] for scalar fields. While the first approach is very elegant, it
has the disadvantage that it is not very intuitive and hard to general-
ize to three dimensions. In contrast, the concept of normalization in
principle also works for higher dimensions. Here, the major chal-
lenge is to find stable reference orientations.

While the analysis of two-dimensional vector fields or flows is
still of interest, most applications and real-world simulations are
three-dimensional. The visualization and analysis of 3D flows ex-
hibits many new challenges compared to the two-dimensional case.
This is also true for the definition and extraction of 3D flow pat-
terns. It concerns the selection and the visualization of patterns but
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first of all the mathematical framework to provide invariant descrip-
tors. The goal of this work is to introduce vector moment invariants
as basic ingredient for a flow pattern detection framework.

Our novel definition of 3D vector moment invariants makes use
of the notion of moment tensors. It has been introduced by Dirilton
et al. [7] and further explored by Suk et al. [20] for the definition
of 3D moment invariants for scalar fields. The basic idea is to ar-
range the moments of a given order such that they form a symmetric
tensor of this order, exhibiting the typical transformation properties
of a tensor. The eigenvectors of the second order moment tensor
specify an intrinsic orientation of the pattern, which is used as a
reference frame to compare the moments to each other. We fol-
low a similar approach, but there are some fundamental differences
from the scalar to the vector case. A similar arrangement of the
vector moments leads to an array, which is one order higher then
the order of the moments. Still, we can show that the resulting ar-
ray exhibits the transformation properties of a tensor and justifies
the definition of vector moment tensors. In contrast to the scalar
case, the resulting tensor is not symmetric anymore, which requires
a more general approach to define a standard orientation.

The major contribution of this paper can be summarized as:

• Provision of the theoretic framework for the definition of mo-
ments for 3D vector fields.

• Derivation of a set of flow field descriptors that are invariant
with respect to rotation, background flow, and velocity.

• Experiments using these descriptors for translation, rotation,
and scaling invariant pattern recognition of flow fields.

In this paper, we recall the theory of moment tensors for real val-
ued functions and formulate our theory on that basis. Our method
is evaluated using a synthetic and two simulated data sets of real-
world complexity.

2 RELATED WORK

A complete coverage of all work in the area of vector field vi-
sualization goes beyond the scope of this section. Instead, we
refer to some overview articles dealing with this topic with dif-
ferent foci: Texture and Feature-Based Flow Visualization [8],
Integration-Based Geometric Flow Visualization [14], and Illustra-
tive Flow Visualization [1].

The idea of using moments as pattern descriptors for flow fields
has been adopted from the area of image processing and analysis.
In 1962, Hu [12] has introduced his famous seven moment invari-
ants to the pattern recognition community. There has been much
work since, of which we shortly list the contributions that are most
relevant for our work. About one decade after Hu, Dirilton et al. [7]
have introduced the notion of moment tensors. The moment tensor
contractions to zeroth order are invariant under orthogonal trans-
formations. With this work they laid the foundation for the use of
tensor methods to define moment invariants. The first explicit for-
mulation of three 3D moment invariants goes back to Sadjardi et
al. [17]. Pinjo et al. [15] estimated the 3D orientation from moment
contraction to first order moment tensors. Suk et al. [20] refined the
tensor contraction method to zeroth order tensors by giving an algo-
rithm to reduce the number of dependent invariants. An important



step further into the direction of the use of moments for 3D pat-
tern recognition was taken by Canterakis [5] who defined the first
3D complete and independent set. He proposed a 3D real function
normalization via third grade spherical harmonic moments.

Flusser’s work on a complete and independent 2D real moment
basis [9] inspired Schlemmer et al. [19, 18] to use moments in the
context of flow analysis. For the first time a set of five 2D vector
moment invariants was defined. Bujack et al. [2] have generalized
the moment normalization method for 2D vector fields. This has
led to the first vector invariants, that are complete, independent and
flexible to vanishing moments.

In this paper, we combine this normalization approach [2] and
the moment tensors [7] to construct moment invariants for 3D vec-
tor fields.

3 MOTIVATION: 3D REAL VALUED FUNCTIONS

The method presented in this paper has the following essential fea-
tures. We will compare functions, by comparing their moments.
These are the projections of a function to a function space basis.
To meaningfully compare the moments of different functions, each
function (respectively its moments) is transformed into a predefined
standard position. This step is called normalization. Once all the
functions are in one standard position, their prior position has no
influence on their normalized moments. The normalized moments
can be used to construct characteristic numbers called moment in-
variants, which do not change under certain transformations.

For the final specification of the technique there are many de-
sign options. Especially, the basis functions and the transforma-
tions have to be chosen. In this paper we make the two following
classical choices. We normalize with respect to translation, rota-
tion, and scaling (TRS). And when it comes to the basis, we use
the monomial basis, which has several very useful properties. It is
very easy and simple to calculate with and has a clear geometric
interpretation. Further, the polynomial space is dense in the space
of the continuous functions, which makes its reduction onto a com-
pact volume W dense in the space of the square integrable functions
L2(W). Please note that the projection to a basis and the coefficients
w.r.t. a basis are only identical if the basis is orthonormal, which
the monomial basis is not. Still the two behave equally under the
considered transforms.

The method presented in this paper is based on two inspiring
sources. On the one hand we use ideas from moment invariants of
2D vector fields [2] and on the other hand from moment invariants
of 3D scalar fields [7, 20].

In this section, we recall the latter and summarize the TRS nor-
malization of 3D real valued functions to give a smooth introduc-
tion to the method’s principles. Later we will generalize it to the
normalization for vector fields in a very analogous manner.

3.1 Moments

The moments m

p,q,r 2 R are the coefficients of the function with
respect to the monomial basis x

p

y

q

z

r : R3 ! R.

Definition 1. For a three-dimensional function f : R3 ! R with

compact support and p,q,r 2 N, the moment m

p,q,r 2 R of order

p+q+ r is defined by

m

p,q,r =
Z

R3
x

p

1 x

q

2x

r

3 f (x)d3
x. (1)

On a compact set W ⇢ R3, the moments can be interpreted
as the projections of the scalar field f (x) onto the basis func-
tions, which are calculated using the L2(W) scalar product m

p,q,r =
hxp

1 x

q

2x

r

3, f (x)i2.

Example 1. The monomial basis comes along with an intuitive ge-

ometric interpretation for its moments. For example, the moment of

order zero

m0,0,0 =
Z

R3
f (x)d3

x (2)

is simply the mass of an object f . Further, the first order moments

form a vector that represents the center of mass via

1
m0,0,0

0

@
m1,0,0
m0,1,0
m0,0,1

1

A . (3)

Dirilton and Newman suggest the use of moment tensors for the
construction of moment invariants with respect to orthogonal trans-
forms in [7].

Definition 2. Any form F

i1...in j1... jm that behaves under an active

transformation by the invertible matrix A like

F

0
i1...in j1... jm = |detA|w Â

k1...kn

Â
l1...lm

a

i1k1 ...ai

n

k

n

a

�1
l1 j1

...a�1
l

m

j

m

F

k1...kn

l1...lm .

(4)
is called a tensor of covariant rank m, contravariant rank n, and

weight w.

They construct the moment tensors by arranging the moments of
each order in a way such that they obey the tensor transformation
property (Eq. 4).

Definition 3. For a scalar function f : R3 ! R with compact sup-

port, the moment tensor M

i1...in of order n 2 N takes the shape

M

i1...in =
Z

R3
x

i1 ...xi

n

f (x)d3
x. (5)

Thereby, x

i

j

represents the i

j

-th component of x 2R3
, i

j

2 {1,2,3}.

This arrangement of the moments of the same order into arrays
simplifies the calculation of their behavior under linear transforma-
tions, which will be very helpful for the normalization. Cyganski
and Orr [6] use moment tensors to determine the orientation of ob-
jects. They show that the moment tensor is a contravariant tensor.
Now we will refine this statement.

Theorem 1. The moment tensor of order n is a contravariant tensor

of rank n and weight 1.

Proof. Let f

0(x) = f (A�1
x), with A 2R3⇥3 be an actively linearly

transformed version of f (x). Starting out from Definition 3

M

0
i1...in =

Z

R3
x

i1 ...xi

n

f

0(x)d3
x

=
Z

R3
x

i1 ...xi

n

f (A�1
x)d3

x,
(6)

we transform the integration variable

y = A

�1
x, x = Ay, |det

∂x

∂y

|= |detA| (7)

and get

M

0
i1...in =|detA|

Z

R3
(Ay)

i1 ...(Ay)
i

n

f (y)d3
y

=|detA|
Z

R3

3

Â
j1=1

a

i1 j1 y

j1
...

3

Â
j

n

=1
a

i

n

j

n

y

j

n

f (y)d3
y

=|detA|
3

Â
j1... jn=1

a

i1 j1 ...ai

n

j

n

M

j1... jn ,

(8)

which satisfies Definition 2 as a contravariant tensor of rank n and
weight 1.



3.2 Normalization
We use normalization to construct moment invariants from mo-
ments. Normalization is the process of putting a function into a
predefined standard position. For real valued functions, we visual-
ize the normalization with respect to translation, rotation, and scal-
ing (TRS) in Figure 1. The transformation of the object itself was
only done for demonstration of the principle. In practice, the stan-
dard position is achieved just from operations on the moments. That
way, no resampling and interpolation of the function is necessary.
Once we have determined the parameters that convert a specific
function into its standard position, we use Theorem 1 to calculate
the normalized moments. For a comprehension of moment invari-
ants, we suggest to look at [10].
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Figure 1: Demonstration of TRS normalization for the example of the
3D characteristic function of a prism.

The generalization of the normalization technique with respect
to translation and scaling from 2D to 3D is straight forward. But
the structure of rotations is completely different in the two spaces.
In 2D, rotations form an Abelian group, whereas in 3D they are no
longer commutative. That makes their analysis far more compli-
cated. Therefore, the main part of this section is dedicated to the
derivation of normalization with respect to rotation.

3.2.1 Translation
A reasonable choice for a standard position with respect to transla-
tion is the claim for the center of mass to coincide with the origin of
coordinates, which is the second step in Figure 1. As shown in Ex-
ample 1, this is equivalent to setting the first order moment tensor
to zero, M1 = M2 = M3 = 0.

3.2.2 Scaling
Normalization with respect to scaling can be achieved by demand-
ing the function to have a unit mass. This process is the first step in
Figure 1. It is equivalent to the claim for the moment of order zero
to be one, M0 = 1, compare Example 1.

3.2.3 Rotation
A standard position with respect to rotation can be found using the
principal component analysis (PCA). The principal axes of a func-
tion are the directions in which it has maximum variance. They are
aligned to the coordinate axes, as can be seen in the final step of
Figure 1. Even though there are shorter ways in the scalar case,
we will show how this normalization can be expressed using the
moment tensor because this view on the process allows a rather
easy generalization to vector fields and we can reuse the results in
the next section. For an introduction to matrix decompositions, we
suggest [11].

The second order moment tensor from Definition 3 can be writ-
ten as an array S 2 R3⇥3,

S =

0

@
M11 M12 M13
M21 M22 M23
M31 M32 M33

1

A (9)

We know from Theorem 1 that it is affected by linear transforms
via

s 0
i1i2 =|detA|

3

Â
j1, j2=1

a

i1 j1 a

i2 j2 s
j1 j2 . (10)

In principle, this is a standard matrix multiplication

S0 = |detA|ASA

T . (11)

We have to be a little careful with this statement. A matrix S2R3⇥3

is a tensor of covariant rank one, contravariant rank one and weight
zero. Under basis transformations, it behaves like S

0 = ASA

�1. The
tensor S is not a matrix. In order to use standard matrix algebra, we
define S as the matrix with the same entries as S, i.e. s

i1i2 = s
i1i2 .

Since S is real valued and symmetric, the spectral theorem guar-
antees that it can be diagonalized and that its eigenvalues l1,l2,l3
and eigenvectors are real valued. Further its eigenvectors form an
orthonormal basis. Because they are ambiguous w.r.t. their sign,
they form 8 orthogonal matrices Q

i

2 R3⇥3, i = 1, ...,8, that satisfy

J = diag(l1,l2,l3) = Q

i

SQ

�1
i

= Q

i

SQ

T

i

. (12)

Obviously, the relation (11) simplifies for orthogonal matrices Q,
detQ =±1 to

S0 = QSQ

T . (13)

That means for orthogonal basis transformations, the behavior of
the tensor S and the matrix S coincide. So it seems reasonable to
use the Jordan normal form (JNF) J of S, if we look for a standard
position S0 for S. The possible shapes of the JNF for symmetric
matrices are explained in detail in the supplementary material.

This alignment along the eigenbasis of the second order moment
tensor is equivalent to the alignment along the principal axes of the
PCA. It results in the claims for second order moments to satisfy
M11 � M22 � M33 and M12 = M13 = M23 = 0. If the eigenvalues
coincide, no specified direction can be found. In this case, the brute
force approach of comparing the field to the pattern in all possible
orientations in the subspace spanned by the corresponding eigen-
vectors has to be applied.

3.3 Invariant Similarity Measure
For a three-dimensional non vanishing function f : R3 ! R with
compact support W, let f

0
i

(x) = s f (Q�1
i

x)+t be a translated, rotated
and scaled copy by the parameters t 2 R3,s 2 R+,

s =
1

M0
, t =� 1

M0

0

@
M1
M2
M3

1

A , (14)

and Q

i

2 R3⇥3, i = 1, ...,8 each being one of the eight transforma-
tion matrices Q satisfying (12). Then, each function f

0
i

is in the
standard position determined by M0 = 1,M1 =M2 =M3 = 0,M11 �
M22 � M33 and M12 = M13 = M23 = 0 and its moments satisfy

(M0
i

)
i1...in =s

3

Â
j1... jn=1

(q�1
i

)
i1 j1 ...(q

�1
i

)
i

n

j

n

M

j1... jn + t

Z

W
d3

x.

(15)
If all eigenvalues of the second order moment tensor S are different,
each set {(M0

i

)
i1...im ,m = 0, ...,n, i = 1, ...,8} is TRS invariant.

Considering moments up to order n, the similarity independent
from translation, rotation, and scaling of a scalar pattern and a field
can therefore be determined from the reciprocal of the Euclidean
distance

sim =

 
n

Â
m=0

3

Â
i1...im=1

min
i=1,...,8

|(Mpat0
i

)
i1...im � (M f ield0

1 )
i1...im |

2

!�1

.

(16)



Please note that there is a one to one correspondence of the 8 stan-
dard positions of the pattern and the field. That is why comparison
of all 8 positions of the pattern to one of the field is sufficient. One
of them will match.

4 3D FLOW FIELDS

In this section, we will demonstrate how moment invariants for
three-dimensional flow fields can be constructed from normaliza-
tion of the first order vector moment tensor. The derivation of the
technique is very similar to the one for scalar fields from the preced-
ing section, but there are a number of new obstacles to overcome,
when we deal with three-dimensional vector fields v : R3 ! R3

v(x) =

0

@
v1(x)
v2(x)
v3(x)

1

A= v1(x)e1 + v2(x)e2 + v3(x)e3, (17)

with the R3 standard basis {e1,e2,e3}.

4.1 Moments

As in the real valued case, we can construct moments as coefficients
of the field v(x) with respect to a function space basis. Again, there
are various options for choosing a basis. A direct generalization
of the scalar case is the vector monomial basis given by b

i0i1...in =
e

i0 x

i1 ...xi

n

. Since we analyze the 3D vector moments for the first
time, we stick with this one because it is very easy to understand
and to handle. The first basis vector fields in direction of the x-axis
e1 can be found in Figure 2. The basis is very symmetric. The e2
and e3 analogons are rotations of the displayed basis vector fields.

b1 = e1 =
(1,0,0)T

b11 = e1x =
(x,0,0)T

b12 = e1y =
(y,0,0)T

b13 = e1z =
(z,0,0)T

Figure 2: The first basis vector fields visualized with hedgehogs and
line integral convolution (LIC) [3]. The color map represents the ve-
locity. Blue means low and red high velocity.

In contrast to the complex basis from the two-dimensional vec-
tor field moments in [2], these are not directly the most interesting
patterns to flow analysts. But, as can be seen in Figure 3, those can
be easily constructed from the basis.

Vortex
b12 �b21 = (y,�x,0)T

Saddle
b11 +b22 �b33 = (x,y,�z)T

Figure 3: Popular flow patterns can be easily constructed from com-
binations of the basis vector fields.

Definition 4. For a three-dimensional vector field v :R3 !R3
with

compact support and p,q,r 2 N, the vector moment m

p,q,r 2 R3
of

order n = p+q+ r is a vector defined by

m

p,q,r =
Z

R3
x

p

1 x

q

2x

r

3v(x)d3
x. (18)

Every component of the vector moment consists of the real val-
ued moment of the corresponding component of the vector field.
We construct an array that is very similar to the moment tensor of
the real valued functions from the previous section. In Theorem
2, we will see that this array is a tensor, too, which justifies the
following definition.

Definition 5. For n 2 N and a three-dimensional vector field v :
R3 ! R3

with compact support, the n-th order vector moment
tensor M

i0i1...in is defined as

M

i0i1...in =
Z

R3
x

i1 ...xi

n

v

i0(x)d3
x. (19)

Theorem 2. The vector moment tensor of order n is a contravariant

tensor of rank n+1 and weight 1.

Proof. Let A2R3⇥3 be an invertible matrix and v

0(x) =Av(A�1
x) :

R3 ! R3 an actively transformed version of the vector field v(x),
then the vector moment tensor from Definition 5 suffices

M

0
i0i1...in =

Z

R3
x

i1 ...xi

n

(v0(x))
i0 d3

x

=
Z

R3
x

i1 ...xi

n

(Av(A�1
x))

i0 d3
x

=
Z

R3
x

i1 ...xi

n

3

Â
j0=1

a

i0 j0 v

j0(A
�1

x)d3
x.

(20)

If we interchange the sum and the integral, the latter has the same
shape as (6). It is the moment tensor of the single real valued com-
ponent v

j0 of the vector field. From the proof of Theorem 1 follows

M0
i0i1...in =

3

Â
j0=1

a

i0 j0 |detA|
3

Â
j1... jn=1

a

i1 j1 ...ai

n

j

n

M

j0 j1... jn

=|detA|
3

Â
j0... jn=1

a

i0 j0 a

i1 j1 ...ai

n

j

n

M

j0 j1... jn ,

(21)

which satisfies Definition 2 as a contravariant tensor of rank n+ 1
and weight 1.

4.2 Normalization
Analogous to the real valued case, we will construct moment in-
variants for flow fields using normalization.

4.2.1 Considered Transformations
An important difference is the class of transformations that are con-
sidered for achieving a standard position, i. e. for invariance. There
are many more options to define geometric transformations for vec-
tor fields than for scalar functions and other transformations are of
significance. For a general vector field, translation, rotation, and
scaling can be applied to its argument and its value. That means we
generally deal with six central transformations

v

0(x) =s

o

R

o

v(s
i

R

i

x+ t

i

)+ t

o

, (22)

with the inner and outer scaling factors s

i

,s
o

2 R+, translational
differences t

i

, t
o

2 R3, and rotations R

i

,R
o

2 R3⇥3. We illustrate
the influence of a rotation applied to a stylized example vector field
in the three different ways in Figure 4. Similar effects result from



translation and scaling, too. The inner transformations modify the
argument. That means, the location of the vector is changed. The
outer transformations modify the value. That means the direction
or the velocity of the vector is influenced. The total transforma-
tions correspond to a coordinate transformation, where position and
value are influenced correspondingly.

Original vector
field: v(x)

Inner rotation:
v(R�1

x)
Outer rotation:
Rv(x)

Total rotation:
Rv(R�1

x)

Figure 4: Effect of the rotation operator Ra applied to an example
vector field in three different ways.

In the following, we will discuss the six transformations.
Only for the comparison of pattern and field without looking

for parts of the field resembling the pattern, considering the inner
translation and scaling would be reasonable. But because inter-
esting flow patterns usually have a limited spatial extent compared
to a whole data set, we do not want to compare fields but only parts
of them. This means, we have to restrict the analysis to windows
of the size of the pattern. Thus, the inner translation and scaling
cannot be covered using moment invariants. Clearly, the moments
on one side of the field do not contain information about the other
side. This problem is solved by searching at ’all’ possible places
and for ’all’ possible scales in the big vector field. As a result, it is
not useful to include these parameters in the calculation (22) we set
t

i

= 0,s
i

= 1. Please note that the same situation occurs in the real
valued case for a query of a small pattern in a large scalar field.

The outer translation can be interpreted as a distortion of the
pattern by some background flow or a moving frame of reference.
Since we would like to be able to detect moving flow patterns, we
will consider normalization with respect to outer translation t

o

.
The outer scale represents the velocity of the flow. We want to

detect the pattern independent from its speed and normalize with
respect to outer scaling s

o

. Please note that during this operation
we will not set every vector to unit length. The ratio between the
lengths of the vectors and the velocity pattern are preserved.

The rotation is the most challenging transformation. To be in
accordance with rotation of flow fields, we have chosen a spherical
window B ⇢ R3 for the integration and restrict the transforms
to total rotations. They influence the orientation of the pattern
without changing its inherent structure and satisfy R

i

= R

�1
o

.

In Summary, Considered Transformations: All in all, the trans-
formations of a flow field v(x) with respect to which we want to
normalize, take the shape

v

0(x) =sRv(R�1
x)+ t, (23)

with the scaling factor s 2 R+, translational difference t 2 R3, and
rotation R 2 R3⇥3. The stepwise normalization of an example flow
field is visualized in Figure 5. In the next section, we will show
how this special kind of normalization can be produced.

4.2.2 Total Rotation

Finding a standard position with respect to orientation, namely total
rotation,

v(x)0 = Rv(R�1(x) (24)

Original field Total rotation =
orientation

Outer transl. =
background

Outer scaling =
velocity

Figure 5: An example flow field is normalized step by step with re-
spect to the considered transformations. The color map represents
the velocity. Blue means low and red high velocity.

is the hardest part and will take most of the work. The first order
vector moment tensor can be written as the array S 2 R3⇥3,

S =

0

@
M11 M12 M13
M21 M22 M23
M31 M32 M33

1

A . (25)

We know from Theorem 2 that it behaves as follows

s 0
i0i1

=|detA|a
i0 j0 a

i1 j1 s
j0 j1 (26)

under active transformations by A 2 R3⇥3. Like for the second or-
der moments in the real valued case (11), we can see that this is a
weighted matrix multiplication

S0 = |detA|ASA

T , (27)

which implies to proceed analogously. But the situation is a little
different. Again let S be the matrix with the same entries as S, i. e.
s

i0i1 = s
i0i1 . It is a tensor of covariant rank one, contravariant rank

one and weight zero, i. e. it transforms via

S

0 = ASA

�1. (28)

Can we do everything like in the scalar case now? No. There
is a big difference to the real valued case. The tensor S, and the
matrix S respectively, are not symmetric.

Can we not bring the matrix into JNF? We can bring it into its
Jordan normal form by a coordinate transform. But this transform
will in general not be orthogonal, i. e.

A

T 6= A

�1. (29)

Even though a matrix would be in Jordan normal form after trans-
formation by A, the contravariant moment tensor

S0 = |detA|ASA

T 6= ASA

�1 = S

0. (30)

will not. It behaves differently. The behaviors of matrix and tensor
only coincide for orthogonal transforms and they will in general
not be powerful enough to gain the desired JNF. They can fix only
three degrees of freedom, which is enough for symmetric matrices,
but not for arbitrary ones. The JNF is too restrictive.

Is there a normal form for orthogonal transformations? Yes.
As a solution we can use the Schur form of the matrix [11]. It is an
upper triangular matrix

U = QSQ

T (31)

that can be formed by an orthogonal transformation Q. And like
in the real valued case, the behavior of our tensor and the matrix
coincide for orthogonal transformations. The Schur decomposition
can be interpreted as a generalization of the spectral decomposition.



Like the Jordan normal form, it will have the eigenvalues on its
diagonal. Only the entries on its upper half will not vanish. In
the case of symmetric matrices, the two forms will coincide. In
general, the entries on the strict upper triangle are ambiguous.

How can we find an unambiguous normal form? We will make
use of the well studied JNF J = V SV

�1. We calculate the trans-
formation matrix V of the (generalized) eigenvectors in a deter-
ministic way and construct the QR-decomposition of its inverse
V

�1 = Q

�1
R

�1. If S has real eigenvalues, J is an upper triangu-
lar matrix. From

J =V SV

�1 = RQSQ

�1
R

�1 , R

�1
JR = QSQ

�1 =U, (32)

follows that U = R

�1
JR is upper triangular, too. Because the

inverse of an upper triangular matrix as well as the product of
upper triangular matrices is an upper triangular matrix. Since U

is upper triangular and Q is orthogonal, U = QSQ

�1 is a Schur
decomposition of S. If S has complex eigenvalues, we choose
U = QSQ

�1 as its standard position anyway. It is no triangular
matrix in this case, but still unambiguous.

How can we find a deterministic V ? We have seen that even in
the real valued case the transformation matrix, which is constructed
from the eigenvectors, is not unique. For asymmetric matrices, the
situation gets even harder. It is described in Appendix B.

4.2.3 Outer Translation
Additional background flow, namely outer translation,

v(x)0 = v(x)+ t (33)

with t 2 R3 influences the vector moment tensor via

M

0
i0i1...in =M

i0i1...in + t

i0

Z

B

x

i1 ...xi

n

d3
x. (34)

A reasonable standard is the claim for vanishing background flow,
that means vanishing average velocity. Therefore, normalization
with respect to outer translation can be done by setting the zeroth
order moment tensor to zero. If we solve that for the translation
vector t 2 R3, we get

M

0
i0
= 0 , t

i0 =� M

i0R
B

d3
x

. (35)

This operation is generally defined for any non vanishing area
/0 6= B ⇢ R3. So, we can always preset the moment of order zero
to zero to normalize with respect to outer translation.

4.2.4 Outer Scaling
Scaling the velocity

v(x)0 = sv(x) (36)

with s 2 R+ simply influences the moment tensors via

M

0
i0i1...in =sM

i0i1...in (37)

Therefore, normalization with respect to scaling can be achieved
by demanding a certain non vanishing moment tensor M

i0i1...in 6= 0
to take the value one. If we solve that for the scaling parameter
s 2 R+, we get

M

0
i0i1...in = 1 , s =

1
M

i0i1...in
. (38)

Other ways of normalization are possible, too. In our algorithm, we
choose the first order vector moment tensor in its rotational standard
position to have unit Frobenius norm.

4.3 Invariant Similarity Measure
For a three-dimensional flow field v : R3 !R3 with spherical com-
pact support B, let

v

0
i

(x) = sQ

i

v(Q�1
i

x)+ t

(39)

with i = 1, ...,8 be its outer translated, total rotated and outer scaled
copies by the parameters t 2R3,s2R+,Q

i

2R3⇥3. Here each Q

i

2
R3⇥3, i = 1, ...,8 is the orthogonal matrix of the QR-decomposition
of one of the eight 1 transformation matrices V

i

, which transform
S into its Jordan normal form J with decreasingly ordered eigen-
values from (32). Further s = ||J||�1

F

2 R+ is the reciprocal of the
Frobenius norm of J and for i0 = 1,2,3, t 2 R3 is determined from

t

i0 =� M

i0R
B

d3
x

. (40)

Then, each function v

0
i

is in a standard position defined by M1 =
M2 = M3 = 0,M11 � M22 � M33,M21 = M31 = M32 = 0 and
Â

i0,i1 M

2
i0i1

= 1 and its moments satisfy

(M0
i

)
i0i1...in =s

3

Â
j0... jn=1

(q
i

)
i0 j0(qi

)
i1 j1 ...(qi

)
i

n

j

n

M

j0 j1... jn + t

Z

W
d3

x.

(41)
If all eigenvalues of the first order moment tensor S are different,
each set of moments {(M0

i

)
i1...im ,m = 0, ...,n, i = 1, ...,8} is TRS

invariant.
Considering moments up to order n, the similarity independent

from outer translation, total rotation, and outer scaling of a pattern
and a flow field can therefore be determined from

sim =

 
n

Â
m=0

3

Â
i0...im=1

min
i=1,...,8

|(Mpat0
i

)
i0i1...im � (M f ield0

1 )
i0i1...im |

2

!�1

.

(42)

5 RESULTS

In this section, we will present some experiments that are obtained
with our method applied to one synthetic data set and two numerical
simulations.

First, we designed a synthetic vector field. In a cube
[�4,4]3 ⇢ R3 we place the following flow features:

ID Position Basic pattern
(0,0,0) very weak source

(A) (2,-2,2) sink
(B) (1,0,2) oval vortex with core line along the z-axis,

drawn out along the x-axis
(C) (2,2,-2) bipole in the x-y-plane
(D) (2,-2,-2) vortex added to quadrupole in the x-y-plane
(E) (-2,-2,-2) saddle
(F) (-2,2,-2) vortex with core line along axis (0,�1,1)T

(G) (-2,0,2) long vortex with small diameter and its core
line along the y-axis

To get a better impression of the resulting data set, it is illus-
trated in Figure 6 showing several LIC slices. The weak source in
the center is chosen to avoid sections of the vector field to vanish
completely to zero, but such that it does not interfere strongly with
the other structures. The search pattern is a vortex template, i. e., a
simple linear center with a Gaussian dampening as an overlay,

v(x) =

0

@
y

�x

0

1

A
e

�x

2�y

2�z

2
. (43)

1As described in the previous section, the sign of each column of V

i

is
undefined. That leaves us with up to 23 = 8 matrices.



Figure 6: LIC images through the synthetic field. The field contains a
sink (A), an oval vortex (B), a bipole (half hidden here) (C), a vortex
added to a quadrupole (D), a saddle (E), a short vortex (F), and a
long vortex (G).

The similarity is measured as described in 4.3. For each grid point
and each scale, we test if its similarity is higher than most of its
neighbors. Then, we render a sphere with the following proper-
ties: (a) the position of the match is the center of the sphere, (b) the
scale of the pattern is the radius of the sphere, and (c) the similar-
ity to the vortex defines the density of the sphere. Whenever two
spheres intersect, the higher density value is stored. More detail
and the algorithm in pseudo-code can be found in the supplemen-
tary material.

The result is a three-dimensional real valued function, which is
visualized using volume rendering in Figure 7 (a) with the trans-
fer function from Figure 7 (b). The moments are computed up to
second grade.

The volume rendering is supported by a selection of illuminated
streamlines in Figure 7. The seeding of the streamlines is driven
by the similarity of the pattern with the field. The higher the sim-
ilarity, the higher the probability of a point to be a seed point of a
streamline. This technique is a representative example for all kinds
of visualization methods, that may cover up important parts of the
flow field if applied to the the whole 3D data set. Using our simi-
larity field as region of interest (ROI), many well known algorithms
can be steered directly to only work at the positions where the field
is of interest to the flow field analysts and therefore avoid clutter.

In the volume rendering in Figure 7, the following observations
can be made: (a) all vortex-like structures are detected with a high
and clearly visible similarity value, (b) the size of the spheres in-
dicate the size of the patterns as expected, (c) for larger elongated
structures, neighboring spheres combine to large oval ellipsoids,
giving insight into the extent and alignment of the structure, and
(d) the similarity value is smaller for the distorted vortices: the oval
one, the bipole and the quadrupole.

The delta wing is the second data set in our evaluation. The data
set results from a simulation of air flow around a single delta wing
configuration at subsonic speed and was computed in the context
of numerical research into vortex breakdown [16]. The initial high
angle of attack increases over time. Although the simulation con-

Figure 7: (a) Left: Volume rendering of the spheres field. The stream-
lines are seeded by similarity of the moments. (b) Right: The transfer
function for the volume rendering.

Figure 8: Volume rendering of the similarity field of the delta wing
data set using a vortex template.

tains multiple time steps, we limit our analysis to a single time step
in this paper that contains 11,915,131 tetrahedron and prism cells.
We further cut out the area directly above the delta wing. Analo-
gously to the first data set, we used a vortex as search pattern.

The visualization in Figure 8 is chosen analogous to the other
data sets. The two tip vortices that are well known for the delta
wing are well extracted. Due to the spatial extent of the moments,
it can also be seen very nicely how the vortices grow as they flow
along the delta wing. A nice observation can be made at the stream-
lines, which again have been seeded with probability correlated to
the similarity. They underline the vortex structures that have been
found. Because of the high velocity of the delta wing, the main di-
rection of the air is towards its rear. Therefore, the vortices are dis-
torted to elongated swirls. The moment invariants are not affected
by this. Because of their invariance with respect to background
flow, they fully recognize the vortices.



Figure 9: The similarity of the von-Kármán street to the double vortex
on its very right under orthographic projection.

The third data set is a numerical simulation of a flow behind a
square cylinder with Re = 200, resulting in a 3D version of the well
known von-Kármán vortex street. The data is a direct numerical
Navier Stokes simulation by Camarri et al. [4] which is publicly
available [13]. We use a uniformly resampled version which has
been provided by Weinkauf and is also used in von Funck et al. [21].
As search pattern we have selected an example pattern from the
data set, the last vortex pair corresponding to the yellow sphere on
the very right in Fig. 9. This choice shows that our method is not
restricted to analytical pattern definitions.

The result can be seen in Fig. 9 using a visualization analo-
gously to the other data sets. It shows the volume rendering and
the importance of streamline seeding for the similarity field. For
the streamline visualization we subtracted the medium flow from
the data. Please note that the pattern search has been performed on
the original data set with its natural background flow. The algo-
rithm detects the repetitions of the double vortex pattern along the
vortex street very well. It can also be observed that the similarity
becomes stronger the nearer the vortices are to the example-pattern
we searched for.

6 CONCLUSIONS

With this paper, we have laid the theoretical foundation for the use
of vector moment invariants for the analysis of 3D flow fields with
respect to interesting patterns. The major contribution is the gener-
alization of the normalization approach from scalar fields to vector
fields. Due to the fact that the resulting vector moment tensor is not
symmetric as in the scalar case, conceptional changes were neces-
sary and a solution to this problem has been presented. Further,
we have performed first experiments using a set of vector moment
invariants searching for patterns in one analytically defined vector
field and two data sets resulting from a numerical simulation. In all
cases, the moments behave as expected.

Still many more steps have to be done in order to come to an easy
to use framework based on vector moment invariants. Open issues
that need a closer inspection in the future include the artifacts due
to the discrete sampling of the field for the moment computation.
We further want to explore more visualization options. Especially
scalar field topology seems to provide an interesting concept for
the investigation of the similarity field. Also the development of
an interface for an easy design of new query patterns is envisioned.
But in summary, we are convinced that the proposed moments are
a powerful tool for flow field exploration.
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