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Abstract. The large variety of Fourier transforms in geometric algebras
inspired the straight forward definition of “A General Geometric Fourier
Transform“ in Bujack et al., Proc. of ICCA9, covering most versions in
the literature. We showed which constraints are additionally necessary
to obtain certain features like linearity, a scaling, or a shift theorem. In
this paper we extend the former results by a convolution theorem.
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1. Introduction

The Fourier transform (FT) is a very important tool for mathematics, physics,
computer science and engineering. Since geometric algebras [1] usually con-
tain continuous submanifolds of geometric square roots of minus one [2, 3]
there are infinitely many ways to construct new geometric Fourier transforms
by replacing the imaginary unit in the classical definition of the FT. Every
multivector comes with a natural geometric interpretation so the generaliza-
tion is very useful. It helps to interpret the transform and apply it in a target
oriented way to the specific underlying problem.

Many different definitions of Fourier transforms in geometric algebras
were developed. For example the Clifford Fourier transform introduced by
Jancewicz [4] and expanded by Ebling and Scheuermann [5] and Hitzer and
Mawardi [6], the one established by Sommen in [7] and re-established by
Bülow [8], the quaternionic Fourier transform by Ell [9] and later by Bülow [8],
the spacetime Fourier transform by Hitzer [10], the Clifford Fourier transform
for color images by Batard et al. [11], the Cylindrical Fourier transform by
Brackx et al. [12], the transforms by Felsberg [13] or Ell and Sangwine [14, 15].

We abstracted all of them in one general definition in [16]. There we
analyzed the separation of constant factors from the transform, the scaling
theorem and shift properties. Now we want to derive a convolution theorem.
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It has important consequences for the study of geometric Fourier transforms
and is fundamental for the acceleration of the convolution and the correlation
of multivector fields by means of the fast Fourier transform algorithm.

Although this paper is written to be self-contained we highly recommend
to read the preceding work. Lemmata that were introduced there and will be
needed again will be repeated, but the study of the proofs, that can be found
in [16], will grant a deeper understanding of the geometric context.

We examine geometric algebras Gp,q, p + q = n ∈ N over Rp,q [17]
generated by the associative, bilinear geometric product with neutral element
1 satisfying

ejek + ekej = εjδjk, (1.1)

for all j, k ∈ {1, ..., n} with the Kronecker symbol δ and

εj =

{
1 ∀j = 1, ..., p,

−1 ∀j = p+ 1, ..., n.
(1.2)

For the sake of brevity we want to refer to arbitrary multivectors

A =

n∑
k=0

∑
1≤j1<...<jk≤n

aj1...jkej1 ...ejk ∈ Gp,q, (1.3)

aj1...jk ∈ R, as

A =
∑
j

ajej , (1.4)

where each of the 2n multi-indices j ⊆ {1, ..., n} indicates a basis multivector
of dimension k of Gp,q by ej = ej1 ...ejk , 1 ≤ j1 < ... < jk ≤ n, e∅ = e0 = 1
and its associated coefficient aj = aj1...jk ∈ R. For each geometric algebra
Gp,q we will write I p,q = {i ∈ Gp,q, i2 ∈ R−} to denote the real multiples of
all geometric square roots of minus one, compare [2] and [3]. We chose the
symbol I to be reminiscent of the imaginary numbers.

Throughout this paper we analyze multivector fields A : Rp′,q′ → Gp,q,
p′+ q′ = m ∈ N, p+ q = n ∈ N. To simplify the notation we will often denote
the argument vector space only by Rm, but the reader should keep in mind,
that we assume Rm = Rp′,q′ .

We defined the general Geometric Fourier Transform (GFT) FF1,F2(A)

of a multivector field A : Rp′,q′ → Gp,q, p′+ q′ = m ∈ N, p+ q = n ∈ N in [16]
by the calculation rule

FF1,F2(A)(u) :=

∫
Rm

∏
f∈F1

e−f(x,u)A(x)
∏
f∈F2

e−f(x,u) dmx, (1.5)

with x,u ∈ Rm and two ordered finite sets F1 = {f1(x,u), ..., fµ(x,u)},
F2 = {fµ+1(x,u), ..., fν(x,u)} of mappings fl(x,u) : Rm×Rm → I p,q,∀l =
1, ..., ν. We proved some fundamental theorems in dependence on properties
of the functions fl, like existence, linearity, shift and scaling.
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2. Coorthogonality and Bases

Definition 2.1. We call two vectors v,w orthogonal (v ⊥ w) if v ·w = 0 and
colinear (v ‖ w) if v ∧w = 0.

Definition 2.2. We call two blades A,B orthogonal (A ⊥ B) if all of their
generating vectors are mutually orthogonal and colinear (A ‖ B) if all vectors
from one blade are colinear to all vectors in the other one.

For a vector v and a blade B = b1∧ ...∧bd the following equalities hold

v ⊥ B ⇔ vB = v ∧B ⇔ v ·B = 0⇔ vB = (−1)dBv,

v ‖ B ⇔ vB = v ·B ⇔ v ∧B = 0⇔ vB = (−1)d−1Bv,
(2.1)

compare [17, 18]. That inspires the next definition.

Definition 2.3. We call two blades A and B coorthogonal if AB = ±BA.

Notation 2.4. A blade can alternatively be written as an outer product of
vectors or as a geometric product of orthogonal vectors. For blades A =
a1 ∧ ... ∧ aµ and B = b1 ∧ ... ∧ bν we will use the notations span(B) :=
span(b1, ..., bν), A⊕B := span(A)⊕ span(B) ⊆ Rp,q, A ∩B := span(A) ∩
span(B) ⊆ Rp,q, β(A,B) := dim(A ∩ B) and α(A,B) := dim(A ⊕ B) =
µ + ν − β(A,B). For a set of blades B = {B1, ...,Bd}, d ∈ N we use the

notation span(B) =
⊕d

k=1 span(Bk) and α(B) = dim(span(B)).

Lemma 2.5. The basis blades ek of Gp,q that are generated from an orthogonal
basis of Rp,q are mutually coorthogonal.

Proof. All orthogonal basis vectors of Rp,q satisfy

ejek =

{
−ekej , for j 6= k ∈ N
ekej , for j = k

(2.2)

in every geometric algebra Gp,q. So for two basis blades ej = ej1,...,jµ , ek =
ek1,...,kν , 1 ≤ j1 < ... < jµ ≤ n, 1 ≤ k1 < ... < kν ≤ n with dimensions µ,
respectively ν we get

ejek = (−1)µν−β(ej ,ek)ekej , (2.3)

where β(ej , ek) = |{l ∈ N, l ∈ j and l ∈ k}| is the number of indices appear-
ing in both sets, respectively the dimension of the meet of the two blades. �

Lemma 2.6. For two coorthogonal blades A and B there is an orthonormal
basis V = {v1, ...,vα(A,B)} of A⊕B ⊆ Rp,q such that both can be expressed
as real multiples of basis blades, that means A = sgn(A)|A|vj1 ...vjµ and
B = sgn(B)|B|vk1 ...vkν , a, b ∈ R with the signum function being 1 or −1.

Proof. We know from [17] that every blade A spans a vector space span(A),
that this vector space has an orthonormal basis, how it can be produced and
that for span(B) ⊂ span(A) there is a unique blade A⊥B := B−1 ·A orthog-
onal to B, such that span(B) ∩ span(A⊥B) = ∅, span(B) ∪ span(A⊥B) =
span(A).
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Therefore we can separate the space A⊕B = (A∩B)∪span(A⊥(A∩B))∪
span(B⊥(A∩B)) into three disjoint parts and immediately know that A ∩
B is orthogonal to both A⊥(A∩B) and B⊥(A∩B). Since span(A⊥(A∩B)) ∩
span(B⊥(A∩B)) = ∅ all basis vectors a1, ...,aµ−β(A,B) of A⊥(A∩B) sat-
isfy a1, ...,aµ−β(A,B) /∈ span(B⊥(A∩B)) so ∀j = 1, ..., µ − β(A,B) : aj ∧
B⊥(A∩B) 6= 0. For the product of a vector and a blade we have

ajB⊥(A∩B) =aj ·B⊥(A∩B) + aj ∧B⊥(A∩B)

=(−1)ν−β(A,B)−1B⊥(A∩B) · aj + (−1)ν−β(A,B)B⊥(A∩B) ∧ aj
(2.4)

and since aj ∧B 6= 0 necessarily aj ·B = 0 has to be valid ∀j = 1, ..., µ −
β(A,B) in order to satisfy coorthogonality. That is equivalent to A⊥(A∩B) ⊥
B⊥(A∩B) and therefore unifying the orthonormal bases of all three parts
form an orthonormal basis of A ⊕ B. Let b1, ..., bν−β(A,B) be the basis of
span(B), c1, ..., cβ(A,B) be the basis of A ∩B then the blade A has can be
written as A = sgn(A)|A|c1, ..., cβ(A,B),a1, ...,aµ−β(A,B) and the blade B
as B = sgn(B)|B|c1, ..., cβ(A,B), b1, ..., bν−β(A,B). �

Remark 2.7. An alternative proof can be achieved from looking at the geo-
metric product AB as detailed in [19] equation (45) and more generally in
[20] equation (17). There the lowest order term is a product of all the cosines
of the principal angles and the lowest +2 order term is a sum of summands
each with the product of one sine of one principal angle times the cosines
of all other principal angels. The transition from AB to BA then does not
change the sign of the lowest order term, but changes the signs of all sum-
mands in the lowest +2 order grade part. Coorthogonality is therefore only
possible if for every principal angle either the cosine is zero (the 2 associated
principal vectors are perpendicular), or if the sine is zero (the 2 associated
principal vectors are parallel). Hence all principal angles are in {0, π2 }.

Lemma 2.8. Let B = {B1, ...,Bd}, d ∈ N be non-zero mutually coorthogo-
nal blades. Then there is an orthonormal basis v1, ...,vα(B) of span(B) such
that every Bk, k = 1, ..., d can be written as a real multiple of a basis blade,
that means Bk = sgn(Bk)|Bk|vj(k) with vj(k) = vj1(k),...,jµ(k), µ = µ(k) =
dim(Bk), |Bk| ∈ R.

Proof. Algorithm 1 constructs this basis.
The set D is the set of intersections of the subspaces spanned by all

possible combinations of elements of C. The elements Dk of D with minimal
dimension satisfy ∀Dj ∈ D : Dk∩Dj ∈ {∅,Dk}, because otherwise Dk∩Dj

would have lower dimension than Dk which is a contradiction. In both cases
all generating vectors of Dk can be added to the basis, compare the proof of
Lemma 2.6. So the choice of any vector c ∈ span(Dk) will be successful.

Once a vector is chosen there are two more cases that already appeared
in the proof of Lemma 2.6. In the case of c /∈ span(Ck) follows, that c is
orthogonal to Ck, because of (2.4). In the case of c ∈ span(Ck) the mul-
tiplication of c to Ck in the algorithm always creates blades cCk of lower
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Algorithm 1 Construction of the basis

Input: B, d
1: C = B, Basis = ∅, l = 0, ∀k = 1, ..., d : j(k) = (∅),
2: while l < α(C) do
3: D =

⋃
M⊆C(

⋂
Ck∈M span(Ck))

4: choose Dk of minimal dimension in D, choose c ∈ span(Dk),
5: Basis = Basis ∪ c, l = l + 1,
6: for k = 1, ..., d do
7: if c ∈ span(Ck) then
8: Ck = c−1 ·Ck, j(k) = (j(k), l),
9: end if

10: end for
11: end while
Output: Basis, j(k),∀k = 1, ..., d

dimension orthogonal to c, because of

c−1 ·B =〈c−1B〉dim(B)−1. (2.5)

Therefore the application of this operation to all blades in C only leaves
blades that are orthogonal to c but still coorthogonal amongst each other
because of

c−1Cjc
−1Ck

(2.1)
= (−1)µCjc

−1c−1Ck

(c−1)2∈R
= (−1)µ(c−1)2CjCk

prereq
= ± (−1)µ(c−1)2CkCj

(2.1)
= ± (−1)µ+ν−1c−1Ckc

−1Cj .

(2.6)

At the beginning C spans the whole space span(C) = span(B) but as the
algorithm proceeds span(C) = span(B)\ span(Basis) such that span(C) and
span(Basis) are orthogonal. Because of that the set Basis is orthogonal at all
times. The algorithm stops when α(C) vectors are in Basis. So finally α(C)
orthogonal vectors will be in Basis, which therefore in deed is an orthogonal
basis of span(B), all elements of C will have dimension zero and the algorithm
will end returning the basis and how the blades can be constructed. �

So trivially spoken, coorthogonality of blades can as well be interpreted
as coorthogonality of all their generating vectors, that means all their gener-
ating vectors are either orthogonal or colinear.

Theorem 2.9. A finite number of blades are coorthogonal if and only if they
are real multiples of basis blades of an orthonormal basis of Rp,q.

Proof. The assertion follows from Lemma 2.5 and 2.8 together with normal-
ization, the basis completion theorem and the Gram-Schmidt orthogonaliza-
tion process. �
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Notation 2.10. Throughout this paper we will only deal with geometric
Fourier transforms whose defining functions f1, ..., fν , compare (1.5), are mu-
tually coorthogonal blades, that means they satisfy the property ∀l, k =
1, ..., ν, ∀x,u ∈ Rm :

fl(x,u)fk(x,u) = ±fk(x,u)fl(x,u). (2.7)

Theorem 2.9 allows us to write

fl(x,u) = sgn(fl(x,u))|fl(x,u)|ejl(x,u). (2.8)

for all l = 1, ..., ν with a real valued function |fl(x,u)| : Rm × Rm → R and
a function jl(x,u) : Rm × Rm → P({1, ..., n}) that maps to a multi-index
indicating a basis multivector of a certain basis. We will refer to a set of
functions with this property simply as a set of basis blade functions.

Example. This constraint seems strong but all standard examples of geomet-
ric Fourier transforms from [16] fulfill it.

1. For A : Rn = Rn,0 → Gn,0, n = 2 (mod 4) or n = 3 (mod 4), the
Clifford Fourier transform introduced by Jancewicz [4] for n = 3 and
expanded by Ebling and Scheuermann [5] for n = 2 and Hitzer and
Mawardi [6] for n = 2 (mod 4) or n = 3 (mod 4) with

F1 =∅,
F2 ={f1},

f1(x,u) =2πinx · u,
(2.9)

clearly fulfills the restriction, since it has only one defining function and
in is a basis blade.

2. The Sommen Bülow Clifford Fourier transform from [7, 8], defined by

F1 =∅,
F2 ={f1, ..., fn},

fl(x,u) =2πelxlul,∀l = 1, ..., n,

(2.10)

for multivector fields Rn = R0,n → G0,n fulfills it, because all basis
vectors ek are of course basis blades.

3. For A : R2 = R2,0 → G0,2 ≈ H the quaternionic Fourier transform [9, 8]
is generated by

F1 ={f1},
F2 ={f2},

f1(x,u) =2πix1u1,

f2(x,u) =2πjx2u2,

(2.11)

and satisfies the condition because i and j are basis blades, too.
4. The defining functions of the spacetime Fourier transform for multivec-

tor fields A : R4 = R3,1 → G3,1 by Hitzer [10]1 with the pseudoscalar i4

1Please note that Hitzer uses a different notation in [10]. His x = te0 +x1e1 +x2e2 +x3e3
corresponds to our x = x1e1 +x2e2 +x3e3 +x4e4, with e0e0 = ε0 = −1 being equivalent

to our e4e4 = ε4 = −1.
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and
F1 ={f1},
F2 ={f2},

f1(x,u) =e4x4u4,

f2(x,u) =ε4e4i4(x1u1 + x2u2 + x3u3),

(2.12)

fulfill coorthogonality of blades, because of e4 ‖ i4 ⇒ e4 ⊥ e4i4.
5. The Clifford Fourier transform for color images by Batard, Berthier and

Saint-Jean [11] for m = 2, n = 4,A : R2 = R2,0 → G4,0, a fixed bivector
B, and the pseudoscalar i can be written as

F1 ={f1, f2},
F2 ={f3, f4},

f1(x,u) =
1

2
(x1u1 + x2u2)B,

f2(x,u) =
1

2
(x1u1 + x2u2)iB,

f3(x,u) =− f1(x,u),

f4(x,u) =− f2(x,u).

(2.13)

There are bivectors in G4,0 that are not blades. But since Batard et al.
start from G3,0 we may assume B to be a blade. So the transform fulfills
condition (2.8), because B and iB commute. Let B consist of the two
orthogonal vectors v1v2 = B, then a basis as in Theorem 2.9 could
be constructed by orthogonal basis completion of v1v2 to a basis B =
{v1,v2,v3,v4} and normalization. Because from v1v2v3v4 = ci, c ∈ R
follows that iB = −c−1v3v4 is a basis blade, too.

6. For A : Rn = R0,n → G0,n or2 A : Rn = R0,n → G0,n⊗C the cylindrical
Fourier transform as introduced by Brackx, De Schepper and Sommen
in [12] with

F1 ={f1},
F2 =∅,

f1(x,u) =−x ∧ u,

(2.14)

satisfies the restriction because it has only one defining function, too.
We will see that in contrast to the other transforms the basis guaranteed
by Theorem 2.9 depends locally on x and u here.

Remark 2.11. Theorem 2.9 guarantees, that there is an orthonormal basis
of Rp,q such that ∀l = 1, ..., ν, ∀x,u ∈ Rm : the values of the functions
fl(x,u) = sgn(fl(x,u))|fl(x,u)|ek(l) are real multiples of basis blades of
Gp,q. We assume that this basis is the one we use and we call the basis
vectors simply e1, ..., en. Therefore we can use the terms coorthogonal blades
and basis blades as synonyms up to a real multiple, especially in terms of
commutativity properties they can be used equivalently.

2The authors specify both possibilities.
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3. Products with Basis Blades

From [16] we already know the following facts about products with invertible
multivectors. Please note that every square root of minus one i ∈ I p,q is
invertible and that therefore the functions fl : Rm × Rm → I p,q from (1.5)
are pointwise invertible, too.

Definition 3.1. For an invertible multivector B ∈ Gp,q and an arbitrary mul-
tivector A ∈ Gp,q we define

Ac0(B) =
1

2
(A + B−1AB),

Ac1(B) =
1

2
(A−B−1AB).

(3.1)

Definition 3.2. For d ∈ N,A ∈ Gp,q, the ordered set B = {B1, ...,Bd} of
invertible multivectors of Gp,q and any multi-index j ∈ {0, 1}d we define

A
cj(
−→
B )

:=((Acj1 (B1))cj2 (B2)...)cjd (Bd),

A
cj(
←−
B )

:=((Acjd (Bd))cjd−1 (Bd−1)
...)cj1 (B1)

(3.2)

recursively with c0, c1 of Definition 3.1.

Lemma 3.3. Let d ∈ N, B = {B1, ...,Bd} be invertible multivectors and for

j ∈ {0, 1}d let |j| :=
∑d
k=1 jk, then ∀A ∈ Gp,q

A =
∑

j∈{0,1}d
A

cj(
−→
B )
,

AB1...Bd =B1...Bd

∑
j∈{0,1}d

(−1)|j|A
cj(
−→
B )
,

B1...BdA =
∑

j∈{0,1}d
(−1)|j|A

cj(
←−
B )

B1...Bd.

(3.3)

Now we use the concept of coorthogonality to simplify and enhance the
preliminary findings. For d ∈ N we take a closer look at sets of coorthogonal
blades B = {B1, ...,Bd}.

Lemma 3.4. Let B = {B1, ...,Bd}, d ∈ N be a set of mutually coorthogonal
blades with the unique inverse B−1k = BkB

−2
k ,B2

k ∈ R\{0}. Further let A ∈
Gp,q and j ∈ {0, 1}d be arbitrary, then A

cj(
−→
B )

and A
cj(
←−
B )

are independent

from the order of B.
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Proof. For two blades Bk,Bl we have

A
cjk,jl (

−−−−→
BkBl)

=((Acjk (Bk))cjl (Bl)

=
1

2
(A + (−1)jkB−1k ABk)cjl (Bl)

=
1

2
(
1

2
((A + (−1)jkB−1k ABk)

+ (−1)jlB−1l (A + (−1)jkB−1k ABk)Bl)

=
1

4
(A + (−1)jkB−1k ABk + (−1)jlB−1l ABl

+ (−1)jk+jlB−1l B−1k ABkBl).

(3.4)

From the prerequisites follows

B−1k B−1l ABlBk =
BkBlABlBk

B2
kB

2
l

=
±BlBkA(±)BkBl

B2
kB

2
l

=B−1l B−1k ABkBl,

(3.5)

which inserted into (3.4) leads to

A
cjk,jl (

−−−−→
BkBl)

=
1

4
(A + (−1)jkB−1k ABk + (−1)jlB−1l ABl

+ (−1)jk+jlB−1k B−1l ABlBk)

=((Acjl (Bl))cjk (Bk)

=A
cjk,jl (

←−−−−
BkBl)

.

(3.6)

Since ((Acj1 (B1))cj2 (B2)...)cjk (Bk) is a multivector, the application of (3.6)
leads to

A
cj(
−→
B )

=((Acj1 (B1))cj2 (B2)...)cjk (Bk))cjk+1 (Bk+1)
)...)cjd (Bd)

=((Acj1 (B1))cj2 (B2)...)cjk+1 (Bk+1)
)cjk (Bk))...)cjd (Bd)

=A
cj(
−−−−−−−−−−−−−−−−−→
B1,...,Bk+1,Bk,...,Bd)

,

(3.7)

that means no transposition of two neighboring multivectors changes the
value of A

cj(
−→
B )

. The assertion follows because every permutation can be

constructed from the composition of these swaps. �

Corollary 3.5. For d ∈ N,A ∈ Gp,q, the ordered set B = {B1, ...,Bd} of
mutually coorthogonal blades and any multi-index j ∈ {0, 1}d we have

A
cj(
−→
B )

= A
cj(
←−
B )
. (3.8)

Notation 3.6. Because of Corollary 3.5 we will not distinguish between A
cj(
−→
B )

and A
cj(
←−
B )

but just refer to the expression as Acj(B).
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Example. There are simple partitions of a multivector into commutative and
anticommutative parts, like for example for A = a0e0+a1e1+a2e2+a12e12 ∈
G2,0 we get

Ac0(e1) =
1

2
(A + e−11 Ae1)

=
1

2
(A + a0 + a1e1 − a2e2 − a12e12)

=a0 + a1e1

(3.9)

and therefore A = Ac0(e1) + Ac1(e1) = a0e0 + a1e1 + a2e2 + a12e12. But a
decompositions can not always be achieved by just splitting up the multivec-
tor into its blades with respect to a given basis. Sometimes the expressions of
these parts are even longer than the multivector itself, for example A = e1
satisfies

(e1)c0(e1+e2) =
1

2
(e1 + (e1 + e2)−1e1(e1 + e2))

=
1

2
(e1 +

1

2
(e1 + e2)e1(e1 + e2))

=
1

2
(e1 +

1

2
(e1 + e2 − e1e2e1 − e1e2e2))

=
1

2
(e1 + e2)

(3.10)

and gets decomposed into e1 = (e1)c0(e1+e2) + (e1)c1(e1+e2) = 1
2 (e1 + e2) +

1
2 (e1 − e2).

We will show that the decomposition of a multivector into commutative
and anticommutative parts with respect to basis blades always is a decompo-
sition into its blades along this basis. First consider one basis blade ek, here
c0(ek) can be interpreted as a mapping c0 : Gp,q → P({j ⊂ {1, ..., n}, 1 ≤
j1, < ..., < jι ≤ n}) of the multivector argument into the power set of all
multi-indices j as in (1.4) which indicate the basis blades of Gp,q. The map-
ping c0 returns the blades of any multivector that commute with its argument
ek and its counterpart c1 : Gp,q → P({j ⊂ {1, ..., n}, 1 ≤ j1, < ..., < jι ≤ n})
returns the blades that anticommute. The next Lemma will justify this inter-
pretation, but for better understanding we start with a motivational example.

Example. In the previous example the value of c0(e1) would be {{0}, {1}}
and c1(e1) = {{2}, {12}}, so we could write

Ac0(e1) =
∑

j∈c0(e1)

ajej =
∑

j∈{{0},{1}}

ajej = a0e0 + a1e1,

Ac1(e1) =
∑

j∈c1(e1)

ajej =
∑

j∈{{2},{12}}

ajej = a2e2 + a12e12.
(3.11)

Lemma 3.7. We denote the length of the multi-indices j,k by ι and κ. For a
basis blade ek and an arbitrary element A =

∑
j ajej of Gp,q the multivectors
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Ac0(ek) and Ac1(ek) are a decomposition of A along the basis blades, that
means

Ac0(ek) =
∑

j∈c0(ek)

ajej ,

Ac1(ek) =
∑

j∈c1(ek)

ajej
(3.12)

with c0(ek)∪ c1(ek) = {j ⊂ {1, ..., n}, 1 ≤ j1, < ..., < jι ≤ n} as in (1.4) and
c0(ek) ∩ c1(ek) = ∅ and the index sets c0(ek), c1(ek) take the forms

c0(ek) ={j ⊂ {1, ..., n}, 1 ≤ j1, < ..., < jι ≤ n, ικ− β(ej , ek) even},
c1(ek) ={j ⊂ {1, ..., n}, 1 ≤ j1, < ..., < jι ≤ n, ικ− β(ej , ek) odd}.

(3.13)

Proof. For Ac0(ek) we get

Ac0(ek) =
1

2
(A + e−1k Aek)

=
1

2

∑
j

(ajej + e−1k ajejek)

(2.3)
=

1

2

∑
j

(ajej + (−1)ικ−β(ej ,ek)e−1k ekajej)

=
1

2

∑
j

ajej(1 + (−1)ικ−β(ej ,ek))

=
∑

j∈c0(ek)

ajej .

(3.14)

The proof for Ac1(ek) works analogously. �

Remark 3.8. An alternative way of describing the decomposition would be
Ac0(ek) =

∑
j a0jej and Ac1(ek) =

∑
j a1jej with

a0j =

{
aj for ικ− β(j,k) even,

0 else.
(3.15)

The proof works analogously for Ac1(ek) =
∑

j a1jej with

a1j =

{
aj for ικ− β(j,k) odd,

0 else.
(3.16)

and A =
∑

j(a0j+a1j)ej with ∀j : (a0j = aj , a1j = 0) or (a0j = 0, a1j = aj).

Lemma 3.9. For basis blades B = {ek(1), ..., ek(d)} and multi-indices l ∈
{0, 1}d the Acl(B) form a decomposition of the multivector A along the basis
blades, that means

Acl(B) =
∑

j∈cl(B)

ajej (3.17)
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with
⋃
l∈{0,1}d c

l(B) = {j ⊂ {1, ..., n}, 1 ≤ j1, < ..., < jι ≤ n} as in (1.4) and

∀l 6= l′ ∈ {0, 1}d : cl(B) ∩ cl
′
(B) = ∅ and the index set cl(B) takes the form

cl(ek(1), ..., ek(d)) =

d⋂
ν=1

clν (ek(ν)). (3.18)

Proof. The assertion follows from multiple application of Lemma 3.7 and the
fact, that every part of A again is a multivector.

Acl(B)
def. 3.2

= ((Acl1 (ek(1))
)cl2 (ek(2))

...)cld (ek(d))
,

Lem. 3.7
= (

∑
j∈cl1 (ek(1))

ajej)cl2 (ek(2))
...)cld (ek(d))

Lem. 3.7
= (

∑
j∈cl1 (ek(1)) and j∈cl2 (ek(2))

ajej)cl3 (ek(3))
...)cld (ek(d))

=(
∑

j∈cl1 (ek(1))∩cl2 (ek(2))

ajej)cl3 (ek(3))
...)cld (ek(d))

=...

Lem. 3.7
=

∑
j∈

⋂d
ν=1 clν (ek(ν)))

ajej

=
∑

j∈cl(B)

ajej

(3.19)

�

Remark 3.10. Now for d ∈ N basis blades we can use the mapping cl :
(Gp,q)d → P({j ⊂ {1, ..., n}, 1 ≤ j1, < ..., < jι ≤ n}) to express the decompo-
sition of a multivector. Compared to Definition 3.2 it can be computed much
faster using the formula (3.18), which by the way again shows very clearly
that the partition does not depend on the order of the blades.

Example. Like in the two preceding examples we look at A ∈ G2,0 but this
time we use (3.18). From

c0,0(e1, e2) = c0(e1) ∩ c0(e2) = {{0}, {1}} ∩ {{0}, {2}} = {0} (3.20)

follows

Ac0,0(e1,e2) =
∑

j∈c0,0(e1,e2)

ajej = a0 (3.21)

and computing the other parts analogously we get

A =Ac0,0(e1,e2) + Ac1,0(e1,e2) + Ac0,1(e1,e2) + Ac1,1(e1,e2)

=a0 + a1e1 + a2e2 + a12e12

=
∑
j

ajej .
(3.22)
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Remark 3.11. The decomposition with respect to basis blades is independent
from the multivector A and the total amount of parts that occur is limited
by min{2d, 2n}, where d is the number of blades in B and n = p + q the
dimension of the underlying vector space. In the case of the previous example
this means that a higher d would not result in a finer segmentation of A.
Certain combinations of commutation properties will just remain empty, for
instance

c1,1,1(e1, e2, e12) = ∅. (3.23)

Now we take a look at the decomposition of exponentials of functions
as they appear in (1.5) that satisfy condition (2.8) and show that they take
a very simple form.

Lemma 3.12. Let the value of f(x,u) : Rm × Rm → I p,q be a real multiple
of a basis blade ∀x,u ∈ Rm, f(x,u) = sgn(f(x,u))|f(x,u)|ek(x,u) like in

(2.8). The decompositions e
−f(x,u)
c0(el)

, e
−f(x,u)
c1(el)

of the exponential with respect

to any basis blade el ∈ Gp,q can only take two different shapes:

e
−f(x,u)
c0(el)

=

{
e−f(x,u) if k(x,u) ∈ c0(el),

cos(|f(x,u)|) if k(x,u) /∈ c0(el),

e
−f(x,u)
c1(el)

=

{
− f(x,u)
|f(x,u)| sin(|f(x,u)|) if k(x,u) ∈ c1(el),

0 if k(x,u) /∈ c1(el).

(3.24)

Proof. The exponential can be expressed as its sine and its cosine part. So
the decomposition into basis blades

e−f(x,u) =
∑
j

ajej

= cos(|fl(x,u)|)e0 − sgn(f(x,u)) sin(|fl(x,u)|)ek(x,u)

(3.25)

has only two coefficients a0 and ak(x,u) different from zero. Lemma 3.7 showed

that the blades ej of (3.25) are sorted either into c0 or into c1 during the
decomposition. Because e0 is real, it commutes with anything and therefore
the cosine always belongs to c0(el) and never to c1(el). For the appearance of
the sine we have to distinguish whether or not k(x,u) ∈ c0(el) or k(x,u) ∈
c1(el), which leads to the assertion. �

Lemma 3.13. Let f(x,u) : Rm × Rm → I p,q satisfy property (2.8) ∀x,u ∈
Rm, l ∈ {0, 1}d a multi-index and B = {ek(1), ..., ek(d)} be a set of basis
blades. The decompositions of the exponential with respect to B can only take
four different shapes:

e
−f(x,u)

cl(B)
=


e−f(x,u) if l = 0 and k(x,u) ∈ cl(B),

cos(|f(x,u)|) if l = 0 and k(x,u) /∈ cl(B),

− f(x,u)
|f(x,u)| sin(|fl(x,u)|) if l 6= 0 and k(x,u) ∈ cl(B),

0 if l 6= 0 and k(x,u) /∈ cl(B).

(3.26)
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Proof. In Lemma 3.12 we saw that for a fixed λ ∈ {0, ..., d} the c1(ek(λ))
always removes the cosine part, so it will only remain for l1 = ... = ld =
0. Analogously that the sine part is removed when k(x,u) /∈ clλ(ek(λ)).

Because of cl(ek(1), ..., ek(d)) =
⋂d
λ=1 c

lλ(ek(λ)), compare Lemma 3.9, one
appearance of such a case is sufficient to eliminate each part from the whole
exponential. �

Remark 3.14. The shift theorem introduced in [16] takes a simpler form for
GFTs satisfying property (2.8), that means for all transforms in the first
example. The simplification results from the predictable shape of the decom-
position of exponentials with respect to basis blades from Lemma 3.13.

4. Geometric Convolution Theorem

We have seen that coorthogonal blade functions can be expressed as real mul-
tiples of basis blades f(x,u) = sgn(f(x,u))|f(x,u)|ej(x,u) : Rm × Rm →
I p,q in Notation 2.10. Lemma 3.9 guarantees for basis blade functions, that
during the decomposition into commutative and anticommutative parts of a
multivector no additional terms appear in the sum over the basis blades (1.4).
Each part is a real fragment of the multivector along the basis blades of the
orthogonal basis from Theorem 2.9. Because of that an exponential can only
become decomposed into four different shapes: itself, a cosine, a basis blade
multiplied with a sine or zero, compare Lemma 3.13. This motivates the gen-
eralization of geometric Fourier transforms (1.5) to trigonometric transforms.
We will just use it as an auxiliary construction here and analyze its properties
and applications in a future paper.

Definition 4.1 (Geometric Trigonometric Transform). Let A : Rm → Gp,q be
a multivector field and x,u ∈ Rm vectors, F1, F2 two ordered finite sets of
µ, respectively ν − µ, mappings Rm ×Rm → I p,q, G1, G2 two ordered finite
sets of µ, respectively ν −µ, mappings (Rm×Rm → I p,q)→ Gp,q with each
gl(−fl(x,u))∀l = 1, ..., ν having one of the shapes from (3.26):

gl(−fl(x,u)) =


e−fl(x,u)

cos(|fl(x,u)|)
− fl(x,u)
|fl(x,u)| sin(|fl(x,u)|),

0.

(4.1)

The Geometric Trigonometric Transform (GTT) FG1(F1),G2(F2)(A) is de-
fined by

FG1(F1),G2(F2)(A)(u) :=

∫
Rm

µ∏
l=1

gl(−fl(x,u))A(x)

ν∏
l=µ+1

gl(−fl(x,u)).

(4.2)

Notation 4.2. We have seen in Lemma 3.13 that the decomposition of an ex-
ponential with respect to basis blades takes the same shape like the functions
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G1, G2 of a GTT (4.1). Therefore for a geometric Fourier transform with ba-
sis blade functions F1, F2, two sets of basis blades B1 = {ek(1), ..., ek(η)},
B2 = {ek(η+1), ..., ek(θ−η)} and strictly lower and upper triangular matri-

ces3 J ∈ {0, 1}µ×η, K ∈ {0, 1}(ν−µ)×θ whose rows are µ and ν − µ multi-
indices (J)l ∈ {0, 1}η respectively (K)l ∈ {0, 1}θ, we can construct a geo-
metric trigonometric transform FG1(F1),G2(F2)(A) by setting gl(−fl(x,u)) =

e
−fl(x,u)

c(J)l
for l = 1, ..., µ and gl(−fl(x,u)) = e

−fl(x,u)

c(K)l
for l = µ+ 1, ..., ν. We

refer to it shortly as

F(F1)cJ (B1),(F2)cK (B2)
(A)(u) :=

∫
Rm

µ∏
l=1

e
−fl(x,u)

c(J)l (B1)
A(x)

ν∏
l=µ+1

e
−fl(x,u)

c(K)l−µ (B2)
dmx.

(4.3)
In the case of F(F1)cJ (F1),(F2)cK (F2)

we will only write F(F1)cJ ,(F2)cK
.

The geometric trigonometric transform is a generalization of the geo-
metric Fourier transform from (1.5). We will use it to prove the convolution
theorem of the GFT. To accomplish this we additionally need the following
facts shown in [16]. Please note that for the proofs of all Lemmata from [16]
the claim for the set of functions to be basis blades functions is not necessary.

Definition 4.3. We call a GFT left (right) separable, if

fl = |fl(x,u)|il(u), (4.4)

∀l = 1, ..., µ, (l = µ + 1, ..., ν), where |fl(x,u)| : Rm × Rm → R is a real
function and il : Rm → I p,q a function that does not depend on x.

Lemma 4.4. Let F = {f1(x,u), ..., fd(x,u)} be a set of pointwise invert-
ible functions then the ordered product of their exponentials and an arbitrary
multivector A ∈ Gp,q satisfies

d∏
l=1

e−fl(x,u)A =
∑

j∈{0,1}d
A

cj(
←−
F )

(x,u)

d∏
l=1

e−(−1)
jlfl(x,u), (4.5)

where A
cj(
←−
F )

(x,u) := A
cj(
←−−−−
F (x,u))

is a multivector valued function Rm ×
Rm → Gp,q.

Lemma 4.5. Let F = {f1(x,u), ..., fd(x,u)} be a set of separable functions
that are linear with respect to x. Further let J ∈ {0, 1}d×d be a strictly lower
triangular matrix, that is associated column by column with a multi-index

j ∈ {0, 1}d by ∀k = 1, ..., d : (
∑d
l=1 Jl,k) mod 2 = jk, with (J)l being its l-th

3These matrices were introduced originally in Lemma 6.8 in [16]. It is repeated in this
work as Lemma 4.7. The proof can be found in [16].
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row, then

d∏
l=1

e−fl(x+y,u)

=
∑

j∈{0,1}d

∑
J∈{0,1}d×d,∑d

l=1(J)l mod 2=j

d∏
l=1

e
−fl(x,u)

c(J)l (
←−−−−−−−−−−
f1,...,fl,0,...,0)

d∏
l=1

e−(−1)
jlfl(y,u)

(4.6)

or alternatively with strictly upper triangular matrices J

d∏
l=1

e−fl(x+y,u)

=
∑

j∈{0,1}d

∑
J∈{0,1}d×d,∑d

l=1(J)l mod 2=j

d∏
l=1

e−(−1)
jlfl(x,u)

d∏
l=1

e
−fl(y,u)

c(J)l (
−−−−−−−−−−→
0,...,0,fl,...,fd)

.
(4.7)

Definition 4.6. For a set of functions F = {f1(x,u), ..., fd(x,u)} and a multi-
index j ∈ {0, 1}d, we define the set of functions F (j) by

F (j) := {(−1)j1f1(x,u), ..., (−1)jdfd(x,u)}. (4.8)

We also need a generalization of Lemma 4.4 that allows us to swap the
order of partial exponentials and multivectors.

Lemma 4.7. For sets of functions F = {f1(x,u), ..., fd(x,u)}, G = {g1, ..., gd}
like in (4.1) we get analogously to Lemma 4.4

d∏
l=1

gl(−fl(x,u))A =
∑

j∈{0,1}d
Acj(F )

d∏
l=1

gl(−(−1)jlfl(x,u)). (4.9)

Proof. First we analyze the interaction of A with one partial exponential
gl(−fl(x,u)). It can take three different shapes

gl(−fl(x,u)) =


e−fl(x,u)

cos(|fl(x,u)|)
− fl(x,u)
|fl(x,u)| sin(|fl(x,u)|),

0.

(4.10)

In the first case lemma 4.4 proves the assertion and the last one is trivial.
Assume the second case and note that then gl(−fl(x,u)) equals gl(fl(x,u))
because of the symmetry of the cosine.

gl(−fl(x,u))A = cos(|fl(x,u)|)A
cos. ∈R

= A cos(|fl(x,u)|)
Lem. 3.3

= Ac0(fl) cos(|fl(x,u)|) + Ac1(fl) cos(|fl(x,u)|)
=Ac0(fl)gl(−fl(x,u)) + Ac1(fl)gl(fl(x,u))

(4.11)
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In the third case we have

gl(−fl(x,u))A =− fl(x,u)

|fl(x,u)|
sin(|fl(x,u)|)A

Lem. 3.3
= Ac0(fl)

−fl(x,u)

|fl(x,u)|
sin(|fl(x,u)|)

+ Ac1(fl)
fl(x,u)

|fl(x,u)|
sin(|fl(x,u)|)

=Ac0(fl)gl(−fl(x,u)) + Ac1(fl)gl(fl(x,u)).

(4.12)

So in all cases we have

gl(−fl(x,u))A =Ac0(fl)gl(−fl(x,u)) + Ac1(fl)gl(fl(x,u))

=
∑

j∈{0,1}1
Acj(fl)

1∏
l=1

gl(−(−1)jlfl(x,u)).
(4.13)

Applying it repeatedly to the whole product like in the proof of Lemma 4.4
in [16] leads to the assertion. �

Definition 4.8. Let A(x),B(x) : Rm → Gp,q be two multivector fields. Their
convolution (A ∗B)(x) is defined as

(A ∗B)(x) :=

∫
Rm

A(y)B(x− y) dmy. (4.14)

Theorem 4.9 (convolution). Let A,B,C : Rm → Gp,q be multivector fields
with A(x) = (C ∗ B)(x) and F1, F2 be coorthogonal, separable and linear
with respect to the first argument, j, j′ ∈ {0, 1}µ,k,k′ ∈ {0, 1}(ν−µ) and J ∈
{0, 1}µ×µ and K ∈ {0, 1}(ν−µ)×(ν−µ) are the strictly lower, respectively upper,
triangular matrices with rows (J)l, (K)l−µ summing up to (

∑µ
l=1(J)l) mod

2 = j respectively (
∑ν
l=µ+1(K)l−µ) mod 2 = k as in Lemma 4.5, then the

geometric Fourier transform of A satisfies the convolution property

FF1,F2
(A)(u)

=
∑

j,j′,k,k′

∑
J,K

(FF1(j),F2(k+k′)(C)(u))cj′ (F1)
F(F1(j′))cJ ,(F2)cK

(Bck′ (F2)
)(u).

(4.15)

Proof.

FF1,F2
(A)(u) =

∫
Rm

∏
f∈F1

e−f(x,u)(C ∗B)(x)
∏
f∈F2

e−f(x,u) dmx

=

∫
Rm

∏
f∈F1

e−f(x,u)

∫
Rm

C(y)B(x− y) dmy
∏
f∈F2

e−f(x,u) dmx

x−y=z
=

∫
Rm

∫
Rm

∏
f∈F1

e−f(z+y,u)C(y)B(z)
∏
f∈F2

e−f(z+y,u) dmy dmz

(4.16)
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We separate the products into parts that only depend on y and ones that
only depend on z.

Lem. 4.5
=

∫
Rm

∫
Rm

∑
j∈{0,1}µ

∑
J∈{0,1}µ×µ∑
(J)l mod 2=j

µ∏
l=1

e
−fl(z,u)

c(J)l (F1)

µ∏
l=1

e−(−1)
jlfl(y,u)C(y)B(z)

∑
k∈{0,1}ν−µ

∑
K∈{0,1}ν−µ×ν−µ∑

(K)l mod 2=j

ν∏
l=µ+1

e−(−1)
kl−µfl(y,u)

ν∏
l=µ+1

e
−fl(z,u)

c(K)l−µ (F2)
dmy dmz

=
∑
j,k

∑
J,K

∫
Rm

∫
Rm

µ∏
l=1

e
−fl(z,u)

c(J)l (F1)

µ∏
l=1

e−(−1)
jlfl(y,u)C(y)

B(z)

ν∏
l=µ+1

e−(−1)
kl−µfl(y,u)

ν∏
l=µ+1

e
−fl(z,u)

c(K)l−µ (F2)
dmy dmz

(4.17)

Next step is to collect all parts that depend on y.

Lem. 4.4
=

∑
j,k

∑
J,K

∫
Rm

∫
Rm

µ∏
l=1

e
−fl(z,u)

c(J)l (F1)

µ∏
l=1

e−(−1)
jlfl(y,u)C(y)

∑
k′∈{0,1}ν−µ

ν∏
l=µ+1

e−(−1)
kl−µ+k′l−µfl(y,u)Bck′ (F2)

(z)

ν∏
l=µ+1

e
−fl(z,u)

c(K)l−µ (F2)
dmy dmz

=
∑
j,k,k′

∑
J,K

∫
Rm

µ∏
l=1

e
−fl(z,u)

c(J)l (F1)

∫
Rm

µ∏
l=1

e−(−1)
jlfl(y,u)C(y)

ν∏
l=µ+1

e−(−1)
kl−µ+k′l−µfl(y,u) dmyBck′ (F2)

(z)

ν∏
l=µ+1

e
−fl(z,u)

c(K)l−µ (F2)
dmz

=
∑
j,k,k′

∑
J,K

∫
Rm

µ∏
l=1

e
−fl(z,u)

c(J)l (F1)
FF1(j),F2(k+k′)(C)(u)Bck′ (F2)

(z)

ν∏
l=µ+1

e
−fl(z,u)

c(K)l−µ (F2)
dmz

(4.18)
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Finally we gather the parts depending on z.

Lem. 4.7
=

∑
j,k,k′

∑
J,K

∫
Rm

∑
j′∈{0,1}µ

(FF1(j),F2(k+k′)(C)(u))cj′ (F1)

µ∏
l=1

e
−(−1)j

′
lfl(z,u)

c(J)l (F1)
Bck′ (F2)

(z)

ν∏
l=µ+1

e
−fl(z,u)

c(K)l−µ (F2)
dmz

=
∑

j,j′,k,k′

∑
J,K

(FF1(j),F2(k+k′)(C)(u))cj′ (F1)∫
Rm

µ∏
l=1

e
−(−1)j

′
lfl(z,u)

c(J)l (F1)
Bck′ (F2)

(z)

ν∏
l=µ+1

e
−fl(z,u)

c(K)l−µ (F2)
dmz

=
∑

j,j′,k,k′

∑
J,K

(FF1(j),F2(k+k′)(C)(u))cj′ (F1)

F(F1(j′))cJ ,(F2)cK
(Bck′ (F2)

)(u)

(4.19)

�

Remark 4.10. The formula in the convolution theorem can take various other
shapes depending on the way Lemma 4.5 is applied. In Theorem 4.9 we used
Lemma 4.5 in its first version (4.6) on F1 and in its second version (4.7) on
F2. This has the advantage that the GTT is needed only on one side. We get
the same effect with its second version (4.7) on F1 and its first version (4.7)
on F2 by

FF1,F2
(A)(u)

=
∑

j,j′,k,k′

∑
J,K

(F(F1)cJ ,(F2(k′))cK
(C)(u))cj′ (F1)

FF1(j+j′),F2(k)(Bck′ (F2)
)(u).

(4.20)
Using the first version twice leads to

FF1,F2
(A)(u)

=
∑

j,j′,k,k′

∑
J,K

(FF1(j),(F2(k′))cK
(C)(u))cj′ (F1)

F(F1(j′))cJ ,F2(k)(Bck′ (F2)
)(u),

(4.21)
and using the second twice to

FF1,F2(A)(u)

=
∑

j,j′,k,k′

∑
J,K

(F(F1)cJ ,F2(k+k′)(C)(u))cj′ (F1)
FF1(j+j′),(F2)cK

(Bck′ (F2)
)(u).

(4.22)
These versions have the advantage of being a bit more symmetric. During the
proof of Theorem 4.9 we started recomposing the transform around C. Each
of the four formulae has a counterpart that is constructed by restructuring
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around B first. Listed in the analog order they take the shapes

FF1,F2
(A)(u)

=
∑

j,j′,k,k′

∑
J,K

FF1(j),F2(k+k′)(Ccj′ (F1)
)(u)(F(F1(j′))cJ ,(F2)cK

(B)(u))ck′ (F2)
,

FF1,F2(A)(u)

=
∑

j,j′,k,k′

∑
J,K

F(F1)cJ ,(F2(k′))cK
(Ccj′ (F1)

)(u)(FF1(j+j′),F2(k)(B)(u))ck′ (F2)
,

FF1,F2(A)(u)

=
∑

j,j′,k,k′

∑
J,K

FF1(j),(F2(k′))cK
(Ccj′ (F1)

)(u)(F(F1(j′))cJ ,F2(k)(B)(u))ck′ (F2)
,

FF1,F2(A)(u)

=
∑

j,j′,k,k′

∑
J,K

F(F1)cJ ,F2(k+k′)(Ccj′ (F1)
)(u)(FF1(j+j′),(F2)cK

(B)(u))ck′ (F2)
.

(4.23)
Depending on the application one or some of these might be preferred com-
pared to the others, because of savings in memory or runtime.

Corollary 4.11 (convolution). Let A,B,C : Rm → Gp,q be multivector fields
with A(x) = (C ∗ B)(x) and F1, F2 each consist of mutually commutative
functions4, being separable and linear with respect to the first argument and
j′ ∈ {0, 1}µ,k′ ∈ {0, 1}(ν−µ) multi-indices, then the geometric Fourier trans-
forms satisfy the convolution property

FF1,F2
(A)(u) =

∑
j′,k′

(FF1,F2(k′)(C)(u))cj′ (F1)
FF1(j′),F2

(Bck′ (F2)
)(u)

(4.24)
or

FF1,F2
(A)(u) =

∑
j′,k′

FF1,F2(k′)(Ccj′ (F1)
)(u)(FF1(j′),F2

(B)(u))ck′ (F2)
.

(4.25)
If the values of the functions in F1 and F2 are in the center of Gp,q it even
satisfies the simple product formula

FF1,F2
(A)(u) =FF1,F2

(C)(u)FF1,F2
(B)(u). (4.26)

Example. We summarize the exact shape of the convolution of multivector
fields under the transforms from the first Example using the same order.

1. The Clifford Fourier transform from [4, 5, 6] takes the form

Ff1(A) = Ff1(Cc0(i))Ff1(B) + F−f1(Cc1(i))Ff1(B) (4.27)

for n = 2 (mod 4) and for n = 3 (mod 4) the even simpler one

Ff1(A) = Ff1(C)Ff1(B) (4.28)

because in this case the pseudoscalar is in the center of Gn,0.

4Cross commutativity is not necessary.
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2. The transform by Sommen [7, 8] is the only one of our examples not
satisfying the constraints of Corollary 4.11 but the ones of Theorem 4.9

Ff1,...,fn(A) =
∑

k,k′∈{0,1}n

∑
K

F
(−1)k1+k′1f1,...,(−1)kn+k′nfn

(C)

F(f1,...,fn)cK
(Bck′ (f1,...,fn)

)

(4.29)

with strictly upper triangular matrices in {0, 1}n×n with rows (K)l−µ
summing up to (

∑ν
l=µ+1(K)l−µ) mod 2 = k.

3. The quaternionic Fourier transform [9, 8] has the shape

Ff1,f2(A) =(Ff1,f2(C))c0(f1)Ff1,f2(Bc0(f2))

+ (Ff1,f2(C))c1(f1)F−f1,f2(Bc0(f2))

+ (Ff1,−f2(C))c0(f1)Ff1,f2(Bc1(f2))

+ (Ff1,−f2(C))c1(f1)F−f1,f2(Bc1(f2)).

(4.30)

4. And the spacetime Fourier transform [10] has exactly the same shape

Ff1,f2(A) =(Ff1,f2(C))c0(f1)Ff1,f2(Bc0(f2))

+ (Ff1,f2(C))c1(f1)F−f1,f2(Bc0(f2))

+ (Ff1,−f2(C))c0(f1)Ff1,f2(Bc1(f2))

+ (Ff1,−f2(C))c1(f1)F−f1,f2(Bc1(f2)).

(4.31)

5. The Clifford Fourier transform for color images [11] takes the rather
long form

Ff1,f2,f3,f4(A) =(Ff1,f2,f3,f4(C))c00(f1,f2)Ff1,f2,f3,f4(Bc00(f3,f4))

+ (Ff1,f2,f3,f4(C))c01(f1,f2)Ff1,−f2,f3,f4(Bc00(f3,f4))

+ (Ff1,f2,f3,f4(C))c10(f1,f2)F−f1,f2,f3,f4(Bc00(f3,f4))

+ (Ff1,f2,f3,f4(C))c11(f1,f2)F−f1,−f2,f3,f4(Bc00(f3,f4))

+ (Ff1,f2,f3,−f4(C))c00(f1,f2)Ff1,f2,f3,f4(Bc01(f3,f4))

+ (Ff1,f2,f3,−f4(C))c01(f1,f2)Ff1,−f2,f3,f4(Bc01(f3,f4))

+ (Ff1,f2,f3,−f4(C))c10(f1,f2)F−f1,f2,f3,f4(Bc01(f3,f4))

+ (Ff1,f2,f3,−f4(C))c11(f1,f2)F−f1,−f2,f3,f4(Bc01(f3,f4))

+ (Ff1,f2,−f3,f4(C))c00(f1,f2)Ff1,f2,f3,f4(Bc10(f3,f4))

+ (Ff1,f2,−f3,f4(C))c01(f1,f2)Ff1,−f2,f3,f4(Bc10(f3,f4))

+ (Ff1,f2,−f3,f4(C))c10(f1,f2)F−f1,f2,f3,f4(Bc10(f3,f4))

+ (Ff1,f2,−f3,f4(C))c11(f1,f2)F−f1,−f2,f3,f4(Bc10(f3,f4))

+ (Ff1,f2,−f3,−f4(C))c00(f1,f2)Ff1,f2,f3,f4(Bc11(f3,f4))

+ (Ff1,f2,−f3,−f4(C))c01(f1,f2)Ff1,−f2,f3,f4(Bc1(f3,f4))

+ (Ff1,f2,−f3,−f4(C))c10(f1,f2)F−f1,f2,f3,f4(Bc11(f3,f4))

+ (Ff1,f2,−f3,−f4(C))c11(f1,f2)F−f1,−f2,f3,f4(Bc11(f3,f4)).

(4.32)
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6. The cylindrical Fourier transform [12] is not separable except for the
case n = 2. Here the convolution corollary holds

Ff1(A) = Ff1(Cc0(f1))Ff1(B) + F−f1(Cc1(f1))Ff1(B), (4.33)

but for all other no closed formula can be constructed in a similar way.

5. Conclusions and Outlook

In this paper we introduced the concept of coorthogonality as the property of
commutation or anticommutation of blades. We proved that it is equivalent
to the claim for blades to be real multiples of basis blades for an orthonormal
basis and presented an algorithm to compute this basis.

The Lemmata 3.3, 4.4 and 4.5, that were primarily stated and proved
in [16] about multiplication with invertible factors, become simplified for
coorthogonal blades. We saw that in this case the partition of the multivector
A takes place along the basis blades and that it is independent from the
relative order of the factors it is exchanged with. A consequence of this is,
that every exponential can only have four simple predictable shapes after
decomposition: itself, a sine, a cosine or zero. That fact inspired the definition
of the geometric trigonometric transform, whose properties will be studied in
a future paper.

By means of the GTT we were able to prove a convolution theorem
(Theorem 4.9) for the general geometric Fourier transform introduced in
[16]. It highlights the rich consequences of the geometric structure created
by utilizing general geometric square roots of minus one in sets F1, F2. The
information contained in the multivector fields, appears now finely segmented
and related term by term. The choice of F1, F2 determines this segmentation.
Because convolution appears in wavelet theory and is closely related to cor-
relation, the GTF convolution theorem may have interesting consequences
for multidimensional geometric pattern matching and neural network type
learning algorithms as well as for geometric algebra wavelet theory.
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