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Figure 1: The Galilean invariant vector field and topology in the flow behind a cylinder. Jacobian determinant is encoded in the color map.

ABSTRACT

Vector field topology is one of the most powerful flow visualiza-
tion tools, because it can break down huge amounts of data into a
compact, sparse, and easy to read description with little information
loss. It suffers from one main drawback though: The definition of
critical points, which is the foundation of vector field topology, is
highly dependent on the frame of reference.

In this paper we propose to consider every point as a critical point
and locally adjust the frame of reference to the most persistent ones,
that means the extrema of the determinant of the Jacobian. The re-
sult is not the extraction of one well-suited frame of reference, but
the simultaneous visualization of the dominating frames of refer-
ence in the different areas of the flow field. Each of them could
individually be perceived by an observer traveling along these crit-
ical points. We show all important ones at once.

1 INTRODUCTION

The topological skeleton of a flow field consists of its critical points
and separatrices, i.e. the positions that have zero velocity and their
one-dimensional invariant manifolds. Let v : R2 ⇥R! R2,

v(x, t) = ẋ =
dx
dt

=

✓
v1(x, t)
v2(x, t)

◆
, (1)

be a two-dimensional vector field describing the instantaneous ve-
locity of a flow. Then, there are three principle types of critical
points: saddles, sources, and sinks. Further, there are transitional
types, like centers. The categorization of the so called first order
critical points is performed using the eigenvalues of the Jacobian,
which is the matrix of the first derivatives

—v(x, t) =

 ∂v1(x,t)
∂x1

∂v1(x,t)
∂x2

∂v2(x,t)
∂x1

∂v2(x,t)
∂x2

!
. (2)

The different cases, which can be found in Figure 2, can be ex-
pressed compactly by means of the determinant of the Jacobian. A
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Spiral sink:
¬(l1/2)< 0,
¡(l1/2) 6= 0.

Sp. source:
¬(l1/2)> 0,
¡(l1/2) 6= 0.

Node sink:
¬(l1/2)< 0,
¡(l1/2) = 0.

N. source:
¬(l1/2)< 0,
¡(l1/2) = 0.

Center:
¬(l1/2) = 0,
¡(l1/2) 6= 0.

Saddle:
¬(l1)> 0,
¬(l2)< 0.

Figure 2: Classification of the two-dimansional critical points de-
pending on the eigenvalues l1,l2 of the Jacobian. The colorbar
represents the speed.

negative determinant corresponds to saddle, while a positive deter-
minant corresponds to a source, a sink, or a vortex

det—v(x)< 0 , x is a saddle,
det—v(x)> 0 , x is a source, sink, or vortex.

(3)

Only the saddles have one-dimensional invariant manifolds, which
are the sets of points that are mapped onto themselves as they move
tangentially to the vector field. They are called separatrices and can
be calculated by integrating forward and backward in the directions
of the eigenvectors of the Jacobian of a saddle critical point.

(a) Result with removed average flow.

(b) Result without removed average flow.

Figure 3: Dependence of classical vector field topology on the
choice of a suitable frame of reference in the example of a flow
behind a cylinder on top of line integral convolution (LIC) [4] with
the speed encoded in the colormap from Figure 2.

The topological skeleton separates the flow into regions in which
all particles have the same origin and destination. The result is a



highly compressed representation of the vector field that still con-
tains all the important features of the corresponding frame of ref-
erence. This property makes vector field topology a very useful
tool in flow visualization. An example of the classical vector field
topology can be found in Figure 3a. Saddles are drawn in blue
and centers are in red. The colors of the separatrices resemble the
Doppler effect. As they move away from their aboriginal saddles,
they are drawn in red like distancing objects experience a red shift.
Analogously, the separatrices we get from backward integration are
drawn in blue like in resemblance with the blue shift of approaching
objects. But Figure 3b also demonstrates the big drawback of vector
field topology. It can only yield meaningful results if the frame of
reference was chosen wisely. In some situations all the wisdom in
the wold will not solve the problem because there is no ubiquitous
frame of reference that allows the simultaneous visualization of all
relevant features. It is, for example, not possible to find one single
frame that shows the von Kármán vortex street from Figure 3a as
well as the first vortex that is forming directly behind the obstacle,
which can be seen in Figure 3b.

This problem is long known in flow analysis, but has not yet
been solved in a satisfactory way. For example Parry and Tan [25]
state: “There does not appear to be any single precisely defined
convection velocity which is best for ‘viewing’ the patterns.” and
Haller [11]: “There are several natural choices for a frame of refer-
ence: the lab frame, the frame co-rotating with the boundary, or the
frames co-rotating with individual vortices.”

Considering multiple frames of reference is not trivial because
every single point in the vector field is a critical point just given
the right frame of reference. That means, we have one vector field
for every point in the data, which doubles the dimensionality of the
problem. To overcome this issue, we will select a subset of par-
ticularly persistent points based on Galilean invariant criteria and
visualize their frame of reference in their local neighborhood. That
way, we can visualize both, the vortex street from Figure 3a and the
first vortex behind the obstacle from Figure 3b in just one image,
compare Figure 1.

In this paper, we suggest a method that is based on the determi-
nant of the Jacobian because it determines the category of a critical
point and is Galilean invariant. That means, even though a point
can be a critical point or not depending on the frame of reference,
the kind of critical point it would be, is always the same.

Small perturbations in the vector could change the category a
critical point falls into if the magnitude of the Jacobian is close to
zero. That means the higher the magnitude, the more persistent the
potential critical point. That is why we concentrate on the most
robust ones by using the extrema of the determinant field as critical
point candidates.

In a nutshell, the presented method can be described as follows:

1. Calculate the scalar topology of the determinant of the Jaco-
bian of the vector field.

2. Reduce the number of critical points of the determinant field
using contour tree pruning.

3. Construct the Galilean invariant vector field by subtracting a
weighted sum of the velocities at the persistent positive max-
ima and negative minima.

4. Integrate the separatrices in the Galilean invariant vector field.

2 RELATED WORK

Vector field topology is based on the theory of dynamical systems
[22], which employs the concepts of critical points and separatri-
ces and goes back to Poincareé [27]. The different flow patterns of
vector field critical points categorized by the eigenvalues of their Ja-
cobian into saddles, sinks, sources, and vortices were summarized
already by Perry and Chong [23]. Hellman and Hesselink intro-
duced the topology approach to the visualization community [15].

Since then, it has become a crucial component of flow visualization.
An overview can be found in the state of the art reports [29, 19] and
with an emphasis on unsteady flow in [26].

The problem of finding a good frame of reference for the anal-
ysis and visualization of flow fields has been approached in dif-
ferent ways [24, 13]. The probably most intuitive one is to sub-
tract the mean flow of the field. Wiebel et al. [38] show that sub-
traction of the potential field computed by the Helmholtz-Hodge-
decomposition [20, 28] yields more coherent results. This approach
is later also followed by Bhatia et al. [2]. Another technique re-
moves the boundary-induced flow at localized areas [9]. The results
of these approaches depend on the chosen area and its boundary and
are only capable of treating one frame of reference per area.

Fuchs et al. [10] state that there may not be one single frame of
reference that is well suited to visualize an unsteady flow field in
all time steps, but that the frame of reference may have to change
over time. As an indicator for the frame of reference, they use the
minima of the acceleration field as suggested by Kasten et al. [18].

In this paper, we go one step further and claim that even in steady
fields, there is generally not one perfect frame of reference that al-
lows the absolute analysis of all features. Suitable frames may have
only local validity and we have to change the perspective of the
observer not only if we move in time, but also if we move in space.

We categorize the points in the vector field not by the properties
of their velocity, but their Jacobian. This way, regions with sepa-
rating characteristics are distinguished from regions with repelling
or attracting behavior. A similar segmentation has been used by
Theisel et al. for pathline-based topology [33].

3 COORDINATE TRANSFORMATIONS

In this section, we revisit the behavior of the basic derivatives under
coordinate transformations. An introduction to the physical princi-
ples can be found, for example, in [21, 30].

We look at a transformation of coordinates (x, t) 2R2 ⇥R of the
form

x0 = Ax+b,

t 0 = t + c
(4)

with a constant orthogonal matrix A2 SO(2), a time dependent vec-
tor b : R! R2, and a constant time shift c 2 R.

A Galilean transformation is a subset of (4) with the additional
restriction of b depending only linearly on time, ḃ = const.

A scalar field s(x, t), a vector field v(x, t), and a matrix field
M(x, t) are called invariant with respect to a coordinate transfor-
mation [32] if they suffice

s0(x0, t 0) = s(x, t),

v0(x0, t 0) = Av(x, t),

M0(x0, t 0) = AM(x, t)A�1.

(5)

The velocity field

v(x, t) =
dx
dt

= ẋ (6)

is not invariant under the transformation (4) because it leads to

∂xi
∂x0j

= A�1
i j

dt
dt 0

= 1,

(7)

and therefore

v0(x0, t 0) =
dx0

dt 0
=

dx0

dt
dt
dt 0

(7)
=

dx0

dt
(4)
=

dAx+b
dt

= Aẋ+ ḃ (6)
= Av(x, t)+ ḃ.

(8)



That means v is not invariant except for constant displacements b 2
R. Especially, it is not Galilean invariant. As a result, the critical
points defined as the zeros in the velocity field are not Galilean
invariant either.

The Jacobian of a velocity field or the velocity gradient,

J(x, t) = —xv(x, t), (9)

on the other hand, is invariant with respect to (4), because from

—x0v(x)
(7)
= —xv(x)A�1, (10)

follows

J0(x0, t 0) = —x0v0(x0, t 0)
(8)
= —x0(Av(x, t)+ ḃ) = A—x0v(x, t)

(10)
= A—xv(x, t)A�1 (9)

= AJ(x, t)A�1.
(11)

Especially, the determinant of the Jacobian is invariant because

detJ0(x0, t 0) (11)
= det(AJ(x, t)A�1) = detJ(x, t). (12)

4 GALILEAN INVARIANT CRITICAL POINTS

A critical point in the classical definition is a point with vanish-
ing velocity. This property changes depending on the frame of
reference because of (8). Especially, for any point x0 2 R2, the
Galilean transformation with A = Id,b = �v(x0, t)t,c = 0 in (4),
i.e. x0 = x�v(x0, t)t converts any x0 into a critical point, because of

v0(x00, t
0)

(8)
= v(x0, t)� v(x0, t) = 0. (13)

We will call the corresponding frame of reference x0 = x� v(x0, t)t
the frame of reference of x0 because this would be the perspective
of an observer that traveled sitting on the particle at (x0, t).

Figure 4: Regions with separating character (negative determinant)
shown in blue and regions with attracting/repelling character (posi-
tive determinant) shown in red.

In contrast to whether or not a point is a critical point, the cat-
egory in which a point falls if it is observed from its own frame
of reference does not change because of (11). As a result, we can
partition each vector field into areas forming saddles (separators)
and areas forming sources, sinks, or vortices (attractors/repellers) in
their own frame of reference by distinguishing the parts with nega-
tive determinant of the Jacobian from positive ones. This partition
is Galilean invariant. An example can be found in Figure 4.

At the border between two adjacent areas of opposite signs, the
determinant is zero. This means that the points with a low deter-
minant magnitude are not very determined in whether they would
be a saddle or not in their frame of reference. A small perturbation
of the flow could change the category they fall into. The other way
around, points that have a high determinant magnitude are very ro-
bust in the type of critical point they form in their own frame of
reference. This gives rise to the following definition.

Definition 1. A point (x0, t0) 2 R2 ⇥R is a Galilean invariant

critical point (GICP) of a vector field v : R2 ⇥R ! R2 if it is a
critical point of the determinant of the Jacobian, i.e.

— det—v(x0, t0) = 0. (14)

Figure 5: The critical points of the determinant field are color coded
in red for maxima, blue for minima, and yellow for saddle points.
The color in the LIC encodes the value of the Jacobian determinant.

This definition enables us to use all the well-established tools of
scalar topology for the analysis and processing of vector fields.

A scalar field s : R⇥R ! R has three different kinds of criti-
cal points —s(x0, t0) = 0: maxima, minima, and saddles. They can
be distinguished by the Hessian matrix Hs containing the second
spatial derivatives

Hs(x0, t0) positive definite , (x0, t0) is a minimum,
Hs(x0, t0) negative definite , (x0, t0) is a maximum, (15)

Hs(x0, t0) not definite , (x0, t0) is a saddle.

The critical points of the determinant field of the Jacobian can be
found in Figure 5.

Since we are interested in the points that are very determined in
the kind of critical point they form in their own frame of reference,
we restrict Definition 1 to the negative minima and the positive
maxima. The negative minima of the determinant field form the GI
separators, which means the points that form saddles in the velocity
field in one specific frame of reference. The positive maxima of the
determinant field form the GI attractors and repellers, which means
the points that are sources, sinks, and vortices of the velocity field
in the respective frame of reference. In the following figures, we
visualize the separators using blue and the attractors/repellers us-
ing red nodes as it is customary to visualize their analoga in scalar
topology. All in all, that leaves us with the following two kinds of
interesting Galilean invariant critical points.

Definition 2. A Galilean invariant critical point (x0, t0) 2 R2 ⇥R
of a vector field v : R2 ⇥R ! R2 is called a Galilean invariant

separator if it suffices

det—v(x0, t0)< 0 ^ Hdet—v(x0, t0) positive definite, (16)

and a Galilean invariant attractor/repeller if it suffices

det—v(x0, t0)> 0 ^ Hdet—v(x0, t0) negative definite. (17)

Theorem 1. Let (x0, t0) be a Galilean invariant separator or at-
tractor/repeller of a velocity field v : R2 ⇥R! R2, then its trans-
formed point (x00, t

0
0) under (4) is a Galilean invariant critical point

of the same kind in the velocity field v0 : R2 ⇥R! R2.

Proof. The assertion follows directly from (12).

5 GALILEAN INVARIANT VECTOR FIELD

The Galilean invariant critical points in general do not coincide
with the classical critical points of positions with vanishing veloc-
ity. Each of them comes with a frame of reference though in which
it becomes a classical critical point. Flow analysts are used to the
appearance of the classical critical points as in Figure 2, which is
very intuitive. Therefore, we would like to assume the frame of
reference of a Galilean invariant critical point to visualize it, so
that separators look like saddles and attractors/repellers look like
sources, sinks, or vortices respectively. For each GICP, there is a



Galilean transformation that converts us, the observer, into its in-
herent frame, but there is not one single frame of reference that
suffices this claim for all of them.

One possible solution to visualize each GICP in its frame of ref-
erence would be an interactive tool with which the user can switch
through the different GICPs and their corresponding frames. But
there may be many critical points each of the corresponding images
would most likely not reveal any significant insight at the areas fur-
ther away from the selected position. That means we would waste
a lot of image space on less relevant information and increase the
dimensionality of the problem, because the user would have to dig
his way through the vector field actively visiting every GICP.

This is why we follow a different approach. We will construct a
derived vector field that locally assumes the inherent frames of ref-
erences of each GICP. That way, all their frames of reference can be
displayed simultaneously without doubling the dimensionality of
the problem. We suggest to subtract a weighted average of the ve-
locities of the Galilean invariant separators and attractors/repellers
x1, ...,xn of the vector field v. Any linear interpolation problem

n

Â
i=1

wi(x) f (xi) (18)

with weights wi : R2 ! R,x 7! wi(x) that are invariant under (4)

w0
i(x

0) = wi(x) (19)

and add up to one

8x 2 R2 :
n

Â
i=1

wi(x) = 1 (20)

will result in a frame of reference independent vector field. Most
popular interpolation schemes satisfy these claims, like for exam-
ple, constant, barycentric, bilinear, or inverse distance interpolation.
The weighting sum approach has already been successfully applied
to the design of vector fields from user-specified features [35, 39, 8].
For the images in this paper, we use the inverse distance weighting
with exponent p = 2.

Definition 3. Let v : R2⇥R!R2 be a vector field, x1, . . . ,xn 2R2

a set of points, and wi the weights of a linear interpolation problem
sufficing (19) and (20). Then, the Galilean invariant vector field

(GIVF) v̄ : R2 ⇥R! R2 is defined by

v̄(x) := v(x)�
n

Â
i=1

wi(x)v(xi). (21)

Theorem 2. The Galilean invariant vector field v̄ : R2 ⇥R ! R2

from Definition 3 is invariant with respect to transformations of the
form (4).

Proof. The assertion follows from straight calculation

v̄0(x0) (21)
= v0(x0)�

n

Â
i=1

w0
i(x

0)v0(x0i)

(19)
= v0(x0)�

n

Â
i=1

wi(x)v0(x0i)

(8)
= Av(x)A�1 + ḃ�

n

Â
i=1

wi(x)(Av(xi)A�1 + ḃ)

(20)
= Av(x)A�1 + ḃ�

n

Â
i=1

wi(x)Av(xi)A�1 � ḃ

(21)
= Av̄(x)A�1,

(22)

and (5).

Please note that we have proved invariance not only with respect
to Galilean transformations, but the more general case of transfor-
mations of the form (4). This setting allows a displacement vector
b that changes arbitrarily in time. That way, we can trace critical
points on their individual paths.

Figure 6: LIC [4] of the GIVF with the GICPs and the speed en-
coded in the colormap.

A visualization of the frame of reference independent vector field
can be found in Figure 6. The Galilean invariant vector field is a
normal vector field and can therefore be visualized with any vector
field visualization technique independently from showing the deter-
minant, the critical points, or the separatrices.

6 SEPARATRICES

Once, we have chosen a GIVF, we can use it to integrate separatri-
ces. In the classical vector field topology, separatrices are integrated
forward and backward along the direction of the eigenvectors of the
Jacobian of the saddles until they end at a sink or leave the domain.
Since the GIVF has a well defined meaning only within the areas
close to the GICPs, we keep integrating the separatrices only for a
finite time. For the visualization of this local character, we let them
fade out as they leave their origin. Heuristically, a trajectory length
of about 1/4-th of the spacial extent of the domain seemed to yield
good results. As before, we encode the direction of integration time
in red for distancing and blue for approaching separatrices in anal-
ogy with the Doppler effect, compare Figure 7.

7 TOPOLOGY BASED SIMPLIFICATION

As can be seen in Figure 6, in the presence of noise or non smooth
fields, many local extrema may appear next to each other, which
disturbs the image with a lot of unimportant clutter. This fact is
also true for the classical definition of critical points and has led to
a whole branch of research on topological simplification [34, 36, 19,
13, 31]. The usual approach is to cancel out close critical points that
have indices adding up to zero. This can not trivially be translated
to our setting, because we mainly face the repetitive occurrence
of GICPs of the same type, which follows from the fact that the
saddles in the determinant field have no equivalent in the vector
field but we can still use the topological structure of the determinant
field to topologically simplify the GIVF.

From now on, we take a closer look at a fixed time t0 2 R and
skip it from the notation for the sake of brevity. We have seen in
(12) that the scalar determinant field of the Jacobian det—v : R2 !
R is invariant with respect to transforms of the form (4). That means
that all operations that we perform using only information from the
Jacobian, are invariant in the same sense.

Definition 1 allows us to directly apply scalar topology to vector
fields. We will especially make use of the contour tree. We recom-
mend [5, 6] for an introduction to scalar topology simplification.

A contour of a scalar field f : R2 !R is a connected component
of a level set L f (h) = {x 2 R2, f (x) = h}. For increasing h 2 R,
contours can emerge at local minima of f , join and split at saddles,
and disappear at local maxima of f . The contour tree is an abstrac-
tion of the scalar field that is formed from shrinking each contour
to a node in the tree. Each branch starts and ends at an extremum or
a saddle and corresponds to a connected component in the domain.

There are three common measures of importance associated with
a branch in the contour tree: persistence, volume, and hypervol-



Figure 7: The GIVF from Figure 6 after pruning w.r.t. volume.

ume, [6, 14]. In order to get a vivid understanding of these quali-
ties, imagine that the scalar field describes the height of a mountain
range over a two-dimensional map. Persistence is the maximal dif-
ference of the scalar values of the components of a branch, i.e. the
drop in height from the mountain peak to the closest valley. The
volume is the integral over its affiliated points, i.e. the spacial ex-
tent of the mountain in the map. Finally, the hypervolume criterion
is the integral over the scalar values, i.e. the entirety of material the
mountain consists of. Carr et al. [6] use these criteria to simplify the
contour tree by pruning branches that do not exceed given thresh-
olds in persistence, volume, or hypervolume. Pruning a branch can
be interpreted as an action on the scalar field. Assume we have a
branch enclosed by a maximum and a saddle that corresponds to a
little mountain that gets pruned. Then, the points in the domain get
affiliated with a different branch, namely the one they would belong
to if the little mountain was chopped off at the height of the saddle.

Pruning the contour tree of the determinant field, immediately
translates to a simplification of the GIVF. The measures persistence,
volume, hypervolume, and the affiliation of a point with a branch
before and after pruning in a contour tree depend only on the prop-
erties of the underlying scalar field. Because of (12), the contour
trees of the determinant fields of the Jacobian of two vector fields
that differ by a coordinate transform (4) are isomorphous. That
means two points x and y are in the same contour, iff x0 and y0 are
in the same contour and if x and y are in adjacent contours in the
contour tree, so are x0 and y0. The result of pruning with respect to
volume in the flow behind a cylinder can be found in Figure 7.

8 GALILEAN INVARIANT CLUSTERING

In classical vector field topology, the separatrices segment the do-
main into regions of similar behavior. Even though a similar seg-
mentation is possible in the GIVF, it lacks an interpretation because
of the changing frame of reference in the image. As an alternative,
we propose to segment the domain into regions associated with the
Galilean invariant critical points.

Figure 8: The clustering with respect to steepest ascend/descend for
the example of the flow behind a cylinder.

Let x1, ...,xn be the set of all Galilean invariant separators and
attractors/repellers, i.e. the points satisfying Definition 2. Then, we
form a cluster for every one of them C1, ...,Cn. From each potential
separator x0, i.e. det—v(x0) < 0, we take the path of the steepest
descend until we reach a Galilean invariant separator xi and assign
x0 to its corresponding cluster Ci. Analogously, for a potential at-
tractor/repeller x0, i.e. det—v(x0) > 0, the path of steepest ascend
assigns it to its cluster. The paths of the steepest descend/ascend
are the integral curves in the potential field ±— det—v(x). There-
fore it follows from (12) that the resulting segmentation clusters the
field into regions of similar behavior that is invariant with respect to
(4). An example can be found in Figure 8. This segmentation sepa-
rates areas of attracting/repelling behavior from areas of separating

behavior. Further, each cluster combines all the points that would
reveal the same critical point category under a Galilean transforma-
tion. That means, assume, we have a point with vanishing velocity
that forms a vortex in a flow field. Adding a small constant ve-
locity to the field, will slightly move the center of the vortex. If
we add a constant velocity that is big enough, we may be able to
make the point of vanishing velocity shift away so far that it will no
longer have vortical behavior. This limit, when the type of the point
changes, forms the boundary of the associated cluster.

Theorem 3. Let x0 be assigned to the cluster Ci associated with
the Galilean invariant critical point xi of a velocity field v, let x0 =
Ax + b be a coordinate transformation of the form (4), then, the
point x00 is assigned to the cluster C0

i associated with the Galilean
invariant critical point x0i of a velocity field v0.

Proof. We know from Theorem 1 that (4) maps xi to x0i and from
(12) that the determinant at all four points x0,x00,xix0i has the same
sign. The path of steepest descend/ascend from
p : [0,1]! R2, p(0) = x0, p(1) = xi,

d p(s)
ds =±— det—v(p(s))

depends only on the determinant field and therefore inherits the
Galilean invariance from (12). That means the transformed path
p0 is the path of steepest descend/ascend connecting p0(0) = x00 and
p0(1) = x0i, which proves the assertion.

If two branches in the contour tree get merged during pruning,
we also merge the clusters of their corresponding GICP. Let us re-
visit the mental image of the mountain range. Merging two clusters
would correspond to building a bridge between the two mountain
tops so that the path of steepest ascend can go on to the highest of
the two peaks. Since, the pruning is invariant with respect to (4),
the clustering of the field with pruning is also invariant.

9 CASE STUDY

(a) Vatistas n = 2 sink. (b) Kaufmann/Scully source (c) Lamb/Oseen vortex

(d) Gaussian saddle (e) Sinusoidal sheer (f) Superimposed field

Figure 9: LIC [4] of the analytic field in Figure 9f, which is the
result of superposition of the five other fields.

We have designed an analytic vector field to test our algorithm.
It contains four standard flow features (sink, spiral source, center,
saddle) each showing a different common velocity profile (Vatis-
tas with n = 2, Kaufmann/Scully, Lamb/Oseen, Gaussian, [1, 9])
overlaid with a sheer flow that makes it impossible to view them
simultaneously. The single components and their superposition are
visualized in Figure 9. They suffice the following mathematical



formulae

va(x,y) =� 1p
1+((x+1)2 +(y�1)2)2

✓
x+1
y�1

◆
,

vb(x,y) =
p

0.5
1+(x�1)2 +(y+1)2

✓
(x�1)+(y+1)
(y+1)� (x�1)

◆
,

vc(x,y) =
1� e�(x+1)2�(y+1)2

(x+1)2 +(y+1)2

✓
�(y+1)

x+1

◆
,

vd(x,y) = e�(x�1)2�(y�1)2
✓
�(x�1)

y�1

◆
,

ve(x,y) =
✓

0
1

◆
8
><

>:

�0.5, x <�0.5,
0.5, x > 0.5,
sin(px), else,
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(23)

(a) Color map of the clustering,
LIC of the analytic field, and the
CPs of the determinant field.

(b) Contour tree
of the Jacobian
determinant.

(c) Color map of the determi-
nant, LIC of the GIVF, and the
GI topological skeleton.

(d) Color map of the clustering,
LIC of the analytic field, and the
CPs of the determinant field.

(e) Contour tree
of the Jacobian
determinant.

(f) Color map of the determi-
nant, LIC of the GIVF, and the
GI topological skeleton.

Figure 10: Top row without pruning, bottom row after pruning with
respect to hypervolume up to a threshold of 200.

Figure 10 shows the result of the Galilean invariant topology
without topological simplification in the top row and after prun-
ing with respect to a hypervolume threshold of 200 in the bottom
row. The Galilean invariant vector field reveals all the components
from Figure 9 and their inherent properties. Superimposing the dif-
ferent components causes them to influence each other a little. For
example, the drop of the sheer near the center produces a second
center core and additional saddles appear separating the purpose-
fully placed flow features. The additional center core is easily re-
moved using the topological simplification, as can be seen in the
bottom row. The additional saddles are inherent in the structure of
the vector field. The contour tree is visualized using the algorithm
of Heine et al. [14].

Another degree of freedom is the choice of the GIVF. Depending
on how we assume the local frames of references, the separatrices
look different, compare Figure 11. Increasing the exponent in the
inverse distance weighting causes a more local influence the GICP,
while lower exponents increase the smoothness of the GIVF. Es-
pecially for •, the weighting coincides with the nearest neighbor

Figure 11: GIVFs without pruning for exponents 0, 1, 4, and • in
the inverse distance weighting. The color shows the determinant.

interpolation scheme, which makes the vector field change abruptly
at the borders of the Voronoi cells. The other extreme with zero
as the exponent leads to a single frame of reference averaged from
all GICPs. Depending on the weights, the GIVFs differ and may
contain positions that have zero velocity but are no GICPs. For
example the classical saddle in the bottom of Figure 10f, which is
visually undesirable. Finding the optimal interpolation scheme is
outside the scope of this paper. We would like to emphasize that
Theorem 2 guarantees Galilean invariance for any of these GIVF.

(a) Q-criterion. (b) l2-criterion. (c) Divergence.

Figure 12: LIC of the GIVF color coded with respect to popular
detectors of vortices and sources/sinks shows their correlation. The
nodes are the critical points of the criterium fields. Maxima are red,
minima are blue and saddle points are yellow.

The locations of the GICPs do not coincide exactly with the posi-
tions where we have placed the centers of the six common flow fea-
tures in Figure 9. The reason is not that our algorithm does not find
them correctly but that the features slightly influence each other due
to the superposition. To prove this statement, we use the well es-
tablished vortex detectors: the Q-criterion [16] and the l2-criterion
[17] on the original analytic vector field from (23) and show that
their results perfectly agree with ours for the location of the vortex
core in Figure 12. We have color coded the LIC of the GIVF with
the intensity of the different criteria. Figure 12c shows that the sink
and the source also perfectly coincide with the minimum and the
maximum of the divergence of the original field. Please note that
all three criteria are Galilean invariant and therefore would give the
same result if applied to the GIVF instead of the original field. Fur-
ther, the default frame of reference in Figure 9f shows a vortex at
the bottom in the middle that is not considered a vortex by the three
other methods. We would like to mention that the similarity of the
GICP and the extrema of Q, l2, and divergence is not surprising,
because they are all based on the Jacobian, but this fact does not
mean that they are less trustworthy.

10 RESULTS

We applied Galilean invariant vector field topology to some well-
known vector field data sets. The results enable us to look at old
friends from a new perspective.

Figure 1 shows not only the von Kármán vortex street that forms
in the flow behind a cylinder but also the vortices that appear di-
rectly at the obstacle. They actually have a much higher vorticity
than the distant ones, which is an argument against the usual per-
spective in Figure 3a, because that does not show these most per-
sistent features.



(a) LIC of the original field with speed
in the color coding at time t = 0.

(b) GIVF and GI topology with the de-
terminant in the color coding, t = 0.

(c) LIC of the original field with speed
in the color coding at time t = 7.5.

(d) GIVF and GI topology with the de-
terminant in the color coding, t = 7.5.

Figure 13: Top row shows the first time step, bottom row the time
step of maximal displacement of the double gyre dataset.

(a) LIC of the original field. The speed is encoded in the color map.

(b) GIVF and GI topology. The Jacobian determinant is encoded in the color map.

(c) The Q-criterion is encoded in the color map and its critical points in the nodes.

Figure 14: Longer sequence of the double gyre dataset.

Figure 13 shows the double gyre vector field. Its formula can
be found in [3]. In our experiments, we use the parameters A =
0.3e = 0.25,w = 1

10 . The domain [0,2]⇥ [0,1] shows one pair of
infinitely repeating occurrences of gyres. The double gyre is very
smooth and no pruning was necessary to create the images. In the
first time step, the GIVF coincides with the standard frame of refer-
ence because the locations with maximal and minimal determinant
of the Jacobian coincide with the classical critical points of vanish-
ing velocity. At all other time steps, this is not the case though.
The bottom row of Figure 13 shows the point of maximal displace-
ment. Here, the points of maximal separation do no longer coincide
with the positions of vanishing velocity. In their inherent frame of
reference, the neighboring gyre from the right starts to enter into
the observed domain. In order to give a better explanation of this
unusual phenomenon, we have extended the observation domain to
[0,6]⇥ [0,1] in Figure 14. While the standard frame of reference
shows one vortex at (3,0.5)T , the GIVF shows two, which is in
better accordance with the Q-criterion. The double gyre dataset is
a standard example of the analysis of FTLE [12] and a counter ex-
ample for the validity of classical vector field topology. Please note
that the GI separators do not coincide with the FTLE extrema be-
cause our method is instantaneous. It works on one time step at a
time and does not contain any information about the future path of
a particle. Still, there seems to be a relation, whose analysis will be
a challenge for future work.

(a) LIC of the original
field with speed in the
color coding.

(b) GIVF and GI topol-
ogy with the determi-
nant color coded.

(c) GIVF with the Q-
criterion in the color
map and its CP.

Figure 15: The swirling jet entering a fluid at rest.

A flow simulation of a swirling jet entering a fluid at rest can be
found in Figure 15. The GIVF was pruned with respect to volume
up to a threshold of 100. The images show that the default frame of
reference is already pretty good. It only misses a few vortices. A
very persistent one, for example, at the top of the domain is revealed
by the GIVF. This result coincides with the ones of the Q-criterion.
The one at the bottom, where the stream enters the domain is a little
displaced from the maximum of the two vortex criteria. They place
the extremum a bit lower outside the observed domain.

(a) Original field with
speed in color coding.

(b) GIVF and topology
with the determinant.

(c) For comparison:
GIVF with divergence.

Figure 16: The petri dish-data set.

One very challenging flow field [7, 37], which is considered not
solved [10, 2] is the petri-dish data set. It contains a spiraling sink
that rotates around the center of the circular domain. The result of
our approach can be found in Figure 16. We pruned the GIVF with
respect to hypervolume at a threshold of 0.001. The position of the
sink in the default frame of reference and the GIVF clearly differ.
To underline the meaningfulness of the GIVF, we colored the back-
ground representing the divergence of the original field in Figure
16c. The maximal divergence coincides with the GI attractor.

Our method can also be applied to different time steps in time-
dependent datasets. Some results can be found in the supplemen-
tary video. So far, the GIVF does not change smoothly through
time. This issue of tracking the critical points is a task for future
work.

11 DISCUSSION AND CONCLUSIONS

In this paper, we have presented a definition of critical points of a
vector field that is Galilean invariant based on the extrema of the
determinant of the Jacobian. We presented a way to visualize these
critical points in an easy to interpret way by means of the Galilean
invariant vector field (GIVF). We have proven the invariance and
shown the usefulness of the new perspective by presenting insights
into popular example vector fields that exceed the features that can
be revealed by any single frame of reference.

A drawback of our technique is that the analyst may be tempted
to interpret the image as one frame of reference even though it is



the union of many. An interactive tool that switches through the
different frames could prevent that from happening. We would also
like to mention that in case that a distinguished frame of reference is
known to be significant, it may be better to stick with it in contrast
to applying our method. Another issue is the dependence of the
scalar topological simplification on the choice of the parameters,
which our method inherits.

We would like to conclude that not only the vector field topol-
ogy, but most flow visualization techniques depend sensitively on
the chosen frame of reference. The visualization of the Galilean
invariant vector field with any visualization technique can aid the
analysis of the original vector field.

In our future work, we would like to extend our approach to 3D
vector fields and affine transformations and employ feature tracking
methods for a smoother handling of time-depending data sets.
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