
Interpreting Galilean Invariant Vector Field
Analysis via Extended Robustness:
Extended Abstract

Bei Wang, Roxana Bujack, Paul Rosen, Primoz Skraba, Harsh Bhatia,
and Hans Hagen

Motivation. Understanding vector fields is integral to many scientific applications
ranging from combustion to global oceanic eddy simulations. Critical points of
a vector field (zeros of the field) are essential features of the data, and play an
important role in describing and interpreting the flow behavior. However, vector
field analysis based on critical points suffers a major drawback: the definition of
critical points depends upon the chosen frame of reference. Fig. 1 highlights this
limitation, where the critical points in a simulated flow (the von Kármán vortex
street) are only visible when the velocity of the incoming flow is subtracted.

The extraction of meaningful features in the data therefore depends on a good
choice of a reference frame. Often times there exists no single frame of reference
that enables simultaneous visualization of all relevant features. For example, it is
not possible to find one single frame that simultaneously shows the von Kármán
vortex street from Fig. 1(b), and the first vortex formed directly behind the obstacle
in Fig. 1(a). To overcome such a drawback, a framework recently introduced by
Bujack et al. [1] considers every point as a critical point and locally adjusts the
frame of reference to enable simultaneous visualization of dominating frames that
highlight features of interest. Such a framework selects a subset of critical points
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Fig. 1 Visualization of the flow behind a cylinder without (a) and with (b) the background flow
removed. For comparison, (c) shows the corresponding Galilean invariant vector field introduced
by Bujack et al. constructed from the extrema of the determinant of the Jacobian. The Galilean
invariant critical points are marked with red nodes for vortices and with blue nodes for saddles.
Image courtesy of Bujack et al. [1]. (d) Galilean invariant vector field introduced in this paper
constructed from the extended robustness. The maxima of the extended robustness field are marked
with red nodes. (a)-(d): The speed of the flow is color-coded with a rainbow colormap.

based on Galilean invariant criteria, the so-called Galilean invariant critical points,
and visualizes their frame of reference in their local neighborhood. Here, Galilean
invariance refers to the principle that Newton’s laws hold in all frames moving at
a uniform relative velocity. Thus, a Galilean invariant property is one that does
not change when observed in different frames at uniform motion relative to each
other. The extrema of the determinant of the Jacobian are shown to be particular
examples of such Galilean invariant critical points [1], and they simultaneously
capture all relevant features in the data, as illustrated in Fig. 1(c). The intuition
is that the determinant of the Jacobian determines the type of critical point, and
since the Jacobian is Galilean invariant, its extrema (with magnitude away from
zero) correspond to stable critical point locations where small perturbations in the
field does not change their types. Such Galilean invariant critical points, in general,
do not overlap with the classical zeros of the vector fields; however each of them
is equipped with a frame of reference in which it becomes a zero of the field.
Such a perspective has been shown to be useful in revealing features beyond those
obtainable with a single frame of reference (e.g., Fig. 1(c)).
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The topological notion of robustness, on the other hand, introduces new
ways to think about the stability of critical points with respect to perturbations.
Robustness, a concept closely related to topological persistence [2], quantifies
the stability of critical points, and, therefore, assesses their significance with
respect to perturbations to the field. Intuitively, the robustness of a critical point
is the minimum amount of perturbation necessary to cancel it within a local
neighborhood. Robustness, therefore, helps interpreting a vector field in terms of
its structural stability. It has been shown to be useful for increasing the visual
interpretability of vector fields [10] in terms of feature extraction, tracking [6], and
simplification [5, 7, 8].

Contributions. In this paper, we present new and intriguing observations with
respect to these two different notions that quantify stable critical points in vector
fields, namely, the one based on Jacobian and the one based on robustness. In
particular, we address the following questions: Can we interpret Galilean invariant
vector field analysis based on the determinant of the Jacobian via the notion of
robustness? What are the relations between these two seemly different notions?

Our contributions are:
• We extend the definition of robustness by considering every point as a critical

point and introduce the notion of the extended robustness field by assigning each
point in the domain its robustness when it is made critical with a proper frame of
reference.

• We prove that the extended robustness satisfies the criterion of Galilean
invariance, where the local maxima of the extended robustness field are the
Galilean invariant critical points.

• We prove, theoretically, that the determinant of the Jacobian is a lower bound for
the extended robustness at the same point.

• We demonstrate, visually, that the extended robustness helps to interpret the
Jacobian-based Galilean invariant vector field analysis, in particular, that the
extrema of the determinant of the Jacobian coincide with the local maxima of
the extended robustness (Fig. 1(c)-(d)).

Technical Background. Here, we discuss some relevant concepts before describing
our results.
Galilean invariance. Let v : R2×R→ R2 denote a 2D vector field describing the
instantaneous velocity of a flow. A Galilean transformation of points (x, t)∈R2×R
is the composition of a time-dependent translation b that depends linearly on time
(i.e., ḃ = const) and a rigid body rotation A ∈ SO(2) [1]. A point whose position
in the original frame is x then has the coordinate in the transformed frame x′ =
Ax+b [9]. A vector field v(x, t) is Galilean invariant (GI), if it transforms under a
Galilean transformation A, according to the rule v′(x′, t ′) = Av(x, t) [9]. Similarly,
a scalar field s(x, t) and a matrix field M(x, t) are called GI if s′(x′, t ′) = s(x, t) and
M′(x′, t ′) = AM(x, t)A−1, respectively [9].
Reference frame adjustment. Every point in a vector field can be transformed into
a critical point by addition of a constant vector. For a time-dependent vector
field v : R2×R→ R2 and a point x0 ∈ R2, we define the associated vector field
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vx0 : R2 ×R → R2 with its frame of reference based around x0 by vx0(x, t) :=
v(x, t)−v(x0, t). Such a vector field vx0 has a critical point at x0, because vx0(x0, t) =
v(x0, t)−v(x0, t) = 0. For a given position x0 ∈R2, the vector field vx0 is GI, because
it is easy to verify that v′x′0

(x′, t ′) = Avx0(x, t).

Jacobian-based GI vector fields. Recall v : R2×R→R2 is a 2D vector field, where
v(x, t) = ẋ = dx/dt = (v1(x, t),v2(x, t))T . Let J denote the Jacobian of a velocity
field,

J = ∇v(x, t) =
(

∂v1(x, t)/∂x1 ∂v1(x, t)/∂x2
∂v2(x, t)/∂x1 ∂v2(x, t)/∂x2

)
The determinant of the Jacobian, det(J), is shown to be a GI scalar field [1], that is,
detJ′(x′, t ′) = detJ(x, t). Such a determinant can be used to categorize first order
critical points, that is, a negative determinant corresponds to a saddle, while a
positive determinant corresponds to a source, a sink, or a vortex.

A point (x0, t0)∈R2×R is a Jacobian-based GI critical point (GICP) of a vector
field v : R2 ×R2 if it is a critical point of the determinant of the Jacobian, i.e.
∇ det(J) := ∇ det(∇v(x0, t0)) = 0 [1]. Bujack et. al. [1] restrict such a definition to
the negative minima and the positive maxima of the determinant field. The former
form saddles, while the latter form sources, sinks, and vortices, respectively, in the
velocity field in some specific frame of reference. Each GICP comes with their own
frame of reference in which it becomes a classical critical point.

To visualize the GICPs simultaneously, Bujack et. al. [1] have introduced the
notion of GI vector field that is applicable beyond Jacobian-based GICPs. The basic
idea is to construct a derived vector field that locally assumes the inherent frames of
references of each GICP. Such a derived vector field is constructed by subtracting
a weighted average of the velocities of the GICPs, x1,...,xn, of the vector field v.
Formally, let v :R2×R→R2 be a vector field, x1, . . . ,xn ∈R2 a set of GICPs, and wi
the weights of a linear interpolation problem ∑

n
i=1 wi(x)v(xi) with weights wi :R2→

R (and a mapping x 7→ wi(x)) that are invariant under Galilean transformation, that
is, w′i(x

′) = wi(x), and the weights add up to one, ∀x ∈ R2 : ∑
n
i=1 wi(x) = 1. Many

commonly used weights satisfy such a condition, for example, constant, barycentric,
bilinear, or inverse distance interpolation [1]. Then, the GI vector field (GIVF) v̄ :
R2×R→ R2 is defined by v̄(x) := v(x)−∑

n
i=1 wi(x)v(xi). In this paper, we use

inverse distance weighting with exponent 2.
Robustness. Let f ,h : R2 → R2 be two continuous 2D vector fields. We define the
distance between the two mappings as d( f ,h) = supx∈R2 || f (x)− h(x)||2. h is an
r-perturbation of f , if d( f ,h) ≤ r. Given f : R2 → R2, the robustness of a critical
point quantifies the stability of a critical point with respect to perturbations of the
vector fields [10]. Intuitively, if a critical point has a robustness value of r, then there
exists an (r+δ )-perturbation h of f to eliminate x (via critical point cancellation);
and any (r− δ )-perturbation is not enough to eliminate x (see [10] for technical
details).

Our Main Theoretical Results. We extend the definition of robustness by
considering every point as a critical point. Formally, let (x0, t0) ∈ R2 ×R be an
arbitrary point in a vector field v : R2×R→ R2 and R(x0, t0) be the robustness of
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the critical point (x0, t0)∈R2×R in the vector field vx0 , which is associated with the
frame of reference of (x0, t0). We define the extended robustness R : R2×R→R of
the point (x0, t0) as the robustness of the critical point (x0, t0) ∈R2×R in the vector
field vx0 .

For a vector field v : R2×R→ R2, we call a point a locally robust critical point
(LRCP) if it is a local maximum in the extended robustness field. The following
theorem is the central theoretical contribution of our paper.

Theorem 1 The extended robustness is a Galilean invariant scalar field. The locally
robust critical points defined above are Galilean invariant.

We prove Theorem 1 by showing that for the extended robustness R : R2×R→ R,
we have R′(x′, t ′) = R(x, t).

Furthermore, we demonstrate that the absolute value of the determinant of the
Jacobian is a lower bound on the extended robustness at any critical point.

Theorem 2 At any point x0 ∈ R2, if the absolute value of the determinant of the
Jacobian is at least c, then the extended robustness at x0 is at least O(c2).

(a) (b) (c) (d) (e)

(f) (g) (h)

Fig. 2 Visualization of an analytic data set (f), which is created by superimposing five analytic
fields (a)-(e). For comparison, (g) shows the corresponding Galilean invariant vector field
introduced by Bujack et al. constructed from the extrema of the determinant of the Jacobian. The
Galilean invariant critical points are marked with red nodes for vortices and with blue nodes for
saddles. Image courtesy of Bujack et al. [1]. (h) the Galilean invariant vector field introduced in
this paper constructed from the extended robustness. The maxima of the extended robustness field
are marked with red nodes. (a)-(h): The speed of the flow is color-coded with a rainbow colormap.

Our Visualization Results. We would like to demonstrate visually that the
extended robustness helps to interpret the Jacobian-based GI vector field analysis, in
particular, that the extrema of the determinant of the Jacobian (the Jacobian-based
GICPs) coincide with the local maxima of the extended robustness (the LRCPs).
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We use an analytic vector field in Fig 2(f). It contains four standard flow features,
sink (a), center (b), saddle (c) and spiral source (d), each showing a different
common velocity profile overlaid with a sheer flow (e) that makes it impossible
to view all the flow features simultaneously. As illustrated, the GIVF based on the
determinant of the Jacobian (Fig 2(g)) simultaneously highlights the Jacobian-based
GICPs, which correspond to the standard flow features described in Fig 2(a)-(d).
On the other hand, these flow features coincide almost perfectly with the features
surrounding the LRCPs of the GIVF based on the extended robustness (Fig 2(g)).

Discussion. The Jacobian is the matrix of all first-order partial derivatives of a
vector-valued function. It generalizes the usual notion of derivative at a point. In our
context, it carries important information about the local behavior of a vector field.
On the other hand, robustness leverages relations among critical points to quantify
their stability with a Morse theoretical flavor. Its theoretical foundation, the well
group theory [3, 4], can be considered as an extension of Morse theory and persistent
homology. Therefore, it is probably not entirely surprising that local (differential)
behavior of a critical point is linked with topology. In this work, we demonstrate
their relations theoretically and visually. Furthermore, our results inspire discussions
regarding different quantifiers of stable features within the vector field data.
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