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Abstract Flow plays a major role in environmental sciences, because many
of the Earth’s physical and biological processes involve movement. Yet, there
are major differences between theoretically available and practically applied
visualization techniques to represent flow.

This paper surveys various techniques in computational and environmen-
tal flow visualization. Techniques from the computational flow visualization
community are classified into geometric, texture-based, topology-based, and
feature-based approaches. Environmental flow applications are categorized into
four application domains (atmospheric science, ecology, geosciences, and urban
environments). Computational and environmental visualization approaches
are compared to exhibit gaps and suggest solutions on how to bridge the
gap.

Outcomes from this literature review will inform the development of strate-
gic initiatives for both future flow visualization research and flow visualization
in the environmental sciences.
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1 Introduction

Many of the Earth’s physical and biological processes are driven or influenced
by movement. Flow is important for environmental water management, water
allocations for humans and freshwater-dependent ecosystems, the formation of
hurricanes and tsunamis, and air quality assessments, to name a few examples.
In computer science, flow visualization is a well established research field that
provides a variety of methods and algorithms that allow a human to see and
understand the motion of water, air, or particles. Yet, a gap exists between the
tools that have been proposed in flow visualization and those that have actu-
ally been applied to real world problems by domain experts in environmental
sciences.

Here, we investigate the differences between these two theoretically closely
related fields, point out potential reasons for this gap, and suggest solutions
to bridge it.

This paper is an updated version of an EnvirVIS workshop short paper on
strategic initiatives in the environmental flow visualization field [13] and struc-
tured as follows: First, we review common flow visualization techniques, i.e.
geometric, texture-based, topology-based, and feature-based methods. Then,
we discuss flow visualization in environmental sciences, which we group into
four application fields: atmospheric science, ecology, geosciences, and urban en-
vironments. Finally, we compare the visualization approaches in both research
domains ans suggest solutions to bridge identified gaps.

2 Flow Visualization

Flow visualization is the science of making flow fields visible [34]. In particular,
it creates images that most efficiently translate the movement of fluids into
understanding of their behavior. It is older than scientific computing [89,60],
but the use of computers has leveraged it into a new era, on which we will
focus. Openly available programs, like ParaView [2] or VisIt [17], provide many
flow visualization techniques. Even though there are overlaps, they can be
structured into the following categories.

2.1 Geometric Techniques

Some of the most popular flow visualization techniques fall into the category
of geometric techniques, Fig. 1. Here, geometric objects such as curves, sur-
faces, and volumes, are built from seeding and advecting massless particles to
represent the behavior of the underling flow [57]. The basic curves that form
the foundation of the geometric objects are streamlines (the trajectories in a
static field), pathlines (the trajectories in a time-dependent field), streaklines
(formed by particles released at a fixed point continuously in time), and time-
lines (formed by particles released on a line at a fixed time) [14]. Instead of
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(a) Illuminated streamlines (b) Streamtubes.

(c) Streamribbons. (d) Streamsurfaces.

Fig. 1 Different streamline-based geometric techniques applied to an example 3D flow field
of swirling behavior.

visualizing the flow simply as lines, the curves can be colored and illuminated
[110] and drawn in the shape of tubes or ribbons to encode additional infor-
mation, e.g. rotation, divergence, or velocity [95]. Concatenation of the basic
lines seeded along a starting curve results in stream surfaces [36], path, time,
or streak surfaces [58,50]. Emphasis on divergence is well provided by flow
polygons [83] or flow volumes [56], which copy experimental smoke advection.
The main challenges using these geometric techniques are smart seeding to
stress features and prevent clutter and the efficient calculation, especially in
3D unsteady fields.
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2.2 Texture-Based Techniques.

Dense and texture-based techniques are very popular for the visualization of
2D flow fields [51,23,64]. They cover the whole domain densely by transforming
an input texture, usually random noise, along the flow and are inspired by
the experimental flow visualization technique where oil is applied to parts in
the wind tunnel to form schlieren. The resulting output texture have small
variations of color along a streamline but big changes orthogonal to the flow.

The first such method introduced was spot noise [97], where a set of spots
are placed on the domain and smeared in flow direction, Fig. 2(a). Line integral
convolution (LIC) [15] is a similar technique, Fig. 2(b). Instead of a finite set
of spots, a dense texture is used as a starting point. The output texture is
produced by a one-dimensional convolution of the input texture along the
streamline passing through a pixel in forward and backward time. The success
of these methods is partly based on their intuitive interpretation. Thinking of
the input texture as dark and light ink sources, each flow parcel that travels
though washes out some of the color and mixes it with the color it has already
accumulated. While the velocity of the field can be perceived in spot noise,
LIC is better suited to visualize the flow around critical points [19].

Follow up research generalizes these fundamental techniques to better en-
code orientation [100], a variety of input textures [47], surfaces [26], 3D flow
fields [39], time-varying flow data [87], and more efficient calculation [90]. Still,
the main application remains to be 2D steady flow because of the induced clut-
ter of a dense visualization technique.

2.3 Topology-Based Techniques

Vector field topology [35] separates the domain into areas in which all flow
parcels have the same origin and destination, Fig. 2(c). The topological skele-
ton consists of critical points (the positions that have zero velocity) and sepa-
ratrices (their one-dimensional invariant manifolds) [70,52]. The different flow
patterns of vector field critical points can be categorized into saddles, sinks,
sources, and vortices by the eigenvalues of their Jacobian, i.e. the velocity
gradient [66]. For example, sources have two positive eigenvalues because the
flow moves away from them in each direction, while saddles have one pos-
itive and one negative eigenvalue corresponding to one attracting and one
repelling manifold. The separatrices can be computed by integration of for-
ward and backward streamlines along the eigendirections of the saddle type
critical points.

It has become an important component of flow visualization, because it
contains the important features of a vector field in a highly compressed rep-
resentation [35]. Extensions have been made to the detection of higher order
critical points [80], separation and attachment lines [46], closed streamlines
[105], 3D vector fields [101], and Galilean invariance [11]. It is also a means
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(a) Spot noise. (b) Line integral convolution (LIC).

(c) Topology marks sink (red), source (blue)
and saddle (yellow).

(d) Arrow glyphs.

Fig. 2 Different techniques applied to an example 2D flow field with a source, a saddle,
and a sink. While the first three visualizations make sure, the critical points are not missed,
the gluphs are abe to directly encode the direction of the flow.

for flow field decomposition, simplification [93], and design [91]. Currently, the
main challenge lies in generalizing flow topology to time varying data [68,10].

2.4 Feature-Based Techniques

Most flow visualization techniques produce great results when applied to 2D
fields, but fail in the 3D case due to clutter, because each drawn object oc-
cludes everything located behind it, Fig. 3. Feature based techniques reduce the
amount of visualization elements to the important areas of a flow field [70,23].
This selection process can be imposed to all the techniques mentioned earlier.
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(a) Equidistant low density
seeding misses features be-
tween the seeds.

(b) Feature based seeding re-
veals the features.

(c) Equidistant high density
seeding misses features due to
occlusion.

Fig. 3 Comparing feature based to uniform seeding of streamlines in regions of vortical
behavior demonstrates that 3D visualization is not a “Goldilocks” problem.

Specific detectors have been taylored to identify the most typical flow features,
like vortices [74,30], the elements of the flow topology [52], or shockwaves [108].
For more general purposes, vector field pattern detection algorithms [21,81,
12,99] allow the extraction of user defined features.

Vortices are probably the most studied flow feature [74,30]. There is no
generally accepted mathematical definition for a vortex, but it is mostly de-
scribed as an axis around which particles move in a swirling motion. The most
popular mathematical detectors are the vorticity, Q [37], Okubo-Weiss [65,
102], ∇ [18], and λ2 [41] criteria. Recently, the development of detection cri-
teria has moved from satisfying only Galilean invariance to objectivity, i.e.
invariance w.r.t. Euclidean transformations of the reference system [31,32,29].

2.5 Further Techniques

There are other flow visualization techniques that can be considered as their
own category, such as partition-based techniques [75], illustrative techniques
[8], visualization based on glyphs [69,106], Fig. 2(d), or visualization of derived
scalar quantities (e.g. velocity magnitude, vorticity, finite-time Lyapunov ex-
ponent, [33]).

Animation is not a huge topic in flow visualization [51]. Time as a variable
in the depiction is usually reserved for the different time steps in unsteady
flow, which is why animation for steady flow is rare. Also, it is often consid-
ered a more concise visualization if the information over several time steps is
summarized in one single steady visualization, e.g., through pathlines. Usually,
animation is considered a bonus on top of a traditional visualization method,
for example, on textures [55], volume rendering [56,85], streamlines [43], line
integral convolution [26,86]. In a steady flow, it is often used to encode if the
flow moves forward or backward along an otherwise ambiguous visualization
element, like a line.
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(a) Isosurfaces visualize the ozone and glyphs the wind
direction over the poles. Image courtesy of L. Treinish
[92].

(b) ENVI-met [61] Temperature
encoded through color, flow di-
rection through glyphs.

(c) Hurricanes visualizaed through
color coding of the vertical mixing
and streamlines the hirizontal wind.
Image courtesy of B. Jaimes [40].

(d) Wind forecasting in Windity [1]. Temperature
encoded through color, flow direction through ani-
mated spot noise

Fig. 4 Different wind direction and velocity mapping applications.

Apart from direct visualization techniques, the flow visualization commu-
nity also concentrates on the reduction of clutter through smart placement of
seeds and objects [94,42,98] and meaningful visualizations through adaption
of the frame of reference [103,7,11,29].

3 Environmental Flow Visualization

Environmental science is, by nature, an interdisciplinary field, combining phys-
ical, biological, and information sciences to study environmental systems. Based
on our literature review, we grouped environmental research into four cate-
gories: (1) atmospheric science; (2) ecology; (3) geosciences; and (4) urban
environments. The following paragraphs review examples of applications in
each category that involve time and space dependent movement data appro-
priate for flow visualization.
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(a) Color coding of the Okubo Weiss criterion
on the surface indicated vortices.

(b) Volume rendering of the kinetic energy
allows visualization of the flow behavior in
3D.

Fig. 5 Ocean visualization by color coding of derived scalar fields. Images courtesy of F.
Samsel, M. Petersen, G. Abram with MPAS-Ocean, COSIM, LANL [107].

3.1 Atmospheric Science

Predominant atmospheric variables that pertain to flow are air and water,
usually retrieved through CFD simulations. Windyty [1] is a web-based wind
forecasting and visualization tool that maps wind direction and speed in
Google Maps using a background image, color-coded by velocity, Fig. 4(d).
At a smaller spatial scale, Lu and Port-Agel [54] conducted large-eddy sim-
ulations of wind farms and mapped simulated wind velocities as color-coded
maps. They also provided contours of the time-averaged stream-wise velocity
and turbulence intensity as color-coded isolines. Van Hoof and Blocken [96]
illustrated microscale wind flow as color-coded contours of velocity magnitude
in four horizontal planes, while [61] displayed CFD modeling results for wind
using arrows on a heat map, Fig. 4(b). Another study investigated the impact
of vertical wind shear on the predictability of tropical cyclones visualizing
wind as arrows [109]. Air quality assessment is another application area for
flow visualization, as it is concerned with pollutant dispersion through wind.
In [28], arrows are used as velocity vectors to display air-flow in urban street
canyons. Modeling and analyzing wind flow is also important to assess the im-
pact of hurricanes and tsunamis [71,40,20], Figuref:jaimes1. Koutek et al. [49]
combine multiple visualizations of color coding, iso-surface, glyphs, iso-bars in
a web-based tool for the analysis of meteorological data.

3.2 Ecology

The predominant application of flow visualization in ecology is animal migra-
tion. In a recent review, various tracking techniques for migratory birds were
presented, ranging from GPS tracking to geologgers [9]. While bird tracking
techniques were diverse, the presented migration visualizations were limited to
a Google Earth overlay of migration paths and a 2D view of dotted lines on a
radar image. Other applications used lines on a 2D map, color-coded by bird
individuals [22,84]. Slingsby and Loon recently suggested to bin large sets of
bird trajectories and visualize linked tile maps [88].
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(a) Volume rendering of path-
line density. Image courtesy of P.
Nardini [63].

(b) Tracked vortices can
be followed through color
coding. Image courtesy of
D. Banesh [4].

(c) Extracted eddies visually
encoded as cylinders. Image
courtesy of F. Raith [72].

Fig. 6 New developments in ocean visualization include pathlines, feature extraction, and
tracking.

3.3 Geosciences

Ocean flow simulation and analysis are crucial for assessing environmental
hazards, such as oil spills and sea trash. Previous research has predominantly
used colormapping [59,3,107], Fig. 5. Samsel et al. [77] stress the importance
of using intuitive and flexible colormaps to make use of the more automatic
and subconscious channels of the observer. Iso-lines are also popular to visu-
alize ocean data [82]. For coastal cities, flooding of urban areas was visualized
using photo-realistic animations to explain impacts of sea level rise to decision-
makers and the general public [27]. A recent study presented Open Geosys,
a tool to visualize geothermal energy and groundwater using streamlines and
arrow glyphs [48].

New directions have been followed recently. Nardini et al. [63] used task
driven filtering and 3D volume rendering of streamline density to visualize
the Benguela upwelling system, see Figure 6(a). Rocha et al. [73] visualize the
flow direction using sparse streamlet decals to leave space for simultaneous
visualization together with salinity and density.

One of the most prominent features in oceans - and probably the only one
visualized in the geosciences using feature extractions - are eddies. They can
either be directly visualized through color coding, volume rendering, or iso-
surfacing of scalar quantities, like vorticity or the Okubo-Weiss-criterion [67,
107,76,6], or indirectly through extraction and placement of glyphs like cylin-
ders [104,72]. Banesh et al. [4,5] not only extract but also track eddies and
visualize their temporal evolution through color coding of individual eddies
and an abstract graph indicating birth, death, merge, and split events, see
Figure 6(b).

Flow visualization has also been used to illustrate glacier retreat [44] and
volcanoes [78].
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3.4 Flow in Urban Environments

Flows in the urban areas include the movement of goods and materials, but
can also be concerned with invisible phenomena such as electricity. For ex-
ample, Molnar and Gruchalla [62] visualize electrical power systems by pro-
ducing a dense vector field from a sparse network and then applying classical
flow visualization techniques. The visual analytics and information visualiza-
tion communities have long investigated motorized and non-motorized vehicle
flow as well as travel behavior of pedestrians [16], which is usually sparse tra-
jectory data. Häuß1er et al. [38] present a visual analytic framework for the
exploration of sensor data to detect, predict, and reduce pollution from traffic.
Some urban flow visualizations employ simple line charts [25] or more com-
plex line-based visualizations that use edge-bundling. Ersoy et al. [24] show
immigration flow in the U.S. using a geometry-based edge bundling algorithm.
Other approaches to visualize urban trajectories use Kernel density estimation
(KDE), a common algorithm to generate heat maps. For example, Scheepens
et al. [79] create density maps from edge KDE results for US air traffic. Spatio-
temporal urban flow visualization employs space-time cubes (STC) where the
x and y axes represent spatial information and the z axis encodes how the
spatial information changes over time [53].

4 Bridging the Gap

Our literature review suggests that environmental scientists tend to use basic
flow visualization techniques. A comprehension can be found in Table 1.

Popular Rare Unused
Glyphs Spot noise Surfaces
Color Coding Streamlines Volumes
Isocontours Volume rendering Topology
Lines Animation

Feature-based techniques

Table 1 Comprehension of the use of flow visualization techniques in the environmental
sciences.

Atmospheric data are often mapped as color-coded derived scalar fields
or arrows, Fig. 4(a) and Fig. 4(b), while ecologists prefer streamlines to vi-
sualize animal migration data. The gap between available flow visualization
methods and their application seems to be smallest in geosciences, particularly
ocean flows. In all three areas, higher visualization elements, like surfaces and
volumes, or topology are hardly used. We see the following reasons for this
gap.

While fluid dynamics analysts often concentrate on relatively small, con-
tained problems, environmental scientists deal with big, complex data sets
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from various sources in different formats. The data sets exhibit complex bound-
aries, are multidimensional, or stem from observations that are too sparse for
higher visualization elements. For big data problems, environmental scien-
tists often focus on the comparison of different parameters and variables, so
the flow itself is visualized sparsely to share space with other variables (e.g.,
rain, snow, temperature) and topographic features (e.g., rivers, administra-
tive boundaries). Often, environmental data sets are analyzed with respect
to long term correlations, longitudinal trends, or averages; instantaneous flow
patterns become secondary. Environmental scientists also have to address a
broader, non-expert audience that is hungry for entertainment to communi-
cate their findings, yielding more colorful, catchy, simplified, and sometimes
animated visualizations and so far, we see fewer emphasis on animation and
visual analytics in flow visualization [45].

In our opinion, the demand for sparsity in comparative environmental vi-
sualization could be well satisfied by using more feature based techniques and
vector field topology. Environmental scientists would benefit from implemen-
tations that connect to their data formats and can easily be incorporated into
existing tools the scientists depend on. Interaction might be difficult to achieve
due to the size of the datasets, but GPU-based techniques, high performance
computing, and scientific computing could offer solutions.

5 Conclusion

We found that the two seemingly similar fields of flow visualization and envi-
ronmental flow visualization are more different than expected. In environmen-
tal sciences, flow is almost always only visualized by basic techniques, such as
arrow glyphs, streamlines, or color coding of the velocity magnitude. This gap
is mainly based on the demands of environmental sciences for sparse, catchy,
and simplified visualizations that run fast on big datasets and are easy to
integrate into existing environments.

A change in that trend is already visible though. Since our last survey
three years ago [13], we have seen a fast development toward closing this
gap. Especially in ocean flow visualization, we have seen volume rendering,
feature based techniques, and even feature tracking. A possible reason for this
acceleration may be the current presence of sustainability and climate change
in the focus of public interest, media, and politics.

Overall, we still see great potential for the two fields to learn from each
other and bridging the gap from two sides. The flow visualization community
could investigate views in which the immediate flow may play a subordinate
role and concentrate on comparative visualization and animation. The envi-
ronmental sciences on the other hand could consider to increase the use of
feature-based and topological methods.
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100. Wegenkittl, R., Gröller, E.: Fast oriented line integral convolution for vector field vi-
sualization via the internet. In: Proceedings of the 8th conference on Visualization’97,
pp. 309–316. IEEE Computer Society Press (1997)

101. Weinkauf, T., Theisel, H., Shi, K., Hege, H.C., Seidel, H.P.: Extracting Higher Order
Critical Points and Topological Simplification of 3D Vector Fields. In: Proc. IEEE
Visualization 2005, pp. 559–566. Minneapolis, U.S.A. (2005)

102. Weiss, J.: The dynamics of enstrophy transfer in two-dimensional hydrodynamics.
Physica D: Nonlinear Phenomena 48(2-3), 273–294 (1991)

103. Wiebel, A., Garth, C., Scheuermann, G.: Computation of localized flow for steady and
unsteady vector fields and its applications. IEEE Trans. Visualization and Computer
Graphics 1(8) (2002)



State of the Art in Flow Visualization in the Environmental Sciences 17

104. Williams, S., Hecht, M., Petersen, M., Strelitz, R., Maltrud, M., Ahrens, J., Hlaw-
itschka, M., Hamann, B.: Visualization and analysis of eddies in a global ocean sim-
ulation. In: Computer Graphics Forum, vol. 30, pp. 991–1000. Wiley Online Library
(2011)

105. Wischgoll, T., Scheuermann, G.: Detection and visualization of closed streamlines in
planar flows. Visualization and Computer Graphics, IEEE Transactions on 7(2), 165–
172 (2001)

106. Wittenbrink, C.M., Pang, A.T., Lodha, S.K.: Glyphs for visualizing uncertainty in
vector fields. Visualization and Computer Graphics, IEEE Transactions on 2(3), 266–
279 (1996)

107. Woodring, J., Petersen, M., Schmeiβer, A., Patchett, J., Ahrens, J., Hagen, H.: In
situ eddy analysis in a high-resolution ocean climate model. IEEE transactions on
visualization and computer graphics 22(1), 857–866 (2016)

108. Wu, Z., Xu, Y., Wang, W., Hu, R.: Review of Shock Wave Detection Method in {CFD}
Post-Processing. Chinese Journal of Aeronautics 26(3), 501 – 513 (2013)

109. Zhang, F., Tao, D.: Effects of vertical wind shear on the predictability of tropical
cyclones. Journal of the Atmospheric Sciences 70(3), 975–983 (2013)
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