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Abstract. The increasing demand for Fourier transforms on geometric
algebras has resulted in a large variety. Here we introduce one single
straight forward definition of a general geometric Fourier transform cov-
ering most versions in the literature. We show which constraints are
additionally necessary to obtain certain features like linearity or a shift
theorem. As a result, we provide guidelines for the target-oriented de-
sign of yet unconsidered transforms that fulfill requirements in a specific
application context. Furthermore, the standard theorems do not need to
be shown in a slightly different form every time a new geometric Fourier
transform is developed since they are proved here once and for all.

Mathematics Subject Classification (2010). Primary 99Z99; Secondary
00A00.

Keywords. Fourier transform, geometric algebra, Clifford algebra, image
processing, linearity, scaling, shift.

1. Introduction

The Fourier transform by Jean Baptiste Joseph Fourier is an indispensable
tool for many fields of mathematics, physics, computer science and engineer-
ing. Especially the analysis and solution of differential equations or signal
and image processing can not be imagined without it any more. Its kernel
consists of the complex exponential function. With the square root of minus
one, the imaginary unit i, as part of the argument it is periodic and therefore
suitable for the analysis of oscillating systems.

William Kingdon Clifford created the geometric algebras in 1878, [1].
They usually contain continous submanifolds of geometric square roots of
minus one [2, 3]. Each multivector has a natural geometric interpretation so
the generalization of the Fourier transform to multivector valued functions in
the geometric algebras is very reasonable. It helps to interpret the transform,
apply it in a target oriented way to the specific underlying problem and allows
a new point of view on fluid mechanics.
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Application oriented many different definitions of Fourier transforms in
geometric algebras were developed. For example the Clifford Fourier trans-
form introduced by Jancewicz [4] and expanded by Ebling and Scheuermann
[5] and Hitzer and Mawardi [6] or the one established by Sommen in [7] and
re-established by Bülow [8]. Further we have the quaternionic Fourier trans-
form by Ell [9] and later by Bülow [8], the spacetime Fourier transform by
Hitzer [10], the Clifford Fourier transform for color images by Batard et al.
[11], the Cylindrical Fourier transform by Brackx et al. [12], the transforms
by Felsberg [13] or Ell and Sangwine [14, 15]. All these transforms have dif-
ferent interesting properties and deserve to be studied independently from
one another. But the analysis of their similarities reveals a lot about their
qualities, too. We concentrate on this matter and summarize all of them in
one general definition.

Recently there have been very successful approaches by De Bie, Brackx,
De Schepper and Sommen to construct Clifford Fourier transforms from op-
erator exponentials and differential equations [16, 17, 18, 19]. The definition
presented in this paper does not cover all of them, partly because their closed
integral form is not always known or highly complicated, and partly because
they can be produced by combinations and functions of our transforms.

We focus on continuous geometric Fourier transforms over flat spaces
Rp,q in their integral representation. That way their finite, regular discrete
equivalents as used in computational signal and image processing can be
intuitively constructed and direct applicability to the existing practical issues
and easy numerical manageability are ensured.

2. Definition of the GFT

We examine geometric algebras C`p,q, p + q = n ∈ N over Rp+q [20] gener-
ated by the associative, bilinear geometric product with neutral element 1
satisfying

ejek + ekej = εjδjk, (2.1)

for all j, k ∈ {1, ..., n} with the Kronecker symbol δ and

εj =

{
1 ∀j = 1, ..., p,

−1 ∀j = p+ 1, ..., n.
(2.2)

For the sake of brevity we want to refer to arbitrary multivectors

A =

n∑
k=0

∑
1≤j1<...<jk≤n

aj1...jkej1 ...ejk ∈ C`p,q, (2.3)

aj1...jk ∈ R, as

A =
∑
j

ajej . (2.4)
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where each of the 2n multi-indices j ⊆ {1, ..., n} indicates a basis vector of
C`p,q by ej = ej1 ...ejk , 1 ≤ j1 < ... < jk ≤ n, e∅ = e0 = 1 and its associated
coefficient aj = aj1...jk ∈ R.

Definition 2.1. The exponential function of a multivectorA ∈ C`p,q is defined
by the power series

eA :=

∞∑
j=0

Aj

j!
. (2.5)

Lemma 2.2. For two multivectors AB = BA that commute amongst each
other we have

eA+B =eAeB. (2.6)

Proof. Analogous to the exponent rule of real matrices. �

Notation 2.3. For each geometric algebra C`p,q we will write I p,q = {i ∈
C`p,q, i

2 ∈ R−} to denote the real multiples of all geometric square roots of
minus one, compare [2] and [3]. We chose the symbol I to be reminiscent of
the imaginary numbers.

Definition 2.4. Let C`p,q be a geometric Algebra, A : Rm → C`p,q be a mul-
tivector field and x,u ∈ Rm vectors. A Geometric Fourier Transform (GFT)
FF1,F2

(A) is defined by two ordered finite sets F1 = {f1(x,u), ..., fµ(x,u)},
F2 = {fµ+1(x,u), ..., fν(x,u)} of mappings fk(x,u) : Rm×Rm → I p,q,∀k =
1, ...,ν and the calculation rule

FF1,F2
(A)(u) :=

∫
Rm

∏
f∈F1

e−f(x,u)A(x)
∏
f∈F2

e−f(x,u) dmx. (2.7)

This definition combines many Fourier transforms to a single general
one. It enables us to proof the well known theorems just dependent on the
properties of the chosen mappings.

Example. Depending on the choice of F1 and F2 we get already developed
transforms.

1. In the case of A : Rn → Gn,0, n = 2 (mod 4) or n = 3 (mod 4), we
can reproduce the Clifford Fourier transform introduced by Jancewicz
[4] for n = 3 and expanded by Ebling and Scheuermann [5] for n = 2
and Hitzer and Mawardi [6] for n = 2 (mod 4) or n = 3 (mod 4) using
the configuration

F1 =∅,
F2 ={f1},

f1(x,u) =2πinx · u,
(2.8)

with in being the pseudoscalar of Gn,0.
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2. Choosing multivector fields Rn → G0,n,

F1 =∅,
F2 ={f1, ..., fn},

fk(x,u) =2πekxkuk,∀k = 1, ..., n

(2.9)

we have the Sommen Bülow Clifford Fourier transform from [7, 8].
3. For A : R2 → G0,2 ≈ H the quaternionic Fourier transform [9, 8] is

generated by

F1 ={f1},
F2 ={f2},

f1(x,u) =2πix1u1,

f2(x,u) =2πjx2u2.

(2.10)

4. Using G3,1 we can build the spacetime respectively the volume-time
Fourier transform from [10]1 with the G3,1-pseudoscalar i4 as follows

F1 ={f1},
F2 ={f2},

f1(x,u) =e4x4u4,

f2(x,u) =ε4e4i4(x1u1 + x2u2 + x3u3).

(2.11)

5. The Clifford Fourier transform for color images by Batard, Berthier and
Saint-Jean [11] for m = 2, n = 4,A : R2 → G4,0, a fixed bivector B, and
the pseudoscalar i can intuitively be written as

F1 ={f1},
F2 ={f2},

f1(x,u) =
1

2
(x1u1 + x2u2)(B + iB),

f2(x,u) =− 1

2
(x1u1 + x2u2)(B + iB),

(2.12)

but (B + iB) does not square to a negative real number, see [2]. The
special property that B and iB commute amongst each other allows us

1Please note that Hitzer uses a different notation in [10]. His x = te0 +x1e1 +x2e2 +x3e3
corresponds to our x = x1e1 +x2e2 +x3e3 +x4e4, with e0e0 = ε0 = −1 being equivalent

to our e4e4 = ε4 = −1.
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to express the formula using

F1 ={f1, f2},
F2 ={f3, f4},

f1(x,u) =
1

2
(x1u1 + x2u2)B,

f2(x,u) =
1

2
(x1u1 + x2u2)iB,

f3(x,u) =− 1

2
(x1u1 + x2u2)B,

f4(x,u) =− 1

2
(x1u1 + x2u2)iB,

(2.13)

which fulfills the conditions of Definition 2.4.
6. Using G0,n and

F1 ={f1},
F2 =∅,

f1(x,u) =−x ∧ u
(2.14)

produces the cylindrical Fourier transform as introduced by Brackx,
Schepper and Sommen in [12].

3. General Properties

First we proof general properties valid for arbitrary sets F1, F2.

Theorem 3.1 (Existence). The geometric Fourier transform exists for all in-
tegrable multivector fields A ∈ L1(Rn).

Proof. The property

f2
k (x,u) ∈ R− (3.1)

of the mappings fk for k = 1, ...,ν leads to

f2
k (x,u)

|f2
k (x,u)|

= −1 (3.2)

for all fk(x,u) 6= 0. So using the decomposition

fk(x,u) =
fk(x,u)

|fk(x,u)|
|fk(x,u)| (3.3)

we can write ∀j ∈ N

f jk(x,u) =

{
(−1)l|fk(x,u)|j for j = 2l, l ∈ N0

(−1)l fk(x,u)
|fk(x,u)| |fk(x,u)|j for j = 2l + 1, l ∈ N0

(3.4)
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which results in

e−fk(x,u) =

∞∑
j=0

(
− fk(x,u)

)j
j!

=

∞∑
j=0

(−1)j |fk(x,u)|2j

(2j)!

− fk(x,u)

|fk(x,u)|

∞∑
j=0

(−1)j |fk(x,u)|2j+1

(2j + 1)!

= cos
(
|fk(x,u)|

)
− fk(x,u)

|fk(x,u)|
sin
(
|fk(x,u)|

)
(3.5)

Because of

|e−fk(x,u)| =
∣∣∣∣ cos

(
|fk(x,u)|

)
− fk(x,u)

|fk(x,u)|
sin
(
|fk(x,u)|

)∣∣∣∣
≤
∣∣∣∣ cos

(
|fk(x,u)|

)∣∣∣∣+

∣∣∣∣ fk(x,u)

|fk(x,u)|

∣∣∣∣∣∣∣∣ sin (|fk(x,u)|
)∣∣∣∣

≤2

(3.6)

the magnitude of the improper integral

|FF1,F2
(A)(u)| =

∣∣ ∫
Rm

∏
f∈F1

e−f(x,u)A(x)
∏
f∈F2

e−f(x,u) dmx
∣∣

≤
∫
Rm

∏
f∈F1

|e−f(x,u)||A(x)|
∏
f∈F2

|e−f(x,u)| dmx

≤
∫
Rm

∏
f∈F1

2|A(x)|
∏
f∈F2

2 dmx

=2ν
∫
Rm

|A(x)| dmx

(3.7)

is finite and therefore the geometric Fourier transform exists. �

Theorem 3.2 (Scalar linearity). The geometric Fourier transform is linear
with respect to scalar factors. Let b, c ∈ R and A,B,C : Rm → C`p,q be three
multivector fields that satisfy A(x) = bB(x) + cC(x), then

FF1,F2
(A)(u) =bFF1,F2

(B)(u) + cFF1,F2
(C)(u). (3.8)

Proof. The assertion is an easy consequence of the distributivity of the geo-
metric product over addition, the commutativity of scalars and the linearity
of the integral. �

4. Bilinearity

All geometric Fourier transforms from the introductory example can also be
expressed in terms of a stronger claim. The mappings f1, ..., fν , with the first



A General Geometric Fourier Transform 7

µ ones left of the argument function and the ν −µ others on the right of it,
are all bilinear and therefore take the form

fk(x,u) = fk(

m∑
j=1

xjej ,

m∑
l=1

ulel)

=

m∑
j,l=1

xjfk(ej , el)ul

= xTMku,

(4.1)

∀k = 1, ...,ν, where Mk ∈ (I p,q)m×m, (Mk)jl = fk(ej , el) according to No-
tation 2.3.

1. In the Clifford Fourier transform f1 can be written with

M1 =2πin Id . (4.2)

2. The ν = m = n mappings fk, k = 1, ..., n of the Bülow Clifford Fourier
transform can be expressed using

(Mk)lj =

{
2πek for k = l = j,

0 else.
(4.3)

3. Similarly the quaternionic Fourier transform is generated using

(M1)lι =

{
2πi for l = ι = 1,

0 else,

(M2)lι =

{
2πj for l = ι = 2,

0 else.

(4.4)

4. We can build the spacetime Fourier transform with

(M1)lj =

{
e4 for l = j = 1,

0 else,

(M2)lj =

{
ε4e4i4 for l = j ∈ {2, 3, 4},
0 else.

(4.5)

5. The Clifford Fourier transform for color images can be described by

M1 =
1

2
B Id,

M2 =
1

2
iB Id,

M3 =− 1

2
B Id,

M4 =− 1

2
iB Id .

(4.6)
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6. The cylindrical Fourier transform can also be reproduced with mappings
satisfying (4.1) because we can write

x ∧ u =e1e2x1u2 − e1e2x2u1

+ ...

+ em−1emxm−1um − em−1emxmum−1

(4.7)

and set

(M1)lj =

{
0 for l = j,

elej else.
(4.8)

Theorem 4.1 (Scaling). Let 0 6= a ∈ R be a real number, A(x) = B(ax)
two multivector fields and all F1, F2 be bilinear mappings then the geometric
Fourier transform satisfies

FF1,F2(A)(u) =|a|−mFF1,F2(B)
(u
a

)
. (4.9)

Proof. A change of coordinates together with the bilinearity proves the as-
sertion by

FF1,F2
(A)(u) =

∫
Rm

∏
f∈F

e−f(x,u)B(ax)
∏
f∈B

e−f(x,u) dmx

ax=y
=

∫
Rm

∏
f∈F

e−f(ya ,u)B(y)
∏
f∈B

e−f(ya ,u)|a|−m dmy

f bilin.
= |a|−m

∫
Rm

∏
f∈F

e−f(y,ua )B(y)
∏
f∈B

e−f(y,ua ) dmy

=|a|−mFF1,F2
(B)

(u
a

)
.

(4.10)

�

5. Products with Invertible Factors

To obtain properties of the GFT like linearity with respect to arbitrary mul-
tivectors or a shift theorem we will have to change the order of multivectors
and products of exponentials. Since the geometric product usually is nei-
ther commutative nor anticommutative this is not trivial. In this section we
provide useful lemmata that allow a swap if at least one of the factors is
invertible. For more information see [20] and [3].

Remark 5.1. Every multiple of a square root of minus one i ∈ I p,q is invert-
ible, since from i2 = −r, r ∈ R \ {0} follows i−1 = − i

r . Because of that for all
u,x ∈ Rm a function fk(x,u) : Rm × Rm → I p,q is pointwise invertible.
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Definition 5.2. For an invertible multivector B ∈ C`p,q and an arbitrary
multivector A ∈ C`p,q we define

Ac0(B) =
1

2
(A+B−1AB),

Ac1(B) =
1

2
(A−B−1AB).

(5.1)

Lemma 5.3. Let B ∈ C`p,q be invertible with the unique inverse B−1 =
B̄
B2 ,B

2 ∈ R \ {0}. Every multivector A ∈ C`p,q can be expressed unambigu-
ously by the sum of Ac0(B) ∈ C`p,q that commutes and Ac1(B) ∈ C`p,q that
anticommutes with respect to B. That means

A = Ac0(B) +Ac1(B),

Ac0(B)B = BAc0(B),

Ac1(B)B = −BAc1(B).

(5.2)

Proof. We will only prove the assertion for Ac0(B).
Existence: With Definition 5.2 we get

Ac0(B) +Ac1(B) =
1

2
(A+B−1AB +A−B−1AB)

=A
(5.3)

and considering

B−1AB =
B̄AB

B2 = BAB−1 (5.4)

we also get

Ac0(B)B =
1

2
(A+B−1AB)B

=
1

2
(A+BAB−1)B

=
1

2
(AB +BA)

=B
1

2
(B−1AB +A)

=BAc0(B)

(5.5)

Uniqueness: From the first claim in (5.2) we get

Ac1(B) =A−Ac0(B), (5.6)

together with the third one this leads to

(A−Ac0(B))B =−B(A−Ac0(B))

AB −Ac0(B)B =−BA+BAc0(B)

AB +BA =Ac0(B)B +BAc0(B)

(5.7)
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and from the second claim finally follows

AB +BA =2BAc0(B)

1

2
(B−1AB +A) =Ac0(B).

(5.8)

The derivation of the expression for Ac1(B) works analogously. �

Corollary 5.4 (Decomposition w.r.t. commutativity). Let B ∈ C`p,q be in-
vertible, then ∀A ∈ C`p,q

BA = (Ac0(B) −Ac1(B))B. (5.9)

Definition 5.5. For d ∈ N,A ∈ C`p,q, the ordered set B = {B1, ...,Bd} of
invertible multivectors and any multi-index j ∈ {0, 1}d we define

A
cj(
−→
B )

:=((Acj1 (B1))cj2 (B2)...)cjd (Bd),

A
cj(
←−
B )

:=((Acjd (Bd))cjd−1 (Bd−1)...)cj1 (B1)

(5.10)

recursively with c0, c1 of Definition 5.2.

Example. Let A = a0 + a1e1 + a2e2 + a12e12 ∈ G2,0 then for example

Ac0(e1) =
1

2
(A+ e−1

1 Ae1)

=
1

2
(A+ a0 + a1e1 − a2e2 − a12e12)

=a0 + a1e1

(5.11)

and further

Ac0,0(−−−→e1,e2) =(Ac0(e1))c0(e2)

=(a0 + a1e1)c0(e2) = a0.
(5.12)

The computation of the other multi-indices with d = 2 works analogously
and therefore

A =
∑

j∈{0,1}d
Acj(e1,e2)

=Ac00(−−−→e1,e2) +Ac01(−−−→e1,e2) +Ac10(−−−→e1,e2) +Ac11(−−−→e1,e2)

=a0 + a1e1 + a2e2 + a12e12.

(5.13)

Lemma 5.6. Let d ∈ N, B = {B1, ...,Bd} be invertible multivectors and for

j ∈ {0, 1}d let |j| :=
∑d
k=1 jk, then ∀A ∈ C`p,q

A =
∑

j∈{0,1}d
A
cj(
−→
B )
,

AB1...Bd =B1...Bd

∑
j∈{0,1}d

(−1)|j|A
cj(
−→
B )
,

B1...BdA =
∑

j∈{0,1}d
(−1)|j|A

cj(
←−
B )
B1...Bd.

(5.14)

Proof. Apply Lemma 5.3 repeatedly. �
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Remark 5.7. The distinction of the two directions can be omitted using the
equality

A
cj(
−−−−−−→
B1,...,Bd)

= A
cj(
←−−−−−−
Bd,...,B1)

. (5.15)

We established it for the sake of notational brevity and will not formulate
nor proof every assertion for both directions.

Lemma 5.8. Let F = {f1(x,u), ..., fd(x,u)} be a set of pointwise invert-
ible functions then the ordered product of their exponentials and an arbitrary
multivector A ∈ C`p,q satisfies

d∏
k=1

e−fk(x,u)A =
∑

j∈{0,1}d
A
cj(
←−
F )

(x,u)

d∏
k=1

e−(−1)jkfk(x,u), (5.16)

where A
cj(
←−
F )

(x,u) := A
cj(
←−−−−
F (x,u))

is a multivector valued function Rm ×
Rm → C`p,q.

Proof. For all x,u ∈ Rm the commutation properties of fk(x,u) dictate the
ones of e−fk(x,u) by

e−fk(x,u)A
Def. 2.1

=

∞∑
l=0

(−fk(x,u))l

l!
A

Lem. 5.3
=

∞∑
l=0

(−fk(x,u))l

l!
(Ac0(fk(x,u)) +Ac1(fk(x,u))).

(5.17)

The shape of this decomposition of A may depend on x and u. To stress
this fact we will interpret Ac0(fk(x,u)) as a multivector function and write
Ac0(fk)(x,u). According to Lemmma 5.3 we can move Ac0(fk)(x,u) through
all factors, because it commutes. Analogously swapping Ac1(fk)(x,u) will
change the sign of each factor because it anticommutes. Hence we get

=Ac0(fk)(x,u)

∞∑
l=0

(−fk(x,u))l

l!
+Ac1(fk)(x,u)

∞∑
l=0

(fk(x,u))l

l!

=Ac0(fk)(x,u)e−fk(x,u) +Ac1(fk)(x,u)efk(x,u).

(5.18)
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Applying this repeatedly to the product we can deduce

d∏
k=1

e−fk(x,u)A =

d−1∏
k=1

e−fk(x,u)(Ac0(fd)(x,u)e−fd(x,u)

+Ac1(fd)(x,u)efd(x,u))

=

d−2∏
k=1

e−fk(x,u)(A
c0,0(

←−−−−−
fd−1,fd)

(x,u)e−fd−1(x,u)e−fd(x,u)

+A
c1,0(

←−−−−−
fd−1,fd)

(x,u)efd−1(x,u)e−fd(x,u))

+A
c0,1(

←−−−−−
fd−1,fd)

(x,u)e−fd−1(x,u)efd(x,u)

+A
c1,1(

←−−−−−
fd−1,fd)

(x,u)efd−1(x,u)efd(x,u))

=...

=
∑

j∈{0,1}d
A
cj(
←−
F )

(x,u)

d∏
k=1

e−(−1)jkfk(x,u).

(5.19)

�

6. Separable GFT

From now on we want to restrict ourselves to an important group of geometric
Fourier transforms whose square roots of -1 are independent from the first
argument.

Definition 6.1. We call a GFT left (right) separable, if

fl = |fl(x,u)|il(u), (6.1)

∀l = 1, ...,µ, (l = µ + 1, ...,ν), where |fl(x,u)| : Rm × Rm → R is a real
function and il : Rm → I p,q a function that does not depend on x.

Example. The first five transforms from the introductory example are sepa-
rable, while the cylindrical transform (vi) can not be expressed in the way of
(6.1) except for the two dimensional case.

We have seen in the proof of Lemma 5.8 that the decomposition of a
constant multivector A with respect to a product of exponentials generally
results in multivector valued functions Acj(F )(x,u) of x and u. Separability
guarantees independence from x and therefore allows separation from the
integral.

Corollary 6.2 (Decomposition independent from x). Consider a set of func-
tions F = {f1(x,u), ..., fd(x,u)} satisfying condition (6.1) then the ordered
product of their exponentials and an arbitrary multivector A ∈ C`p,q satisfies

d∏
k=1

e−fk(x,u)A =
∑

j∈{0,1}d
A
cj(
←−
F )

(u)

d∏
k=1

e−(−1)jkfk(x,u). (6.2)
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Remark 6.3. If a GFT can be expressed as in (6.1) but with multiples of
square roots of −1 ik ∈ I p,q, which are independent from x and u, the
parts A

cj(
←−
F )

of A will be constants. Note that the first five GFTs from the

reference example satisfy this stronger condition, too.

Definition 6.4. For a set of functions F = {f1(x,u), ..., fd(x,u)} and a multi-
index j ∈ {0, 1}d, we define the set of functions F (j) by

F (j) := {(−1)j1f1(x,u), ..., (−1)jdfd(x,u)}. (6.3)

Theorem 6.5 (Left and right products). Let C ∈ C`p,q and A,B : Rm →
C`p,q be two multivector fields with A(x) = CB(x) then a left separable
geometric Fourier transform obeys

FF1,F2(A)(u) =
∑

j∈{0,1}µ
C
cj(
←−
F1)

(u)FF1(j),F2
(B)(u). (6.4)

If A(x) = B(x)C we analogously get

FF1,F2
(A)(u) =

∑
k∈{0,1}(ν−µ)

FF1,F2(k)(B)(u)C
ck(
−→
F2)

(u)
(6.5)

for a right separable GFT.

Proof. We restrict ourselves to the proof of the first assertion.

FF1,F2(A)(u) =

∫
Rm

∏
f∈F1

e−f(x,u)CB(x)
∏
f∈F2

e−f(x,u) dmx

Lem. 5.8
=

∫
Rm

(
∑

j∈{0,1}µ
C
cj(
←−
F1)

(u)

µ∏
l=1

e−(−1)jlfl(x,u))

B(x)
∏
f∈F2

e−f(x,u) dmx

=
∑

j∈{0,1}µ
C
cj(
←−
F1)

(u)

∫
Rm

µ∏
l=1

e−(−1)jlfl(x,u)

B(x)
∏
f∈F2

e−f(x,u) dmx

=
∑

j∈{0,1}µ
C
cj(
←−
F1)

(u)FF1(j),F2
(B)(u)

(6.6)

The second one follows in the same way. �

Corollary 6.6 (Uniform constants). Let the claims from Theorem 6.5 hold. If
the constant C satisfies C = C

cj(
←−
F1)

(u) for a multi-index j ∈ {0, 1}µ then

the theorem simplifies to

FF1,F2(A)(u) =CFF1(j),F2
(B)(u) (6.7)

for A(x) = CB(x) respectively

FF1,F2
(A)(u) =FF1,F2(k)(B)(u)C (6.8)
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for A(x) = B(x)C and C = C
ck(
−→
F2)

(u) for a multi-index k ∈ {0, 1}(ν−µ).2

Corollary 6.7 (Left and right linearity). The geometric Fourier transform is
left (respectively right) linear if F1 (respectively F2) only consists of functions
fk with values in the center of C`p,q, that means ∀x,u ∈ Rm,∀A ∈ C`p,q :
Afk(x,u) = fk(x,u)A.

Remark 6.8. Note that for empty sets F1 (or F2) necessarily all elements
satisfy commutativity and therefore the condition in corollary 6.7.

The different appearances of Theorem 6.5 are summarized in Table 1
and Table 2.

GFT A(x) = CB(x)

1. Clifford Ff1 = CFf1

2. Bülow Ff1,...,fn = CFf1,...,fn

3. Quaternionic Ff1,f2 = Cc0(i)Ff1,f2 +Cc1(i)F−f1,f2

4. Spacetime Ff1,f2 = Cc0(e4)Ff1,f2 +Cc1(e4)F−f1,f2

5. Color Image Ff1,f2,f3,f4 = C
c00(
←−−−
B,iB)

Ff1,f2,f3,f4

+C
c10(
←−−−
B,iB)

F−f1,f2,f3,f4

+C
c01(
←−−−
B,iB)

Ff1,−f2,f3,f4

+C
c11(
←−−−
B,iB)

F−f1,−f2,f3,f4

6. Cylindrical n = 2 Ff1 = Cc0(e12)Ff1 +Cc1(e12)F−f1

Cylindrical n 6= 2 -

Table 1. Theorem 6.5 (Left products) applied to the GFTs
of the first example enumerated in the same order. Notations:
on the l.h.s. FF1,F2

= FF1,F2
(A)(u), on the r.h.s FF ′1,F

′
2

=
FF ′1,F

′
2
(B)(u)

We have seen how to change the order of a multivector and a product of
exponentials in the previous section. To get a shift theorem we will have to
separate sums appearing in the exponent and sort the resulting exponentials
with respect to the summands. Note that corollary 6.2 can be applied in two
ways here, because exponentials appear on both sides.

2Corrolary 6.6 follows directly from (C
cj(
←−
F1)

)
ck(
←−
F1)

= 0 for all k 6= j because no non-zero

component of C can commute and anticommute with respect to a function in F1.
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GFT A(x) = B(x)C

1. Clif. n = 2 (mod 4) Ff1 = Ff1Cc0(i) + F−f1Cc1(i)

Clif. n = 3 (mod 4) Ff1 = Ff1C

2. Bülow Ff1,...,fn

=
∑
k∈{0,1}n F(−1)k1f1,...,(−1)knfnCck(

−−−−−→
f1,...,fn)

3. Quaternionic Ff1,f2 = Ff1,f2Cc0(j) + Ff1,−f2Cc1(j)

4. Spacetime Ff1,f2 = Ff1,f2Cc0(e4i4) + Ff1,−f2Cc1(e4i4)

5. Color Image Ff1,f2,f3,f4 = Ff1,f2,f3,f4Cc00(
−−−→
B,iB)

+Ff1,f2,−f3,f4Cc10(
−−−→
B,iB)

+Ff1,f2,f3,−f4Cc01(
−−−→
B,iB)

+Ff1,f2,−f3,−f4Cc11(
−−−→
B,iB)

6. Cylindrical Ff1 = Ff1C

Table 2. Theorem 6.5 (Right products) applied to the
GFTs of the first example, enumerated in the same order.
Notations: on the l.h.s. FF1,F2 = FF1,F2(A)(u), on the r.h.s
FF ′1,F

′
2

= FF ′1,F
′
2
(B)(u)

Not every factor will need to be swapped with every other one. So, to
keep things short, we will make use of the notation c(J)l(f1, ..., fl, 0, ..., 0) for
l ∈ {1, ..., d} instead of distinguishing between differently sized multi-indices
for every l that appears. The zeros at the end substitutionary indicate real
numbers. They commute with every multivector. That implies, that for the
last d − l factors no swap and therefore no separation needs to be made.
It would also be possible to use the notation c(J)l(f1, ..., fl−1, 0, ..., 0) for
l ∈ {1, ..., d}, because every function commutes with itself. We chose the
other one where no exceptional treatment of f1 is necessary. But please note
that the multivectors (J)l indicating the commutative and anticommutative
parts will all have zeros from l to d and therefore form a strictly triangular
matrix.

Lemma 6.9. Let a set of functions F = {f1(x,u), ..., fd(x,u)} fulfill (6.1)
and be linear with respect to x. Further let J ∈ {0, 1}d×d be a strictly lower
triangular matrix, that is associated column by column with a multi-index

j ∈ {0, 1}d by ∀k = 1, ..., d : (
∑d
l=1 Jl,k) mod 2 = jk, with (J)l being its l-th
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row, then

d∏
l=1

e−fl(x+y,u)

=
∑

j∈{0,1}d

∑
J∈{0,1}d×d,∑d

l=1(J)l mod 2=j

d∏
l=1

e
−fl(x,u)

c(J)l (
←−−−−−−−−−−
f1,...,fl,0,...,0)

d∏
l=1

e−(−1)jlfl(y,u)
(6.9)

or alternatively with strictly upper triangular matrices J

d∏
l=1

e−fl(x+y,u)

=
∑

j∈{0,1}d

∑
J∈{0,1}d×d,∑d

l=1(J)l mod 2=j

d∏
l=1

e−(−1)jlfl(x,u)
d∏
l=1

e
−fl(y,u)

c(J)l (
−−−−−−−−−−→
0,...,0,fl,...,fd)

.
(6.10)

We do not explicitly indicate the dependence of the partition on u as
in corollary 6.2, because the functions in the exponents already contain this
dependence. Please note that the decomposition is pointwise.

Proof. We will only prove the first assertion. The second one follows analo-
gously by applying corollary 6.2 the other way around.

d∏
l=1

e−fl(x+y,u) F lin.
=

d∏
l=1

e−fl(x,u)−fl(y,u)

Lem. 2.2
=

d∏
l=1

e−fl(x,u)e−fl(y,u)

=e−f1(x,u)e−f1(y,u)
d∏
l=2

e−fl(x,u)e−fl(y,u)

cor. 6.2
= e−f1(x,u)(e

−f2(x,u)
c0(f1) e−f1(y,u)e−f2(y,u)

+ e
−f2(x,u)
c1(f1) ef1(y,u)e−f2(y,u))

d∏
l=3

e−fl(x,u)e−fl(y,u)

(6.11)
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cor. 6.2
= e−f1(x,u)(e

−f2(x,u)
c0(f1) e

−f3(x,u)

c00(
←−−−
f1,f2)

e−f1(y,u)e−f2(y,u)e−f3(y,u)

+ e
−f2(x,u)
c0(f1) e

−f3(x,u)

c01(
←−−−
f1,f2)

e−f1(y,u)ef2(y,u)e−f3(y,u)

+ e
−f2(x,u)
c0(f1) e

−f3(x,u)

c10(
←−−−
f1,f2)

ef1(y,u)e−f2(y,u)e−f3(y,u)

+ e
−f2(x,u)
c0(f1) e

−f3(x,u)

c11(
←−−−
f1,f2)

ef1(y,u)ef2(y,u)e−f3(y,u)

+ e
−f2(x,u)
c1(f1) e

−f3(x,u)

c00(
←−−−
f1,f2)

ef1(y,u)e−f2(y,u)e−f3(y,u)

+ e
−f2(x,u)
c1(f1) e

−f3(x,u)

c01(
←−−−
f1,f2)

ef1(y,u)ef2(y,u)e−f3(y,u)

+ e
−f2(x,u)
c1(f1) e

−f3(x,u)

c10(
←−−−
f1,f2)

e−f1(y,u)e−f2(y,u)e−f3(y,u)

+ e
−f2(x,u)
c1(f1) e

−f3(x,u)

c11(
←−−−
f1,f2)

e−f1(y,u)ef2(y,u)e−f3(y,u))

d∏
l=4

e−fl(x,u)e−fl(y,u)

(6.12)

There are only 2δ ways of distributing the signs of δ exponents, so some of
the summands can be combined.

=e−f1(x,u)((e
−f2(x,u)
c0(f1) e

−f3(x,u)

c00(
←−−−
f1,f2)

+ e
−f2(x,u)
c1(f1) e

−f3(x,u)

c10(
←−−−
f1,f2)

)

e−f1(y,u)e−f2(y,u)e−f3(y,u)

+ (e
−f2(x,u)
c0(f1) e

−f3(x,u)

c01(
←−−−
f1,f2)

+ e
−f2(x,u)
c1(f1) e

−f3(x,u)

c11(
←−−−
f1,f2)

)

e−f1(y,u)ef2(y,u)e−f3(y,u)

+ (e
−f2(x,u)
c0(f1) e

−f3(x,u)

c10(
←−−−
f1,f2)

+ e
−f2(x,u)
c1(f1) e

−f3(x,u)

c00(
←−−−
f1,f2)

ef1(y,u)

e−f2(y,u)e−f3(y,u)

+ (e
−f2(x,u)
c0(f1) e

−f3(x,u)

c11(
←−−−
f1,f2)

+ e
−f2(x,u)
c1(f1) e

−f3(x,u)

c01(
←−−−
f1,f2)

)ef1(y,u)

ef2(y,u)e−f3(y,u))

d∏
l=4

e−fl(x,u)e−fl(y,u)

(6.13)

To get a compact notation we expand all multi-indices by adding zeros until
they have the same length. Note that the last non zero argument in terms like

c000(
←−−−−
f1, 0, 0) always coincides with the exponent of the corresponding factor.

Because of that it will always commute and could as well be replaced by a
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zero, too.

=e
−f1(x,u)

c000(
←−−−
f1,0,0)

((e
−f2(x,u)

c000(
←−−−−
f1,f2,0)

e
−f3(x,u)

c000(
←−−−−−
f1,f2,f3)

+ e
−f2(x,u)

c100(
←−−−−
f1,f2,0)

e
−f3(x,u)

c100(
←−−−−−
f1,f2,f3)

)

e−f1(y,u)e−f2(y,u)e−f3(y,u)

+ (e
−f2(x,u)

c000(
←−−−−
f1,f2,0)

e
−f3(x,u)

c010(
←−−−−−
f1,f2,f3)

+ e
−f2(x,u)

c100(
←−−−−
f1,f2,0)

e
−f3(x,u)

c110(
←−−−−−
f1,f2,f3)

)

e−f1(y,u)ef2(y,u)e−f3(y,u)

+ (e
−f2(x,u)

c000(
←−−−−
f1,f2,0)

e
−f3(x,u)

c100(
←−−−−−
f1,f2,f3)

+ e
−f2(x,u)

c100(
←−−−−
f1,f2,0)

e
−f3(x,u)

c000(
←−−−−−
f1,f2,f3)

ef1(y,u)e−f2(y,u)e−f3(y,u)

+ (e
−f2(x,u)

c000(
←−−−−
f1,f2,0)

e
−f3(x,u)

c110(
←−−−−−
f1,f2,f3)

+ e
−f2(x,u)

c100(
←−−−−
f1,f2,0)

e
−f3(x,u)

c010(
←−−−−−
f1,f2,f3)

)

ef1(y,u)ef2(y,u)e−f3(y,u))

d∏
l=4

e−fl(x,u)e−fl(y,u)

(6.14)

For δ = 3 we look at all strictly lower triangular matrices J ∈ {0, 1}δ×δ with
the property

∀k = 1, ..., δ : (

δ∑
l=1

(J)l,k) mod 2 = jk. (6.15)

That means the l-th row (J)l of J contains a multi-index (J)l ∈ {0, 1}δ, with
the last δ − l − 1 entries being zero and the k-th column sum being even
when jk = 0 and being odd when jk = 1. For example the first multi-index
is j = (0, 0, 0). There are only two different strictly lower triangular matrices
that have columns summing up to even numbers:

J =

0 0 0
0 0 0
0 0 0

 and J =

0 0 0
1 0 0
1 0 0

 . (6.16)

Their first row contains the multi-index that belongs to e−f1(x,u), the second
one belongs to e−f2(x,u) and so on. So the Summands with exactly these
multi-indices are the ones assigned to the product of exponentials whose signs
are invariant during the reordering. With this notation and all J ∈ {0, 1}3×3

that satisfy the property (6.15) we can write

d∏
l=1

e−fl(x+y,u) =
∑

j∈{0,1}3

∑
J

3∏
l=1

e
−fl(x,u)

c(J)l (
←−−−−−−−−−−
f1,...,fl,0,...,0)

3∏
l=1

e−(−1)jlfl(y,u)

d∏
l=4

e−fl(x,u)e−fl(y,u).

(6.17)
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Using mathematical induction with matrices J ∈ {0, 1}δ×δ like introduced
above for growing δ and corollary 6.2 repeatedly until we reach δ = d we get

=
∑

j∈{0,1}d

∑
J

d∏
l=1

e
−fl(x,u)

c(J)l (
←−−−−−−−−−−
f1,...,fl,0,...,0)

d∏
l=1

e−(−1)jlfl(y,u). (6.18)

�

Remark 6.10. The number of actually appearing summands is usually much
smaller than in Theorem 6.11. It is determined by the amount of distinct
strictly lower (upper) triangular matrices J with entries being either zero or
one, particularly

2
d(d−1)

2 . (6.19)

Theorem 6.11 (Shift). Let A(x) = B(x − x0) be multivector fields, F1, F2

be linear with respect to x, j ∈ {0, 1}µ,k ∈ {0, 1}(ν−µ) be multi-indices and
F1(j), F2(k) as introduced in Definition 6.4, then a separable GFT suffices

FF1,F2
(A)(u) =

∑
j,k

∑
J,K

µ∏
l=1

e
−fl(x0,u)

c(J)l (
←−−−−−−−−−−
f1,...,fl,0,...,0)

FF1(j),F2(k)(B)(u)

ν∏
l=µ+1

e
−fl(x0,u)

c(K)l−µ (
−−−−−−−−−−→
0,...,0,fl,...,fν)

,

(6.20)

where J ∈ {0, 1}µ×µ and K ∈ {0, 1}(ν−µ)×(ν−µ) are the strictly lower, re-
spectively upper, triangular matrices with rows (J)l, (K)l−µ summing up to
(
∑µ
l=1(J)l) mod 2 = j respectively (

∑ν
l=µ+1(K)l−µ) mod 2 = k as in Lemma

6.9.

Proof. First we put the transfomed function down to B(y) using a change
of coordinates.

FF1,F2
(A)(u) =

∫
Rm

µ∏
l=1

e−fl(x,u)A(x)

ν∏
l=µ+1

e−fl(x,u) dmx

=

∫
Rm

µ∏
l=1

e−fl(x,u)B(x− x0)

ν∏
l=µ+1

e−fl(x,u) dmx

y=x−x0
=

∫
Rm

µ∏
l=1

e−fl(y+x0,u)B(y)

ν∏
l=µ+1

e−fl(y+x0,u) dmy

(6.21)
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Now we separate and sort the factors with the above Lemma 6.9.

Lem. 6.9
=

∫
Rm

∑
j∈{0,1}µ

∑
J∈{0,1}µ×µ∑
(J)l mod 2=j

µ∏
l=1

e
−fl(x0,u)

c(J)l (
←−−−−−−−−−−
f1,...,fl,0,...,0)

µ∏
l=1

e−(−1)jlfl(y,u)B(y)∑
k∈{0,1}(ν−µ)

∑
K∈{0,1}(ν−µ)×(ν−µ)∑

(K)l mod 2=k

ν∏
l=µ+1

e−(−1)kl−µfl(y,u)
ν∏

l=µ+1

e
−fl(x0,u)

c(K)l−µ (
−−−−−−−−−−→
0,...,0,fl,...,fν)

dmy

=
∑
j,k

∑
J,K

µ∏
l=1

e
−fl(x0,u)

c(J)l (
←−−−−−−−−−−
f1,...,fl,0,...,0)

FF1(j),F2(k)(B)(u)

ν∏
l=µ+1

e
−fl(x0,u)

c(K)l−µ (
−−−−−−−−−−→
0,...,0,fl,...,fν)

(6.22)

�

Corollary 6.12 (Shift). Let A(x) = B(x − x0) be multivector fields, F1 and
F2 each consist of mutually commutative functions3 being linear with respect
to x, then the GFT obeys

FF1,F2(A)(u) =

µ∏
l=1

e−fl(x0,u)FF1,F2(B)(u)

ν∏
l=µ+1

e−fl(x0,u). (6.23)

Remark 6.13. For sets F1, F2 that each consist of less than two functions
the condition of corollary 6.12 is necessarily satisfied, compare e.g. reference
examples 1,3 and 4.

The specific forms, our standard examples take, are summarized in Table
3. As expected they are often shorter than what could be expected from
Remark 6.10.

7. Conclusions and Outlook

For multivector fields over Rp,q with values in any geometric algebra Gp,q we
have successfully defined a general geometric Fourier transform. It compre-
hends all popular Fourier transforms from current literature in the introduc-
tory example. Its existence, independent from the specific choice of functions
F1, F2, could be proved for all integrable multivector fields, see Theorem 3.1.
Theorem 3.2 shows that our geometric Fourier transform is generally linear

3Cross commutativity between F1 and F2 is not necessary.
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GFT A(x) = B(x− x0)

1. Clifford Ff1 = Ff1e
−2πix0·u

2. Bülow Ff1,...,fn =
∑
k∈{0,1}n

∑
K F(−1)k1f1,...,(−1)knfn∏n

l=1 e
−2πx0kuk

c(K)l (
−−−−−−−−−−→
0,...,0,fl,...,fn)

3. Quaternionic Ff1,f2 = e−2πix01u1Ff1,f2e
−2πjx02u2

4. Spacetime Ff1,f2 = e−e4x04u4Ff1,f2e
−ε4e4i4(x1u1+x2u2+x3u3)

5. Color Image Ff1,f2,f3,f4 = e−
1
2 (x01u1+x02u2)(B+iB)Ff1,f2,f3,f4

e
1
2 (x01u1+x02u2)(B+iB)

6. Cyl. n = 2 Ff1 = ex0∧uFf1

Cyl. n 6= 2 -

Table 3. Theorem 6.11 (Shift) applied to the GFTs of
the first example, enumerated in the same order. Nota-
tions: on the l.h.s. FF1,F2

= FF1,F2
(A)(u), on the r.h.s

FF ′1,F
′
2

= FF ′1,F
′
2
(B)(u), in the second row K represents

all strictly upper triangular matrices ∈ {0, 1}n×n with rows
(K)l−µ summing up to (

∑ν
l=µ+1(K)l−µ) mod 2 = k. The

simplified shape of the color image FT results from the com-
mutativity of B and iB and application of Lemma 2.2.

over the field of real numbers. All transforms from the reference example
consist of bilinear F1 and F2. We proved that this property is sufficient to
ensure the scaling property of Theorem 4.1.

If a general geometric Fourier transform is separable as introduced in
Definition 6.1, then Theorem 6.5 (Left and right products) guarantees that
constant factors can be separated from the vector field to be transformed. As
a consequence general linearity is achieved by choosing F1, F2 with values in
the center of the geometric algebra C`p,q, compare Corollary 6.7. All examples
except for the cylindrical Fourier transform [12] satisfy this claim.

Under the condition of linearity with respect to the first argument of the
functions of the sets F1 and F2 additionally to the just mentioned separability,
we also proved a shift property (Theorem 6.11).

In future papers we are going to state the necessary constraints for a
generalized convolution theorem, invertibility, derivation theorem and we will
examine how simplifications can be achieved based on symmetry properties
of the multivector fields to be transformed. We will also construct generalized
geometric Fourier transforms in a broad sense from combinations of the ones
introduced in this paper and from decomposition into their sine and cosine
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parts which will also cover the vector and bivector Fourier transforms of [18].
It would further be of interest to extend our approach to Fourier transforms
defined on spheres or other non-Euclidean manifolds, to functions in the
Schwartz space and to square-integrable functions.
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[8] Thomas Bülow. Hypercomplex Spectral Signal Representations for Image Pro-
cessing and Analysis. Inst. f. Informatik u. Prakt. Math. der Christian-
Albrechts-Universität zu Kiel, 1999.

[9] Todd A. Ell. Quaternion-Fourier Transforms for Analysis of Two-Dimensional
Linear Time-Invariant Partial Differential Systems. In Proceedings of the 32nd
IEEE Conference on Decision and Control, volume 2, pages 1830–1841, San
Antonio, TX , USA, 1993.

[10] Eckhard Hitzer. Quaternion fourier transform on quaternion fields and gen-
eralizations. Advances in Applied Clifford Algebras, 17(3):497–517, 2007.
10.1007/s00006-007-0037-8.

[11] Thomas Batard, Michel Berthier, and Christophe Saint-Jean. Clifford Fourier
Transform for Color Image Processing. In G. Scheuermann E. Bayro-
Corrochano, editor, Geometric Algebra Computing: In Engineering and Com-
puter Science, pages 135–162. Springer, London, UK, 2010.

[12] Fred Brackx, Nele De Schepper, and Frank Sommen. The Cylindrical Fourier
Transform. In G. Scheuermann E. Bayro-Corrochano, editor, Geometric Al-
gebra Computing: In Engineering and Computer Science, pages 107–119.
Springer, London, UK, 2010.

[13] Michael Felsberg. Low-Level Image Processing with the Structure Multivector.
PhD thesis, University of Kiel, Germany, 2002.



A General Geometric Fourier Transform 23

[14] Todd A. Ell and Steven J. Sangwine. The Discrete Fourier Transforms of a
Colour Image. Blackledge, J. M. and Turner, M. J., Image Processing II: Math-
ematical Methods, Algorithms and Applications, 430-441, 2000.

[15] T.A. Ell and S.J. Sangwine. Hypercomplex fourier transforms of color images.
Image Processing, IEEE Transactions on, 16(1):22 –35, jan. 2007.

[16] Fred Brackx, Nele de Schepper, and Frank Sommen. The Clifford-Fourier
Transform. Journal of Fourier Analysis and Applications, Vol. 11, No. 6, 2005.

[17] Fred Brackx, Nele De Schepper, and Frank Sommen. The two-dimensional
clifford-fourier transform. Journal of Mathematical Imaging and Vision, 26:5–
18, 2006. 10.1007/s10851-006-3605-y.

[18] Hendrik De Bie and Frank Sommen. Vector and Bivector Fourier Transforms
in Clifford Analysis. 18th International Conference on the Application of Com-
puter Science and Mathematics in Architecture and Civil Engineering, 2009.

[19] Fred Brackx, Nele De Schepper, and Frank Sommen. The Clifford-Fourier in-
tegral Kernel in even eimensional Euclidean space. Journal of Mathematical
Analysis and Applications, 365(2):718–728, 2010.

[20] David Hestenes and Garret Sobczyk. Clifford Algebra to Geometric Calculus.
D. Reidel Publishing Group, Dordrecht, Netherlands, 1984.

Roxana Bujack
Universität Leipzig
Institut für Informatik
Johannisgasse 26
04103 Leipzig
Deutschland

e-mail: bujack@informatik.uni-leipzig.de

Gerik Scheuermann
Universität Leipzig
Institut für Informatik
Johannisgasse 26
04103 Leipzig
Deutschland

e-mail: scheuermann@informatik.uni-leipzig.de

Eckhard Hitzer
University of Fukui
Department of Applied Physics
3-9-1 Bunkyo
Fukui 910
Japan

e-mail: hitzer@mech.u-fukui.ac.jp


