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ABSTRACT
Complex moments have been successfully applied to pattern detection tasks in two-dimensional real, complex, and
vector valued functions.
In this paper, we review the different bases of rotational moment invariants based on the generator approach with
complex monomials. We analyze their properties with respect to independence, completeness, and existence and
present superior bases that are optimal with respect to all three criteria for both scalar and vector fields.
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1 INTRODUCTION
Pattern detection is an important tool for the generation
of expressive scientific visualizations. The datasets, sci-
entists are studying get bigger and bigger, the band-
width of the human visual channel remains constant.
Pattern detection algorithms allow to reduce the abun-
dance of information to features, i.e. the areas in the
domain, the scientist is actually interested in.

Physical phenomena expressed in coordinates usually
come with some degrees of freedom. Especially the
underlying feature is present no matter how it is ori-
ented. Also the exact position or the scale in which a
pattern occurs should not change whether or not it is
detected. Using pattern detection algorithms that are
independent with respect to these coordinate transfor-
mations can therefore gravely accelerate the process.

A very popular and successful class of such algorithms
is based on moment invariants. These are character-
istic descriptors of functions that do not change under
certain transformations. They can be constructed from
moments in two different ways, namely the generator
approach and normalization. Moments are the projec-
tions of a function onto a function space basis.

During the normalization, certain moments are put into
a predefined standard position. Then, the remaining

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

moments are automatically invariant with respect to this
transformation. In contrast to that, the generator ap-
proach uses algebraic relations to explicitly define a set
of moment invariants that are constructed from the mo-
ments through addition, multiplication, or other arith-
metic operations.

Each approach comes with its own advantages and dis-
advantages. Depending on the application, one may be
superior to the other. In this paper, we will concentrate
on the generator approach. We will recap the so far sug-
gested generators for two-dimensional scalar and vector
fields, demonstrate their differences and shortcomings,
and present a flexible basis, which is able to overcome
them. For a more detailed introduction to moment in-
variants, we recommend [1].

A set of moment invariants should have the following
three important qualities:

Completeness: The set is complete if any arbitrary mo-
ment invariant can be constructed from it.

Independence.: The set is independent if none of its
elements can be constructed from its other elements.

Existence: The set is existent, in other words flexible,
if it is generally defined1 without requiring any specific
moments2 to be non zero.

Completeness ensures that the set has the power to dis-
criminate two objects that differ by something other
than only a rotation. Independence accelerates the de-

1 We use the arithmetic meaning of defined. For example, the
operation 1/x is defined for x 6= 0 and undefined if x = 0.

2 As a counter example, the so far suggested basis for real val-
ued functions requires at least one moment to be non zero that
suffices p0−q0 = 1.



tection, because it prevents us from comparing redun-
dant values. Finally, existence guarantees that the set
can detect any pattern and does not have restrictions
to its specific form, like having a non vanishing linear
component.

In the real-valued case, a complete and independent set
of moment invariants was proposed by Flusser in [2].
We build upon his results to construct a basis that gener-
ally exists. Since our basis is flexible, it can be adapted,
which makes it robust even if all moments that corre-
spond to rotational non-symmetric complex monomials
are close to zero. Further, it is automatically suitable
for the detection of symmetric patterns without prior
knowledge of the specific symmetry.

In the vector field case, generators have been proposed
by Schlemmer [3] and Flusser et al. [1]. We proof that
the generator suggested by Schlemmer is neither com-
plete nor independent, show that the basis by Flusser
satisfies these desirable properties, and further intro-
duce a novel basis, which exceeds all so far suggested
ones. Like in the real-valued case, our suggested basis
is independent, complete, solves the inverse problem,
and generally exists.

2 RELATED WORK
In 1962 Moment invariants were introduced to the im-
age processing society by Hu [4]. He used a set of seven
rotation invariants.

The use of complex moments has been advocated by
Teague [5] and Mostafa and Psaltis [6]. It particularly
simplifies the construction of rotation invariants, be-
cause in this setting, rotations take the simple form of
products with complex exponentials.

In 2000 Flusser [2] presented a calculation rule to com-
pute a complete and independent basis of moment in-
variants of arbitrary order for 2D scalar functions. He
also showed that the invariants by Hu [4] are not in-
dependent and that his basis solves the inverse problem
[7]. Building on Flusser’s work, Schlemmer et al. [8, 9]
provided five invariants for vector fields in 2007. Later,
in his thesis, Schlemmer also provided a general rule
for moments of arbitrary order [3].

Apart from the use of complex numbers, moment ten-
sors are the other popular framework for the construc-
tion of moment invariants. They were suggested by
Dirilten and Newman in 1977 [10]. The principal idea
is that tensor contractions to zeroth order are naturally
invariant with respect to rotation. It is more difficult
to answer questions of completeness or independence
in the tensor setting [11], but in contrast to the com-
plex appproach, it generalizes more easily to three-
dimensional functions. Pinjo et al. [12], for example,
estimated 3D orientations from the contractions to first
order, which behave like vectors. Another path that

has been successfully taken uses spherical harmonics
[13, 14, 15, 16] and their irreducible representation of
the rotation group.
A generalization of the tensor approach to vector fields
was suggetsed by Langbein and Hagen [17].
In contrast to the derivation of explicit calculation rules
that generate invariants, normalization can be used. A
description of normalization for scalar fields can be
found in [1]. Bujack et al. followed the normal-
ization approach to construct moment invariants for
two-dimensional [18] and three-dimensional [19] vec-
tor fields. Another publication that is worth mentioning
in this context is [20]. Even though Liu and Ribeiro
do not call it moment normalization, they follow a very
similar approach.
For a more detailed introduction to the theory of mo-
ment invariants we recommend [1]. An overview on
feature-based flow visualization can be found in [21].

3 REAL-VALUED FUNCTIONS
Two-dimensional real valued functions R2→ R are of-
ten embedded into the complex plane C∼R2→R⊂C
to make use of the easy representation of rotations in the
setting of complex numbers. We briefly revisit the foun-
dation of moment invariant bases of complex monomi-
als. A more detailed introduction can be found in [1].
For a function f : C→ C and p,q ∈ N, the complex
moments cp,q are defined by

cp,q =
∫
C

zpzq f (z)dz. (3.1)

Let f ′(z) : C→ C differ from f by an inner rotation by
the angle α ∈ (−π,π]

f ′(z) = f (e−iα z), (3.2)

then, the moments c′p,q of f ′ are related to the moments
of f by

c′p,q = eiα(p−q)cp,q. (3.3)

Starting with (3.3), Flusser [2] shows that a rotational
invariant can be constructed by choosing n ∈ N and for
i = 1, ...,n non negative integers ki, pi,qi ∈ N0. If they
satisfy

n

∑
i=1

ki(pi−qi) = 0, (3.4)

then, the expression

I =
n

∏
i=1

cki
pi,qi (3.5)

is invariant with respect to rotation. From this formula
infinitely many rotation invariants can be generated, but
most of them are redundant. In order to minimize re-
dundancy Flusser constructs a basis of independent in-
variants. The following definitions and the theorem
stem from [2].



Definition 3.1. An invariant J of the shape (3.5) is con-
sidered to be dependent on a set I1, ..., Ik if there is a
function F containing the operations multiplication, in-
volution with an integer exponent and complex conju-
gation, such that J = F(I1, ..., Ik).

Definition 3.2. A basis of a set of rotation invariants
is an independent subset such that any other element
depends on this subset.

3.1 Flusser’s Basis
The following basis was suggested by Flusser in [2],
where the proof of the theorem can be found.

Theorem 3.3. Cited from [2]. Let M be a set of com-
plex moments of a real-valued function, M̄ the set of
their complex conjugates and cp0,q0 ∈M∪ M̄ such that
p0− q0 = 1 and cp0,q0 6= 0. Let I be the set of all ro-
tation invariants created from the moments of M ∪ M̄
according to (3.5) and B be constructed by

∀p,q, p≥ q∧ cp,q ∈M∪ M̄ : φ(p,q) := cp,qcp−q
q0,p0
∈B,
(3.6)

then B is a basis of I .

This basis satisfies another important property, it solves
the inverse problem. That means up to the one de-
gree of freedom, which comes from the rotational in-
variance, the original moments can be unambiguously
reconstructed from the basis [7].

In certain situations, it happens that no non zero mo-
ment with p0− q0 = 1, which is required for Theorem
3.3, can be found. Then, Flusser’s basis is not defined.
Actually, it is sufficient for cq0,p0 to have a value close
to zero to make the produced invariants unstable and
therefore unusable.

Example 3.4. The function

f (x,y) = (−y3 +3x2y+ x2− y2)χ(x2 + y2 ≤ 1) (3.7)

with χ corresponding to the characteristic function, has
the complex moments

c2,0 =
π

6
, c0,2 =

π

6
,

c3,0 =
iπ
8
, c0,3 =−

iπ
8
,

c3,1 =
π

8
, c1,3 =

π

8
.

(3.8)

All other moments up to fourth order are zero. There
is no p0− q0 = 1 with cp0,q0 6= 0. Therefore, the basis
from Theorem 3.3 does not exist. Still, it would be pos-
sible to construct moment invariants for f , for example,
c3,1c0,2 =

π2

48 .

Function (3.7)
without rotational
symmetry.

Its quadratic part
with two-fold
symmetry.

Its cubic part with
three-fold rota-
tional symmetry.

Figure 1: The function (3.7) from Example 3.4 and its
components visualized using the height colormap.

It should be noted that the situation of vanishing mo-
ments always occurs with symmetric functions. In this
case Flusser et al. [22] provide a different basis, which
is tailored toward the specific n-fold rotational symme-
try, which needs to be known in advance. But, as can
be seen in Example 3.4, all moments with p0− q0 = 1
can be zero for non-symmetric functions, too.

3.2 Flexible Basis
Motivated by Example 3.4, we suggest the following
basis. Since it is adaptive, it exists for any pattern.

Theorem 3.5. Let M = {cp,q, p+ q ≤ o} be the set of
complex moments of an arbitrary real-valued function
f : R2 → R up to a given order o ∈ N. If there is a
0 6= cp0,q0 ∈M with p0−q0 < 0, we define the set B by
B := {φ(p,q), p+q≤ o, p≥ q} with

φ(p,q) := cp,qc
− p−q

p0−q0
p0,q0 , (3.9)

and otherwise by B := {cp,p, p+ p≤ o}. Then B is a
basis of all rotation invariants of M, which is generally
existent independent of f .

Before proving the theorem, we would like to insert
some remarks that may aid understanding of the proof.

Please note that the basis is tailored toward a given
function. Different functions, may result in different
bases, and a basis that exists for one function may not
exist for another function.

In order to maximize stability, we suggest to choose the
lowest order moment as cp0,q0 that has a magnitude that
is above average, i.e.

|cp0,q0 | ≥
∑p+q<o |cp,q|

∑p+q<o
. (3.10)

The fraction in the exponent of (3.9) corresponds to a
root of a complex number, which has |p0 − q0| solu-
tions. It is not necessary to store the invariants for all
complex roots, but only for a single arbitrary but con-
sistent one. But during the comparison step with the
pattern, we need to take the ambiguity into account and



compare the arbitrary root of the function to each of the
multiple roots of the pattern. We do not need to store
the multiple roots of the pattern either, because we can
compute the missing ones if we know just one invariant
φ(p,q) and the chosen p0,q0 from (3.10) using the rule

φ(p,q)e
2iπk

p0−q0 (3.11)

for k = 1, ..., p0− q0. Please note though that it is cru-
cial, that all elements φ(p,q) of the set of stored in-
variants were generated using the same complex root.
We show in detail why it is necessary to work with this
ambiguity in Subsection 3.3.

Proof. This proof consists of four parts.

Invariance. We can see from (3.5) and (3.4) that
the elements φ(p,q) are rotation invariant, because of
1(p− q)+ (p0− q0)(− p−q

p0−q0
) = 0. The elements cp,p

are naturally invariant with respect to arbitrary rota-
tions, because of (3.2).

Completeness. We will solve the inverse problem. The
assertion then follows from the fundamental theorem
of moment invariants [23]. Analogously to [7], we can
pick one orientation to remove the degree of freedom
that comes from the rotation invariance. We assume
cp0,q0 ∈ R+. Firstly, since cp0,q0 ∈ R+, it coincides
with its absolute value, which can be constructed from
φ(q0, p0) via

cp0,q0 = |cp0,q0 |=
√

cp0,q0cp0,q0 =
√

cq0,p0cp0,q0

=

√
cq0,p0c

− q0−p0
p0−q0

p0,q0 =
√

φ(q0, p0)
(3.12)

because real valued functions suffice

cp,q = cq,p. (3.13)

Please note that the invariant φ(q0, p0) is part of the
basis, because from the restriction on the normalizer
p0− q0 < 0 follows the restriction for the elements of
the basis p > q with p = q0,q = p0. Secondly, for all
p > q, the original moment cp,q can be reconstructed
from any of the possibly multiple φ(p,q) using the cal-
culation rule

cp,q = φ(p,q)c
p−q

p0−q0
p0,q0 . (3.14)

Then, for all p < q, the original moments can after-
wards be reconstructed from cq,p using the relation
(3.13). Finally, for p = q, the moments are already part
of the basis.

Existence. If all moments with p0−q0 6= 0 are zero, the
basis reduces to {cp,p, p+ p≤ o}. It is known from [22]
that this is a basis for circular symmetric functions3.

3 We call a function circular symmetric or completely rotation-
ally symmetric if its rotated version coincides with the orig-

For all other functions, a non zero non symmetric mo-
ment cp0,q0 with p0−q0 6= 0 can be chosen. If it should
suffice p0− q0 > 0, then we automatically know from
(3.13), that cq0,p0 6= 0, too. It satisfies the constraint
q0− p0 < 0 and the basis exists as defined.

Independence. We use the polar representation
cp0,q0 = reiφ of the normalizer of a function f to
construct the new function

f ′(z) := r
1

p0−q0 f (e
iφ

p0−q0 z). (3.15)

Using (3.2), we see that moments of f ′ suffice c′p,q =

cp,qc
− p−q

p0−q0
p0,q0 and therefore coincide with the basis ele-

ments φ(p,q) of f . Since the moments of f ′ are in-
dependent, so is the basis. If no normalizer cp0,q0 can
be found, the basis consists solely of moments and is
therefore independent, too.

Example 3.6. The flexible basis exists for the function
(3.7) from Example 3.4 and Figure 1. In agreement
with (3.10) among the moments up to fourth order, we
pick p0 = 0,q0 = 2. Then, the non zero elements of the
basis are

φ(2,0) = c2,0c0,2 =
π2

36
,

φ(3,0) = c3,0c
3
2
0,2 =±

iπ
√

π
3

8
√

6
3 ,

φ(3,1) = c3,1c0,2 =
π2

48
.

(3.16)

Pleas note that during the pattern recognition task, the
flexible basis that is tailored toward the pattern will
be evaluated on the field, where the chosen normalizer
cp0,q0 may vanish. The moment invariants always be-
come unstable if the moment cp0,q0 is close to zero ,
which leads to very high values in the invariants. But
because of3.10 these areas must be very different from
the pattern. So this kind of instability does not influence
the result of the pattern matching.

3.3 Multiple Complex Roots
In this subsection, we will show, why the suggested
treatment of the multiple complex roots is necessary in
order to guarantee independence, invariance, complete-
ness, and existence. It may be skipped on first reading.

Invariance. If, we restrict the basis from Theorem 3.5
to one representative of the possibly multiple complex
roots, the resulting set is no longer invariant with re-
spect to rotation. Without loss of generality, let us
choose the root with the lowest non negative angle to

inal function independently from the rotation angle α , that
means it suffices ∀α ∈ [0,2π) : f (z) = Rα f (z). One could
say, it is n-fold symmetric with n = ∞.



the positive real axis. Then, using function f from (3.7)
as in Example 3.6, we would pick

√
π

6 as the repre-

sentative complex root of c0,2 = π

6 . The generated set
would have the form

φ(2,0) = c2,0c0,2 =
π2

36
,

φ(3,0) = c3,0c
3
2
0,2 =

iπ
√

π
3

8
√

6
3 ,

φ(3,1) = c3,1c0,2 =
π2

48
.

(3.17)

Let f ′ be f if we rotate it by π , then the moments of

f ′(x,y) = (y3−3x2y+ x2− y2)χ(x2 + y2 ≤ 1) (3.18)

suffice are the same as in (3.8), only the ones of odd
order in the middle row change their sign. As a result,
the chosen representative root of c0,2 is still

√
π

6 , and
the new generated set would differ from (3.17), because

φ(3,0) = c3,0c
3
2
0,2 =−

iπ
√

π
3

8
√

6
3 has opposite sign.

Completeness. In many applications, the full discrim-
inative power of a complete basis is not necessarily re-
quired. In these cases, we can replace φ(p,q) from The-
orem 3.5 by the easier formula

φ
′(p,q) := cp0−q0

p,q c−(p−q)
p0,q0 . (3.19)

The resulting generator B can be used instead of the
basis from Theorem 3.5. It has only one unique element
for each p,q because it does not contain complex roots.
But please note that this set is not generally complete.
To proof that, we revisit the function from Example 3.6
with moments calculated up to fourth order. If we use
the basis from (3.9), the invariant c3,1c0,2 = π2

48 is part
of the basis and can therefore be constructed from the
basis trivially.

But if we use φ ′(p,q) from (3.19), we get the generator

φ
′(2,0) = c2

2,0c2
0,2 =

π4

64 ,

φ
′(3,0) = c2

3,0c3
0,2 =−

π5

8263 ,

φ
′(3,1) = c2

3,1c2
0,2 =

π4

8262 ,

(3.20)

from which c3,1c0,2 can not be constructed. We can only
use φ ′(3,1) = (c3,1c0,2)

2, which does not contain the
more detailed information that c3,1c0,2 = π2

48 was actu-
ally positive.

As an example, the function

g(x,y) =(31(x2− y2)−40(x4− y4)− y3 +3x2y)

χ(x2 + y2 ≤ 1)
(3.21)

shown in Figure 2 has the moments

c2,0 =
π

6
, c0,2 =

π

6
,

c3,0 =−
iπ
8
, c0,3 =

iπ
8
,

c3,1 =−
π

8
, c1,3 =−

π

8
.

(3.22)

The basis from Theorem 3.5 clearly shows
the difference between g and f , because here
φg(3,1) = c3,1c0,2 = −π2

48 has opposite sign than

φ f (3,1) = π2

48 in (3.16). In contrast to that, the gener-
ator defined in (3.19) assumes the exact same values
φ ′g(3,1) = c2

3,1c2
0,2 = π4

8262 = φ ′f (3,1) for g as for f ,
compare (3.20).

Existence. If we restrict ourselves to moments that
have no symmetry with respect to rotation whatsoever,
i.e. p0−q0 = 1, then we have no complex roots and get
one unique solution for each p,q. In this case, the basis
reduces to the one suggested by Flusser and it may not
exist even for non-symmetric functions as could already
be seen in Example 3.4.

Independence. Considering the multiplcity of the com-
plex roots does not violate the independence if we inter-
pret them in the following way. The multiple roots of an
invariant are not independent invariants themselves, but
merely manifestations of the same invariant. We do not
have to store them separately, because we can construct
all roots from one representative using formula (3.11).

Figure 2: The function
g(x,y) from (3.21) visual-
ized using the height color
map. The generator (3.19)
produces the same invari-
ants as for f (x,y) from Fig-
ure 1, even though they are
clearly different.

Figure 3: Arrow glyphs
and line integral convolu-
tion (LIC) [24] of the func-
tion (5.8) from Example
5.2. Color and size of the
arrows represent the speed.
The generator (5.5) does
not exist for this pattern.

4 COMPLEX FUNCTIONS
The bases from the previous section were tailored to-
wards real valued functions. Since they satisfy cp,q =
cq,p, it was sufficient to only include φ(p,q) for p > q.
Analogously to Theorem 3.5, a flexible basis for arbi-
trary complex functions that behave under rotations as



given in (3.3) can be constructed using the following
theorem.

Theorem 4.1. Let M = {cp,q, p+ q ≤ o} be the set of
complex moments of a complex function up to a given
order o ∈N. If there is a 0 6= cp0,q0 ∈M with p0−q0 6=
0, we define the set B by B := {φ(p,q), p+ q ≤ o} \
{φ(p0,q0)}∪{|cp0,q0 |} with

φ(p,q) := cp,qc
− p−q

p0−q0
p0,q0 , (4.1)

and otherwise by B := {cp,p, p+ p≤ o}. Then B is a
basis of all rotation invariants of M that exists for any
arbitrary complex function.

Proof. The proof works analogously to the proof of
Theorem 3.5.

5 FLOW FIELDS
We can interpret a complex function f : C→ C as a
two-dimensional vector field by means of the isomor-
phism between the complex and the Euclidean plane.
Analogously to scalar functions, we can make use of
the complex moments cp,q as defined in (3.1).

In contrast to the scalar case, flow fields transform by a
total rotation. Therefore, we assume that f ′(z) : C→C
suffices

f ′(z) = eiα f (e−iα z). (5.1)

In this case, the moments c′p,q of f ′ are related to the
moments of f by

c′p,q = eiα(p−q+1)cp,q. (5.2)

A proof can, for example be found in [18].

Schlemmer and Heringer [8] showed that analogously
to (3.5), any expression of the shape

I =
n

∏
i=1

cki
pi,qi (5.3)

with n∈N and for i = 1, ...,n : ki, pi,qi ∈N0 is invariant
to total rotation, if

n

∑
i=1

ki(pi−qi +1) = 0, (5.4)

because of (5.2).

5.1 Schlemmer’s Generator
The first moment invariants for vector fields were sug-
gested by Schlemmer et al. in 2007 [8]. In that paper,
instead of presenting a rule for the generation of mo-
ment invariants of arbitrary order, a set of five invari-
ants was explicitly stated. Two years later in his the-
sis [3], Schlemmer provided the general formula with
which invariants of arbitrary order can be produced.

The five moments from [8] are exactly the invariants
that are produced from this formula if the maximal or-
der of the moments is restricted to two. We therefore
assume that Schlemmer at al. already used this formula
in their 2007 paper [8], but did not explicitly write it
down.

Theorem 5.1. Cited from [3]. Let M be the set or a
subset of all complex moments cp,q of order (p+ q) ∈
{0, ...,o}, o ≥ 2. Let I be the set of all moment in-
variants being constructed according to (3.5) from the
elements of M. Let c ṗ,q̇ and c p̈,q̈ ∈ M, with ṗ− q̇ =
q̈− p̈ = 2 and c ṗ,q̇ as well as c p̈,q̈ 6= 0 If the set B is
constructed as follows:

B = {φ(p,q) := cp,qcap−q
ṗ,q̇ cbp−q

p̈,q̈ ,cp,q ∈M}, (5.5)

with

am =

{
0, if m≥−1
(|m|+1)div3, if m≤−2

(5.6)

and

bm =

{
m+1, if m≥−1
(m+1)mod3, if m≤−2

(5.7)

then B is a basis of I .

This theorem in fact happens to be incorrect. Schlem-
mer’s generator is neither independent nor complete
and therefore no basis in the sense of Definition 3.2.

Completeness. This generator is not complete because
the magnitudes |c ṗ,q̇| and |c p̈,q̈| can not be reconstructed
from its elements.

Independence. This generator is not independent be-
cause the invariant φ(ṗ, q̇) and φ(p̈, q̈) are identical.

The generator can be transformed into a basis via B \
{φ(ṗ, q̇)}∪{|c ṗ,q̇|}. But even with this correction, the
basis is not chosen very well. For once, it is unnec-
essarily complicated, because it requires evaluation of
the two auxiliary functions (5.6) and (5.7) and each el-
ement can consist of up to thee factors. Further, it does
not exist for functions that do not have non zero cṗ,q̇ 6= 0
as well as cp̈,q̈ 6= 0 with ṗ− q̇ = q̈− p̈ = 2. This situa-
tion is similar to the one in Subsection 3.1. But in this
case even two non vanishing moments of specific or-
ders need to be present, which increases the number of
cases in which the generator does not exist.

Example 5.2. The vector field given by the function

f (z) = z2
χ(|z| ≤ 1) (5.8)

has only one non-zero moment up to third order c0,2 =
π

3 . It is visualized in Figure 3. Even though it is not
symmetric, Schlemmer’s generator does not exist, be-
cause cṗ,q̇ 6= 0 can not be found to suffice ṗ− q̇ = 2.



The function has
no symmetry.

Its two-fold sym-
metric part.

Its three-fold sym-
metric part.

Figure 4: Arrow glyphs and LIC of the function (5.9)
from Example 5.3 and its components. The color and
the size of the arrows represent the speed of the flow.

Example 5.3. The vector field given by the function

f (z) = (z2 +2z2)χ(|z| ≤ 1), (5.9)

with χ being the characteristic function, is visualized in
Figure 4. It has two non-zero moments up to third order

c0,2 =
π

3
, c2,0 =

2π

3
. (5.10)

Here, Schlemmer’s generator does exist, because we
can choose cṗ,q̇ = c2,0 and cp̈,q̈ = c0,2, but it contains
only the redundant information

φ(0,2) = c0,2ca−2
2,0 cb−2

0,2 = c0,2c1
2,0c2

0,2 = 2(
π

3
)4,

φ(2,0) = c2,0ca2
2,0cb2

0,2 = c2,0c0
2,0c3

0,2 = 2(
π

3
)4,

(5.11)

from which we can not reconstruct the magnitudes of
the moments.

5.2 Flusser et al.’s Basis
A straight forward approach to generate a basis of
moment invariants for vector fields was suggested by
Flusser et al. in [1].

Theorem 5.4. Let M be the set of moments up to the
order o ∈ N and cp0,q0 6= 0 satisfying p0 − q0 = −2.
Further let I be the set of all rotation invariants cre-
ated from the moments of M according to (5.3) and B
be constructed by

∀p,q, p+q≤ o : φ(p,q) := cp,qc(p−q+1)
p0,q0 ∈B,

(5.12)
then B \{φ(p0,q0)}∪{|φ(p0,q0)|} is a basis of I .

That does not only produce an independent and com-
plete set, but is also more flexible than Schlemmer’s
generator because it does not need two specific non-
zero moments, but only a single one. Further, it is sim-
pler and more intuitive because it does not need any
additional series, like (5.6) and (5.7).

Example 5.5. Flusser’s basis exists for the vector field
given by the function (5.8) from Example 5.2 visualized
in Figure 3. It has one non zero element |c0,2|= 2 π

3 .

Example 5.6. Flusser’s basis exists for the vector field
given by the function (5.9) from Example 5.3 visual-
ized in Figure 4 and up to one degree of freedom, the
moments can be reconstructed from the basis

|c0,2|=
2π

3
,

φ(2,0) = c2,0c3
0,2 = 8(

π

3
)4.

(5.13)

To show that, we fix the rotational degree of freedom
by setting c0,2 ∈ R+ and get

c0,2 = |c0,2|= 2
π

3
,

c2,0 = φ(2,0)c−3
0,2 =

π

3
.

(5.14)

The function has
no rotational sym-
metry.

Its linear part with
two-fold symme-
try.

Its quadratic part
with three-fold
symmetry.

Figure 5: Arrow glyphs and LIC of the function (5.15)
from Example 5.7. The color and the size of the arrows
represent the speed of the flow.

Example 5.7. The vector field given by the function

f (z) = (z+ z2)χ(|z| ≤ 1) (5.15)

has three non-zero moments up to third order

c1,0 =
π

2
, c2,0 =

π

3
, c2,1 =

π

4
(5.16)

It is visualized in Figure 5. Here, Flusser’s basis does
not exist, because we can not find any cp0,q0 6= 0 with
p0−q0 =−2, even though, the function is not symmet-
ric.

5.3 Flexible Basis
Analogously to the scalar case, we can also derive a
robust basis even for patterns that do not have a numer-
ically significant moment of one-fold symmetry.

Theorem 5.8. Let M = {cp,q, p+ q ≤ o} be the set of
complex moments of a vector field f : R2→ R2 up to a
given order o∈N. If there is a 0 6= cp0,q0 ∈M with p0−
q0 + 1 6= 0, we define the set B by B := {φ(p,q), p+
q≤ o}\{φ(p0,q0)}∪{|cp0,q0 |} with

φ(p,q) := φ(p,q) := cp,qc
− p−q+1

p0−q0+1
p0,q0 , (5.17)

and otherwise by B := {cp,p+1, p+ p+ 1 ≤ o}. Then
B is a basis of all rotation invariants of M, which gen-
erally exists independent of f .



Proof. The proof works analogously to the proof of
Theorem 3.5.

Remark 5.9. This last basis of invariants is equivalent
to the normalization approach proposed by Bujack et al.
[25].

Example 5.10. The flexible basis exists for the vector
field (5.15) from Example 5.7 visualized in Figure 5.
Any of the three non-zero moments up to third order

c1,0 =
π

2
, c2,0 =

π

3
, c2,1 =

π

4
(5.18)

can be chosen as normalizer cp0,q0 . In order to max-
imize stability, the suggested algorithm would choose
cp0,q0 = c1,0, which would result in two solutions of the
complex square root c−1/2

1,0 =±
√

π

2 and the basis

|c1,0|=
π

2
,

φ(2,0) = c2,0c
− 1

2
1,0 =±

√
2π

3
,

φ(2,1) = c2,1c−1
1,0 =

1
2
.

(5.19)

6 EXPERIMENT
We apply the different vector field bases to a pattern
detection task in a vector field. The used dataset is the
result of a computational fluid dynamics simulation of
the flow behind a cylinder. The characteristic pattern
of the fluid is called the von Kármán vortex street. A
visualization of the vortices with removed average flow
can be found in Figure 6a. The direction of the flow is
visualizaed using line integral convolution [24] and the
speed is color coded using the colormap from Figure 7.

In our experiments, we consider moments up to first or-
der in Figure 6 and moments up to second order in Fig-
ure 8. Please note that the basis suggested by Schlem-
mer [3] from Theorem 5.1 and the one suggested by
Flusser [1] from Theorem 3.3 do not exist for moments
calculated only up to first order, because a moment
cp0,q0 with p0− q0 = −2 can not be found using only
c0,0,c1,0, and c0,1. For moments up to second order,
there is only one potential moment cp0,q0 = c0,2 satify-
ing p0−q0 =−2, which is why there is only one basis
configuration for these two approaches. They coincide
for the moments up to second order, except for the mag-
nitude of the normalizer |c0,2|. The remaining moment
invariants are

c0,0c0,2, c0,1, c1,0c2
0,2, c1,1c0,2, c2,0c3

0,2, (6.1)

as already presented in [8].

The as long as the normalizer c0,2 is numerically non
zero, all three bases will produce stable and identical
results up to minor numerical differences. To show the

The non flexible bases do not exist for moments up to first
order. The algorithm does not produce any output.

The flexible basis does exist with normalizer c1,0. The pat-
tern from Figure 7 and its repetitions are correctly detected.

Figure 6: Result of the pattern detetction task using
only moments up to first order. The speed of the flow is
encoded using the colorbar on the top, the similarity of
the field to the pattern using the colorbar on the bottom.

difference between the flexible and non-flexible bases,
we therefore use the pattern from Figure 7a, which sat-
isfies |c0,2| < 0.01. It was cut out from the dataset it-
self. Its position in the von Kármán vortex street can
be found in the lower, rightmost circle of Figure 6b.
Since the only element, which differs in the two non-
flexible bases is close to zero, the results of the two
are almost identical. The differences are numerically
small and can not be perceived by the human eye. To
save space, we plot only the instance that corresponds
to Schlemmer’s basis. The other one is identical.

(a) Pattern cut out
from the dataset.

(b) The pattern ro-
tated by π/3.

(c) The pattern ro-
tated by π/2.

Figure 7: The pattern in different orientations. It was
cut out from the dataset at the position of the lower
right-most white circle in Figure 6b.

The output of our pattern detection algorithm are circles
that indicate the position, the size and the similarity of
the matches. The similarity is encoded in the colormap
in the bottom row of Figure 6. The higher the similar-
ity, the brighter the color of the corresponding circle.
The color white is applied to all matches that have a
Euclidean distance of all the moment invariants of less
than 0.02. A more detailed description of the algorithm
and the visualization can be found in [18].



In Figure 6b, we can see that the flexible basis exists
even for this pattern and that it correctly finds the pat-
tern’s original position. It further detects the pattern’s
similar occurrences as it repeats itself in the periodic
von Kármán street. As expected, the further we move
towards the obstacle, the repetitions become less sim-
ilar in general, which can be seen in the decreasing
brightness of the circles.

Non flexible bases for the pat-
tern oriented as in Figure 7a.

Flexible bases for the pattern
oriented as in Figure 7a.

Non flexible bases for the pat-
tern oriented as in Figure 7b.

Flexible bases for the pattern
oriented as in Figure 7b.

Non flexible bases for the pat-
tern oriented as in Figure 7c.

Flexible bases for the pattern
oriented as in Figure 7c.

Figure 8: Result of the pattern detetction task using mo-
ments up to second order. The result of the algorithm
using the non flexible bases is unstable (left). It depends
on the orientation of input pattern. In contrast to that,
the flexible basis produces consistent results (right).

Figure 8 compares the output of the algorithm using
the flexible basis from Theorem 5.8 and the two non-
flexible bases for moments up to second order. To show
the instability of the non-flexible bases, we used three
different instances of the pattern. They differ solely
by their orientation. Theoretically, the invariants of all
three bases should be invariant with respect to this de-
gree of freedom and produce the same results for all
three instances. But as can be seen in the left column
of Figure 8, this is not true for the non-flexible bases.
Depending on the orientation of the pattern, the simi-
larity of the exact location of the pattern in the field is
rather low. Sometimes its position is not the match with
the highest similarity, or multiple fuzzy matches occur.
On the right side, we can see that the flexible basis pro-
duces coherent, stable, and correct results independent
from the orientation of the pattern.

7 DISCUSSION
We have reviewed the different bases of moment invari-
ants built from complex monomials using the generator
approach and compared their behavior with respect to
three important qualities such a basis should suffice: in-
dependence, completeness and general existence.

For scalar fields, the basis suggested by Flusser [2] is
complete and independent, but it does only exist, if the
pattern has a non zero moment that is not rotationally
symmetric. We have extended his basis to one that al-
ways exists, no matter how the values of the moments
of a function are distributed.

For vector fields, the first generator approach was sug-
gested by Schlemmer [3]. We show that his set of mo-
ment invariants is nor complete neither independent and
therefore does not satisfy the properties of a basis. As
a result Flusser et al. [1] were the first ones to pro-
vide a basis of moment invariants for vector fields us-
ing the generator approach. Like in the scalar case,
their basis is complete and independent, but requires a
non zero moment that has no rotational symmetry. We
have derived an extension that exists for arbitrary vec-
tor fields and found it to coincide with the normalization
approach by Bujack et al. [18]. Some showcase exam-
ples and experiments using a fluid dynamics simulation
show the superiority of the flexible basis.

One of the most interesting observations in this work is
the equivalence of the optimal generator approach with
the optimal normalization approach. Assuming that this
fact should also be true for three-dimensional fields, it
might be used for the study of 3D moment invariants.
The 3D situation is much more complicated and nei-
ther the generator nor the normalization approach have
so far resulted in a set of moment invariants that is
complete, independent, and generally existing. Assum-
ing equivalence might guide future research to improve
both methods.

In future work, we want to generalize the concept of
flexible bases to bases ones built from orthogonal poly-
nomials, like for example, Zernike polynomials or Her-
mite polynomials.
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