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ABSTRACT

Classical vector field topology has proven a useful visualization
technique for steady flow, but its straightforward application to time-
dependent flows lacks physical meaning. Necessary requirements for
physical meaningfulness include the results to be objective, i.e., in-
dependent of the frame of reference of the observer, and Lagrangian,
i.e., that the generalized critical points are trajectories. We analyze
whether the theoretical concept of distinguished hyperbolic trajec-
tories provides a physically meaningful generalization to classical
critical points and if the existing extraction algorithms correctly
compute what has been defined mathematically. We show that both
theory and algorithms constitute a significant improvement over
previous methods.

We further present a method to visualize a time-dependent flow
field in the reference frames of distinguished trajectories. The result
is easy to interpret because it makes these trajectories look like
classical critical points for each instance in time, but it is meaningful
because it is Lagrangian and objective.

Keywords: visualization, vector field, flow, topology, Lagrangian,
objective, time-dependent, distinguished hyperbolic trajectory

1 INTRODUCTION

Vector field topology has become a popular methodology for the
visualization of flow fields. For steady flows, it is able to extract rel-
evant information from the data, which can be used for semantically
meaningful compression and to reduce occlusion in visualizations.

(a) S. sink:
¬(li)< 0,
¡(li) 6= 0.

(b) S. src:
¬(li)> 0,
¡(li) 6= 0.

(c) N. sink:
¬(li)< 0,
¡(li) = 0.

(d) N. src:
¬(li)< 0,
¡(li) = 0..

(e) Center:
¬(li) = 0,
¡(li) 6= 0.

(f) Saddle:
¬(l1)> 0,
¬(l2)< 0.

Figure 1: Types of critical points classified by the eigenvalues of the
Jacobian visualized via arrow glyphs and line integral convolution
(LIC) [8]. Color represents speed: blue (low), yellow (high).

The topological skeleton segments the domain into areas of
coherent flow behavior. It comprises critical points1, which are
locations where the vector field is zero, and separatrices, which
are the codimension-one invariant manifolds. Figure 1 illustrates
how critical points are categorized into saddles, sinks sources, and
centers depending on the eigenvalues of their Jacobian, i.e., their
velocity gradient.
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1Critical points are the most common name in the context of vector
field topology, but mathematically less ambiguous names are singularities,
stationary points, equilibria, or zero points.

Application of the classical (steady) vector field topology to each
instance in time works well for the analysis of electric and magnetic
fields, but this approach loses physical meaning for time-dependent
(unsteady) flow fields. Flow visualization researchers have inves-
tigated generalizations of the classical vector field topology that
preserves physical meaning but provides an intuitive visualization
similar to its classical counterpart. But physical meaning cannot be
defined mathematically. What can be formulated mathematically are
requirements that have to be fulfilled, to assign physical meaning to
observed structures. A second challenge in a time-dependent setting
is that time-varying data is usually only provided on a finite time
interval, while certain theoretical concepts that are used in the steady
theory of dynamical systems, like hyperbolicity or convergence, are
only defined asymptotically for an infinite temporal domain.
Physical meaningfulness. Mathematical concepts that are fre-
quently used in the literature as examples of why the classical vector
field topology is not physically meaningful have been collected by
Bujack et al. [7]. Objectivity is one of them. It refers to the concept
that extracted features do not change under a Euclidean change of
the reference frame. Another popular criterion considered necessary
to ensure physical meaning is Lagrangian invariance A feature
is Lagrangian if it develops over time as if it were advected by the
flow, like pathlines or material surfaces. Generalization. We call a
method a true generalization of the classical vector field topology
if it coincides with classical vector field topology for steady input
fields. That means if the input field is given as a time series that
happens to be constant over time, then extracted features must be
the classical critical points and separatrices.

A general observation is that there is currently no available algo-
rithm that is Lagrangian, objective, and coincides with the classical
vector field topology on steady fields.

Distinguished hyperbolic trajectories (DHTs) [22] arise from
the theory of dynamical systems and are a promising concept for
the generalization of critical points. Here a trajectory is called
hyperbolic if the corresponding linearization of the flow has a full set
of exponentially growing or decaying solutions and distinguished
if it remains in a bounded neighborhood for all time while all its
neighbors leave this neighborhood.
Contributions. We analyze the properties of distinguished hyper-
bolic trajectories to find out to what extent they can generalize
the classical vector field topology in a physically meaningful way.
Specifically, we provide theorems and counterexamples to show if
they are Lagrangian, objective, and if they coincide with classical
critical points if the input vector field happens to be steady. We
extend this analysis to existing algorithms for their detection. and
demonstrate that they are superior to previous approaches. Further,
we suggest a method to visualize distinguished trajectories in a man-
ner that most intuitively uses the visual language of the the classical
vector field topology. In a nutshell, our contributions answer the
following two questions.

• To what extent do distinguished hyperbolic trajectories gener-
alize the critical points from classical vector field topology in
a physically meaningful way?

• How can DHTs be visualized to most intuitively resemble
classical critical points in a physically meaningful way?



2 RELATED WORK

We will first treat related work from flow visualization that is tar-
geted at generalizing classical vector field topology to the time-
dependent setting [18, 26, 27, 33, 46] and summarize to what extent
these methods satisfy the three desirable properties: Lagrangianness,
objectivity, and coincidence with the classical case. The proofs for
these statements can be found in a recent state of the art report [7].
We then review work on distinguished hyperbolic trajectories.

2.1 Tracking of Steady Topology
The first application of vector field topology to unsteady flow natu-
rally tracks topological features over time. The challenges lie in the
correct association of features from one time step to another and in
identifying events that change the topology, such as merges, splits,
births, and deaths of critical points.

Helman and Hesselink [19, 20] introduced vector field topology
to the visualization community and provided the first algorithm for
tracking over time. They compute critical points for each time step,
and connect them graphically.

Later tracking algorithms made use of spacetime representa-
tions assuming linear interpolation between two consecutive time
steps [12, 42, 43, 50]. This allows to compute the paths of critical
points by analytically solving a system of equations and makes it
sufficient to analyze the cell faces to detect topological changes.

A different group of approaches [39–41, 47] leverages Feature
Flow Fields that allow derivation of the paths of critical points in a
d-dimensional time-dependent vector field through integration in a
(d +1)-dimensional steady field. This technique can be utilized to
track other topological features and vortices.

All these methods share identical mathematical properties. They
coincide with the classical vector field topology, but are neither
Lagrangian nor objective.

2.2 Flow Steadification
Hadwiger et al. [15] solve a global optimization problem over space
and time to find an observer field that allows us to perceive the
flow “as steady as possible” while maintaining the largest possible
similarity between neighboring observers.

Rojo et al. [35] extract steady topology using a local frame of
reference adaptation similar to Günther et al. [14]. For each point in
space and time, they find the coordinate transform that minimizes
the temporal derivative of the flow in its spatial neighborhood. A
Taylor approximation of the transformation allows them to solve this
problem using a least-squares approach. Based on the transformation
they get a decomposition of the flow into its steadified part and the
part that describes how this steady part moves.

Both approaches are objective and coincide with the steady case
in principle, but are not Lagrangian.

2.3 Categorize or Cluster Pathlines
In a steady flow field, trajectories and streamlines coincide. However,
in unsteady flow fields, they do not, and trajectories are Lagrangian,
unlike streamlines. This motivates researchers to categorize or clus-
ter pathlines to develop a physically meaningful time-dependent
flow topology.

Theisel et al. [41] segment the domain into areas of convergent
behavior, divergent behavior, or neither by projecting the flow on
planes orthogonal to pathlines in spacetime.

One group of methods in this category [5,28,36,44] uses the inter-
sections of ridges in the forward and backward finite-time Lyapunov
exponent field (FTLE) [17]. This generalizes saddle-type critical
points to time-dependent vector fields as it ensures both expanding
and contracting behavior forward as well as backward in time in ac-
cordance with the definition of hyperbolic trajectories by Haller [16].
Generalized streaklines [49] started at these intersections form a
generalization of separatrices to time-dependent flows.

Wiebel et al. [48] generalize the concept of sinks by following
particles that were seeded uniformly across space and time. At any
given time, they compute the density of the locations where these
particles were advected to and track the local maxima of this scalar
field. This was the first method that was able to capture the flow
structure in a rotating Petri-dish dataset.

Bujack et al. [4] derive a unified framework based on the finite
time expansion and contraction of the flowmap spanning saddle-,
source-, and sink-type regions.

Most of these methods are objective, but do not coincide with the
steady case. Even though they are pathline-based, many approaches
are not Lagrangian because they use a sliding window approach.

2.4 Generalization of Critical Points

A large group of approaches makes use of derived scalar fields and
utilizes their extrema or zeros to define generalized critical points,
e.g., the acceleration magnitude [11,24,25,28,34], Jacobian [6] [45],
or generalized robustness [45].

Fuchs et al. [11] further suggest selecting pathlines that observe
an almost steady flow in their neighborhood and have a small accel-
eration magnitude as generalized critical points.

The majority of the chosen scalar characteristics are Galilean in-
variant, but not objective. The zeros of the acceleration coincide with
the classical critical points. The other methods do not. The methods
are in general not Lagrangian, but Lagrangian smoothing has been
suggested [11, 24], which would make a method Lagrangian if the
smoothing is used as a complete averaging over the whole integra-
tion time [13]. The method by Machado et al. [28] deserves specific
attention, because it suggests an iterative algorithm approximating a
pathline close to a zero acceleration magnitude line, which makes it
Lagrangian if it converges.

2.5 Distinguished Hyperbolic Trajectories

Ide et al. [22] analyze distinguished hyperbolic trajectories. They
generalize hyperbolicity to a finite-time setting and show how to
derive a coordinate transformation based on a Eulerian structure,
like a critical point, that makes the linearization around it steady
and diagonal so that exponential dichotomies can be detected. A
real-world application was provided by Mancho et al. [29].

Ju et al. [23] improve the work by Ide suggesting an iterative
algorithm starting at the critical points. It can be shown to converge
toward DHTs under certain conditions. This iteration no longer
requires neglecting the non-linear part of the forcing during the lo-
calization step. Ju et al. also provide conditions for the existence
and uniqueness of DHTs. Later Branicki and Wiggins [2] applied
the iterative algorithm to extract 2D invariant manifolds in 3D au-
tonomous flow with focus on mesh refinement and regularization.
Since extrating DHTs is difficult, the opposite approach, i.e., detect-
ing invariant manifolds heuristically first and deriving the locations
of the DHTs from them, is also discussed [3, 30].

The iterative algorithm by Ju et al. [23] does not always converge
and the quality of the result depends on the quality of the initial
guess. Hofmann and Sadlo [21] improve the initial estimate for
saddle type DHTs making use of steadified reference frames.

3 BACKGROUND ON DHTS

In this section, we will provide the background on distinguished
hyperbolic trajectories (DHTs) following the notation of Ide [22].
We will focus on the aspects that are necessary for Section 4 to
analyze to what extent DHTs can generalize vector field topology
to a time-dependent setting. We will see that there is a difference
between the theoretical definition of a DHT and what the detection
algorithms extract.



3.1 Definition
The definition of DHTs relies on linearizations, hyperbolicity, and
exponential dichotomies.

3.1.1 Hyperbolicity
Let u : R2 ⇥R! R2 be 2-dimensional velocity field

ż = u(z, t) (1)

and
ẋ = —u(z(t), t)x (2)

its linearization around a trajectory z(t) : R!R2 with the Jacobian
—u : R⇥R2 ! R2⇥2. An exponential dichotomy [10] is a gener-
alization of classical hyperbolicity to finite time settings defined as
follows. Equation (2) has an exponential dichotomy for the finite
time interval [t0, t1] ⇢ R if there exists a projection P : R2 ! R2

and positive constants K,L,a,b 2 R such that its fundamental ma-
trix X(t, t0) : R⇥R! R2⇥2, i.e., the matrix-valued function whose
columns are linearly independent solutions of the system [9], satis-
fies

|X(t, t0)PX�1(s, t0)| Ke�a(t�s) for t � s,

|X(t, t0)(Id �P)X�1(s, t0)| Le�b (t�s) for t  s
(3)

for all t,s 2 [t0, t1].
Ide calls a trajectory z(t) of u hyperbolic if its linearization has

an exponential dichotomy [22]. They show that there exists a time-
dependent linear coordinate transform that transforms equation (2)
into a system of ordinary differential equations with constant diago-
nal matrix and that the property of having an exponential dichotomy
is frame independent. They further state that for constant matrices
—u 2 R2⇥2, a trajectory has an exponential dichotomy iff none of
its eigenvalues has a vanishing real part. Therefore we can consider
a trajectory hyperbolic if its localized and steadified Jacobian has
only eigenvalues with non-zero real parts [31, 32].

3.1.2 Distinguished Hyperbolic Trajectory (DHT)
For a velocity field of the form

ẏ = Dy+g(y, t) (4)

with constant linear part D 2R2⇥2 and non-linear part g : R⇥R2 !
R2, let y(t) : R ! R2 be a trajectory that remains in a bounded
domain for all time, then it is a distinguished hyperbolic trajectory
(DHT) if it is hyperbolic and there exists a neighborhood B ⇢ R2,
in which y(t) remains for all times while all other trajectories leave
it. Further, Ide et al. require y(t) to not be contained in the invariant
set of another hyperbolic trajectory. An illustration can be found in
Hofmann and Sadlo, Fig. 6 [21]. Note that we will leave the last
constraint out of our analysis in this paper. Since the property of a
point to be critical is purely local, while the property of a trajectory
to be in the chaotic invariant set of another is not, the two concepts
would be different in a trivial way if this criterion would be applied.

For a velocity field of the form (1), distinguished hyperbolic
trajectories can be defined if there exists a coordinate transform
y = A(t)x+ b(t) based on the movement of a Eulerian structure
that transforms equation (1) into equation (4) that does not produce
exponential growth or decay in the inhomogeneous part g. Then
x(t) is a DHT of equation (1) iff y(t) = A(t)x+ b(t) is a DHT of
equation (4) [22].

3.2 Detection
We will first describe the algorithm for the detection of distinguished
hyperbolic trajectories as suggested by Ide et al. [22] and then look
at the iterative extension by Ju et al. [23]. We will follow the no-
tation by Ide et al. [22], which results in the series of coordinate

transformations going the non-alphabetical route from z to x to y. Ide
et al. do an excellent job illustrating the concept and extraction of
DHTs through seven examples that gradually increase in complexity.
We highly recommend studying them for an intuitive explanation of
the concept.

3.2.1 Overview
Bottom up, DHTs are detected through these three steps:

• For a linear system with time-independent diagonal matrix
ẏ = Dy+g(t), the DHT can be computed analytically.

• A linear system with time-dependent matrix ẋ = F(t)x+h(t)
must be steadified through SVD of the fundamental matrix.

• An arbitrary system ż = u(z, t) must be linearized through
localization around a critical point.

We will provide the details of each step top down in the remainder
of this section.

3.2.2 Non-linear System
Ide et al. show in Section 3 [22] how a non-linear system of the
form (1) can be linearized by localization around a critical point or
stagnation point zc through the transformation

x = z� zc, (5)

which results in

ẋ (5),(1)
= u(x+ zc, t)� żc = —u(zc, t)| {z }

F(t)

x �żc|{z}
hF (t)

+u(x+ zc)�—u(zc, t)x| {z }
hNL(x,t)

.

(6)
This is the location where Ide et al. and Ju et al. follow different
paths. Ide et al. neglect the non-linear part hNL and work with

ẋ ⇡ F(t)x+hF (t) = —u(zc, t)x� żc, (7)

while Ju et al. keep both hNL and the force term hF .

3.2.3 Linear System with Time-dependent Matrix
Given a linear system

ẋ = F(t)x+h(t) (8)

with time-dependent matrix F : R! R2⇥2, Ide et al. show in Ap-
pendix A [22] how to find the coordinate transformation

y = A(t)x (9)

with the matrix A : R! R2⇥2 that makes the system time indepen-
dent and diagonal. The transformations act on equation (8) via

ẏ (9),(8)
= Ȧx+A(F(t)x+h(t)) = (Ȧ+AF(t))A�1

| {z }
D

Ax|{z}
y

+Ah(t)
| {z }

g(t)

.

(10)
They construct A and the matrix D 2 R2⇥2 by solving

Ẋ = F(t)X , X(t0) = I (11)

for the function X : R!R2⇥2 and using the SVD decomposed form

X(t) = B(t)eS(t)RT (t) (12)

with B,S,R : R! R2⇥2 through a Runge-Kutta method and setting

D :=
1

t1 � t0
S(t1), A(t) := e(t�t0)DRT (t1)R(t)e�S(t)BT (t). (13)



3.2.4 Linear System with Time-independent Diagonal Matrix
Ide et al., Section 2 [22], show that if the system has the shape

ẏ = Dy+g(t) (14)

with constant diagonal matrix D 2 R2⇥2, then each component
marked by the subscript i = 1, ..,d of the DHT yDHT : R ! Rd

has the shape

yDHT
i (t) =

(R t
�• gi(t)eDii(t�t)dt, Dii < 0
�
R •

t gi(t)eDii(t�t)dt, Dii > 0.
(15)

3.2.5 Finite Time
Ide et al. point out that the DHT cannot be determined uniquely
if the data is only given on a finite time interval [t0, t1] ( R [22].
Instead there exists a region in which the DHT can exist because that
whole region remains in a neighborhood. They suggest computing
an approximation to the DHT by extending the so-called forcing
function g(t) : [t0, t1] ! R to infinity through a Fourier or power
series g̃(t) : R! R.

3.2.6 Algorithm by Ju et al.
Ju et al. do not neglect the non-linear part in equation (6) [23], but
maintain the dependence of h on x and of g on y through

ẋ = F(t)x+h(x, t) (16)

with

h(x, t) = hF (t)+hNL(x, t) =�żc +u(x+ zc)�—u(zc, t)x.
(17)

They then go over to

ẏ = Dy+g(y, t) = Dy+A(t)h(A�1y, t) (18)

analogously to Section 3.2.3 and suggest an algorithm that approxi-
mates the DHT iteratively through

y j+1
i (t) =

(R t
t0 gi(y j(t),t)eDii(t�t)dt, Dii < 0
�
R t1

t gi(y j(t),t)eDii(t�t)dt, Dii > 0
(19)

starting with the original stagnation point y0(t) = 0. They use only
the given finite time interval for the computation of the DHT and
prove that under certain conditions, the solution of equation (19)
approaches the DHT for growing time intervals.

3.2.7 Algorithm by Hofmann et al.
Hofmann et al. [21] use a slightly adapted version of the algorithm
by Ju et al. [23]. The main difference is that they consider a variety
of initial guesses. In addition to the critical points of the original field
u, they use two steadification decompositions u = w+ f , first the
one that coincides with the zeros of the acceleration in accordance
with Machado et al. [28], second the decomposition suggested by
Rojo et al. [35]. They filter the zeros of w and only keep very strong
saddles, but extend these short solutions through integration in f .

4 POWER AND LIMITATIONS OF DHTS AS GENERALIZATION
OF CRITICAL POINTS

In the introduction, we described three important mathematical prop-
erties that we want a generalization of classical steady critical points
to satisfy in a time-dependent setting: to be objective, Lagrangian,
and truly generalize classical critical points. The question whether
or not DHTs satisfy these properties is actually manifold, because
we get different answers for the definition than for the algorithms as
well as different results for time spanning the full range of the real
numbers than for finite times.

This section contains the first contribution of this paper. We
will answer these questions for the theory and each algorithm in its
remainder. The summary of our results can be found in Table 1,
which can be used as a table of contents to access this section non-
linearly and skip parts. It provides references to the theorems and
counterexamples, whose purpose is to back up the statements in
the table. The proofs are in the appendix. The main reason for
the difference between theory and practice for the algorithm by Ide
is the dropping the non-linear part (7). The algorithms by Ju and
Hofmann rely on the convergence to the correct solution starting
from the initial guess (19).

4.1 Objectivity
In this subsection, we will answer the question of whether DHTs
are objective, i.e., do not change under a Euclidean change of the
reference frame. Explicitly, let xDHT (t) : R! R2 be a DHT of a
flow field v(x, t), x0 = Q(t)x+ r(t) be a change of coordinates with
a time-dependent orthogonal matrix Q : R ! SO(d) and a time-
dependent vector r : R! R2. Then the transfomation of the DHT
Q(t)xDHT + r(t) must be a DHT of the transformed field v0(x0, t) =
Q(t)v(x, t)+ Q̇(t)x+ ṙ(t).

4.1.1 Theory
Ide et al. prove the frame invariance of the DHTs in Appendix C [22]
without restrictions on the time interval. That includes objectivity.

4.1.2 Algorithms by Ide et al. and Ju et al.
We will show two vector fields given for infinite times that differ
only by a Galilean coordinate transform where the DHT is returned
for one but not for the other. The finite-time non-objectivity follows
as a consequence.

Example 1. This example shows a case where the algorithm does
not provide a solution for a vector field even though it finds the
solution for a field that differs from the first one only by a Galilean
coordinate transform; see Appendix Fig. 6 for illustration.

The steady one-dimensional field

u(z) = z2 + z (20)

has the zeros zc1 = 0,zc2 =�1, which are hyperbolic because

—u(zc1, t) = 2z+1|z=zc1 = 1, —u(zc2, t) = 2z+1|z=zc2 =�1.
(21)

We can see from the analytic solution of equation (20)

z(z0, t) =
z0

e�t z0 + e�t � z0
, (22)

the critical points are the only ones without exponential behavior

z(zc1, t) =
0

e�t = 0, z(zc2, t) =
�1

�e�t + e�t +1
=�1 (23)

which shows that they are the DHTs.
We show that the algorithms by Ide et al. and by Ju et al. detect

them correctly explicitly for zc2. The other case works analogously.
Localization about the zero described in Section 3.2.2 results in
xc2 = 0,

ẋ = F(t)x+g(x, t) (24)

with the Jacobian F(t) = —u(zc2, t) =�1 and the forcing

g(x) = h(x, t) =�żc +u(x+ zc2)�—u(zc2, t)x = (x�1)2 + x�1+ x
(25)

being time-independent. Since g(xc2) = g(0) = 0, it is returned as
the DHT for both algorithms from equations (15) and (19) respec-
tively.



Method time objective Lagrangian coincide with steady case
Theory infinite Appendix C [22] By definition Example 3, Theorems 4, 5
Theory finite Appendix C [22] Theorem 1 Example 3, Theorems 4, 5, 1
Algorithm Ide [22] infinite Example 1 Example 2, Theorem 2 Example 3, Theorems 6, 7
Algorithm Ide [22] finite Example 1 Example 2, Theorems 2, 1 Example 3, Theorems 6, 7, 1
Algorithm Ju [23] infinite Example 1 Theorem 3 Example 3, Theorems 6, 7
Algorithm Ju [23] finite Example 1 Theorems 3, 1 Example 3, Theorems 6, 7, 1
Alg. Hofmann [21] infinite Section 4.1.3 Theorem 3 Section 4.3.4
Alg. Hofmann [21] finite Section 4.1.3 Theorems 3, 1 Section 4.3.4, Theorem 1

Table 1: Summary of the mathematical properties and references to theorems and counter examples for the different settings and algorithms of
DHTs. Color represents: green: yes, teal: mostly yes, purple: mostly no, red: no.

Now, we show the non-objectivity by transforming the field
through the Galilean transformation z0 = z+ 1

4 t, which results in

u0(z0, t) = (z0 � 1
4

t)2 + z0 � 1
4

t +
1
4
. (26)

The only zero z0c(t) =
1
4 t � 1

2 of this field is not hyperbolic

—u0(z0c, t) = 2z0 � 1
2

t +1|z=zc = 0, (27)

which causes both algorithms to stop and to not return a result.

As a trivial result, the algorithms by Ide et al. and by Ju et al. are
not objective for finite times either.

4.1.3 Algorithm by Hofmann et al.
The algorithm by Hofman et al. [21] cannot be fooled as in Ex-
ample 1 if it uses steadified initial guesses. With the version by
Machado et al. [28], it becomes Galilean invariant but not objective.
With the version by Rojo et al. [35], it becomes objective.

There are two restrictions though. First the algorithm by Rojo
et al. does not work if the localized field is linear. Second, the
filtering of the initial guesses w.r.t. very small Jacobian determinant
|—u(zc, t)|<< 0 makes the algorithm not objective but only Galilean
invariant, like the Jacobian.

4.2 Lagrangianness
We call a method Lagrangian if the features it extracts move over
time as if they were advected by the flow v(x, t). For line features
x(t) : R!R2, this is equivalent to the extracted line to be a pathline,
i.e., a trajectory, i.e., tangential to the flow 8t 2 R : ẋ(t) = v(x(t), t).

4.2.1 Theory
DHTs are trajectories by definition, i.e., they are Lagrangian.

4.2.2 Finite Time
Ide et al. stress that the extension of the data to infinite times from
Section 3.2.5 does generally not return the correct DHT, but under
the following condition, the result is tangential to the given data.

Theorem 1. If g : [t0, t1]⇢ R! R2 is extended to infinity through
g̃(t) : R! R2 such that it coincides with its extension perfectly for
the time interval the data is given, i.e., 8t 2 [t0, t1] : g̃(t) = g(t), then
the approximate DHT is a trajectory.

4.2.3 Algorithm by Ide et al.
The algorithm by Ide et al. is not always Lagrangian.

Example 2. This example shows a case in which the algorithm by
Ide et al. does not return a pathline. Neglecting the non-linear term
in the case of the 1D vector field

ẋ = v(x, t) = x+ t + x2, (28)

which is the last part in the first step of the algorithm described in
Section 3.2.2, leads to

ẏ = u(y, t) = y+ t. (29)

Its solutions are the trajectories of equation (29), y(y0, t) = et(y0 +
1)� t � 1, of which yDHT = y(�1, t) = �t � 1 is the DHT. But
its tangent ẏDHT = �1 does not point along the original vector
field (28) because v(xDHT (t), t) = xDHT + t +xDHT 2

=�1+(�t �
1)2. Therefore the line that is detected is not a pathline. See Ap-
pendix Fig 5 for illustration.

The algorithm does not always provide a solution even if it exists
in theory, e.g., Example 1. But if it has a finite result for the input
vector field of the shape (14), that result is Lagrangian.

Theorem 2. If the algorithm returns a solution for a linear system
in space (14), then this solution is a pathline.

A proof using the analytical solution can be found in the Ap-
pendix. It follows from combining the results in this section that
the algorithm by Ide et al. is Lagrangian for finite time if the series
approximation to g(t) is perfect for all t 2 [t0, t1] and the input field
is linear in space.

4.2.4 Algorithm by Ju et al. and Hofmann et al.

All three algorithms do not always converge to a solution even
if it exists in theory, because the integration of the fundamental
matrix and its SVD are prone to numerical error [21–23] even in the
decomposed forms. But if the latter two converge to a fixpoint, the
result is a pathline.

Theorem 3. Every trajectory of ẏ = Dy+ g(y, t) is a fixpoint of
equation (19) and vice versa.

A proof using the Leibnitz rule can be found in the Appendix.
Since Ju et al. and Hofmann et al. use a zero extension outside
the given time interval, their method satisfies the conditions of
Theorem 1 and is therefore always Lagrangian if it converges.

4.3 Coincidence with the Steady Vector Field Topology

In this subsection, we will answer the question whether or not
DHTs coincide with critical points on steady velocity fields. Math-
ematically speaking, suppose we have an unsteady flow field
ū : R2 ⇥R ! R2 that is defined over space and time, but does
not change over time, i.e., there exists a steady field u : R2 ! R2

such that 8t 2 R : ū(z, t) = u(z). Then we want the DHTs zDHT (t)
extracted in ū to satisfy ū(zDHT (t)) = u(zDHT (t)) = 0.



4.3.1 Theory

Not every classical critical point is a DHT even in theory.

Example 3. The classical steady center is not a DHT. The critical
point yc = (0,0)T in the steady vector field

ẏ =
✓

y2
�y1

◆
(30)

shown in Figure 1(e) has a Jacobian whose eigenvalues l1/2 =±i
have zero real part, which makes yc not hyperbolic and therefore
not a DHT.

But DHTs of steady fields are critical points and some critical
points are DHTs, especially, all critical points in Figure 1 except for
the center.

Theorem 4. A critical point with a non-defective full rank Jacobian
is a DHT.

Theorem 5. A DHT in a steady field is an isolated critical point.

4.3.2 Finite Time

If a constant field is given as a finite-time dataset that happens to
not change over time, then the expansion using a power series or a
Fourier series can always be made perfect on the given finite-time
interval just by using the zeroth-order approximation. That means
the finite time DHTs coincide with the infinite time DHTs because
of Theorem 1.

4.3.3 Algorithms by Ide et al. and Ju et al.

Both algorithms detect hyperbolic critical points in steady fields.

Theorem 6. A critical point with a non-defective full rank Jacobian
is detected as a DHT through the algorithms by Ide et al. [22] and
Ju et al. [23].

Theorem 7. A DHT detected through the algorithm by Ide et al. [22]
or Ju et al. [23] in a steady field is a critical point.

4.3.4 Algorithm by Hofmann et al.

Both considered steadification algorithms leave a steady input field
unchanged [7]. Therefore the algorithm inherits its properties mostly
from the one by Ju et al., except for the fact that Hofmann et al. sug-
gest filtering out initial guesses with positive Jacobian determinant,
removing sinks and sources. Omitting the filtering step makes this
algorithm detect the same critical points as the one by Ju et al..

5 VISUALIZATION OF DISTINGUISHED TRAJECTORIES

We have seen that DHTs generalize critical points to the time-
dependent setting in a physically meaningful way in some cases, but
not in all.

If we require a method to be Lagrangian, the generalized critical
points must be pathlines. Because of that, we treat the visualization
of distinguished trajectories and not necessarily DHTs to generalize
critical points in this section. By distinguished trajectories, we mean
isolated pathlines of the data that generalize critical points. That
means our method can visualize multiple trajectories simultaneously,
but we expect them to be separated. They can be DHTs, but they do
not have to be. With this approach, we allow our visualization to
also cover future developments in the theory of time-dependent flow
topology that might, for example, be able to also detect centers.

(a) Input vector field (31). (b) Decoupled vector field (33).

Figure 2: An example where a steady input field does not remain
unchanged through the transformation in Section 3.2.3.

5.1 Problem Statement
Given a time-dependent input velocity field v(x, t) and a distin-
guished trajectory x(t), we want to find a coordinate transformation
y = A(t)x+b(t) that allows us to perceive the field from the perspec-
tive of the trajectory. We especially want the trajectory to become a
critical point for all times. An example can be found in Fig. 3.

We will first show that this requirement is not met by the transfor-
mation from Section 3.2.3 and then derive a similar transformation
that satisfies it. We will also show that the result satisfies Lagrangian-
ness and objectivity.

5.2 Making the Trajectory the Critical Point
The first goal of making the trajectory critical can be achieved very
easily through the transformation (5) that is used for the detection of
the DHTs to localize around a line x(t) through x0 = x� x(t). Note
that localization of a steady field around a non-steady line x(t) can
result in an unsteady field, but all Euclidean markers in a steady field
are steady.

5.3 Steadification and Diagonalization of the Jacobian
A straightforward idea to define the “natural” reference frame of
a trajectory is through transformation (9), which decouples the dy-
namical system. It is promising because it also allows us to express
the data independently of time, but it comes with two drawbacks.
First, as we have seen, this transformation only exists for hyperbolic
trajectories, which are not powerful enough to generalize all critical
points. Second, even if it exists, it does not generally coincide with
the input field, even if that is steady.

Example 4. The transformation y = A(t)x as derived in Sec-
tion 3.2.3 for the steady field

ẋ =
✓

x1 + x2
x2 � x1

◆
(31)

shown in Figure 2 with t0 = 0 is actually not constant over time

A(t) =
✓

cos(t) sin(t)
�sin(t) cos(t)

◆
, (32)

but it produces the steady decoupled form

ẏ =
✓

y1
y2

◆
, (33)

which does not coincide with the input system (31).

We will now derive a transformation that overcomes both draw-
backs.



5.4 Steadification of the Antisymmetric Jacobian
In this section, we derive a transformation that is similar to the one
in Section 3.2.3, but differs from it in two ways. First, it exists for
any non-degenerate localization of the form (8) and not only for
hyperbolic trajectories. Second, it leaves steady fields unchanged. It
further satisfies the second visualization goal and returns a steady
field if the unsteady field happens to be a moved steady field.

The symmetric part of the Jacobian is objective, while the anti-
symmetric part is not. We chose a transformation that makes the
antisymmetric part steady.

Theorem 8. Let ẋ = v(x, t) : R2 ⇥R! R2 be a flow field that has
been localized around a trajectory as in Section 5.2, i.e., it has
a critical point in the center of coordinates v(0, t) = 0. Then the
time-dependent rotation

Q(r(t)) =
✓

cos(r(t)) �sin(r(t))
sin(r(t)) cos(r(t))

◆
(34)

with the function r(t) : R! R satisfying the initial value problem

r̈(t) =
1
2
( j̇0,1(t)� j̇1,0(t)), r(t0) = 0, ṙ(t0) = 0, (35)

where jk,l(t) are the matrix entries of the Jacobian J = —v, provides
a transform y = Q(t)x such that the output field ẏ = Qẋ+ Q̇x is
objective and coincides with the input field v(x, t) if that is steady.2

Proof. We first show the coincidence with the steady case. If the
input field ẋ = v(x) is steady, then the Jacobian is, too; its derivative
vanishes, and equation (35) simplifies to r̈(t) = 0 with the analytical
solution r(t) = c1t + c0. The initial values require c0 = r(t0) = 0
and c1 = ṙ(t0) = 0, which leads to r(t) = 0, Q(r(t)) = I, and ẏ =
ẋ = v(x) = v(y).

Now we show the objectivity. We only have to look at transfor-
mations of the form x0 = Q(t)x because the translational part has
already been taken care of in Section 5.2.

We will make use of the fact that for the rotation matrix (34), the
following matrix products are antisymmetric and satisfy

QT Q̇ =

✓
0 �ṙ
ṙ 0

◆
, QT Q̈+QT Q̇Q̇T Q =

✓
0 �r̈
r̈ 0

◆
. (36)

Assume we have two velocity fields ẋ = v(x, t) and

v0(x0, t) = ẋ0 = Q̇(t)x+Q(t)ẋ = Q̇(t)x+Q(t)v(x0, t) (37)

that differ by a transform x0 = Q(t)x with the rotation matrix Q(s(t))
as in equation (34) with some function s : R! R. Then their Jaco-
bians satisfy J = —v and

J0(x0, t) = —x0v0(x0, t)

= Q̇(t)—xxQT (t)+Q(t)—xv(x0, t)QT (t)

= Q̇(t)QT (t)+Q(t)J(x0, t)QT (t)

(38)

and the temporal derivative of the Jacobians

J̇0 = Q̈QT + Q̇Q̇T + Q̇JQT +QJ̇QT +QJQ̇T

= Q(QT Q̈+QT Q̇Q̇T Q+QT Q̇J+ J̇+ JQ̇T Q)QT

(36)
= Q(

✓
0 �s̈
s̈ 0

◆
+ J̇)QT .

(39)

It is apparent that s leaves the symmetric part 1
2 (J̇ + J̇T ) of J̇ un-

changed, which is in accordance with the fact that this tensor is

2By objective we mean that two input vector fields that differ only by a
change of reference frame produce the same output field.

objective, but only influences the antisymmetric part 1
2 (J̇� J̇T ) of

J̇. And the one-dimensional second order ordinary differential equa-
tion (35) is chosen exactly to let the antisymmetric part inside the
parentheses vanish.

The antisymmetric parts satisfy

1
2
(J̇0 � J̇0T ) (35)

= Q(

✓
0 �s̈
s̈ 0

◆
+

✓
0 �r̈
r̈ 0

◆
)QT . (40)

Therefore we get the initial value problem

r̈0(t) = s̈+ r̈, r0(0) = s(0), ṙ0(0) = ṡ(0) (41)

with the solution r0(t) = s(t)+ r(t) that leads to Q(r0) = Q(r)Q(s)
through straight calculation and completes the proof through y0 =
Q(r0)x0 = Q(r)Q(s)x0 = Q(r)x = y.

Note that the transformation is well defined for any input vector
field. In particular it does not need to have a linear part. A proof for
reflections works analogously.

5.5 Generalization to Arbitrary Paths
Note that we did not use the fact that x(t) is a trajectory for the
visualization, but only to ensure that the method is Lagrangian. The
method can be used to visualize a flow field from the perspective
of arbitrary paths, too, for example, to show the iterations in the
algorithm by Ju et al. [23].

5.6 Visualization
We follow two main goals for the visualization. We seek to

• show the movement of the trajectory over time, and
• emphasize the analogy to the steady vector field topology

because vector field topology has been broadly accepted as an ex-
cellent way to visualize steady fields to the degree that the phase
portraits around critical points have an almost iconic recognition
value in scientific visualization.

5.6.1 Trajectory
For the first goal, we chose to draw the path of the distinguished
trajectory over the whole time interval in the original frame of
reference. We interpolate a trajectory that is given at the discrete
time steps using a spline to make it visually appealing.

For the temporal coherence of the visualization, we color code
it blue for times that lie in the past w.r.t. the currently displayed
time step and red for times that lie in the future. The saturation
of the colors increases with the difference in time. Our algorithm
uses the Visualization Toolkit VTK [37] and stores the trajectory as
time-dependent vtkPolyData with a scalar array that contains the
time distance of the point on the trajectory to the current time step.
That way, it can easily be visualized with a transfer function in a
standard visualization environment, such as ParaView [1].

A second cue for the speed in which the trajectory moves is pro-
vided through ticks on the curve of the trajectory at every timestep.
We achieve that by storing cells of the type vtk.Vertex only at the
discrete time steps and not on the interpolated points between them.
This provides the temporal context of the evolution of the trajectory;
see Figure 3.

We seek to ensure that the context does not occlude the visual-
ization of the instantaneous velocity field in the perspective of the
trajectory from the second goal. Therefore we render the trajectory
transparent in the vicinity of its location in the current time step. We
set the time distance array to zero for all points that are closer to the
current location of the trajectory than one cell size so that a recircu-
lating trajectory will not occlude the visualization. An example of
this effect can be seen in Figure 3(f), where the trajectories of the
first and last time step coincide.



(a) Input t = 30. (b) Input t = 50. (c) Input t = 70.

(d) Output t = 30. (e) Output t = 50. (f) Output t = 70.

(g) Output t = 30. (h) Output t = 50. (i) Output t = 70.

Figure 3: Top row: different time steps of the saddle (44) under the
accelerated rotation visualized using LIC. Middle row: the trajectory
of the approximate DHT computed with the algorithm by Ju et al.
over time on top of the instantaneous velocity of the field from its
perspective as derived through our algorithm in Section 5.7. Bottom
row: the trajectory of the true DHT (45) on top of the instantaneous
velocity of the field from the DHT’s perspective.

5.6.2 Instantaneous Velocity
Let a field v(x, t) be just a steady field vs moved through a Euclidean
transformation x0 = A(t)x+b(t), i.e., a field with the shape

v(x, t) = Ȧ(t)AT (t)(x�b(t))+A(t)vs(AT (t)(x�b(t)))+ ḃ(t),
(42)

and x0c(t) a trajectory x0c(t) = Q(t)xc + r(t) that describes the move-
ment of a critical point vs(xc) = 0. The requirement that for this
input, v(x, t),x0c(t), we want the original field vs back is not a well-
defined problem, because all constant Euclidean transformations of a
steady field are also steady. Analogously to the field decomposition
suggested by Rojo et al. [35], we attribute special meaning to the lab
frame and visualize the derived field

w(x, t) := v(x, t)� Q̇T (r(t))Q(r(t))(x� x0c(t))� v(x0c(t)), (43)

whose critical points follow the trajectory in the lab frame
w(x0c(t)), t) = 0. The choice r(t0) = 0 determines the rotational
alignment selecting the representative vs that satisfies A(t0) = I.
In the case of the transformed field (42), we get A(t)A(t0)�1 =
Q(r(t))T from Section 5.4. Together with b(t) = �ẋc(t), we see
that the derived field (43) really shows the rotated and shifted steady
field Q(r(t))vs(QT (r(t))(x0 � r(t)), t) without the “fictitious forces”
Q̇(t)QT (t)(x� r(t)) and ṙ(t) that come from the derivatives of the
transformation.

After computing the transformation in Section 5.4, we compute
w(x, t) from equation (43) and visualize it using line integral convo-
lution (LIC) [8] color coded by the velocity magnitude in each time
step. Please note that in general all visualization methods that are
suitable for steady vector fields can be used instead of the LIC.

5.7 Algorithm
The steps in this section can be summarized by the following algo-
rithm.

1. Select the distinguished trajectory x(t) = Ft
t0(x0).

2. Make the trajectory critical through the transform x0 = x�x(t).
3. If the field is steady, return r(t) = 0, otherwise solve ṙ(t) =

1
2 (J0,1 � J1,0) using a Runge-Kutta method.

4. Steadify the antisymmetric part of the localization around the
trajectory through the transform x00 = Q(r(t))x0 with Q from
equation (34).

5. Compute the velocity field w(x, t) = v(x, t) � v(x(t), t) �
Q̇T Q(x� x(t)) showing v from the perspective of x.

5.8 Multiple Distinguished Trajectories
If a flow field has multiple distinguished trajectories, each provides
one view of the field. Distinguished hyperbolic trajectories are
separated. We can therefore visualize a number of their paths simul-
taneously and let the observer switch between them for the localized
steadified flow. Their separatedness also allows us to visualize sev-
eral localized flows in one image similar to Fuchs et al. [11] and
Bujack et al. [6] using inverse distance weighting [38]. The ex-
ponent p in the interpolation scheme allows the user to steer the
smoothness. For p = •, we get the largest possible cutout of the
undisturbed reference frame of each trajectory with a non-smooth
transition between the patches. For smaller p, the results become
smoother, but in return, the mix of the frames of reference lets the
velocity lose meaning away from the trajectories.

6 RESULTS

In this section, we showcase the combination of the algorithms by
Ju et al. [23] and ours from Section 5.7 for two simple analytical
examples for which the former converges.

6.1 Saddle under Accelerated Rotation
To demonstrate the coincidence with the steady case and the objec-
tivity, we use an analytical, steady dataset that is moved through
a Euclidean transformation, for which we know ground truth. We
chose a saddle

vs(x) =
✓

x1 +0.5
�x2

◆
e�2

p
(x1+0.5)2+x2

2 (44)

that is rotated with increasing velocity clockwise once around the
circle with radius 0.5 and center (0,0,0)T through the matrix (34)
with the function r(t) = q t2 with q = 2p

|N|2 chosen to make one full
turn in N = 20 time steps. The critical point xc = (�0.5,0)T is
transformed to

x0c(t) = A(t)x0 =
1
2

✓
�cos(q t2)

sin(q t2)

◆
, (45)

which is the true location of the DHT.
The transformed field has one hyperbolic critical point that re-

mains in the spatial boundaries that vanishes at time step 35. We use
a path as input that follows the critical point in the beginning and
then continues as its pathline as the input to the algorithm by Ju et al.
The algorithm converges and provides an approximate DHT, which
does not fully coincide with the location of the true DHT (45). Still,
visualizing the flow in the frame of reference of the approximate
DHT using our algorithm from Section 5.7 reveals the true type and
orientation of the rotating saddle through the instantaneous velocity
field in each time step. Simultaneously, the visualization of the
trajectory provides the path of the DHT for over all time steps with
the increasing distance between the ticks and color coding revealing



(a) Input t = 2. (b) Input t = 5. (c) Input t = 8.

(d) Output t = 2. (e) Output t = 5. (f) Output t = 8.

Figure 4: Top row: different time steps of the jet entering a fluid at rest visualized using LIC. Bottom row: the trajectory of the DHTs over time
on top of the instantaneous velocity of the field from the DHTs’ perspectives as derived through our algorithm in Section 5.7.

its exact location in each time step. Together, this intuitively reveals
the underlying nature of that the dataset, namely that it is a steady
saddle that is rotated in a circle with increasing speed. The reader is
encouraged to refer to the supplementary video for an animation.

6.2 Jet Entering Fluid at Rest
We demonstrate that our visualization can be applied to several input
trajectories for the example of hydrodynamics simulation data of
a swirling jet entering a fluid at rest. The top row of Fig 4 shows
two saddles that persist over a longer period of time, one in the top
left and one in the bottom right moving upward. We use their paths
as initial guesses for the algorithm suggested by Ju. It converges
to the two trajectories in the bottom of Fig. 4. The vector field in
the background uses inverse distance weighting with an exponent of
p = 2 between the two reference frames that correspond to each of
the distinguished hyperbolic trajectories. The visualization not only
reveals the path of the DHTs, but also the velocity profile around
it in exactly the same way we interpret it around critical points in
the classical vector field topology. Only now do we know that the
results are physically meaningful because they are in accordance
with the pathlines in the time-dependent flow.

7 DISCUSSION AND CONCLUSION

So far, there is no visualization algorithm that generalizes classical
vector field topology to the time-dependent setting that satisfies the
three desirable properties: Lagrangianness, objectivity, and coin-
cidence with the classical case, which are frequently considered
necessary to ensure physical meaning.

We have analyzed DHTs with respect to these three conditions
and shown that DHTs are theoretically Lagrangian and objective,
but do not coincide with the steady case in all cases, especially if the
Jacobian around the trajectory is not diagonalizable. Analyzing the
algorithms for their detection has shown that they have improved

over time. The first one by Ide et al. is not generally objective
or Lagrangian. The developments by Ju et al. ensure Lagrangian-
ness and the algorithm by Hofmann et al. can be made objective
with small adaptions. This makes it theoretically superior to all
previous algorithms [7], none of which achieved all three properties.
The strongest contenders were the steadification algorithms, which
lack Langrangianness, and the pathline categorization algorithms,
which lack being a true generalization of critical points. The main
challenges remaining to overcome are the algorithms’ numerical
sensitivity and cases where they do not converge.

Further, we have provided a visualization for DHTs that is to
the best of our knowledge the first to theoretically generalize non-
degenerate critical points with non-defective Jacobian of analytic
flow fields to the time-dependent setting in a physically meaningful
way, i.e., it is Lagrangian and objective. The visualization itself
works for any distinguished trajectory and is therefore ready to sat-
isfy all three desirable properties as soon as the algorithms advance
to enable the detection of non-diagonalizable critical points in a
Lagrangian way.

We hope that identifying the differences between the expected
results and the actual capabilities of the existing algorithms will
help closing those gaps in the future. Also, we hope that it inspires
analogous analysis for separatrices, periodic orbits, and 3D flows.
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APPENDIX

A PROOF OF THEOREM 1

If g : [t0, t1]⇢R!R2 is extended to infinity through g̃(t) : R!R2

such that it coincides with its extension perfectly for the time interval
the data is given, i.e., 8t 2 [t0, t1] : g̃(t) = g(t), then the approximate
DHT is a trajectory.

Proof. Since, yDHT is a DHT of ẏ = Dy+ g̃(t), it is a trajectory
satisfying

ẏDHT = Dy+ g̃(t) = Dy+g(t) (46)

for all t 2 [t0, t1], which makes it Lagrangian.

B PROOF OF THEOREM 2

If the algorithm returns a solution for a linear system in space (14),
then this solution is a pathline.

Proof. We first show that the DHTs of the system (14) are pathlines.
Separation of variables provides the solutions of (14) as

yi(y0, t) =
Z t

t0
gi(t)eDii(t�t)dt + y0

i eDii(t�t0), (47)

which contains the DHTs from (15). We show it for Dii > 0 through

yi(yDHT (t0), t) =
(47)
=

Z t

t0
gi(t)eDii(t�t)dt + yDHT

i(t0)e
Dii(t�t0)

=
Z •

t0
gi(t)eDii(t�t)dt + yDHT

i (t0)eDii(t�t0)�
Z •

t
gi(t)eDii(t�t)dt

(15)
=

Z •

t0
gi(t)eDii(t�t)dt +

Z •

t0
gi(t)eDii(t0�t)dteDii(t�t0) + yDHT (t)

= yDHT (t).
(48)

If a transformation (9) y = A(t)x can be found that makes the
system matrix of equation (8) diagonal and constant in time, like
in equation (14), then the pathlines of that system are transformed
pathlines of the input system because of the frame independence
shown in Appendix C in [22], which completes the proof.

C PROOF OF THEOREM 3

Every trajectory of
ẏ = Dy+g(y, t) (49)

is a fixpoint of equation (19) and vice versa.

Proof. We show this for the a component with Dii > 0 through
differentiation of equation (19) for infifite time using the Leibnitz
rule at the fixpoint y•(t) via

ẏ•
i (t) =

d
dt

Z t

�•
gi(y•(t),t)eDii(t�t)dt

=
Z t

�•

d
dt

(gi(y•(t),t)eDii(t�t))dt +gi(y•(t), t)eDii(t�t)

= Diiy•
i (t)+gi(y•(t), t).

(50)
The case with Dii < 0 works analogously.

D PROOF OF THEOREM 4
A critical point with a non-defective full rank Jacobian is a DHT.

Proof. Localizing the steady field ż = v(z) around a critical point zc
through x = z� zc as in Section 3.2.2 results in ẋ = v(x+ zc). The
second step of the algorithm, Section 3.2.3, linearizes this via

ẋ = —v(zc)x+ v(x+ zc)�—v(zc)x
= Fx+h(x).

(51)

Since the Jacobian —v(zc) at the critical point is non-defective, it can
be diagonalized through an invertible matrix A and the transform
y = Ax leads to

ẏ = Aẋ = AFx+h(x) = AFA�1y+Ah(A�1y) = Dy+g(y),
(52)

which has the form (4). Since the Jacobian has full rank, none of the
diagonal entries vanishes Dii 6= 0, which satisfies the condition of
hyperbolicity for the constant case.

Since yc = Axc = 0 is critical, y(0, t) = 0 is a constant trajectory
that never leaves any neighborhood around zero. The fact that the
trajectories in a neighborhood leave follows from the Hartmann
Grobmann theorem [32], which shows that the behavior around a
hyperbolic critical point is topologically equivalent to the behavior
of its linear part, which in turn satisfies y0eDt . This shows that
all trajectories leave the neighborhood forward in time along the
components where Dii > 0 or backward in time where Dii < 0,
which makes yDHT = 0 the DHT. Finally, the back transformation of
yDHT = 0 leads to xDHT = A�1yDHT = 0 and zDHT = xDHT + zc =
zc, which indeed is the critical point of u.

E PROOF OF THEOREM 5
A DHT in a steady field is an isolated critical point.

Proof. The Poincare-Bendixon Theorem [32] states that if a trajec-
tory z(z0, t) is contained in a compact subset C ⇢ R2 of the plane,
its w-set either contains a critical point or it is a periodic orbit. If its
w-set is a periodic orbit, then it and its whole interior never leave
C, which make neither a DHT. If its w-set contains a critical point
zc, then zc 2C is also contained in the compact set and will never
leave it because it is critical. Therefore, the only way that z(z0, t)
is the only trajectory remaining in C is if it coincides with zc. Its
isolatedness follows from the fact that all neighboring trajectories
must not be constant to leave C.

F PROOF OF THEOREM 6
A critical point with a non-defective full rank Jacobian is detected
as a DHT through the algorithms by Ide et al. [22] and Ju et al. [23].

Proof. We only have to show that the algorithm returns yDHT = 0
for equation (52).

Neglecting the non-linear part in the algorithm by Ide et al. [22]
leads to

ẏ = Dy (53)

and equation (15) leads to

yDHT
i (t) =

(R t
�• 0eDii(t�t)dt, Dii < 0
�
R •

t 0eDii(t�t)dt, Dii > 0
= 0. (54)

The algorithm by Ju et al. [23] also detects yDHT = 0, because in
the steady case, Equation (19) simplifies to

y j+1
i =

(
gi(y j)

R t
�• eDii(t�t)dt, Dii > 0

�gi(y j)
R •

t eDii(t�t)dt, Dii < 0
=�gi(y j)

Dii
. (55)



Starting iteration at the critical point y0 = yc = Axc = A(zc � zc) = 0
suffices

g(yc) = g(0) = Ah(0) = A(v(0+ zc)�—v(xc)0) = 0, (56)

showing that yc = 0 is a fixpoint and the DHT.
Now the back transformation from the proof of Theorem 4 com-

pletes the proof in both cases.

G PROOF OF THEOREM 7
A DHT detected through the algorithm by Ide et al. [22] or Ju et
al. [23] in a steady field is a critical point.

Proof. We first show that no step in the algorithms transforms a
steady field into a non-steady field. The localization about the
critical point zc in Section 3.2.3 is constant because the critical point
is. Also the transformation to a diagonal matrix in Section 3.2.4
provides constant A,D because we know S(t) = Ft analytically if F
is constant.

Now assume we have detected a DHT in a steady field. After
localization about the critical point, equation (14) must suffice 8t :
g(t) = 0. Therefore Equations (15) and (19) both return yDHT = 0,
which coincides with the transformed critical point yc = Axc =
A(z� zc).

H ADDITIONAL ILLUSTRATIONS OF EXAMPLES

(a) 1D vector field (20). (b) 1D vector field (26) for t = 0.

Figure 5: Illustration of Example 1. These two fields differ only by
a constant translation. The algorithms are not objective because they
are able to detect the DHTs in the left field but not in the right one.

(a) Trajectories of the input vector
field (28).

(b) Trajectories of the linearized vec-
tor field (29), DHT in blue.

Figure 6: Illustration of Example 2. Trajectories for different initial
values show that neglecting the non-linear part lets the algorithm by
Ide et al. return the blue line on the right, which is not a trajectory
of the original field on the left.
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