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Abstract
In situ usage of Lagrangian techniques has proven to be superior with respect to emerging supercomputing trends than the
traditional Eulerian approach for scientific flow analysis. However, previous studies have not informed two key points: (1) the
accuracy of the post hoc interpolated trajectory as a whole and (2) the spatiotemporal tradeoffs involved when using Lagrangian
analysis. With this short paper, we address these points. We first conduct a more comprehensive evaluation via additional
accuracy metrics tailored for evaluating Lagrangian trajectories. Second, we provide an understanding of the configurations
where the Lagrangian approach works well by studying spatiotemporal tradeoffs. In addition, our study highlights the effects
of error propagation and accumulation when performing Lagrangian interpolation for large numbers of steps. We believe our
study is significant for better understanding the use of in situ Lagrangian techniques, as well as serving as a baseline for future
Lagrangian research.

1. Introduction

In situ processing, through its successful frameworks and us-
age [FMT∗11, WFM11, MOM∗11, VHP11, AJO∗14, YWG∗10,
BAA∗16], has been demonstrated to be an important approach for
large data analysis and visualization on upcoming supercomputers.
In this short paper, we discuss the use of in situ Lagrangian tech-
niques for flow field analysis.

The Lagrangian approach consists of two phases. In the first
phase, pathlines are extracted in situ. These pathlines are referred to
as basis flows. In the second phase, new pathlines can be calculated
post hoc by interpolating from the basis flows.

The Lagrangian approach has potential advantages over the tra-
ditional (Eulerian) approach. With the Lagrangian approach, the
basis flow are calculated in situ, giving it access to all spatiotempo-
ral data. As a result, the basis flows accurately capture an interval
in time. This contrasts with the Eulerian method, where vectors
are stored and the post hoc analysis requires temporal interpolation
and integration between time slices saved to disk. Overall, the La-
grangian approach has the potential to represent more information
per byte compared to the Eulerian approach, enabling more accu-
rate analysis for the same storage or enabling the same accuracy
with less storage.

The advantages of in situ Lagrangian analysis were established
through the study of Agranvosky et al. [ACG∗14]. However, their
evaluation has two significant issues. First, all of their results were

† ssane@cs.uoregon.edu

comparative in nature. There was no information provided regard-
ing spatial and temporal tradeoffs. In short, it showed Lagrangian
techniques were superior to Eulerian techniques, but did not pro-
vide insights into how many basis flows were needed to achieve de-
sired accuracies. Second, their accuracy metric focused on the end
location of an interpolated particle trajectory, and did not consider
the locations between the seed and the end point. This resulted in a
limited overview of the accuracy of particle trajectories as a whole,
and in particular for circular flow.

The purpose of this study is to address these two issues with their
evaluation. The result both supplements the evaluation of Agra-
novsky et al. and also provides new understanding of the efficacy of
their technique. We believe the evaluations in the current study will
be the most useful comparators for future Lagrangian research that
endeavors to improve on the work of Agranovsky et al. Specifically,
our study focuses on the following points:

• We use an accuracy metric which evaluates the entire particle
trajectory.

• Where the previous study considered reduced storage for only
the Lagrangian approach, our study considers reduced storage
for both approaches.

• We conduct experiments evaluating interpolation steps, which
advance a particle forward in time. Specifically, we study the ef-
fect of large numbers of interpolation steps, each of which results
in further advancement in time. This is important because each
interpolation step has an associated error, and so multiple inter-
polation steps suffer from error propagation and accumulation.
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2. Related Work

Lagrangian analysis has been a prominent technique within the
flow visualization community for the past decade. Haller et
al. [Hal01, HY00, Hal00] introduced Lagrangian Coherant Struc-
tures (LCS), which focuses on the calculation of stable and un-
stable manifolds to reveal features within a flow field. Additional
work has gone on to accelerate the computation and visualization
of LCS [GGTH07, GLT∗09, SP07, SRP11].

In the remainder of this section, we focus on work related to
storing flow field data, pathline interpolation, and error analysis.

Recent work has seen techniques proposed to store Lagrangian
representations of flow fields. Bujack et al. [BJ15] suggest using
parameter curves such as Bezier curves and cubic Hermite splines
instead of polygonal chains. Sauer et al. [SXM16] present a new
data representation which combines the Eulerian and Lagrangian
reference frames into a joint format. Hlawatsch et al. [HSW11] and
Agranovsky et al. [ACG∗14] store flow field data directly.

Pathline interpolation can also be done using sparse particles via
a method like moving least squares [AGJ11] or barycentric coor-
dinate interpolation [ACG∗14]. Chandler et al. [COJ15] demon-
strate the use of Smoothed Particle Hydrodynamics (SPH) for path-
line calculation. The use of SPH enables considering particles with
mass, wherein each particle can have its own smoothing radius.

Research has also been focused on identifying sources of error
in advection methods used in the Lagrangian paradigm. Chandler
et al. present an error analysis of their interpolation-based pathline
tracing system [CBJ16] and find that error roughly correlates with
divergence in flow fields. Hummel et al. provide theoretical error
estimates, which act as reasonable upper bounds for actual errors
and suggest using this information in situ during calculation of flow
field data [HBJG16].

3. Theoretical Background

In this section, we will provide a brief recap of the theoretical foun-
dations. We use ht to denote the resolution in time and hx for the
resolution in space.

Post-hoc advection in the Eulerian setting is typically performed
using the fourth order Runge Kutta scheme, which is an iterative
numerical integration method that has a total accumulation error of
O(h4

t ) [Atk08, Sch02]. Since we use it on top of discrete data in-
terpolated multi-linearly in space, it actually is of the overall order
O(h4

t +h2
x).

Previous work [BJ15] showed that the Lagrangian method as de-
scribed by Agranovsky et al. [ACG∗14] is also a numerical integra-
tion method with a total accumulation error of O(h2

x) for each in-
terpolation. Since we approximate the intermediate values between
two cycles using linear interpolation in time, it is of overall order
O(h2

t +h2
x).

4. Experiment Overview

4.1. Study Configuration

We use the same in situ basis flow extraction and post hoc pathline
interpolation technique as Agranovsky et al. [ACG∗14]. Like the

Agranovsky study, our in situ environment was theoretical, evalu-
ating analytic data sets on the fly or loading simulation results from
disk.

4.1.1. Datasets

We used the following data sets for our experiments —

Double Gyre — This data set is a two-dimensional flow field
consisting of two counter-rotating gyres with a time dependent per-
turbation. This data set is simulated for 1024 cycles at a base grid
resolution of 512×256. We set the period of the Double Gyre flow
to 1000 cycles.

Arnold-Beltrami-Childress (ABC) — This data set is a time-
dependent variant of the three-dimensional ABC analytic vector
field [BCT01]. This data set is simulated for 400 cycles with a base
grid resolution of 128× 128× 128. We set the period of the ABC
flow to 100 cycles.

Tornado — This data set is from a simulation of the dy-
namics of an F5 tornado [OWW15]. The base grid resolution is
490× 490× 280. A mature tornado vortex exists in the domain
during the 512 simulation seconds we considered for our exper-
iments. Our collaborating scientist normally uses a temporal fre-
quency of “every two simulation seconds" for his studies. Thus,
we consider 256 time slices, with the time-steps evenly distributed
from t0 = 8502s to t256 = 9014s.

Let NT denote the total number of time slices or cycles. For the
Double Gyre data set, NT = 1024. For the ABC data set, NT = 400.
For the Tornado data set, NT = 256.

4.1.2. Storage Budget

We use the term storage budget to denote the allowed amount of
data that can be saved to disk for post hoc pathline interpolation.
We believe allowing both Lagrangian and Eulerian the same stor-
age budget enables a fair comparison between them. Let NC de-
note the number of cycles saved (NC ≤ NT ) and let P denote the
number of basis flows or vector samples stored per cycle. If B de-
notes the storage budget for total number of basis flows or vector
samples that can be saved, we select combinations of NC and P
such that NC ×P = B. Further, we set the value of B to be equal
to the number of points in the base grid resolution of each data set
respectively. For the Double Gyre data set, B = 131,072 points.
For the ABC data set, B = 2.1M points. For the Tornado data set,
B = 67.2M points. For our experiments we consider three storage
budgets (1B,2B,4B) for each data set. For each budget, we select
multiple configurations that are combinations of NC and P.

For example, the Double Gyre 2B test used 262,144 points. It
further varied NC with values ranging from 4 to 1024. For NC = 4
we calculate four intervals of basis flows (Lagrangian) or four time
slices of vectors (Eulerian), with each set containing P = 65536.
Similarly, for NC = 1024, there are 1024 sets, with P = 256.

4.2. Error Evaluation

For a given seed point, we calculate its corresponding pathline us-
ing three different methods.
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• Ground Truth — We calculate the ground truth trajectories with
a fourth-order Runge Kutta scheme [CK90] using the full spatial
and temporal resolution available for each data set. The ground
truth is considered to be perfectly accurate and have 0% error.
• Lagrangian — We calculate basis flows in situ with each se-

lected configuration of NC and P. We then use the calculated
basis flows post hoc to interpolate new Lagrangian trajectories.
• Eulerian — We calculate Eulerian trajectories with each se-

lected configuration of NC and P, for comparison with the La-
grangian approach. Similar to ground truth calculation, a fourth-
order Runge Kutta scheme is used to calculate the Eulerian tra-
jectories.

Together, these three sets of trajectories can be used to evaluate and
compare the approaches.

For both the ABC and Double Gyre data sets we randomly seed
1000 points over the entire flow field. For the Tornado data set, we
place 144 seeds along rakes at locations used by our collaborating
scientist to study the phenomena.

In contrast to the error metric used by Agranovsky et
al. [ACG∗14], we use a standard curve evaluation error metric —
the L2-norm. The number of positions of a particle to represent the
ground truth is equal to NT . However, the number of known posi-
tions for a Lagrangian trajectory is NC.

Given a test configuration average L2-norm is calculated as fol-
lows —

1
p

p

∑
i=0

1
n

n

∑
t=0
||xi,t −gi,t || (1)

where p is the total number of particles, xi,t is the location of a
Lagrangian or Eulerian interpolated particle i at time t and gi,t is the
location of the ground truth particle i at time t. We use two variants
of the L2-norm to calculate the error —

• Full L2-Norm Metric When calculating the Full L2-norm, n is
equal to NT (total number of cycles).
• Select L2-Norm Metric When calculating the Select L2-norm,

n is equal to NC (number of cycles saved).

Agranovsky et al. used n = 1, which is similar in spirit to the
Select L2-Norm; we add the Full L2-Norm for our evaluation to
capture behavior along the interpolated trajectory at locations be-
tween the seed and the end point.

Figure 1: Notional example of
ground truth (black), Lagrangian
(red), and Eulerian (blue) trajec-
tories.

Figure 1 illustrates a notional example of the difference between
the accuracy metrics for a simplified sample trajectory. While the
Lagrangian trajectory is accurate at its known points, the remainder
of the trajectory can significantly deviate from the ground truth be-
cause it is linearly interpolated from the known points. We expect

the Full L2-norm evaluation to show this error for low NC config-
urations. In contrast, the Select L2-norm, which evaluates only at
the known points along the trajectory, shows how close a particle is
to the ground truth at these locations. Together, these error metrics
provide a more comprehensive evaluation and understanding of a
Lagrangian trajectory accuracy as a whole.

5. Results

Figure 2: Double Gyre analysis verifying Agranovsky et al.’s re-
sults.

The first step of our evaluation was to verify the Agranovsky
et al. results using their error metric. One of our results, for Dou-
ble Gyre, is plotted in Figure 2. These results match their findings.
Further, the results are similar to the Select L2-norm results in Fig-
ure 3b.

After verifying Agranovsky et al.’s results, we proceeded with
our own study. The trends we observe, for both our spatiotemporal
and error propagation analyses, are consistent regardless of data set.
Figure 3 plots our results.

5.1. Spatiotemporal Tradeoff

For each of the Full L2-norm evaluations, the optimal values fell in
between our largest and smallest NC configurations (i.e., NC = 32
for Double Gyre, 20 for ABC, and 8 for Tornado). This repre-
sents configurations using a sufficiently high P, enabling accurate
interpolation, and sufficiently high NC, such that the trajectory is
well represented even with linear interpolation being performed be-
tween known points.

As NC gets smaller, the Lagrangian trajectories have poor accu-
racy as a whole (see Full L2-norm result) even though the inter-
polated trajectory follows the ground truth closely at known loca-
tions (see corresponding Select L2-norm result). For example, in
Figures 3a and 3b, for NC = 4 and 8, we observe high error for
Full L2-norm but low error for Select L2-norm. As demonstrated
by Bujack et al. [BJ15], curve fitting can significantly reduce the
Full L2-norm error for Lagrangian trajectories. For Eulerian con-
figurations with a low NC, the approach suffers from low temporal
resolution and this is reflected in the high error for both metrics.

Further, we observe increases in storage benefit the Lagrangian
approach more than the Eulerian approach. An increase in the num-
ber of basis flows reduces the interpolation error per step. Figure 4
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(a) Double Gyre - Full L2-norm
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(b) ABC - Full L2-norm
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(c) Tornado - Full L2-norm
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(d) Double Gyre - Select L2-norm
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(e) ABC - Select L2-norm
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(f) Tornado - Select L2-norm

Figure 3: Evaluation results for Full L2-norm and Select L2-norm. Legends indicate the total data storage budget information.

shows Double Gyre trajectories for multiple configurations, each
using the same total storage.

Figure 4: Series of sample trajectories interpolated in the Double
Gyre data set using varying number of cycles saved. Color code:
Black - Ground Truth, Red - Lagrangian, Blue - Eulerian. From l-r
: 1024, 512, 64, 8 and 4 cycles saved.

5.2. Error Propagation

High NC configurations in particular allow us to study the effect
of large numbers of interpolations steps, each of which advances a
particle forward in time. The performance of the Lagrangian tra-
jectories for high NC values is poor relative to the Eulerian ap-
proach. The first contributing factor is the low value of P (which,
for this study, is inversely proportional to NC to keep total storage
constant). We observe large gains in accuracy with an increase in
storage budget for these configurations. The second contributing
factor is the error propagation which occurs when using the one-
step second order integration method [HBJG16] for Lagrangian in-
terpolation. The left-most set of trajectories in Figure 4 show the
difference in error accumulation when using the second order inte-
gration method for the Lagrangian trajectory and the fourth order
integration method used for the Eulerian trajectory.

6. Conclusion

Our study provided information regarding spatial and temporal
trade-offs when working with a fixed storage budget. Further, by
considering multiple storage budgets, our study informed trade-offs
between data reduction and accuracy for the Lagrangian approach.
With these results, future researchers can make better informed
decisions regarding how many basis flows are needed to achieve
reasonably high accuracy. Another takeaway from our study is an
increased understanding of best practices for the Lagrangian ap-
proach with respect to tradeoffs between number of basis flows and
frequency of output. Further, we suggest (and use) two variants of
the L2-norm which together provide a more comprehensive evalu-
ation of a Lagrangian trajectory.
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