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a b s t r a c t

A myriad of physical phenomena, such as fluid flows, magnetic fields, and population dynamics
are described by vector fields. More often than not, vector fields are complex and their analysis is
challenging.

Vector field topology is a powerful analysis technique that consists in identifying the most essential
structure of a vector field. Its topological features include critical points and separatrices, which
segment the domain into regions of coherent flow behavior, provide a sparse and semantically
meaningful representation of the underlying data.

However, a broad adoption of this formidable technique has been hampered by the lack of open
source software implementing it. The Visualization Toolkit (VTK) now contains the filter vtkVector-
FieldTopology that extracts the topological skeleton of 2D and 3D vector fields. This paper describes
our implementation and demonstrates its broad applicability with two real-world examples from
hydrology and space physics.

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version 9.0.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-21-00026
Code Ocean compute capsule none
Legal Code License BSD
Code versioning system used git
Software code languages, tools, and services used C, C++, Python
Compilation requirements, operating environments & dependencies Cross-platform
If available Link to developer documentation/manual https://vtk.org/doc/nightly/html/classvtkVectorFieldTopology.html
Support email for questions bujack@lanl.gov

1. Motivation and significance

Vector field analysis is critically important for many scientific
pplications, such as aeronautic engineering, material sciences,
nvironmental sciences, and space sciences. The vector fields
nvolved in these applications are typically complex, making it
hallenging for humans to visualize and describe them in a com-
rehensive manner. Vector field topology is a powerful analysis
echnique that addresses this challenge through the identification
f the topological features of vector fields [1–5].

∗ Corresponding author.
E-mail address: bujack@lanl.gov (Roxana Bujack).

The topological features of a vector field comprise a finite set
of elements or properties that reveal the most essential structure
of the vector field. Being finite, this set of elements is typically
much easier to visualize and describe than the complete vector
field. Identifying these elements also enables the automatic qual-
itative and quantitative analysis of vector fields by revealing the
number of critical points and the numbers and sizes of regions of
coherent behavior. Tracked over time or over a change in system
parameter, such information provides insight on changes of the
overall behavior of the system.

Our code computes the topological skeleton of 2D and 3D
vector fields. Essentially, the topological skeleton of a vector field
is a sparse set of trajectories that reveals the topological structure
of the flow defined by the vector field. More specifically, the
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Fig. 1. The different types of nondegenerate 2D critical points visualized with line integral convolution (LIC) [6] and arrow glyphs. Here the presence of the subscript
i means all i ∈ (1, 2, 3), and the order of the eigenvalues does not matter.

opological skeleton of a d-dimensional vector field v : Rd
→

d consists of its separatrices, which are solution trajectories
streamlines in the language of fluid mechanics) that differ from
their neighbors in their origin or destination [7,8]. Thus, sep-
aratrices are boundaries between regions of radically different
behavior. Separatrices include critical points (i.e., the points at
which v(x) = 0) and associated invariant manifolds (i.e., lines
or surfaces comprising trajectories that have a critical point as
origin or destination). Other, less obvious types of separatrices
exist (e.g., closed trajectories, boundary switches [5]), but these
are not computed in the current version of the code (this may
be added in future releases). A significant amount of research
has been done on topology-based visualization techniques [9–12]
building on the foundation of critical points and separatrices.

To the best of our knowledge, our code is the first open source
mplementation enabling computation of the topological skeleton
f vector fields.

. Software description

.1. Software architecture

We developed a new filter (vtkVectorFieldTopology) in the Vi-
sualization Toolkit (VTK) [13,14]. VTK is a popular open source
software system for data processing, analysis, and visualization.
It is object-oriented and provides many useful data objects and
‘filters’ to create objects or operate on them. Its pipeline archi-
tecture allows for setting up elaborate workflows by connecting
and combining several filters. VTK is written in C++ ensuring high
performance, and a hybrid wrapper facility allows for generating
language bindings to Python, Java, and Tcl for easy access. Thus,
by adopting the VTK framework, our code can be easily combined
with other functionalities available in VTK, and it is accessible
through several programming languages.

2.2. Software functionalities

The new filter takes a 2D or 3D vtkDataSet object as input and
it computes the topological skeleton of a user-specified vector
field stored as part of the point data. In 2D, the output consists of
two vtkPolyData objects. The first one contains the critical points,
and the second one contains the 1D separatrices (i.e., lines). In 3D,
an optional third vtkPolyData object is produced that contains the
2D separatrices (i.e., surfaces). Relevant information is also added
to the point data of these objects, as explained later.

The algorithm starts by finding the critical points x ∈ Rd
:

v(x) = 0. It does so analytically after triangulation (tetrahedral-
ization) of the data and based on a linear interpolation inside
the cells [2,5]. The critical points are then classified based on the
eigenvalues of the Jacobian ∇v ∈ Rd×d of the vector field [8]. The
d × d matrix ∇v is also evaluated analytically inside the cells,
and its eigenvalues {λi, i ∈ (1, 2, . . . , d)} are computed using the
igen library [15].

In 2D, the most common (i.e., nondegenerate) types of critical
points are sources, sinks, saddles, and centers, summarized in
Fig. 1. Sources and sinks can be further divided into two sub-
categories based on the imaginary part of the eigenvalues: if it
is zero, the trajectories approach the critical point along specific
directions, whereas if it is nonzero, the trajectories approach the
critical point rotating around it indefinitely. The four correspond-
ing cases are called repelling node, repelling focus, attracting
node, and attracting focus. Four 1D separatrices originate or ter-
minate at a saddle (two originate and two terminate). These
separatrices are computed by placing four seeds at a small user-
defined offset of the saddle in the direction of the eigenvectors
of ∇v, which give the directions along which the separatrices
approach the saddle. The trajectories from these seeds – the
separatrices – are integrated using the filter vtkStreamTracer,
which implements streamline integration through a choice of
Runge–Kutta methods.

In 3D, the most common (i.e., nondegenerate) types of crit-
ical points are sources, sinks, repelling saddles, and attracting
saddles, visualized in Fig. 2. Each of these types may imply a
rotating pattern in a certain plane depending on the presence
of eigenvalues with nonzero imaginary part. This gives rise to
the eight cases shown in the figure. A 2D separatrix and two 1D
separatrices originate or terminate at a saddle (if the 2D separa-
trix originates at the saddle, then the 1D separatrices terminate
at the saddle, and vice-versa). The directions along which the
separatrices approach the saddle are given by the eigenvectors
of ∇v. The 1D separatrices are computed by placing two seeds
at a small user-defined offset of the saddle in the direction of
the eigenvectors of ∇v corresponding to the eigenvalue whose
sign appears only once. The trajectories from these seeds are
integrated as explained above. The 2D separatrix is computed by
placing eight seeds at a small user-defined offset of the saddle in
the plane spanned by the eigenvectors of ∇v corresponding to the
eigenvalues whose signs appear twice. These seeds are the base
for integrating a surface – the separatrix – using the filter vtk-
StreamSurface, which was developed as part of this project. This
filter iteratively integrates trajectories and their connections into
a triangulated surface one step at a time, reinserting additional
streamlines if neighboring ones diverge too far from each other
as suggested by Hultquist [16].

The most important input parameters are the distance in
which the separatrices are seeded away from the saddles and the
parameters that are handed off to the streamline and streamsur-
face integrators, like step sizes and maximum number of steps.
All are described in the VTK documentation. The output object of
type vtkPolyData containing the critical points stores information
on the type and sub-type (i.e., whether a rotating pattern exists
or not) of the critical points as well as the matrix ∇v. Further-
more, the output objects containing the separatrices store the
integration time along the computed trajectories.
2
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Fig. 2. The different types of nondegenerate 3D critical points visualized with streamlines color coded in red/blue for forward/backward integration and LIC in the
lane of the common sign. Here the presence of the subscript i means all i ∈ (1, 2, 3), and the order of the eigenvalues does not matter.

. Illustrative examples

.1. Groundwater flow

Water that infiltrates into the ground becomes groundwater.
roundwater typically flows through several geological layers
efore reappearing on the ground surface in the form of springs,
iver baseflow, or wetlands. It is both an essential part of the
ater cycle and a major resource of water for humans. Thus,
haracterizing groundwater flow is critical to understand and
anage freshwater ecosystems and water resources.
To illustrate the new VTK filter in this context, we performed

D and 3D simulations of groundwater flow around an extraction–
njection well pair embedded in a regional flow field. This type
f system is commonly used in various applications including
quifer storage and recovery [17], geothermal energy systems
18], and in-situ bioremediation of contaminated groundwater
19]. The critical points and separatrices as extracted by our
lgorithm from the simulations are visualized in Fig. 3. The 2D
imulation (left) assumes purely horizontal flow, whereas the 3D
imulation (right) assumes that the injection and extraction wells
re modeled as points located midway between the top and the
ottom of the aquifer. In both cases, the wells are aligned at an
ngle to the direction of the regional flow field, and the flow is
imulated in steady state. The simulations were performed with
he MODFLOW-2005 code [20].

There are three distinct flow zones that are important to delin-
ate in this system: a capture zone in which regional groundwater
lows towards the extraction well, a transfer zone in which in-
ected water flows towards the extraction well, and a release zone
n which injected water is lost to the regional system [21]. Fig. 3
emonstrates that the topological skeleton computed using the
ew filter effectively delineates these three zones and separates
hem from the background flow in 2D as well as in 3D. Note
hat the extraction and injection wells are detected as critical
oints even if in reality, velocity is not zero at these points:
nstead, velocity is maximum at the wells. This results from the
nterpolation inside a cell when the flow is inward on all sides
f the cell (or outward on all sides of the cell). Physically, these
oints are sources and sinks, and, as such, it is a good thing that
hey are identified by the algorithm.

3.2. Magnetospheric dynamics

Earth’s magnetosphere is the region of near-Earth space dom-
inated by the terrestrial, rather than the solar, magnetic field.
The primary mechanism for driving magnetospheric dynamics
is energy transfer through magnetic reconnection on the day
side [22,23] and subsequent release on the night side through
magnetic reconnection [24,25]. Identifying the magnetic separa-
trices and critical points in global simulations is important for
understanding energy transfer in the magnetosphere [26].

Following [26] we use the Space Weather Modeling Frame-
work (SWMF; [27]) to demonstrate the identification of the vector
field topology using VTK. SWMF couples together component
models to simulate a variety of space physics domains in a self-
consistent manner, and here we use the same set of component
models as the operational version in use at the National Oceanic
and Atmospheric Administration (NOAA) Space Weather Predic-
tion Center [28]. The core component is the Block-Adaptive Tree
Solarwind Roe-type Upwind Scheme (BATS-R-US) [29], which
solves the magnetohydrodynamic equations. Among other state
variables, BATS-R-US calculates the evolution of the vector mag-
netic field, B⃗. In this example we examine the output from the
BATS-R-US model using the ‘‘high-resolution’’ (1.94M cells, 7
refine levels) configuration from [30].

Fig. 4 shows the application of the vector topology filters to a
snapshot in time from the SWMF simulation of a severe geomag-
netic storm [31] on 12 August 2000 [32]. Fig. 4a shows the vector
topology in a 2D slice in the X–Z plane of the simulation; that
is, this represents a cut-through of the magnetosphere seen from
the side of the Earth with the Sun to the right (+ve X direction).
In two dimensions, the configuration is exactly that predicted by
Dungey’s ‘‘open magnetosphere’’ model [22]. It identifies a source
and a sink at the Earth’s poles and 2 saddles, whose separatrices
separate the domain into 6 regions of coherent vector field behav-
ior: 2 in the center with origin and destination being the Earth’s
poles (‘‘closed’’), 2 on top and below being connected to one pole
without returning to the other (‘‘open’’), and 2 left and right not
connected to either pole (‘‘interplanetary’’). Fig. 4b illustrates the
topology in three dimensions, which reveals that the 2 separate
3
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Fig. 3. Vector field topology of groundwater flow around an extraction–injection well pair embedded in a regional flow field. The integration time along the
separatrices is encoded in color, red: forward, blue: backward in time.

Fig. 4. Vector field topology of a simulation of the magnetic field around the Earth in interaction with the Sun’s. The integration time along the separatrices is
encoded in color, red: forward, blue: backward in time.

regions of coherent vector field behavior connecting the Earth’s
poles from the 2D image is actually one connected component
surrounding the Earth. The magnetic reconnection sites transfer-
ring flux between open and closed regions will then lie along the
separatrix [26,33].

4. Impact

Despite vector field topology being a powerful analysis tech-
ique with a solid theoretical foundation, we feel that this tech-
ique has been underutilized by the scientific community at large.
eing the first open source code to compute the topological skele-
on of vector fields, this contribution has the potential to greatly
ncrease the adoption of topology-based analysis techniques by
cientists. VTK is widely used in scientific computing, computa-
ional geometry, and medical image analysis. It is the underlying
ibrary for many popular visualization tools (e.g., ParaView [34],
isIT [35]), making our code directly accessible to a large group

of users. As vector fields are ubiquitous in science, this code will
foster scientific discoveries and benefit numerous applications in
various disciplines.

Hydrogeology, for example, will greatly benefit from this tool.
Critical points occur in many groundwater flow problems [36],
and the separatrices associated to these points constitute water
divides between regions connected to different recharge areas
or different discharge areas [37]. Identifying, delineating and
analyzing these different regions sheds light on groundwater–
surface water interactions, the capture zone of pumping wells,
and solute transport in groundwater flow systems [38–40]. Yet,
until recently, this type of analysis has principally been conducted
in simplistic configurations in 2D [41–43]. Our code will hence
allow for tackling long-standing questions about the structure
of groundwater flow in more realistic configurations. This will
yield a better understanding of the water cycle and facilitate the

development of effective water resources management strategies.

4
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. Conclusions

Many physical phenomena, like, the movement of material,
ravitational, magnetic, or electric fields are described by vector
ields. One of their most popular analysis techniques is vector
ield topology, because it breaks down even huge amounts of data
nto a compact, sparse, and easy to comprehend description with
ittle information loss.

To the best of our knowledge, we have presented the first open
ource implementation that extracts the critical points and their
ssociated streamlines segmenting a given vector field into its
ost basic components, which facilitates the analysis of complex
ector fields. The algorithm works in 2D and 3D as well as on
tructured and unstructured data. It is integrated into VTK for
road accessibility by application scientists from all domains, and
e have illustrated its utility by application to hydrological and
pace physics simulation data.
We hope our contribution will further research and develop-

ent by enabling scientists and engineers working with vector
ields to gain more insight into their data.
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