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Abstract Moment invariants have long been successfully used for pattern matching
in scalar fields. By their means, features can be detected in a data set independent
of their exact orientation, position, and scale. Their recent extension to vector fields
was the first step towards rotation invariant pattern detection in multi-dimensional
data.

In this paper, we propose an algorithm that extends the normalization approach
to tensor fields of arbitrary rank in two and three dimensions.

1 Introduction

Tensor fields play an important role in the study of many physical phenomena.
Earthquakes, volcanoes, diffusion, or deformation can all be described using tensor
fields. Higher derivatives of scalar and vector fields also form tensors. In contrast
to their lower rank counterparts, tools for the analysis of higher rank tensor fields
are not as well developed. In particular, the visualization of three-dimensional ten-
sor fields can suffer from a clutter. Any given visualization element may occlude
elements behind it. The question of what is included or omitted in a visualization
is very important and can potentially impact the scientific understanding. Pattern
detection can help to address this problem by reducing the areas that are drawn to
the locations of features that are of importance to the analyst. In this paper, we sug-
gest an algorithm for rotation invariant pattern detection for tensor fields of arbitrary
rank.
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Rotation invariance is a critical requirement of pattern detection to minimize the
set of unique patterns required in a search. Moment invariants allow one to achieve
rotation invariance without the need for point to point correlations.

Moments are the projections of a function with respect to a function space basis.
We can think of them as the coordinates that represent the pattern. They can then be
used to construct moment invariants - values that do not change under certain trans-
formations. In this paper, we concentrate on orthogonal transformation and isotropic
scaling.

There are two main approaches to the construction of moment invariants: normal-
ization and the definition of a generator [17]. For normalization, a standard position
is defined by demanding certain moments to assume fixed values and all functions
are transformed to match it. Then the remaining moments form a complete and in-
dependent set of moment invariants. The generator approach relies on defining an
explicit rule on how to combine the moments in a way that suppresses the alignment
information, usually by multiplication and addition.

The main disadvantage of the normalization approach is that it is unstable if the
moment chosen for normalization should become zero. On the other hand, the main
disadvantage of the generator approach is the difficulty in finding and proving the
existence of an independent moment. Depending on the application, one method
may be more effective than the other.

Both approaches have been applied to generate moment invariants for scalar
fields and recently also to vector fields. To the authors’ best knowledge, to date,
moment invariants for matrix fields or higher rank tensor fields have only been pre-
sented using a generator approach [25].

In this paper, we present an algorithm that constructs moment invariants using
normalization for two- and three-dimensional tensor fields of arbitrary rank. For
scalar fields, the zeroth and first order moments are usually used for the normaliza-
tion with respect to translation and scaling. This is why the standard position with
respect to orientation is generally chosen to be the Jordan normal form of the second
order moments, which is related to the principal axes of the covariance matrix. For
vector fields, Bujack et al. [5] use the Schur form of the first order moments. This
is also of second rank. For higher rank tensor fields, the first order moments are
already of a rank higher than two. Hence, matrix algebra approaches can no longer
be applied.

Our solution to this problem is to use tensor contractions that produce first rank
tensors from higher rank moment tensors. These first rank tensors behave like vec-
tors and can easily assume a standard position. A similar approach has been used
in [10] to generate a normalizer for 2D affine transformations and in [27, 9] for 3D
scalar functions. We extend this idea to generate rotation invariants for tensor valued
functions.

The main contributions of this paper are as follows:

• We propose a methodology to apply tensor algebra to the normalization of mo-
ments of tensor fields of any order o ∈ N, including scalar, vector, and matrix
fields.
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• By producing a complete and independent set of moment invariants, this method
can provide a solution for tensor fields where the generator approach fails [25].

• The flexibility inherent in this method also improves on state the art normaliza-
tion approaches for vector and scalar data by finding solutions where the current
techniques fail due to vanishing moments.

• To our knowledge, this is the first time that moment invariants have been com-
puted for a tensor field of second order.

2 Related Work

The first moment invariants were introduced to the image processing society by
Hu [21]. The development of moment tensors by Dirilten and Newman [11] ex-
tended moment invariants to three-dimentional data. Pinjo, Cyganski, and Orr [27]
calculated 3D orientation estimation from moment contraction to first order mo-
ments.

Please note that invariants can be constructed not only from moments, but, for
example, from derivatives, too [12, 13]. The fundamental theorem of moment in-
variants [28] guarantees that every algebraic invariant has a moment invariant coun-
terpart.

In his seminal work [14], Flusser presented a calculation rule to generate a com-
plete and independent set for 2D scalar functions. Later, he proved that it further
solves the inverse problem in [15].

For three-dimensional functions, the task is much more challenging. One re-
search path goes in the direction of the spherical harmonics. They are an irreducible
representation of the rotation group and therefore an adequate basis for the gener-
ation of moment invariants. Lo and Don [26], Burel and Henocq [6], Kazhdan et
al. [22], Canterakis [8], and Suk et al. [33], use them to construct moment invariants
for three-dimensional scalar functions.

A second research path makes use of the tensor contraction method, as described
by Dirilten and Newman [11]. While all tensor contractions to zeroth rank are ro-
tationally invariant, it can be difficult to find a complete and independent set. Suk
and Flusser propose to calculate all possible zeroth rank contractions from moment
tensors up to a given order and then skip the linearly dependent ones in [32]. Higher
order dependencies still remain.

Schlemmer et al. [30, 31] generalized the notion of moment invariants to vector
fields. Later Bujack et al. [3] provided a normalization method that is flexible with
respect to the choice of the normalizer. It leads to a complete set of independent mo-
ment invariants for 2D flow fields that is applicable to any pattern. Their extension
to three-dimensional vector fields uses the transformation properties of the second
rank tensors and their eigenvectors to define a standard position [5]. This method
requires the second rank tensor to not vanish.

Langbein and Hagen [25] treat tensor fields of higher rank. They show that the
tensor contraction method can be generalized to arbitrary tensor fields. However,
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their suggested method to reduce the redundancy of the generator approach uses
exact calculation. Its application in a discrete setting (i.e., programmatically) has
not yet been practically applied. In this paper, we introduce a normalization method
for tensor fields which automatically results in an independent and complete set.
We demonstrate its utility by applying it to pattern detection in analytic as well as
simulation data.

The state of the art of moment invariants with respect to the each of the two
approaches, the different data types and dimensions are summarized in Tables 1
and 2. The attributes have the following meaning:

• Complete: The set is complete if any arbitrary moment invariant can be con-
structed from it.

• Independent: The set is independent if none of its elements can be constructed
from its other elements.

• Flexible: The set is flexible w.r.t. vanishing moments if it exists for any pattern,
meaning it does not rely on any specific moment cp0,q0 to be non-zero.

Dim. Data type Authors Complete Independent Flexible
2D Scalar Flusser et al. [17] X X -
2D Vector Bujack et al. [3] X X X
2D Tensor - - - -
3D Scalar Cyganski et al. [9] X X -
3D Vector Bujack et al. [5] X X -
3D Tensor - - - -

Table 1: State of the art of moment invariants constructed from normalization.

Dim. Data type Authors Complete Independent Flexible
2D Scalar Flusser et al. [14] X X -
2D Vector Schlemmer et al. [29] - - -
2D Tensor Langbein et al. [25] ? (X) -
3D Scalar Flusser et al. [32] ? - ?
3D Vector Langbein et al. [25] ? (X) -
3D Tensor Langbein et al. [25] ? (X) -

Table 2: State of the art of moment invariants constructed using the generator ap-
proach. The brackets indicate that independence is given only theoretically and the
question mark that this property is unknown.
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3 Theory

We will start by reviewing the theoretical underpinnings of our algorithm so that
readers from both the visualization world and the mathematical world start from
common ground. We also show how to generate tensors that transform like vectors
under rotations and reflections.

3.1 Tensors and Transformations

Tensors are a natural representation of physical quantities that follow specific rules
under transformations of the coordinate system. They can be represented as arrays of
numbers relative to a fiducial basis. The rank of a tensor corresponds to the number
of indices that we need to identify the different numbers in the array. Scalars are
tensors of rank zero, vectors are tensors of rank one, and matrices are tensors of
rank two. The interested reader can find exemplary introductions to tensor analysis,
in addition to the definitions and lemmata we review in this work in [1] or in [18]. We
will make use of the Einstein notation where the summation symbol is dropped in
products over the same index. The summation is performed from 1 to d, in which the
latter is the underlying dimension. Please note that the theory is valid for arbitrary
d ∈ N. Later, in our experiments, we will work with two- and three-dimensional
fields.

Definition 1 A multidimensional array T i1...in
j1... jm

that, under an active transformation
by the invertible matrix Ai

j ∈ Rd×d , behaves as:

T ′i1...inj1... jm = |det(A−1)|wAi1
k1
...Ain

kn
(A−1)l1

j1
...(A−1)lm

jmT k1...kn
l1...lm

, (1)

is called a (relative, axial) tensor of covariant rank m, contravariant rank n, and
weight w. An (absolute) tensor has weight zero.

Remark 1 An active transformation, x′ = Ax, transforms the field, but not the
frame. Thus the coordinate system remains unchanged and a tensor field T : Rd →
Rdn×dm

is transformed via T ′(x′) = T (x). One can, for example, rotate an object
actively. This is in contrast to a passive rotation in which the coordinate system is
rotated rather than the object itself.

Example 1 A vector v∈Rd is an absolute, contravariant, first rank tensor, because
it behaves via v′i = ∑

d
j=1 Ai

jv
j under active transformations. In Einstein notation,

this is written as v′i = Ai
jv

j.
A matrix M ∈ Rd×d is a tensor of contravariant rank one and covariant rank

1, because it behaves via M′ = AMA−1 under active transformations. In Einstein
notation, this is written as M′ij = Ai

k(A
−1)l

jM
k
l .
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Remark 2 For orthogonal transformations A ∈Rd×d , i.e. rotations and reflections,
the distinction of the indices into covariant and contravariant ones from Definition 1
is not necessary because they satisfy AT = A−1. Further, the weight can be ignored,
because they satisfy |detA|= |det(A−1)|= 1.

Lemma 1 Let T and T̃ be two relative tensors of covariant rank m, contravariant
rank n, and weight w and m̃, ñ, w̃ respectively. Then the product T ⊗ T̃ (also called
outer product or tensor product):

(T ⊗ T̃ )i1...in ĩ1...ĩñ
j1... jm j̃1... j̃m̃

:= T i1...in
j1... jm

T̃ ĩ1...ĩñ
j̃1... j̃m̃

(2)

is a relative tensor of covariant rank m+ m̃, contravariant rank n+ ñ, and weight
w+ w̃.

Lemma 2 Let T be a relative tensor of covariant rank m, contravariant rank n, and
weight w. Then the contraction ∑(ik, jl) T of a covariant index ik and a contravariant
index jl

( ∑
(ik, jl)

T )i1...ik−1ik+1...in
j1... jl−1 jl+1... jm

:= T i1...ik−1ι ik+1...in
j1... jl−1ι jl+1... jm (3)

is a relative tensor of covariant rank m−1, contravariant rank n−1, and weight w.

Remark 3 Please note that ∑(ik, jl) is the symbol for the contraction of the two in-
dices ik and jl as used in [25]. It is different from the sum ∑ik, jl over these indices.
In particular, the contracted indices are no longer indices of the contracted tensor.

Example 2 The product of a matrix M ∈ Rd×d and a vector v ∈ Rd is a tensor
product ⊗ followed by a contraction ∑(2,1) of the second covariant with the first
contravariant index

( ∑
(2,1)

(M⊗ v))i = ( ∑
(2,1)

(Mi
jv

k))i = Mi
jv

j. (4)

Also, the trace of a matrix M can be written as the contraction by Mi
i .

3.2 Moment Tensors

Dirilten and Newman suggest the use of moment tensors for the construction of
moment invariants with respect to orthogonal transforms in [11]. They construct the
moment tensors by arranging the moments of each order in a way such that they
obey the tensor transformation property (1).

Definition 2 For a scalar function f : Rd → R with compact support, the moment
tensor oM of order o ∈ N takes the shape
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oMk1...ko =
∫
Rd

xk1 ...xko f (x)ddx, (5)

with l ∈ {1, ...,o},kl ∈ {1, ...,d}, and xkl representing the kl-th component of x∈Rd .

This arrangement of the moments of the same order into arrays simplifies the
calculation of their behavior under linear transformations, which is very helpful for
the construction of moment invariants. Cyganski et al. [10] use moment tensors to
determine the orientation of scalar functions and to normalize with respect to linear
transformations. In [9], they present the following important theorem.

Theorem 1 The moment tensor of order o of a scalar function is a contravariant
tensor of rank o and weight −1.

Langbein et al. [25] have generalized the definition of the moment tensor to ten-
sor valued functions.

Definition 3 For a tensor field T :Rd→Rdn×dm
with compact support, the moment

tensor oM of order o ∈ N takes the shape

oM =
∫
Rd

x⊗o⊗T (x)ddx, (6)

where x⊗o denotes the o-th tensor power of the vector x.

The analogy between Definitions 2 and 3 can be seen more easily if we write
Definition 3 using the indices

oMi1...ink1...ko
j1... jm

=
∫
Rd

xk1 ...xko T i1...in
j1... jm

(x)ddx, (7)

with l ∈{1, ...,o},kl ∈{1, ...,d}, and xkl representing the kl-th component of x∈Rd .
The following theorem is the main theoretical contribution of this paper. It allows

the construction of moment invariants for tensor fields analogously to the ones for
scalar fields.

Theorem 2 The moment tensor of order o of a tensor field of covariant rank m,
contravariant rank n and weight w is a tensor of covariant rank m, contravariant
rank n+o and weight w−1.

Proof. The vector x is an absolute, contravariant, first rank tensor. Application of
Lemma 1 shows that x⊗o⊗T (x) is a tensor of covariant rank m, contravariant rank
n+o and weight w.

The decrease of the weight by one comes from the integral, because under a
change of the integration variable x′ = Ax, the infinitesimal element is multiplied by
the functional determinant ddx′ = |detA|ddx.

The following Corollary is the property used by Langbein and Hagen [25] to
construct moment invariants. They generate the invariants from moment tensor con-
tractions to scalars.
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Corollary 1 The rank zero contractions of any product of the moment tensors are
moment invariants with respect to rotation and reflection.

Proof. It follows from Lemma 1 that any combination of moment tensor factors in
a tensor product is a tensor. Contraction of this product to zeroth rank is a tensor
because of Lemma 2. According to Definition 1, this zeroth rank tensor satisfies
0M′ = 0M because rotations and reflections satisfy |detA|= 1.

Analogously to the previous corollary, we construct tensors of first and second
rank from contractions and products of moment tensors.

Corollary 2 The rank one contractions of any product of the moment tensors be-
have like vectors under rotation and reflection.

Proof. Lemmata 1 and 2 guarantee that the first order contractions are tensors. Ac-
cording to Definition 1, it satisfies

1M′
i
= Ai

j
1M j, (8)

because rotations and reflections satisfy |detA|= 1. This corresponds to the classical
matrix vector product 1M′ = A1M.

Corollary 3 The rank two contractions of any product of the moment tensors be-
have like matrices under rotation and reflection.

Proof. Lemmata 1 and 2 guarantee that the rank one contractions are tensors. Ac-
cording to Definition 1, it satisfies

2M′
i1i2 = Ai1

j1
Ai2

j2
2M j1 j2 , (9)

because rotations and reflections satisfy |detA|= 1. Because they also satisfy AT =
A−1. This coincides with the matrix product 2M′ = A2MA−1.

4 Algorithm and Complexity

In the two-dimensional case, a rotation has one degree of freedom. That means a
standard position can be defined using one vector, for example, by demanding this
vector to align with the positive real axis.

In the three-dimensional case, we need two vectors to normalize w.r.t. a rotation.
As a standard position, we choose the first one to align with the positive x-axis
and the second one to lie in the upper half of the x-y-plane, which corresponds to
a positive y-coordinate,compare Figure 1. For the remainder of the paper, we will
describe the three-dimensional situation keeping in mind that the second vector will
not be needed in 2D.

Theoretically, it does not matter which first rank contractions we choose as long
as they are the same for the normalization of the pattern and the field. In the case
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Fig. 1: Illustration os the 3D normalization wrt. rotation. The three vectors repre-
sent different normalizer candidates, i.e. first order moment tensor contractions. To
maximize robustness, we use the vector with the highest magnitude (red) and align
it with the positive x-axis. Since, the green vector has the highest magnitude orthog-
onal to the red one, it is used for the second step and rotated into the x-y-plane.

of a scalar field, for example, we could use either the first order moment tensor
1M or a contraction of the third order moment tensor ∑(1,2)

3M to normalize with
respect to rotation. However, for the stability of the algorithm, it is important that the
tensors chosen for the normalization are not close to zero nor are linearly dependent.
In our scalar field example, let us assume that the pattern of interest has no linear
component and 1M = 0. It is impossible to rotate the zero vector onto the x-axis,
which is why it is better to use the contraction ∑(1,2)

3M 6= 0 for the normalization
instead. Even if the tensor is not exactly zero, but numerically small, using it impairs
the robustness. Its orientation may change significantly if the field gets disturbed by
only small noise, which would lead to a different standard position.

In practice, the moments are calculated up to a maximal given order o, which
results in tensors {T} up to rank o+n+m. To maximize robustness, we construct all
possible combinations of tensor products {T̃} not exceeding a given upper rank of
o′> o from the tensors {T}. Then, we calculate all first rank contractions {1T̃} from
this set of products {T̃}. We allow the user to set the orders o and o′. We choose the
vector with maximal magnitude v1 := argmaxv∈{1T̃} ‖v‖ for the first normalization
step. For the second step, we use the vector that is as orthogonal as possible to the
first vector v2 := argmaxv ∈ {1T̃}‖v1× v‖.

Using only the first rank contractions has one important potential issue. If all
odd ranked moment tensors are zero, we cannot construct any non-zero first rank
contraction because the contraction always decreases the rank by two. To solve this
problem, we make use of Corollary 3 and also generate all second rank tensors {2T̃}
from the products {T̃}. These behave like matrices and so, if they have eigenvectors,
these are also possible vectors that could be used to assume the standard position.
We restrict ourselves to the symmetric parts of the second rank tensors in order to
guarantee the existence of real valued eigenvectors.

The stability of an eigenvector is determined by how distinguishable its corre-
sponding eigenvalue is from the remaining eigenvalues. For example, a small per-
turbation of the matrix diag(1,ε,−ε) with small ε could change the order of the
two smaller eigenvalues. That changes the corresponding eigenvectors and the re-
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sult of the normalization. On the other hand, the eigenvector that belongs to 1 is
far more robust. Therefore, we weigh the vector with the minimal distance of its
eigenvalue to the others. Let vi be the eigenvectors that belong to the eigenvalues λi

of the symmetric part of a second order contraction {2T̃}. Then, we add the vectors
ṽi = vi(min j 6=i |λi− λ j|) to the set of first order contractions {1T̃}. This increases
the chances of finding a robust standard position. In our example, we would add
(1− ε,0,0)T ,(0,2ε,0)T , and (0,0,2ε)T .

Please note that in contrast to real vectors, eigenvectors do not have a direction.
For any eigenvector v, −v is also an eigenvector. We therefore must keep track of
two standard positions if an eigenvector is chosen as a normalizer. We do this by
storing a second set of normalized moment tensors for the pattern.

In summary, the consecutive steps for the construction of a complete and inde-
pendent set of moment invariants for tensor fields of arbitrary rank can be found in
Algorithm 1. It selects the most robust rank one tensors and determines the rotation
that puts them into the standard position as illustrated in Figure 1.

Algorithm 1: Moment normalization for tensor fields.
1: Calculate the moment tensors {T} of the pattern up to order o, (5).
2: From the tensors {T}, calculate all possible products {T̃} up to order o′, (2).
3: From the products {T̃}, calculate all possible contractions to first {1T̃} and second rank
{2T̃}, (3).

4: Compute all eigenvectors {v} of the symmetric part of the second rank contractions {2T̃}.
5: Weigh the eigenvectors vi ∈ {v} by the difference of the corresponding eigenvalues

ṽi := vi(min j 6=i |λi−λ j|) and add the result to the set {1T̃}.
6: Chose v1 as the contraction or eigenvector with the biggest norm, i.e. v1 := argmaxv∈{1T̃} ‖v‖.
7: Chose v2 as the contraction or eigenvector with the highest component orthogonal to v1, i.e.

v2 := argmaxv ∈ {1T̃}‖v1× v‖.
8: R1 is the rotation matrix around the axis v1 +(1,0,0)T by the angle α1 = π .
9: R2 is the rotation matrix around v1 by the angle α2 =−atan2((R1v2)

3,(R1v2)
2).

10: Rotate the moment tensors by R = R2R1 using the transformation rule (1).

In the two-dimensional case, the rotation matrix R is simply the one by the angle
α1 =−atan2(v2

1,v
1
1) and the second step is not necessary. The upper indices indicate

the vector component.
Please note that the normalization step is only performed on the moments using

Equation (1), and not on the field or the pattern themselves. The algorithm does not
require any interpolation or sampling.

For the actual pattern detection, we perform the normalization on the pattern,
normalize the moments of the field using the same contractions, and determine the
similarity using the reciprocal of the Euclidean distance between the moments of
the pattern and the field at each position. This process is described in more detail
in [4].

In 2D, arbitrary reflections can be generated from the concatenation of a rotation
and a reflection at the x-axis. It can be seen from (1) that it leaves the magnitude of
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each moment T i1...in
j1... jm

unchanged but causes a sign change in a component of the ten-
sor if the corresponding indices have an odd number of appearances of twos, which
corresponds to the y-direction. This means that we can multiply each component
with (−1)∑ik=2 1+∑ jl=2 1. If the user wants to normalize with respect to reflections,
we proceed as described above for rotations and then simply apply the sign change.
For invariance with respect to all orthogonal transformations, we use the maximal
similarity of both.

In 3D, the normalization with respect to reflections works analogously. We can
combine a rotation with a reflection at the x-y-plane, which leads to a sign change
if the number of threes in the indices, corresponding to the z-direction, is odd. Thus
we can multiply each component with (−1)∑ik=3 1+∑ jl=3 1 and proceed as in the 2D
case.

In the remainder of this section, we will briefly discuss the complexity of Al-
gorithm 1. The main computational effort goes into the computation of the mo-
ments, because we have to evaluate an integral numerically. Assume, we have a
d-dimensional tensor field of rank R with N points and want to find a pattern with M
points using moments up to order O. Then, we need to compute a total of ∑

O
o=1 dR+o

moments at each of the N points, each of which requires the evaluation of M points
for the integration, which leaves us with NM ∑

O
o=1 dR+o operations. Please note that

this step is inherent in all moment-based algorithms. Therefore, they all have a com-
parable runtime. It can be performed in a preprocessing step, because the moments
of the field do not depend on the pattern. Also, the moments do not depend on each
other, which enables a straight forward a parallel computation.

The steps 2 to 9 in Algorithm 1 need to be performed on the moments of the
pattern only, which makes them independent from the size of the dataset and the
size of the pattern. The number of operations depends on the order O up to which
the moments are computed and O′ up to which, we compute the products , which can
be considered small compared to the dataset size. For example, we used O,O′ ≤ 5
in our result section.

Each contraction requires d operations for each of the dr−2 remaining entries
of the tensor. For a tensor of rank r, there are r(r− 1) possible contractions. The
computation of all contractions to first or second order of a tensor of rank R, takes
therefore less than ∑

R
r=1 dr−1r(r−1) operations. This process can be accelerated by

removing identical contractions that appear because the order in which indices are
contracted does not change the result, for example ∑(1,2) ∑(3,4) T = ∑(1,4) ∑(2,3). We
also accelerate this process by only considering non-zero moment tensors for the
products and the contractions.

Once, we have determined v1 and v2, we can specifically compute only these two
products and contractions that are necessary to produce them for each point in the
field. The complexity of it depends on the specific v1 and v2.

For the orientation into standard position, Equation (1) needs to be applied
to all moment tensors in the field and once to the pattern, which takes (N +
1)(∑O

o=1 dR+o)2 operations. Finally, the comparison of the normalized moments of
the pattern to the ones of the field requires another N(∑O

o=1 dR+o)2 operations.
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The computation of the pattern detection tasks in our result section took less than
a minute on a laptop.

5 Results

In this section, we apply our algorithm to some use cases to visually demonstrate its
effectiveness. We first briefly show how our algorithm improves the normalization of
3D scalar and vector fields by adding more flexibility to the choice of the normalizer
thus allowing us to avoid vanishing moments. Then we present results of our method
applied to tensor fields in 2D and 3D. We use the first and second derivatives of an
analytic scalar field so that the reader can compare the results. Please note that we
do not advocate to use higher rank methods to the derivative in cases, where you
could as well apply the lower rank algorithm to the original function. The algorithm
is meant for pattern detection tasks in tensor fields, like from diffusion or stress
measurements, where lower rank data is not available to describe the phenomenon.
We do this here only as an illustrative example.

5.1 3D Scalar

The normalization of 3D scalar functions in previous approaches has been per-
formed using the second rank moment tensor Σ = 2M. The standard position of
this symmetric matrix was given by its eigenbasis. That means the rotation that di-
agonalizes Σ was used as the normalizer. This method is equivalent to aligning the
principal axes of the function with the coordinate axes. It fails if Σ does not have
three distinguishable eigenvalues. All vectors suggested by Cygansky et al. [9] for
normalization rely on the second rank moment tensor, too. As a result, it will not
work for patterns without a quadratic component.

Our algorithm is able to compensate for a vanishing Σ by using the contrac-
tions of higher rank tensors. To illustrate this, we first consider an analytic use case.
Figure 3 shows a cut view of fields that have been generated from different linear
combinations of polynomials from first to third degree in x and y. We then generate
a scalar field such that, at each position (i, j,0)T ∈ R3, i, j ∈ {1,2,3}, we center a
polynomial given by the formula (x−1)i+0.5(y− j) j and modulated with the radial
Gaussian exp(−4(x− i)2−4(y− j)2), superimposing the resulting nine functions.

In order to create a pattern for our search, we choose a small section in the lower
right corner, rotated and reflected it randomly. This pattern, drawn from one of the
nine possibilities, has a linear and a cubic component but no quadratic. A volume
rendering of the rotated pattern can be seen in Figure 2. The missing quadratic part
causes currently available methods to fail to find a normalizer. Algorithm 1, on the
other hand, chooses the first rank tensor v1 = {1M} and the contraction of the first
two indices in the third rank tensor v2 = {∑(1,2)

2M} and assumes the correspond-
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Fig. 2: Volume rendering of the pattern used in Figure 3.

ing standard position. Applying this normalizer, the search results applied to the
polynomials of Figure 3 are visualized in the same figure by applying a brightness
transfer function (shown to the right of the figure). The brighter the polynomial vi-
sualization, the closer it is to the actual search pattern. Algorithm 1 successfully
detects the occurrence of the target polynomial in the field. Other less similar struc-
tures in the field are indicated with decreasing similarity values. We calculated the
moments up to third order, i.e. third rank, and normalized with respect to rotation,
reflection, and scaling. Please note that the analytic field was chosen such that it
does not depend on z in order to simplify the visualization. Also, the algorithm was
performed on the complete 3D data and the cutting plane is shown for visualization
purposes only. The missing z component is not a simpler special case, but actually
more challenging as the algorithm has fewer possible vectors from which to choose.

Please note that the suggested algorithm will coincide with its predecessors if
the chosen pattern has a big enough quadratic part. In this case, it is therefore as
robust as the former approach. If the pattern lacks this part, the former algorithm
will produce an unreliable output, because it will try to determine the orientation of
the eigenvectors of a matrix that is numerically zero.



14 Roxana Bujack and Hans Hagen

Fig. 3: Color coding of the z = 0 plane of the analytic scalar field. The similarity to
the pattern from Figure 2 is encoded using the transfer function on the right. The
higher the similarity, the brighter the underlying field.

5.2 3D Vector

We now move to the 3D vector case. So far, the normalization of vector field mo-
ments makes use of the first order moment tensor Σ = 1M which again has second
rank as in the scalar case. But in contrast to the latter, this matrix is not symmet-
ric for vector fields. Bujack et al. [5] use the Schur form as standard position. The
normalizer is the rotation that transforms Σ into an upper triangular matrix. Analo-
gous to the scalar case, this method fails if Σ is zero. The algorithm in this paper is
capable of overcoming this issue because of its flexibility. It can use any first rank
contraction and is not bound to a tensor of a specific rank.

We use the gradient of the scalar field from the preceding section as an example
3D vector field and calculate the moments up to third order, i.e. fourth rank. The
randomly rotated and reflected pattern has a constant and a quadratic part. Its linear
component now vanishes. Therefore, the second rank moment tensor Σ is zero and
the method described in [5] does not yield any result. Algorithm 1 on the other hand
retrieves one vector from the first rank tensor of the zeroth order moments v1 =

0M
and one from contracting the first and the last index of the third rank tensor of the
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Fig. 4: Stream tubes of the pattern used in Figure 5. Red implies moving forward
and blue backward in time.

second order moments v2 = ∑(1,3)
2M. Figure 4 shows streamtubes of the randomly

rotated and reflected target pattern and Figure 5 is a visualization of the similarity
within the field. The specific similarity values differ from the ones of the scalar field,
but the relative order remains the same.

5.3 2D Tensor

For the tensor case, we constructed an analytic pattern shown in Figure 6 and a
corresponding analytic matrix field in Figure 7, in which we placed the exact copy
of the pattern and a squeezed one. Neither occurrence was aligned with the pattern,
but the algorithm correctly detected its copy with the highest similarity and the
distorted version with lower similarity.
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Fig. 5: Cut through the gradient of the analytic scalar field from Figure 3 at the
z = 0 plane is visualized with LIC and color encoding the velocity of the vector
field. The similarity is encoded using the transfer function on the right. The higher
the similarity, the brighter is the underlying field.

The visualization of the pattern matching Figure 7 is done analogously to [4]. We
draw circles around the local similarity maxima. The color of the circles encodes the
similarity and the diameter represents the integration area for the moment calcula-
tion that resulted in the maximum. For comparison, we lay the result of our algo-
rithm on top of a tensor LIC [35] image of the field. This technique is based on the
classical line integral convolution (LIC) for vector fields [7]. For symmetric matrix
fields, the two LIC images that correspond to the directions of the eigenvectors are
calculated and then either one of them or a combined image that interweaves both
can be shown. More information about tensor visualization can be found in [24].

To demonstrate the applicability of the algorithm in real world applications, we
applied our algorithm to the strain tensor field of the fluid dynamics simulation of
the von Kármán vortex street from [2]. The strain tensor is the symmetric part of the
Jacobian. It describes the separation of neighboring particles [20].

Figures 8 to 11 show two pattern detection results visualized with tensor LIC
[35]. Differently sized patterns were cut out from the field, randomly rotated, and
searched for. We use moment tensors up to third order, i.e. fourth rank. The highest
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Major eigenvector. Minor eigenvector. Combined.

Fig. 6: Tensor LIC of the pattern used in Figure 7. The color map encodes the Frobe-
nius norm of the matrix.

Major eigenvector. Minor eigenvector. Combined.

Fig. 7: Output of Algorithm 1 for the pattern from Figure 6 in a matrix field. The
color in the LIC corresponds to the Frobenius norm of the matrix, the color of the
circles to the similarity.

similarity peak corresponds to the location where the pattern was selected from.
The repeating matches nicely show the repetitive structure of the vortex street. In
Figure 9, we normalized with respect to rotation, reflection, and scaling. Without
the reflection enabled, there are no matches on the lower half of the vortex street.
In Figure 11, we normalized with respect to rotation and scaling. If reflection was
enabled, additional matches would appear between each two circles.

5.4 3D Tensor

Similar to the 3D vector case, we apply Algorithm 1 to the Hessian, i.e. matrix of
the second derivatives, of the scalar field from Figure 3 to consider the 3D tensor
case. We use superquadric tensor glyphs [23] and illuminated tensor lines [34, 19,
36] in directions of all three eigenvectors to visualize the randomly rotated and
reflected pattern in Figure 12. Figure 13 shows the output of the algorithm. We
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Major eigenvector. Minor eigenvector. Combined.

Fig. 8: Tensor LIC of the pattern used in Figure 9. The color map encodes the Frobe-
nius norm of the strain tensor.

Fig. 9: Output of Algorithm 1 for the pattern from Figure 8 in the strain tensor field
of the von Kármán vortex street laid over the tensor LIC of the major eigenvector.
The color in the LIC corresponds to the Frobenius norm of the strain tensor, the
color of the circles to the similarity.

used moments up to second order, i.e. fourth rank, and normalized with respect to
rotation, reflection, and scaling. Again, the position moment that was used to create
the target pattern is clearly identified as the strongest match and the locations with
lower resemblance follow. The visualization of the similarity is done using tensor
LIC [35] color coded with the Frobenius norm of the Laplacian.

6 Discussion

In this paper, we have elucidated the properties of the moment tensors of tensor
fields of arbitrary dimension and rank in Theorem 2. We have applied this theoret-
ical result to develop an algorithm for the generation of rotation invariants for two-
and three-dimensional tensor fields using moment normalization and demonstrated
its applicability to analytical data and simulation use cases. To our knowledge this
is the first time that moment invariants have been practically applied to detect pat-
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Major eigenvector. Minor eigenvector. Combined.

Fig. 10: Tensor LIC of the pattern used in Figure 11. The color map encodes the
Frobenius norm of the strain tensor.

Fig. 11: Output of Algorithm 1 for the pattern from Figure 10 in the strain tensor
field of the von Kármán vortex street laid over the tensor LIC of both eigenvectors.
The color in the LIC corresponds to the Frobenius norm of the strain tensor, the
color of the circles to the similarity.

terns in matrix fields. Further, we have shown how the algorithm improves existing
algorithms for 3D scalar fields and 3D vector fields.

We would like to emphasize that the work on this topic is far from finished.
The existing algorithms, both the normalization and the generator approach, still
have some shortcomings. For the generator approach, the question of redundancy
has not been completely solved yet and both approaches struggle to find symmetric
patterns. For patterns that are not completely rotationally symmetric but show a
certain rotational symmetry, all contractions to zeroth, first, and second rank may be
zero and hence both the generator and the normalization approach fail. In 2D this
issue has been treated for scalar fields by Flusser and Suk [16], who generated bases
specifically for this problem. For vector fields, Bujack et al. [3] solve the problem
using a set of multiple standard positions if a rotationally symmetric moment is
chosen for the normalization. It needs to be investigated in future work how or if
either of these solutions can be generalized to contraction based methods.



20 Roxana Bujack and Hans Hagen

Fig. 12: Superquadric tensor glyphs and illuminated tensor lines of the pattern.
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