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Abstract—Pseudocoloring is one of the most common tech-
niques used in scientific visualization. To apply pseudocoloring to
a scalar field, the field value at each point is represented using one
of a sequence of colors (called a colormap). One of the principles
applied in generating colormaps is uniformity and previously the
main method for determining uniformity has been the application
of uniform color spaces. In this paper we present a new method
for evaluating the feature detection threshold function across
a colormap. The method is used in crowdsourced studies for
the direct evaluation of nine colormaps for three feature sizes.
The results are used to test the hypothesis that a uniform
color space (CIELAB) will accurately model colormapped feature
detection thresholds compared to a model where the chromaticity
components have reduced weights. The hypothesis that feature
detection can be predicted solely on the basis of luminance is also
tested. The results reject both hypotheses and we demonstrate
how reduced weights on the green-red and blue-yellow terms of
the CIELAB color space creates a more accurate model when
the task is the detection of smaller features in colormapped data.
Both the method itself and modified CIELAB can be used in
colormap design and evaluation.

Index Terms—colormapping, color perception

I. INTRODUCTION

ONE of the most common and effective methods for
visualizing scientific data is using a color sequence,

commonly called a colormap, to encode scalar values in
univariate map data [40], [53], [62]. A set of examples in
Figure 1 shows the same sea surface height data rendered
using nine different colormaps. What makes a good colormap?
Clearly, to some extent this depends on the way it will be used.
Three broad task categories can be identified:

• Pattern Perception: The first and broadest task category
is feature or pattern perception [4], [58]. The patterns
that may be of scientific interest are essentially infinite.
A researcher may be interested in feature shapes, and
how large or small they are in terms of spatial size or
amplitude. Basic to all pattern perception is the feature
detection threshold — if the features making up a pattern
cannot be seen, the pattern cannot be seen.

• Value reading tasks and value localization tasks: The
value reading task is to determine the data value at a
point on a map, usually by means of a key [56], [58].
An example of such is a weather map with color-coded
temperatures; observing the color of a point on the map
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and visually matching that color to a color key allows the
temperature to be estimated. The value localization task
is the reverse of this [34]. A value is given and the task is
to find locations on the map corresponding to that value.

• Categorization task: Sometimes colors are used to vi-
sually categorize data [9], [50]. For example, in large-
scale geographical maps, greens roughly characterize low
plains whereas browns characterize mountainous regions.
Shades of blue are used for ocean depths.

Much of the work that has been done on the design of
colormaps has focused on design principles, not on tasks per
se. These principles include order, smoothness, uniformity, and
discriminative power [11], [55]. Order in a global sense is the
degree to which a sequence is perceived as progressing through
colors in a particular direction [4], [38], [61]. The options
available in the ColorBrewer palettes for cartography are
good examples of ordered palettes [9]. The widely used (and
equally widely criticized) rainbow colormap has no overall
perceptual order [8], [44], [58]. Smoothness refers to the extent
to which a colormap has no distinct boundaries in the sequence
of colors [30], [53], [54]. Uniformity refers to the extent
colors equally separated on the colormap correspond to equal
perceptual distances [8], [21], [29], [30], [41]. Discriminative
power refers to how many perceivably different colors are
traversed by the colormap. Usually this is defined as the
number of just noticeable differences (JND) over the entire
sequence [11].

In the present study, we are concerned with the discrim-
inative power function of a colormap (how well it resolves
features across its extent). Local discriminative power is
analgous to contrast sensitivity, a term commonly used in
psychophysics to denote the inverse of a contrast threshold (the
minimum contrast that can be resolved by a human subject).
We also derive a metric of overall discriminative power—the
overall capacity of a colormap to resolve features.

The contribution of this paper is a straightforward method
for evaluating the discriminative power function of a colormap
across its extent. This is applied for a range of feature sizes
and the results used to develop a modified version of CIELAB
that more accurately models human perception of features in
colormapped data. We also show how modified CIELAB can
be applied in a colormap design tool.

II. BACKGROUND AND RELATED WORK

The most common method that has been advocated for
creating perceptually uniform color sequences has been the
application of uniform color spaces (UCSs) such as CIELUV,
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Fig. 1. Sea surface height rendered in the nine test colormaps in this paper. Using the acronyms introduced in Section IV-B, the data is rendered in: (top
row, left to right) RA, CW, ECW, (middle row, left to right) BOD, GP, GR, (bottom row, left to right) BY, VI, TH.

Fig. 2. Left: a pattern illustrating how human spatial patterns sensitivity falls off for both low and high spatial frequencies. Right: human pattern sensitivity
for the different color channels as a function of spatial frequency (Adapted from Mullen [32]). Uniform color spaces were based on measurements with large
stimuli containing low spatial frequencies. Many visualization are dominated by higher spatial frequencies

CIELAB, CIEDE2000 and CIECAM [10], [15], [24], [25],
[27], [31]. The most popular uniform color spaces are math-
ematical transformations of the CIE XYZ coordinates, con-
structed such that metric differences between pairs of colors in
the space correspond to experimentally determined perceptual
differences from user studies. A uniform colormap defined
using a UCS is a sequence where adjacent colors have equal
separations in that UCS. The overall discriminative power of
the colormap defined by a UCS is simply the total length of
the path of the colormap in the UCS [11], [21], [35], [40].

Although using a UCS to understand the power of color-
maps to resolve features is common, there are reasons for
thinking that the standard UCSs will not actually provide a
good basis for measuring or creating uniformity for many
of the features that are critical in scientific data. Uniform
color spaces were based on measurements between two quite
large patches of uniform colors [26], [33], [39]. They were
intended for the paint and fabric industries and there is reason
to believe that they will not, in fact, provide a good basis
for assessing the quality of colormaps in terms of either their
uniformity, or their ability to allow people to resolve small

features in data. The problem has to do with the dependence
of feature discriminative power of different color channels,
as can be seen in Figure 2. Opponent color theory holds
that human color vision can be characterized in terms of
three color-opponent channels, the luminance (black-white)
channel, the green-red channel, and the yellow-blue chan-
nel [16]. Various measurements have shown that the different
channels have very different characteristics. For example, the
luminance channel is better at revealing shape-from-shading
information and patterns in motion [3], [14]. Most relevant
here are findings that the different channels have very different
feature discriminative powers, particularly at higher spatial
frequencies [32], [36].

Vision researchers have been characterizing the human vi-
sual system in terms of its ability to resolve sinusoidal patterns
of different spatial frequencies since the late 1960s [6], [12].
The left-hand image of Figure 2 illustrates this concept.
Campbell and Robson [12] showed that human ability to
resolve complex patterns is solely determined by sensitivity of
the constituent frequencies. For luminance modulated patterns
there is both a distinct high frequency and low frequency fall
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Fig. 3. A colormapped image showing current speed in the southern oceans. The important features such as eddies and jets are quite small.

off in sensitivity. Figure 2 shows (on the right) the results
from a study that investigated the feature discriminative power
of the green-red and yellow-blue channels in addition to the
luminance channel [32]. Both this and a study by Poirson
and Wandell [36] show that at spatial frequencies of one
cycle/degree and above, the luminance channel has far greater
sensitivity to patterns in comparison with the color channels.
Since it is the case that the UCS measurements were made
with larger patterns (2 and 10 deg [33]) containing low spatial
frequencies this would suggest that using UCSs to design
colormaps will considerably overweight the contributions of
the green-red and yellow-blue channels to both uniformity and
overall discriminative power. This means that they may be
unsuitable as a basis for designing colormaps for data such as
the ocean eddies and currents illustrated in Figure 3.

The differences between luminance and chromatic channels
have been noted by researchers who have suggested that high
spatial frequency patterns should be represented mainly by
luminance variation [40], [43], [44] and low spatial frequencies
are better expressed by chromatic variation [4], [40]. Others,
from Stevens on, have noted that fewer steps can be resolved in
chroma than can be resolved in luminance [4], [5], [43], [49].
Chroma is a technical term that refers to the vividness of a
color – its distance from a neutral gray of the same luminance.
Saturation is often informally used to refer to the same quality
but technically has a somewhat different definition. Also,
various researchers have proposed that aside from the issue
of resolution, luminance variation is more suitable for form
perception [40], [42], [58].

The two studies that bear most directly on the detection
of patterns in colormapped data are by Rogowitz et al. [43]
and Kalvin et al. [17]. Rogowitz et al. measured detection
thresholds using large Gaussian patterns placed 3 deg from
the center of fixation for a number of colormaps. The Fourier
transform of a Gaussian is also a Gaussian and the patterns
used would have had dominant spatial frequency components
below 0.5 cycles/deg. In addition to testing a rainbow color-
map they compared the influence of linear changes in hue

versus chroma versus value in Munsell and CIELAB space.
They found that hue based colormaps such as the rainbow
perform worse with respect to uniformity than the luminance
and chroma based ones. Kalvin et al. used Gabor stimuli at
0.2 and 4 cycles/deg. For high spatial frequency patterns they
found an increase in threshold for saturation and hue variation.
The results for luminance variation, however, were puzzling.
For grey scales defined by the HSV model there was little
increase in threshold, whereas when the grey scale was defined
by CIELAB there was a substantial increase in threshold. They
offer no explanation for this striking discrepancy. We build on
this work, although with a very different methodology, using
sinusoidal patterns.

Other evidence for the importance of luminance in form
perception comes from a study by Ware [58] in which
study participants were presented with a variety of patterns
(parabola, saddle, ridge, etc) and asked to rate how well
the underlying shapes were represented using Likert scales.
Overall, the grayscale colormap was judged the most effective
at representing underlying shape and the author argued that
this was because the luminance channel is most relevant to
form perception. However, this was a subjective and not an
objective measurement. Rogowitz and Kalvin [42] encoded
a photograph of a human face with various colormaps in
order to evaluate them. Faces colormapped with monotonically
increasing luminance were judged to appear most natural.
Faces are very special patterns for which the brain has a
dedicated processing area (e.g., [18], [28]), but it is not clear
if judgments of naturalness in faces generalize to the more
abstract patterns within scientific visualization. Kindlmann et
al. [19] used the human facial recognition ability to generate a
method for personalized luminance matching on uncalibrated
displays. It can be used for generating colormaps with pre-
defined properties w.r.t. luminance, for example, monotonicity
or constancy.

Related papers by Stone, Szafir, and collaborators [51], [52]
emphasized the influence of symbol size on the discrimination
of colored symbols for applications in the design of dis-
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crete symbols used in information visualization. They adapted
CIELAB to match their results to provide an “engineering
model” for use in the design of colored symbols. Our modeling
approach is similar.

Color-plane variation is often broken down into hue and
chroma components. Hue denotes the cycle of colors, from red
to yellow to green to blue to purple and back to red. Chroma
denotes the vividness of colors, or how much they differ from
neutral grays of the same luminance. It has often been noted
that the commonly used spectrum approximation, as a whole
is not perceptually ordered, although parts of it are [8], [58].
Color channels can also carry perceptually ordered information
in the form of chroma, as can double ended colormaps (e.g.
red-green or yellow-blue) [4], [5], [17], [43]. It is also the case
that most of the colormaps in use contain variation in both
lightness and chromaticity variation over their extent. (Note:
Chromatiticity refers to any non luminance variation in color).
Few people in scientific visualization use a simple grayscale
colormap. In the present paper, we are concerned solely with
the ability of colormaps to enable feature detection.

Finally, it is worth considering that by stretching and com-
pressing a colormap at different points it will always be pos-
sible to take any colormap and make it uniform, whereas the
overall discriminative power should not dramatically change,
at least according to some metrics [11]. It is also important
to note that in many cases, colormaps are deliberately made
to be non-uniform in order to emphasize a particular value
range in the data, for example, as in [7], [46]. Nevertheless,
there are good reasons for designing uniform sequences as
most people use colormaps unmodified, lacking the tools to
selectively stretch and compress parts of the sequence to suit
their needs.

III. CONTRIBUTION AND HYPOTHESES

The work presented here had a number of goals:
1) Develop a method for directly measuring the feature

detection threshold functions of colormaps that can
be used for differently sized features. Our method is
designed to build a bridge between spatial perception
theory and colormap evaluation.

2) Conduct a study evaluating a set of colormaps for
differently sized features.

3) Determine if a modified UCS can model the results.
4) Show how the method can be applied in a colormap

design tool.
Based on the differing spatial sensitivities of color opponent

channels compared to the luminance channel [32], [36], we can
make specific predictions relating to the modifications needed
for USCs to accurately model the results. Where the task is
to identify small features in colormapped data, UCSs will fail
to accurately model feature detection thresholds. Specifically
they will overweight the contributions of the green-red and
blue-yellow channels. We test this hypothesis by modeling the
data using CIELAB with modified weights on the a? and b?

terms. A corollary of this hypothesis is that colormaps with
the greatest variation in luminance will have the most overall
feature discriminative power. We also test the hypothesis that
a luminance only model (L?) can account for the data.

Fig. 4. The test pattern we use shown with a gray colormap (top) and a
rainbow colormap (bottom) for the 15 pixel feature size. Six vertical columns
of sinusoidal features are shown. In each column the contrast decreases by a
factor of two, every 80 pixels. Clicking on the point where a feature column
becomes invisible yields a measure of the detection threshold for features
having the spatial frequency of the pattern. A set of five images for each
colormap yields 30 sample points across the colormap.

A preliminary report on the method appeared in Ware et
al. [59]. That short paper introduced the basic method and
applied it to seven colormaps. Here we provide a much more
complete account. We have extended the method, applying it to
additional colormaps designed to specifically test in the green-
red and yellow-blue directions. In addition, this paper applies
the method to multiple feature sizes to test for size dependency
effects. All of the UCS modeling work is presented here for
the first time.

IV. METHOD

The basic study method was briefly introduced in Ware et
al. [59]. The following description is more complete, describ-
ing the additional feature sizes and additional colormaps.
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Fig. 5. An example of the two test patterns that were combined to test the
45 pixel feature set, shown in the CW colormap. Although the size has been
reduced here to conserve space, each was shown at the same size as the ones
in Figure 4.

A. Test Patterns

The method is based on the test pattern illustrated in Fig-
ure 4. This has columns of features that reduce in contrast from
bottom to top. The point at the top of any column where the
pattern becomes invisible represents the local discriminative
power. Notice how the patterns fade out at approximately the
same height for the gray colormap, but at very different heights
for the rainbow colormap. Sets of these patterns are used to
estimate feature detection thresholds at 30 points along the
colormap.

The basic test pattern is an artificial data image with the
following properties. The background of the image is a linear
ramp, increasing from 0.1 to 0.9 from left to right. Note that
the reason this does not range from zero to one is to avoid
truncation of the target patterns. Added to the background
ramp is a set of six equally spaced columns of features.
These contain oblique sinusoidal patterns as shown. For each
column, contrast increases according to a power law from top
to bottom:

a = c ∗ 2(1+(y−s)/p), (1)

where c is the starting amplitude, y is the distance from the top
of the image, s is the position at which the pattern starts, and
p is the amplitude doubling interval. All units are in pixels.
For our 600 × 600 test patterns, c = 0.001, s = 40 pixels,
and p = 80 pixels. Since the pattern varied over 560 pixels,
this yielded seven doublings, or a factor of 128 from top to
bottom. A value, v, between 0 and 1 is computed at each pixel
using

v = r + 0.5ag(sin(2
√

2π(x+ y))λ), (2)

where r is the ramp value, x and y are pixels, λ is the spatial
wavelength and g is a Gaussian distribution:

g = e−[3((x−x0))(2λ)]
2

. (3)

Here x0 represents the horizontal position of a particular
feature column.

There were three pattern wavelengths used in this study:
10, 15, and 45 pixels. In each test pattern, for the 10 and
15 pixel data, six discrete vertical stripes of the sine pattern
were constructed as illustrated in Figure 4 for the 15 pixel
data. Stripes were horizontally separated by 100 pixels. Sets
of 5 such patterns were generated for each colormap with

Fig. 6. The nine color sequences used in the study (from top to bottom):
RA:rainbow, CW:cool/warm, ECW:extended cool/warm, BOD:blue/orange
divergent, GP:grayscale, GR:green-red, BY:yellow-blue through red/blue,
VI:Viridis, TH:thermal.

starting offsets of 10, 20, 50, 70, and 90 pixels. Because the
patterns were considerably wider for the 45 pixel feature set,
we replaced each single test pattern with two, each 600 pixels
wide, testing the lower and upper ranges of each colormap
respectively as shown in Figure 5. In these, the vertical feature
stripes were separated by 200 pixels, and the column offsets
were adjusted appropriately. Initially, a spatial frequency of
15 pixels was studied. The 45 pixel and 10 pixel values were
chosen to extend the range of spatial frequencies investigated.

To render images used as stimuli, each colormap table was
expanded in software to a 1000 entry RGB look up table,
using linear interpolation. The color of each pixel in a stimulus
image was obtained by multiplying the data value at that point
by 1000 and using the result to index into the table and obtain
the corresponding RGB value. For transformations to CIE
XYZ and CIELAB it was assumed that all screens met the
sRGB standard and that the reference white (for CIELAB) was
defined by the maximum values on R,G and B respectively.

B. Colormaps

Nine colormaps, shown in Figure 6, were used in the current
study with three different spatial frequencies of the test pattern.
These colormaps were chosen for a variety of reasons.

• The rainbow (RA), one of many spectrum-based versions,
is from ParaView [1].
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• The Moreland cool/warm (CW) [30] is a commonly used
example of a double-ended colormap.

• The extended cool/warm (ECW) and blue/orange diver-
gent (BOD) sequences by artist F. Samsel and the Data
Science at Scale Team (DSS) at LANL [47] are more
recent examples of double-ended colormaps designed to
maximize feature resolution. Both of these have a large
luminance variation.

• The grayscale (GP) was constructed to have equal steps
in CIELAB L* ranging from 0-100. The values were
converted to XYZ and then to RGB assuming the sRGB
monitor standard.

• The green-red (GR) was designed to vary only on the
green-red color channel. It has equal steps in CIELAB
a* (the representation of the green-red channel). It varies
from −60.5 to 73.0. L* and a* are constant at 53 and 50
respectively.

• The blue-red (BY) colormap. The reason for choos-
ing blue-red, rather than yellow-blue, is because of the
shape of the gamut of R,G,B colors in CIELAB, with
the maximum range occurring between red and blue.
However, this colormap only varies in b*, the CIELAB
representation of the blue-yellow channel. It has equal
steps in b* from −78 to 55. L* and a* are constant at
53 and 42 respectively. We have labeled it BY in order
to emphasize that it varies in the blue-yellow direction
defined by CIELAB.

• The Viridis (VI) [57] colormap is an example of a
widely used uniform colormap designed to cycle through
a number of hues.

• The Thermal (TH) sequence is sometimes used in Ther-
mal imaging. It has the unique property of traversing most
of the luminance range seven times, which, according
to the hypothesis in Section III, should give it extreme
overall detection power.

The colormaps used are given as [V, R, G, B] tables in
supplementary material where V varies between 0 and 1.

Because of the very low discriminative power of the yellow-
blue sequence we doubled the starting contrast to 0.002 to
keep it within the range of the test pattern. Similarly, because
of the very high threshold discriminative power of the Thermal
imaging sequence we halved the starting contrast to 0.0005.

C. Task
For each test pattern, the participant’s task was to click on

each of the six points in the columns where the vertical pattern
became invisible.

D. Participants
Participants were solicited on Mechanical Turk [2] and paid

$0.85. In total, 560 unique participants were collected across
the three different feature datasets with 55.9% male, 43.2%
female, and 0.9% unspecified participants. Participants ranged
from 18 to 73 years of age with a mean age of 36. Since
this study involved color, precautions were taken to minimize
any potential contamination due to color vision deficiencies
(CVD). A fuller discussion and validation of those precautions
can be found in Section VII-A.

E. User Study Procedure

The experimental procedure closely followed the method
laid out in [59]. The study itself was coded using the heat
map question in Qualtrics survey software [37] and the studies
were launched on Mechanical Turk using the TurkPrime
interface [22]. Using built-in Qualtrics functionality, partici-
pants on mobile devices were blocked from taking the study.
Participants were asked to check that the browser was on 100%
zoom and to place themselves 50 cm from the screen (with
advice for how far that was for an average male or female).
Only 5.5% of participants had a screen resolution of 1280x720
or under. The most common screen resolutions were 1360x768
(38.9%), 1920x1080 (28.8%), and 1600x900 (10.4%). The
average screen resolution was 1580x920. For typical laptop
and desktop screens this yields the cycles/degree values given
in Table I.

Feature Size: 10pixel 15pixel 45pixel
Typical laptop 5.11 3.41 1.14
Typical desktop 3.87 2.58 0.86

TABLE I
ESTIMATED CYCLES/DEGREE FOR THE THREE FEATURES SIZES.

Each colormap was tested at 30 data points as discussed
above, with five stimuli images in the case of the 10 pixel and
15 pixel data, and 10 stimuli images in the case of the 45 pixel
data. The test patterns were shown one at at time, with a set
of five/ten testing a single colormap given sequentially. The
individual stimuli images were presented in randomized order.
Each participant saw all stimuli for one to three randomly
chosen colormaps. A participant was allowed to take the study
again for a different feature size. The number of participants
per colormap ranged from 21 to 35 participants.

Data was manually scanned to remove participants whose
click pattern indicated they either did not understand the task
(click once per column) or were not faithfully completing the
task (e.g., always clicked at the top/bottom of the columns).
Additionally, participant clicks were required to be no more
than twice the feature size away from the nominal horizontal
center of each column. These validation checks removed 9%
of the participants.

V. RESULTS

The results are summarized in Figure 7. These plots show
the log discriminative power, averaged across participants
for each of the nine colormaps and for each of the three
pattern sizes. We are using a log scale for these plots and for
most of the analysis, both because the stimulus test pattern
contrast was exponentially scaled on the vertical axis, and
because it better expresses the range of variation both within
and across colormaps. Discriminative power is the inverse
of the measured threshold (the minimal amplitude of the
sine pattern that can be resolved), and this is analogous to
contrast sensitivity used in psychophysics. It is also analogous
to ∆E/∆s, where ∆E is the measure of difference between
two colors in a uniform color space, and ∆s is the distance
along a colormap normalized to a length of 1.0. The data are
somewhat arbitrarily separated into two groups: patterns that
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Fig. 7. The disciminative power functions for the (left to right) 10, 15, and 45 pixel data patterns.

vary monotonically in luminance, and those that do not. The
other reason for this separation is having all the data on a
single plot was overly cluttered.

Inspection of these empirical functions tells us a great deal
about the different colormaps we tested. First, we observe
some of the characteristics of the curves’ shapes that are
common across the three feature sizes.

• The Rainbow colormap (RA) is extraordinarily non-
uniform; in its middle section it has 1/16th of the feature
discriminative power that it does at either end.

• As expected, the Thermal colormap (TH) has the greatest
overall discriminative power, not surprising as it has the
greatest path length along the luminance direction. It goes
from dark to light and back again several times.

• The Samsel divergent colormap (BOD) has the next great-
est discriminative power, except in the middle sections
where it worse than the gray scale. Divergent ECW also
has high discriminative power except in the middle and
at the high end.

• The Viridis (VI) colormap is the most uniform of all those
tested.

• The green-red (GR) and blue-red (BY) colormaps have
very low discriminative power. The BY curve shows
reduced discriminative power at the red end for smaller
features.

• The gray colormap (GP) is somewhat less uniform com-
pared to Viridis, but it also has greater discriminative
power over most of its length.

• The Moreland cool-warm (CW) colormap is not uniform
for features of this size, even though it was designed to
be uniform. The curve is somewhat flatter for the large
(45 pixel) feature sizes.

One feature of note in the 45 pixel data is the notch that
appears in both the gray and viridis colormaps at the center.
We believe that this is an unfortunate artifact arising because
the colormaps were divided into two parts for the 45 pixel
feature size test.

Contrast sensitivity is the reciprocal of the contrast thresh-
old. It is a measure of the discriminative power of a color
map and can be equated to ∆E values in uniform color space.
To allow us to compare the colormaps, average discriminative
power was computed on a subject-by-subject basis for the nine
colormaps at the three frequencies tested. This is analogous
to the overall trajectory length of a colormap in a uniform
color space. One caveat is that our method only evaluates
the middle 80% of a colormap. These averaged results are
shown in Figure 8. As predicted, the thermal (TH) colormap
has by far the greatest average discriminative power, followed
by the two Samsel divergent colormaps (ECW and BOD). The
green-red and yellow-blue colormaps have very low average
discriminative power, also as predicted.

To statistically compare the different colormaps in terms of
their average discriminative power, we ran a 2-way ANOVA
(feature size, colormap) on the contrast sensitivity results.
Both main effects and the interaction were highly significant.
For feature size (F(2,703) = 35.6, p < 0.001); for colormap
(F(8,703) = 1155, p < 0.001); for the interaction F(16,703)
= 8.59, p < 0.001). We also ran Tukey HSD tests for the
differences between colormaps separately for each of the three
feature sizes. The results of the HSD tests are indicated by
grouping lines shown above the bars in Figure 8. A solid bar
indicates that the colormaps are not different for all three of the
features sizes. The arcs show where colormaps failed to differ
for a specific feature size. Overall there are four groupings.
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Fig. 8. The mean discriminative power for the nine colormaps tested at the
three spatial frequencies. Error bars correspond to 95% CIs. The solid bars
indicate where the Tukey HSD found no significant differences between those
mean discriminative power for each of the three feature size. The arcs indicate
where colormaps were not significantly different for specific feature sizes.

Fig. 9. The detection threshold curves for the rainbow, grayscale, the yellow-
blue and green-red colormaps. Note how the thresholds drop as a function of
feature size for the green-red and yellow-blue colormaps and for parts of the
rainbow.

Fig. 10. Relative resolving power across all three feature sizes. The ratio of
the average contrast sensitivities (with respect to the gray) is plotted for the
BY and GR colormaps.

The BY and GR colormaps have lower average discriminative
power than any of the others. The thermal colormap has the
greatest average discriminative power, followed by the two

extended double ended colormaps (BOD and ECW). The rest
of the colormaps (CW, VI, GP, RA) are indistinguishable at
some sizes but not at others.

From Figure 2 we can expect that discriminative power
for the chromatically varying colormaps will increase with
feature size much more rapidly than for the luminance varying
colormap. To better understand the effects of feature size on
the contrast thresholds a subset of the colormaps are replotted
in Figure 9. This shows data obtained with the rainbow (RA),
gray (GP), blue-red (BY) and green-red (GR) colormaps with
curves for the different sizes on each plot. The Rainbow
colormap exhibits a large effect of feature size in the section
to the left of center. This section represents the cyan to green
range, where there is very little luminance variation, but large
chromatic variation. The two areas at the ends of the measured
section of the rainbow colormap have considerable luminance
variation and the contrast sensitivity varies much less as a
function of feature size. The blue-red (BY) and green-red (GR)
colormaps also shows greater discriminative power for the 45
pixel feature sizes in comparison with the 10 and 15 pixel
feature sizes, whereas there is very little variation in the gray
scale (GP) in the sensitivity with respect to size.

To statistically test the hypothesis that the relative discrim-
inative power of the non-luminance components of colormaps
increase with feature size, we ran a two way ANOVA (color-
map, feature size) on the results from the gray, green-red and
blue-red color maps (GP,GR,BY). Both main effects and the
interaction were highly significant. For colormap (F(2,183)
= 1213, p < 0.001); for feature size (F(2,183) = 23.95, p
< 0.001); for the interaction (F4,183) = 31.75, p < 0.001).
Figure 10 illustrates the interaction, showing the ratio of the
average contrast sensitivities for the GR and BY colormaps
with the gray (GP) colormap for each of the sizes. The
results show that participants became increasingly sensitive
to chromaticity differences (relative to luminance differences)
as feature sizes increased.

VI. MODELING THE RESULTS WITH CIELAB

As a step towards an engineering model of the kind de-
veloped and expanded upon in [51] and [52] for discrete
colors we were interested in determining the extent to which a
modified version of a UCS could account for our results. We
began by investigating modified and unmodified versions of
both CIELAB’s CIEDE1976 and CIEDE2000. However, since
CIELAB’s Euclidean metric (CIEDE1976) produced the best
results in preliminary work and is considerably simpler, we
conducted most of the analysis with standard CIELAB. The
CIEDE2000 results were very similar but provided slightly
lower correlation with the experimental data. We only present
CIEDE1976 results here.

To fit the results, a set of intervals spanning each of the 30
test points was defined on the test colormaps. The colormap
R,G,B values were converted to CIE X,Y,Z and then to
(modified) CIELAB values assuming the sRGB standard. The
CIELAB reference white, Ln was defined by R = G = B =
1. Color difference values log(∆E) were computed for these
intervals for all nine sequences yielding a total of 270 values.
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Fig. 11. The model fit to all nine colormaps for the (top) 45 pixel data and
(bottom) 15 pixel data.

These correspond to the 270 average log contrast sensitivity
measurements obtained for each of the 10, 15, and 45 pixel
patterns. To determine if changing weights on the CIELAB
a? and b? terms more accurately account for the data, we
computed the entire set of log(∆E) values for a matrix of
weights on a? and b? values declining in steps of 0.05 using
Equation 4. We also tested the fit using weights of 0.125,
0.075, and 0.025. The quality of the model fit was evaluated
by calculating the r2 correlations between the 270 measured
data points (30 points on 9 colormaps) and the corresponding
intervals in the modified CIELAB model.

∆E =
√

(∆L?)2 + (wa∆a?)2 + (wb∆b?)2 (4)

The regression equation compared the average results ob-
tained (recall that these are already on a log scale) with the
log of the ∆E/∆s ratio for all 270 points.

log10(c) = αlog10(∆E/∆s) + β (5)

In Table II, we show the r2 values obtained with unmodified
CIELAB (wa, wb = 1) and for CIELAB L? only (wa, wb = 0)
as well as the best fits and their corresponding weights.

The regression parameters can be used together with the
a?, b? weights to construct regression model-based curves
corresponding to the measured contrast sensitivity curves. The
result for the 15 and 45 pixel data is shown in Figure 11. As
can be seen, except for a few excursions, the fits are excellent
when reduced weights on a? and b? are used. The results for
the 10 pixel data are very similar to the 15 pixel results.

It is probably never the case that scientific data is made up
of a single spatial frequency and for this reason, we also did
regression fits using modified a?, b? weights to the combined
data set including all three spatial frequencies. The result was
an r2 value of 0.94, with a best fit occurring with a?, b?

weights = 0.1. The fit is given by the equation:

log10(c) = 0.879log10(∆E/∆s) + 0.531 (6)

Fig. 12. A comparison of the average discriminative power as a function of
the colormap path length in (left) CIELAB and (right) the weighted CIELAB.
Note the improved fit using the weighted model.

where c is the measured contrast sensitivity, ∆E is the
modified CIELAB value, and ∆s is the interval. This can be
rearranged to become

c = 3.4(∆E/∆s)0.879 (7)

To test whether the best CIELAB fits obtained with
weighted a? and b? were better than the fits obtained with
wa, wb = 1 we used an F test using the ratio of the regression
residuals (1 − r2) [20] for each of the values in Table II.
The degrees of freedom are the number of data points minus
the model degrees of freedom (270-2) for both the numerator
and the denominator. The results from applying this test for
all sizes and for the combined data, summarized in Table III,
show that the weighted model fits were significantly better
than the results obtained with standard weights wa, wb = 1
with p < 0.001. In addition the weighted model fits were
significantly better compared to L?-only, at the p < 0.001
level, for all sizes and for the combined data.

We can also compare the path lengths of colormaps against
the measured discriminative power shown in Figure 8. Fig-
ure 12 shows a comparison of the path length in both unmod-
ified CIELAB and weighted CIELAB (wa,wb = 0.1) for only
the measured section of the colormaps (between 0.1 and 0.9).
As can be seen, the correlation is less than 0.8 for unmodified
CIELAB and greater than 0.99 for modified CIELAB.

VII. DISCUSSION

Our original hypothesis was that using a uniform color space
to predict the feature detection functions of colormaps will
be inaccurate because these models give too much weight
to chromatic channel information when smaller features are
considered. Our new feature resolution method applied in a
Mechanical Turk study yielded 270 average feature detection
measurements for three different spatial frequencies. As hy-
pothesized, unmodified CIELAB provided a poor model for
the results. A much better model was obtained by greatly
reducing the weights on the model terms corresponding to
the green-red and yellow-blue color channels. We also tested
against the hypothesis that L? by itself could account for the
data equally well and found that it could not, although this
did better than unmodified CIELAB.

Overall, our results are in rough agreement from what
would be expected from Figure 2. At 3 cycles/deg. Mullen’s
results [32] show a ratio of approximately 5:1 between the
contrast sensitivity of the color channels and the luminance
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TABLE II
THE r2 VALUES FOR REGRESSIONS OF UNWEIGHTED CIELAB (SECOND COLUMN), LUMINANCE ONLY (THIRD COLUMN) AND WEIGHTED CIELAB

(FOURTH COLUMN) AGAINST THE OBSERVED RESOLVING POWER RESULTS ALONG WITH THE BEST FIT WEIGHTS AND COEFFICIENTS.

Feature Size Fit r2: wa,wb=1 Fit r2 wa,wb=0 Best fit r2 Weight a Weight b Coeff α Coeff β
10 pixels 0.386 0.819 0.961 0.075 0.075 0.867 0.517
15 pixels 0.438 0.861 0.975 0.075 0.075 0.874 0.572
45 pixels 0.521 0.831 0.970 0.125 0.125 0.799 0.730
Overall 0.429 0.815 0.940 0.100 0.100 0.879 0.531

TABLE III
F TESTS COMPARING BEST FITS (FROM TABLE II) WITH FIT USING UNMODIFIED CIELAB (Wa ,Wb=1) AND WITH L* ONLY (Wa ,Wb=0).

Feature Size Test against unmodified CIELAB: wa,wb=1 Test against Luminance only: wa,wb=0
10 pixel F(268, 268) = 15.74, p <0.001 F(268, 268) = 4.67, p <0.001
15 pixel F(268, 268) = 22.48, p <0.001 F(268, 268) = 5.56, p <0.001
45 pixel F(268, 268) = 15.97, p <0.001 F(268, 268) = 5.63, p <0.001
Overall F(268, 268) = 9.51, p <0.001 F(268, 268) = 3.08, p <0.001

channel. We found the contribution of the color channels to
be even smaller than this. In addition, Figure 2 shows the
difference between color channel sensitivity and luminance
sensitivity declining as spatial frequency decreases, something
we also found. It will be interesting in future work to de-
termine whether this trend continues for still larger patterns.
However, a methodology other than the one we use here will
be required.

The stimulus patterns we have developed provide an easy-
to-use method for directly measuring the feature detection
functions of colormaps [59]. But given the excellent results ob-
tained with the modified CIELAB model, the model expressed
in Equation 7 can be used as an alternative. Figure 13 shows
a color sequence design tool we have constructed for this
purpose. The left hand panel shows a slice through CIELAB
space at a particular luminance value. While the best model
fits were obtained by using different weights for the different
pattern sizes, good correlations can be obtained using a single
pair of weights. Choosing 10% weights on the a? and b?

terms, for instance, would be a reasonable option for smaller
feature sizes (> 1cycle/deg). If somewhat larger features are
of interest then weights of 15% or 20% may also be used.

The simple model expressed in Equation 7 should be only
regarded as the first step towards a more complete engineering
model. It has a number of shortcomings. Firstly, while cov-
ering a broad range of color space, the set of colormaps on
which it was based do not provide a systematic or uniform
sampling of color space, and may not cover all regions of
color space most likely to be used in creating colormaps.
Secondly, it is not based on a systematic or uniform sampling
of spatial frequency. Thirdly, a more general model should
include data on low spatial frequency patterns. Nevertheless,
because the r2 values varied smoothly and gradually over wide
range of weights (which is why we were able to produce a
respectable fit to all of the data with a single pair of weights)
we believe that the model proposed here has value as a
rough approximation until a more complete model becomes
available.

The results reinforce the importance of luminance variation
in the representation of features in data as already noted by
prior researchers [42], [58]. Because of the minor contribution

Fig. 13. A color sequence design tool. The left hand panel shows a slice
through CIELAB at the luminance level of the selected point. The plot
on the right shows the feature detection function based on the modified
CIELAB model. A simple double ended, uniform rainbow colormap has been
constructed.

of color differences to feature detection a simple rule of thumb:
“use lightness variation for pattern perception” still holds.
Also, they explain why the Samsel BOD and ECW color-
maps provide great discriminative power; it is because they
substantially increase the pathlength, especially with respect
to luminance, over colormaps which vary monotonically in
luminance such as Viridis. The thermal imaging colormap
provides an extreme example of this. It has more than four
times the discriminative power of Viridis.

The results presented here only apply to features > 1 cy-
cle/degree of visual angle. We do not know the extent to which
important features in scientific data fall in this size range, but it
may well be the majority because far more information can be
conveyed with high spatial frequency channels than low spatial
frequency channels. The amount of information carried on a
channel varies with the frequency [48]. For two dimensional
patterns this becomes the square of the frequency. Based on
the human spatial modulation sensitivity function provided in
Watson [60], hundreds of times more perceivable information
can be carried at spatial frequencies above 1 cycle/degree than
can be carried at lower spatial frequencies.

Resolution of constituent features provides a necessary con-
dition for pattern perception, but it is far from being the entire
story. The perception of features that are well above detection
threshold almost certainly depends on a number of additional
perceptual mechanisms relating to contour perception and
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shape perception. But these too are likely to depend mostly
on luminance variations. Certainly this is true for faces in the
work of [14], [19], [42].

We wish to be clear that we are not advocating the use of
double ended colormaps for most cases. In general it is better
to reserve the use of double ended colormaps for cases where
values vary above and below some baseline, as is commonly
done in the case of temperature anomalies. Nevertheless, it is
the case that the extended double-ended colormaps do offer
greater ability to resolve features, and where this is a critical
requirement they can be valuable for this purpose.

There is also the issue of consistency in luminance variation.
There is a cost to changing the direction of luminance variation
within a colormap as Figure 14 illustrates. The ring patterns in
that image are consistently visible for Viridis and green-red.
With the ECW colormap, they are light on the left, but dark on
the right and this is confusing. The thermal imaging colormap
has multiple zigzags with respect to luminance and this makes
it extremely confusing (see also Figure 1). The only case where
we can imagine that it may be useful is where extreme feature
resolution is critical. This is presumably why it is sometimes
used.

The results also confirm prior work that has shown chroma
scales to have fewer resolvable steps compared to luminance
scales [4], [5], although they are perceptually ordered. If a
chroma scale is chosen, it will likely benefit from some small
amount of monotonic luminance variation in addition to the
progressive increase in chroma.

Our results are qualitatively similar to those of [43]
and [17] even though our method is very different. They
similarly found a very sharp peak in contrast threshold (the
inverse of contrast sensitivity) in the center of the rainbow
colormap. They noted although chroma scales appear to be
good candidates for creating colormaps for encoding data
magnitude they had lower contrast sensitivities compared to
gray scales.

A. Discussion on Crowdsourcing

Crowdsourcing user evaluation has become increasingly
common over the past decade, including within the visualiza-
tion community. While there are obviously trade-offs between
the ecological validity available with a wide demographic
cross-section versus the level of experimental control, the
community is rapidly lining up on the side of easy participant
recruitment and quick turn-around time.

Mturk does have the potential for contamination due to color
vision deficiencies (CVD). Approaches to minimize CVD
contamination range from simply asking people to self-select
for a given study, (e.g., Szafir’s recent Best Paper at InfoVis
2017 [52]) to including a CVD test such as Ishihara plates
(e.g., Liu and Heer [23]) although as the authors acknowledge,
online presentation of Ishihara plates has potential pitfalls (due
to, e.g., unknown monitor calibration or allowing participants
infinite time to respond).

Research on crowdsourced participant pools [13], [45] has
shown that while participants are very consistent in their de-
mographic responses across many studies (e.g., 98.9% gender

consistency), they are indeed more likely to lie when a lucra-
tive reward is offered but restricted to a certain demographic.
Our approach to minimize potential contamination due to
CVD [56] exploits these tendencies by periodically launching
a study to sweep self-identified participants with CVD into
an exclusion pool. The study specifically requests participants
with CVD and presents participants with a valid test for CVD.
Anyone taking the study, either colorblind or potentially lying
to garner the fee, are put into the exclusion group. The result
is an Mturk participant pool with, not the expected ≈ 4.5%
occurrence of CVD in the general population, but something
much less, albeit unspecified. Additionally, during an actual
study, participants are asked for their CVD status and removed
if they have CVD.

We can again validate this approach by comparing the
male/female response within a subset of this current study.
The three colormaps of particular interest for CVD are the
grayscale (GP), the green-red (GR) and the blue-red (YB).
The data for these three colormaps was gathered via a within-
subject study. Given the very low occurrence of CVD in
women, we used the TurkPrime [22] gender consistency score
to separate the participants into male and female, requiring a
gender consistency score of 100%. Note that not all partici-
pants have a calculated gender consistency score as it is not
assigned for participants with fewer than 100 studies launched
on TurkPrime. Given the results of Figure 9, we combined the
10 pixel and 15 pixel data to increase statistics and simply
summed the raw vertical pixel response for all 30 data points
for each participant. An independent two-sample t-test was
conducted to compare raw pixel response for male (N=13)
and female (N=21). We found no significant difference for
any of the three colormaps as summarized in Table IV.

Colormap : Grayscale (GP) Green-Red (GR) Blue-Red (BY)
Mean (M) 6717 10900 11281
Std Dev (M) 1737 10768 11491
Mean (F) 6308 1875 1908
Std Dev (F) 1078 1118 1263
p (two-tail) 0.46 0.82 0.73

TABLE IV
SUMMARY OF INDEPENDENT T-TEST FOR MALE AND FEMALE RESPONSE

ACROSS THE THREE COLORMAPS OF INTEREST FOR CVD.

Anecdotally, over years of crowdsourcing color studies, we
have found that CVD participants often appear as outliers in
the data. Hence, a common-sense approach of asking people
to self-identify in combination with effective data-scrubbing is
probably sufficient to mitigate the risk of CVD contamination
for typical crowdsourced experiments involving color.

Likewise, since this study was carried out using Mechanical
Turk, certain caveats apply relating to the use of that platform.
The laptop or desktop screens viewed by study participants
were almost certainly not calibrated and the resolutions were
unknown. Because of this we can only give an estimate of the
actual spatial frequencies of the test patterns. Yet, despite these
limitations, we were able to obtain remarkably clean data.
The great advantage of a Mechanical Turk study in applied
research such as this is the ecological validity. Compare our
study with hundreds of participants with the psychophysical
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Fig. 14. In this figure, artificial data has a background ramp increasing from the left. Superimposed on the ramp are ripple patterns. Top: grayscale (left),
green/red (right); bottom: extended cool/warm (left), thermal (right).

studies on which spatial color theory is based; the latter had
only only one or two participants [32], [36]. The goal is to
produce colormaps that are effective under a range of viewing
conditions and across many scientists. For this reason, the
variety of both monitors and study participants is a major asset.

VIII. CONCLUSION

The method we have developed provides a simple and quick
way of evaluating the uniformity of colormaps. It produces
remarkably consistent results, even with a study environment
that lacks the normal laboratory controls for user studies.

The work with CIELAB modifications provides a link
between spatial vision, color theory and practical problems
of colormap design. The results and theory both suggest
that colormap uniformity is not a simple concept, since the
relative weights of chromatic variation and luminance variation
change as a function of the spatial frequency of features.
Nevertheless, a simple modification to CIELAB can produce
a far better model for the detection of patterns in colormapped
data where those patterns are composed of features with spatial
frequencies of one cycle per degree and higher.
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